2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 18:07:40 +00:00
ovs/lib/netlink-conntrack.c

967 lines
32 KiB
C
Raw Normal View History

/*
* Copyright (c) 2015 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "netlink-conntrack.h"
#include <errno.h>
#include <linux/netfilter/nfnetlink.h>
#include <linux/netfilter/nfnetlink_conntrack.h>
#include <linux/netfilter/nf_conntrack_common.h>
#include <linux/netfilter/nf_conntrack_tcp.h>
#include <linux/netfilter/nf_conntrack_ftp.h>
#include <linux/netfilter/nf_conntrack_sctp.h>
#include "byte-order.h"
#include "compiler.h"
#include "openvswitch/dynamic-string.h"
#include "netlink.h"
#include "netlink-socket.h"
#include "openvswitch/ofpbuf.h"
#include "openvswitch/vlog.h"
#include "openvswitch/poll-loop.h"
#include "timeval.h"
#include "unixctl.h"
#include "util.h"
VLOG_DEFINE_THIS_MODULE(netlink_conntrack);
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
/* This module works only if conntrack modules and features are enabled in the
* Linux kernel. This can be done from a root shell like this:
*
* $ modprobe ip_conntrack
* $ sysctl -w net.netfilter.nf_conntrack_acct=1
* $ sysctl -w net.netfilter.nf_conntrack_timestamp=1
*
* Also, if testing conntrack label feature without conntrack-aware OVS kernel
* module, there must be a connlabel rule in iptables for space to be reserved
* for the labels (see kernel source connlabel_mt_check()). Such a rule can be
* inserted from a root shell like this:
*
* $ iptables -A INPUT -m conntrack -m connlabel \
* --ctstate NEW,ESTABLISHED,RELATED --label 127 -j ACCEPT
*/
/* Some attributes were introduced in later kernels: with these definitions
* we should be able to compile userspace against Linux 2.6.32+. */
#define CTA_ZONE (CTA_SECMARK + 1)
#define CTA_SECCTX (CTA_SECMARK + 2)
#define CTA_TIMESTAMP (CTA_SECMARK + 3)
#define CTA_MARK_MASK (CTA_SECMARK + 4)
#define CTA_LABELS (CTA_SECMARK + 5)
#define CTA_LABELS_MASK (CTA_SECMARK + 6)
#define CTA_TIMESTAMP_START 1
#define CTA_TIMESTAMP_STOP 2
#define IPS_TEMPLATE_BIT 11
#define IPS_TEMPLATE (1 << IPS_TEMPLATE_BIT)
#define IPS_UNTRACKED_BIT 12
#define IPS_UNTRACKED (1 << IPS_UNTRACKED_BIT)
static const struct nl_policy nfnlgrp_conntrack_policy[] = {
[CTA_TUPLE_ORIG] = { .type = NL_A_NESTED, .optional = false },
[CTA_TUPLE_REPLY] = { .type = NL_A_NESTED, .optional = false },
[CTA_ZONE] = { .type = NL_A_BE16, .optional = true },
[CTA_STATUS] = { .type = NL_A_BE32, .optional = false },
[CTA_TIMESTAMP] = { .type = NL_A_NESTED, .optional = true },
[CTA_TIMEOUT] = { .type = NL_A_BE32, .optional = true },
[CTA_COUNTERS_ORIG] = { .type = NL_A_NESTED, .optional = true },
[CTA_COUNTERS_REPLY] = { .type = NL_A_NESTED, .optional = true },
[CTA_PROTOINFO] = { .type = NL_A_NESTED, .optional = true },
[CTA_HELP] = { .type = NL_A_NESTED, .optional = true },
[CTA_MARK] = { .type = NL_A_BE32, .optional = true },
[CTA_SECCTX] = { .type = NL_A_NESTED, .optional = true },
[CTA_ID] = { .type = NL_A_BE32, .optional = false },
[CTA_USE] = { .type = NL_A_BE32, .optional = true },
[CTA_TUPLE_MASTER] = { .type = NL_A_NESTED, .optional = true },
[CTA_NAT_SEQ_ADJ_ORIG] = { .type = NL_A_NESTED, .optional = true },
[CTA_NAT_SEQ_ADJ_REPLY] = { .type = NL_A_NESTED, .optional = true },
[CTA_LABELS] = { .type = NL_A_UNSPEC, .optional = true },
/* CTA_NAT_SRC, CTA_NAT_DST, CTA_TIMESTAMP, CTA_MARK_MASK, and
* CTA_LABELS_MASK are not received from kernel. */
};
/* Declarations for conntrack netlink dumping. */
static void nl_msg_put_nfgenmsg(struct ofpbuf *msg, size_t expected_payload,
int family, uint8_t subsystem, uint8_t cmd,
uint32_t flags);
static bool nl_ct_parse_header_policy(struct ofpbuf *buf,
enum nl_ct_event_type *event_type,
uint8_t *nfgen_family,
struct nlattr *attrs[ARRAY_SIZE(nfnlgrp_conntrack_policy)]);
static bool nl_ct_attrs_to_ct_dpif_entry(struct ct_dpif_entry *entry,
struct nlattr *attrs[ARRAY_SIZE(nfnlgrp_conntrack_policy)],
uint8_t nfgen_family);
static bool nl_ct_put_ct_tuple(struct ofpbuf *buf,
const struct ct_dpif_tuple *tuple, enum ctattr_type type);
struct nl_ct_dump_state {
struct nl_dump dump;
struct ofpbuf buf;
bool filter_zone;
uint16_t zone;
};
/* Conntrack netlink dumping. */
/* Initialize a conntrack netlink dump. */
int
nl_ct_dump_start(struct nl_ct_dump_state **statep, const uint16_t *zone,
int *ptot_bkts)
{
struct nl_ct_dump_state *state;
*statep = state = xzalloc(sizeof *state);
ofpbuf_init(&state->buf, NL_DUMP_BUFSIZE);
if (zone) {
state->filter_zone = true;
state->zone = *zone;
}
nl_msg_put_nfgenmsg(&state->buf, 0, AF_UNSPEC, NFNL_SUBSYS_CTNETLINK,
IPCTNL_MSG_CT_GET, NLM_F_REQUEST);
nl_dump_start(&state->dump, NETLINK_NETFILTER, &state->buf);
ofpbuf_clear(&state->buf);
/* Buckets to store connections are not used. */
*ptot_bkts = -1;
return 0;
}
/* Receive the next 'entry' from the conntrack netlink dump with 'state'.
* Returns 'EOF' when no more entries are available, 0 otherwise. 'entry' may
* be uninitilized memory on entry, and must be uninitialized with
* ct_dpif_entry_uninit() afterwards by the caller. In case the same 'entry' is
* passed to this function again, the entry must also be uninitialized before
* the next call. */
int
nl_ct_dump_next(struct nl_ct_dump_state *state, struct ct_dpif_entry *entry)
{
struct ofpbuf buf;
memset(entry, 0, sizeof *entry);
for (;;) {
struct nlattr *attrs[ARRAY_SIZE(nfnlgrp_conntrack_policy)];
enum nl_ct_event_type type;
uint8_t nfgen_family;
if (!nl_dump_next(&state->dump, &buf, &state->buf)) {
return EOF;
}
if (!nl_ct_parse_header_policy(&buf, &type, &nfgen_family, attrs)) {
continue;
};
if (state->filter_zone) {
uint16_t entry_zone = attrs[CTA_ZONE]
? ntohs(nl_attr_get_be16(attrs[CTA_ZONE]))
: 0;
if (entry_zone != state->zone) {
continue;
}
}
if (nl_ct_attrs_to_ct_dpif_entry(entry, attrs, nfgen_family)) {
break;
}
ct_dpif_entry_uninit(entry);
memset(entry, 0, sizeof *entry);
/* Ignore the failed entry and get the next one. */
}
ofpbuf_uninit(&buf);
return 0;
}
/* End a conntrack netlink dump. */
int
nl_ct_dump_done(struct nl_ct_dump_state *state)
{
int error = nl_dump_done(&state->dump);
ofpbuf_uninit(&state->buf);
free(state);
return error;
}
/* Format conntrack event 'entry' of 'type' to 'ds'. */
void
nl_ct_format_event_entry(const struct ct_dpif_entry *entry,
enum nl_ct_event_type type, struct ds *ds,
bool verbose, bool print_stats)
{
ds_put_format(ds, "%s ",
type == NL_CT_EVENT_NEW ? "NEW"
: type == NL_CT_EVENT_UPDATE ? "UPDATE"
: type == NL_CT_EVENT_DELETE ? "DELETE"
: "UNKNOWN");
ct_dpif_format_entry(entry, ds, verbose, print_stats);
}
int
nl_ct_flush(void)
{
struct ofpbuf buf;
int err;
ofpbuf_init(&buf, NL_DUMP_BUFSIZE);
nl_msg_put_nfgenmsg(&buf, 0, AF_UNSPEC, NFNL_SUBSYS_CTNETLINK,
IPCTNL_MSG_CT_DELETE, NLM_F_REQUEST);
err = nl_transact(NETLINK_NETFILTER, &buf, NULL);
ofpbuf_uninit(&buf);
/* Expectations are flushed automatically, because they do not
* have a master connection anymore */
return err;
}
int
nl_ct_flush_tuple(const struct ct_dpif_tuple *tuple, uint16_t zone)
{
int err;
struct ofpbuf buf;
ofpbuf_init(&buf, NL_DUMP_BUFSIZE);
nl_msg_put_nfgenmsg(&buf, 0, tuple->l3_type, NFNL_SUBSYS_CTNETLINK,
IPCTNL_MSG_CT_DELETE, NLM_F_REQUEST);
nl_msg_put_be16(&buf, CTA_ZONE, htons(zone));
if (!nl_ct_put_ct_tuple(&buf, tuple, CTA_TUPLE_ORIG)) {
err = EOPNOTSUPP;
goto out;
}
err = nl_transact(NETLINK_NETFILTER, &buf, NULL);
out:
ofpbuf_uninit(&buf);
return err;
}
#ifdef _WIN32
int
nl_ct_flush_zone(uint16_t flush_zone)
{
/* Windows can flush a specific zone */
struct ofpbuf buf;
int err;
ofpbuf_init(&buf, NL_DUMP_BUFSIZE);
nl_msg_put_nfgenmsg(&buf, 0, AF_UNSPEC, NFNL_SUBSYS_CTNETLINK,
IPCTNL_MSG_CT_DELETE, NLM_F_REQUEST);
nl_msg_put_be16(&buf, CTA_ZONE, flush_zone);
err = nl_transact(NETLINK_NETFILTER, &buf, NULL);
ofpbuf_uninit(&buf);
return err;
}
#else
int
nl_ct_flush_zone(uint16_t flush_zone)
{
/* Apparently, there's no netlink interface to flush a specific zone.
* This code dumps every connection, checks the zone and eventually
* delete the entry.
*
* This is race-prone, but it is better than using shell scripts. */
struct nl_dump dump;
struct ofpbuf buf, reply, delete;
ofpbuf_init(&buf, NL_DUMP_BUFSIZE);
ofpbuf_init(&delete, NL_DUMP_BUFSIZE);
nl_msg_put_nfgenmsg(&buf, 0, AF_UNSPEC, NFNL_SUBSYS_CTNETLINK,
IPCTNL_MSG_CT_GET, NLM_F_REQUEST);
nl_dump_start(&dump, NETLINK_NETFILTER, &buf);
ofpbuf_clear(&buf);
for (;;) {
struct nlattr *attrs[ARRAY_SIZE(nfnlgrp_conntrack_policy)];
enum nl_ct_event_type event_type;
uint8_t nfgen_family;
uint16_t zone = 0;
if (!nl_dump_next(&dump, &reply, &buf)) {
break;
}
if (!nl_ct_parse_header_policy(&reply, &event_type, &nfgen_family,
attrs)) {
continue;
};
if (attrs[CTA_ZONE]) {
zone = ntohs(nl_attr_get_be16(attrs[CTA_ZONE]));
}
if (zone != flush_zone) {
/* The entry is not in the zone we're flushing. */
continue;
}
nl_msg_put_nfgenmsg(&delete, 0, nfgen_family, NFNL_SUBSYS_CTNETLINK,
IPCTNL_MSG_CT_DELETE, NLM_F_REQUEST);
nl_msg_put_be16(&delete, CTA_ZONE, htons(zone));
nl_msg_put_unspec(&delete, CTA_TUPLE_ORIG, attrs[CTA_TUPLE_ORIG] + 1,
attrs[CTA_TUPLE_ORIG]->nla_len - NLA_HDRLEN);
nl_msg_put_unspec(&delete, CTA_ID, attrs[CTA_ID] + 1,
attrs[CTA_ID]->nla_len - NLA_HDRLEN);
nl_transact(NETLINK_NETFILTER, &delete, NULL);
ofpbuf_clear(&delete);
}
nl_dump_done(&dump);
ofpbuf_uninit(&delete);
ofpbuf_uninit(&buf);
/* Expectations are flushed automatically, because they do not
* have a master connection anymore */
return 0;
}
#endif
/* Conntrack netlink parsing. */
static bool
nl_ct_parse_counters(struct nlattr *nla, struct ct_dpif_counters *counters)
{
static const struct nl_policy policy[] = {
[CTA_COUNTERS_PACKETS] = { .type = NL_A_BE64, .optional = false },
[CTA_COUNTERS_BYTES] = { .type = NL_A_BE64, .optional = false },
};
struct nlattr *attrs[ARRAY_SIZE(policy)];
bool parsed;
parsed = nl_parse_nested(nla, policy, attrs, ARRAY_SIZE(policy));
if (parsed) {
counters->packets
= ntohll(nl_attr_get_be64(attrs[CTA_COUNTERS_PACKETS]));
counters->bytes = ntohll(nl_attr_get_be64(attrs[CTA_COUNTERS_BYTES]));
} else {
VLOG_ERR_RL(&rl, "Could not parse nested counters. "
"Possibly incompatible Linux kernel version.");
}
return parsed;
}
static bool
nl_ct_parse_timestamp(struct nlattr *nla, struct ct_dpif_timestamp *timestamp)
{
static const struct nl_policy policy[] = {
[CTA_TIMESTAMP_START] = { .type = NL_A_BE64, .optional = false },
[CTA_TIMESTAMP_STOP] = { .type = NL_A_BE64, .optional = true },
};
struct nlattr *attrs[ARRAY_SIZE(policy)];
bool parsed;
parsed = nl_parse_nested(nla, policy, attrs, ARRAY_SIZE(policy));
if (parsed) {
timestamp->start
= ntohll(nl_attr_get_be64(attrs[CTA_TIMESTAMP_START]));
if (attrs[CTA_TIMESTAMP_STOP]) {
timestamp->stop
= ntohll(nl_attr_get_be64(attrs[CTA_TIMESTAMP_STOP]));
}
} else {
VLOG_ERR_RL(&rl, "Could not parse nested timestamp. "
"Possibly incompatible Linux kernel version.");
}
return parsed;
}
static bool
nl_ct_parse_tuple_ip(struct nlattr *nla, struct ct_dpif_tuple *tuple)
{
static const struct nl_policy policy[] = {
[CTA_IP_V4_SRC] = { .type = NL_A_BE32, .optional = true },
[CTA_IP_V4_DST] = { .type = NL_A_BE32, .optional = true },
[CTA_IP_V6_SRC] = { NL_POLICY_FOR(struct in6_addr), .optional = true },
[CTA_IP_V6_DST] = { NL_POLICY_FOR(struct in6_addr), .optional = true },
};
struct nlattr *attrs[ARRAY_SIZE(policy)];
bool parsed;
parsed = nl_parse_nested(nla, policy, attrs, ARRAY_SIZE(policy));
if (parsed) {
if (tuple->l3_type == AF_INET) {
if (attrs[CTA_IP_V4_SRC]) {
tuple->src.ip = nl_attr_get_be32(attrs[CTA_IP_V4_SRC]);
}
if (attrs[CTA_IP_V4_DST]) {
tuple->dst.ip = nl_attr_get_be32(attrs[CTA_IP_V4_DST]);
}
} else if (tuple->l3_type == AF_INET6) {
if (attrs[CTA_IP_V6_SRC]) {
memcpy(&tuple->src.in6, nl_attr_get(attrs[CTA_IP_V6_SRC]),
sizeof tuple->src.in6);
}
if (attrs[CTA_IP_V6_DST]) {
memcpy(&tuple->dst.in6, nl_attr_get(attrs[CTA_IP_V6_DST]),
sizeof tuple->dst.in6);
}
} else {
VLOG_WARN_RL(&rl, "Unsupported IP protocol: %u.", tuple->l3_type);
return false;
}
} else {
VLOG_ERR_RL(&rl, "Could not parse nested tuple IP options. "
"Possibly incompatible Linux kernel version.");
}
return parsed;
}
static bool
nl_ct_parse_tuple_proto(struct nlattr *nla, struct ct_dpif_tuple *tuple)
{
static const struct nl_policy policy[] = {
[CTA_PROTO_NUM] = { .type = NL_A_U8, .optional = false },
[CTA_PROTO_SRC_PORT] = { .type = NL_A_BE16, .optional = true },
[CTA_PROTO_DST_PORT] = { .type = NL_A_BE16, .optional = true },
[CTA_PROTO_ICMP_ID] = { .type = NL_A_BE16, .optional = true },
[CTA_PROTO_ICMP_TYPE] = { .type = NL_A_U8, .optional = true },
[CTA_PROTO_ICMP_CODE] = { .type = NL_A_U8, .optional = true },
[CTA_PROTO_ICMPV6_ID] = { .type = NL_A_BE16, .optional = true },
[CTA_PROTO_ICMPV6_TYPE] = { .type = NL_A_U8, .optional = true },
[CTA_PROTO_ICMPV6_CODE] = { .type = NL_A_U8, .optional = true },
};
struct nlattr *attrs[ARRAY_SIZE(policy)];
bool parsed;
parsed = nl_parse_nested(nla, policy, attrs, ARRAY_SIZE(policy));
if (parsed) {
tuple->ip_proto = nl_attr_get_u8(attrs[CTA_PROTO_NUM]);
if (tuple->l3_type == AF_INET && tuple->ip_proto == IPPROTO_ICMP) {
if (!attrs[CTA_PROTO_ICMP_ID] || !attrs[CTA_PROTO_ICMP_TYPE]
|| !attrs[CTA_PROTO_ICMP_CODE]) {
VLOG_ERR_RL(&rl, "Tuple ICMP data missing.");
return false;
}
tuple->icmp_id = nl_attr_get_be16(attrs[CTA_PROTO_ICMP_ID]);
tuple->icmp_type = nl_attr_get_u8(attrs[CTA_PROTO_ICMP_TYPE]);
tuple->icmp_code = nl_attr_get_u8(attrs[CTA_PROTO_ICMP_CODE]);
} else if (tuple->l3_type == AF_INET6 &&
tuple->ip_proto == IPPROTO_ICMPV6) {
if (!attrs[CTA_PROTO_ICMPV6_ID] || !attrs[CTA_PROTO_ICMPV6_TYPE]
|| !attrs[CTA_PROTO_ICMPV6_CODE]) {
VLOG_ERR_RL(&rl, "Tuple ICMPv6 data missing.");
return false;
}
tuple->icmp_id = nl_attr_get_be16(attrs[CTA_PROTO_ICMPV6_ID]);
tuple->icmp_type = nl_attr_get_u8(attrs[CTA_PROTO_ICMPV6_TYPE]);
tuple->icmp_code = nl_attr_get_u8(attrs[CTA_PROTO_ICMPV6_CODE]);
} else if (attrs[CTA_PROTO_SRC_PORT] && attrs[CTA_PROTO_DST_PORT]) {
tuple->src_port = nl_attr_get_be16(attrs[CTA_PROTO_SRC_PORT]);
tuple->dst_port = nl_attr_get_be16(attrs[CTA_PROTO_DST_PORT]);
} else {
/* Unsupported IPPROTO and no ports, leave them zeroed.
* We have parsed the ip_proto, so this is not a failure. */
VLOG_DBG_RL(&rl, "Unsupported L4 protocol: %u.", tuple->ip_proto);
}
} else {
VLOG_ERR_RL(&rl, "Could not parse nested tuple protocol options. "
"Possibly incompatible Linux kernel version.");
}
return parsed;
}
static bool
nl_ct_parse_tuple(struct nlattr *nla, struct ct_dpif_tuple *tuple,
uint16_t l3_type)
{
static const struct nl_policy policy[] = {
[CTA_TUPLE_IP] = { .type = NL_A_NESTED, .optional = false },
[CTA_TUPLE_PROTO] = { .type = NL_A_NESTED, .optional = false },
};
struct nlattr *attrs[ARRAY_SIZE(policy)];
bool parsed;
parsed = nl_parse_nested(nla, policy, attrs, ARRAY_SIZE(policy));
memset(tuple, 0, sizeof *tuple);
if (parsed) {
tuple->l3_type = l3_type;
if (!nl_ct_parse_tuple_ip(attrs[CTA_TUPLE_IP], tuple)
|| !nl_ct_parse_tuple_proto(attrs[CTA_TUPLE_PROTO], tuple)) {
struct ds ds;
ds_init(&ds);
ct_dpif_format_tuple(&ds, tuple);
VLOG_ERR_RL(&rl, "Failed to parse tuple: %s", ds_cstr(&ds));
ds_destroy(&ds);
memset(tuple, 0, sizeof *tuple);
return false;
}
} else {
VLOG_ERR_RL(&rl, "Could not parse nested tuple options. "
"Possibly incompatible Linux kernel version.");
}
return parsed;
}
static bool
nl_ct_put_tuple_ip(struct ofpbuf *buf, const struct ct_dpif_tuple *tuple)
{
size_t offset = nl_msg_start_nested(buf, CTA_TUPLE_IP);
if (tuple->l3_type == AF_INET) {
nl_msg_put_be32(buf, CTA_IP_V4_SRC, tuple->src.ip);
nl_msg_put_be32(buf, CTA_IP_V4_DST, tuple->dst.ip);
} else if (tuple->l3_type == AF_INET6) {
nl_msg_put_in6_addr(buf, CTA_IP_V6_SRC, &tuple->src.in6);
nl_msg_put_in6_addr(buf, CTA_IP_V6_DST, &tuple->dst.in6);
} else {
VLOG_WARN_RL(&rl, "Unsupported IP protocol: %"PRIu16".",
tuple->l3_type);
return false;
}
nl_msg_end_nested(buf, offset);
return true;
}
static bool
nl_ct_put_tuple_proto(struct ofpbuf *buf, const struct ct_dpif_tuple *tuple)
{
size_t offset = nl_msg_start_nested(buf, CTA_TUPLE_PROTO);
nl_msg_put_u8(buf, CTA_PROTO_NUM, tuple->ip_proto);
if (tuple->l3_type == AF_INET && tuple->ip_proto == IPPROTO_ICMP) {
nl_msg_put_be16(buf, CTA_PROTO_ICMP_ID, tuple->icmp_id);
nl_msg_put_u8(buf, CTA_PROTO_ICMP_TYPE, tuple->icmp_type);
nl_msg_put_u8(buf, CTA_PROTO_ICMP_CODE, tuple->icmp_code);
} else if (tuple->l3_type == AF_INET6 &&
tuple->ip_proto == IPPROTO_ICMPV6) {
nl_msg_put_be16(buf, CTA_PROTO_ICMPV6_ID, tuple->icmp_id);
nl_msg_put_u8(buf, CTA_PROTO_ICMPV6_TYPE, tuple->icmp_type);
nl_msg_put_u8(buf, CTA_PROTO_ICMPV6_CODE, tuple->icmp_code);
} else if (tuple->ip_proto == IPPROTO_TCP ||
tuple->ip_proto == IPPROTO_UDP) {
nl_msg_put_be16(buf, CTA_PROTO_SRC_PORT, tuple->src_port);
nl_msg_put_be16(buf, CTA_PROTO_DST_PORT, tuple->dst_port);
} else {
VLOG_WARN_RL(&rl, "Unsupported L4 protocol: %"PRIu8".",
tuple->ip_proto);
return false;
}
nl_msg_end_nested(buf, offset);
return true;
}
static bool
nl_ct_put_ct_tuple(struct ofpbuf *buf, const struct ct_dpif_tuple *tuple,
enum ctattr_type type)
{
if (type != CTA_TUPLE_ORIG && type != CTA_TUPLE_REPLY &&
type != CTA_TUPLE_MASTER) {
return false;
}
size_t offset = nl_msg_start_nested(buf, type);
if (!nl_ct_put_tuple_ip(buf, tuple)) {
return false;
}
if (!nl_ct_put_tuple_proto(buf, tuple)) {
return false;
}
nl_msg_end_nested(buf, offset);
return true;
}
/* Translate netlink TCP state to CT_DPIF_TCP state. */
static uint8_t
nl_ct_tcp_state_to_dpif(uint8_t state)
{
#ifdef _WIN32
/* Windows currently sends up CT_DPIF_TCP state */
return state;
#else
switch (state) {
case TCP_CONNTRACK_NONE:
return CT_DPIF_TCPS_CLOSED;
case TCP_CONNTRACK_SYN_SENT:
return CT_DPIF_TCPS_SYN_SENT;
case TCP_CONNTRACK_SYN_SENT2:
return CT_DPIF_TCPS_SYN_SENT;
case TCP_CONNTRACK_SYN_RECV:
return CT_DPIF_TCPS_SYN_RECV;
case TCP_CONNTRACK_ESTABLISHED:
return CT_DPIF_TCPS_ESTABLISHED;
case TCP_CONNTRACK_FIN_WAIT:
return CT_DPIF_TCPS_FIN_WAIT_1;
case TCP_CONNTRACK_CLOSE_WAIT:
return CT_DPIF_TCPS_CLOSE_WAIT;
case TCP_CONNTRACK_LAST_ACK:
return CT_DPIF_TCPS_LAST_ACK;
case TCP_CONNTRACK_TIME_WAIT:
return CT_DPIF_TCPS_TIME_WAIT;
case TCP_CONNTRACK_CLOSE:
return CT_DPIF_TCPS_CLOSING;
default:
return CT_DPIF_TCPS_CLOSED;
}
#endif
}
static uint8_t
ip_ct_tcp_flags_to_dpif(uint8_t flags)
{
#ifdef _WIN32
/* Windows currently sends up CT_DPIF_TCP flags */
return flags;
#else
uint8_t ret = 0;
#define CT_DPIF_TCP_FLAG(FLAG) \
ret |= (flags & IP_CT_TCP_FLAG_##FLAG) ? CT_DPIF_TCPF_##FLAG : 0;
CT_DPIF_TCP_FLAGS
#undef CT_DPIF_STATUS_FLAG
return ret;
#endif
}
static bool
nl_ct_parse_protoinfo_tcp(struct nlattr *nla,
struct ct_dpif_protoinfo *protoinfo)
{
static const struct nl_policy policy[] = {
[CTA_PROTOINFO_TCP_STATE] = { .type = NL_A_U8, .optional = false },
[CTA_PROTOINFO_TCP_WSCALE_ORIGINAL] = { .type = NL_A_U8,
.optional = false },
[CTA_PROTOINFO_TCP_WSCALE_REPLY] = { .type = NL_A_U8,
.optional = false },
[CTA_PROTOINFO_TCP_FLAGS_ORIGINAL] = { .type = NL_A_U16,
.optional = false },
[CTA_PROTOINFO_TCP_FLAGS_REPLY] = { .type = NL_A_U16,
.optional = false },
};
struct nlattr *attrs[ARRAY_SIZE(policy)];
bool parsed;
parsed = nl_parse_nested(nla, policy, attrs, ARRAY_SIZE(policy));
if (parsed) {
const struct nf_ct_tcp_flags *flags_orig, *flags_reply;
uint8_t state;
protoinfo->proto = IPPROTO_TCP;
state = nl_ct_tcp_state_to_dpif(
nl_attr_get_u8(attrs[CTA_PROTOINFO_TCP_STATE]));
/* The connection tracker keeps only one tcp state for the
* connection, but our structures store a separate state for
* each endpoint. Here we duplicate the state. */
protoinfo->tcp.state_orig = protoinfo->tcp.state_reply = state;
protoinfo->tcp.wscale_orig = nl_attr_get_u8(
attrs[CTA_PROTOINFO_TCP_WSCALE_ORIGINAL]);
protoinfo->tcp.wscale_reply = nl_attr_get_u8(
attrs[CTA_PROTOINFO_TCP_WSCALE_REPLY]);
flags_orig =
nl_attr_get_unspec(attrs[CTA_PROTOINFO_TCP_FLAGS_ORIGINAL],
sizeof *flags_orig);
protoinfo->tcp.flags_orig =
ip_ct_tcp_flags_to_dpif(flags_orig->flags);
flags_reply =
nl_attr_get_unspec(attrs[CTA_PROTOINFO_TCP_FLAGS_REPLY],
sizeof *flags_reply);
protoinfo->tcp.flags_reply =
ip_ct_tcp_flags_to_dpif(flags_reply->flags);
} else {
VLOG_ERR_RL(&rl, "Could not parse nested TCP protoinfo options. "
"Possibly incompatible Linux kernel version.");
}
return parsed;
}
static bool
nl_ct_parse_protoinfo(struct nlattr *nla, struct ct_dpif_protoinfo *protoinfo)
{
/* These are mutually exclusive. */
static const struct nl_policy policy[] = {
[CTA_PROTOINFO_TCP] = { .type = NL_A_NESTED, .optional = true },
[CTA_PROTOINFO_SCTP] = { .type = NL_A_NESTED, .optional = true },
};
struct nlattr *attrs[ARRAY_SIZE(policy)];
bool parsed;
parsed = nl_parse_nested(nla, policy, attrs, ARRAY_SIZE(policy));
memset(protoinfo, 0, sizeof *protoinfo);
if (parsed) {
if (attrs[CTA_PROTOINFO_TCP]) {
parsed = nl_ct_parse_protoinfo_tcp(attrs[CTA_PROTOINFO_TCP],
protoinfo);
} else if (attrs[CTA_PROTOINFO_SCTP]) {
VLOG_WARN_RL(&rl, "SCTP protoinfo not yet supported!");
} else {
VLOG_WARN_RL(&rl, "Empty protoinfo!");
}
} else {
VLOG_ERR_RL(&rl, "Could not parse nested protoinfo options. "
"Possibly incompatible Linux kernel version.");
}
return parsed;
}
static bool
nl_ct_parse_helper(struct nlattr *nla, struct ct_dpif_helper *helper)
{
static const struct nl_policy policy[] = {
[CTA_HELP_NAME] = { .type = NL_A_STRING, .optional = false },
};
struct nlattr *attrs[ARRAY_SIZE(policy)];
bool parsed;
parsed = nl_parse_nested(nla, policy, attrs, ARRAY_SIZE(policy));
memset(helper, 0, sizeof *helper);
if (parsed) {
helper->name = xstrdup(nl_attr_get_string(attrs[CTA_HELP_NAME]));
} else {
VLOG_ERR_RL(&rl, "Could not parse nested helper options. "
"Possibly incompatible Linux kernel version.");
}
return parsed;
}
/* Translate netlink entry status flags to CT_DPIF_TCP status flags. */
static uint32_t
ips_status_to_dpif_flags(uint32_t status)
{
uint32_t ret = 0;
#define CT_DPIF_STATUS_FLAG(FLAG) \
ret |= (status & IPS_##FLAG) ? CT_DPIF_STATUS_##FLAG : 0;
CT_DPIF_STATUS_FLAGS
#undef CT_DPIF_STATUS_FLAG
return ret;
}
static bool
nl_ct_parse_header_policy(struct ofpbuf *buf,
enum nl_ct_event_type *event_type,
uint8_t *nfgen_family,
struct nlattr *attrs[ARRAY_SIZE(nfnlgrp_conntrack_policy)])
{
struct nlmsghdr *nlh;
struct nfgenmsg *nfm;
uint8_t type;
nlh = ofpbuf_at(buf, 0, NLMSG_HDRLEN);
nfm = ofpbuf_at(buf, NLMSG_HDRLEN, sizeof *nfm);
if (!nfm) {
VLOG_ERR_RL(&rl, "Received bad nfnl message (no nfgenmsg).");
return false;
}
if (NFNL_SUBSYS_ID(nlh->nlmsg_type) != NFNL_SUBSYS_CTNETLINK) {
VLOG_ERR_RL(&rl, "Received non-conntrack message (subsystem: %u).",
NFNL_SUBSYS_ID(nlh->nlmsg_type));
return false;
}
if (nfm->version != NFNETLINK_V0) {
VLOG_ERR_RL(&rl, "Received unsupported nfnetlink version (%u).",
NFNL_MSG_TYPE(nfm->version));
return false;
}
if (!nl_policy_parse(buf, NLMSG_HDRLEN + sizeof *nfm,
nfnlgrp_conntrack_policy, attrs,
ARRAY_SIZE(nfnlgrp_conntrack_policy))) {
VLOG_ERR_RL(&rl, "Received bad nfnl message (policy).");
return false;
}
type = NFNL_MSG_TYPE(nlh->nlmsg_type);
*nfgen_family = nfm->nfgen_family;
switch (type) {
case IPCTNL_MSG_CT_NEW:
*event_type = nlh->nlmsg_flags & NLM_F_CREATE
? NL_CT_EVENT_NEW : NL_CT_EVENT_UPDATE;
break;
case IPCTNL_MSG_CT_DELETE:
*event_type = NL_CT_EVENT_DELETE;
break;
default:
VLOG_ERR_RL(&rl, "Can't parse conntrack event type.");
return false;
}
return true;
}
static bool
nl_ct_attrs_to_ct_dpif_entry(struct ct_dpif_entry *entry,
struct nlattr *attrs[ARRAY_SIZE(nfnlgrp_conntrack_policy)],
uint8_t nfgen_family)
{
if (!nl_ct_parse_tuple(attrs[CTA_TUPLE_ORIG], &entry->tuple_orig,
nfgen_family)) {
return false;
}
if (!nl_ct_parse_tuple(attrs[CTA_TUPLE_REPLY], &entry->tuple_reply,
nfgen_family)) {
return false;
}
if (attrs[CTA_COUNTERS_ORIG] &&
!nl_ct_parse_counters(attrs[CTA_COUNTERS_ORIG],
&entry->counters_orig)) {
return false;
}
if (attrs[CTA_COUNTERS_REPLY] &&
!nl_ct_parse_counters(attrs[CTA_COUNTERS_REPLY],
&entry->counters_reply)) {
return false;
}
if (attrs[CTA_TIMESTAMP] &&
!nl_ct_parse_timestamp(attrs[CTA_TIMESTAMP], &entry->timestamp)) {
return false;
}
if (attrs[CTA_ID]) {
entry->id = ntohl(nl_attr_get_be32(attrs[CTA_ID]));
}
if (attrs[CTA_ZONE]) {
entry->zone = ntohs(nl_attr_get_be16(attrs[CTA_ZONE]));
}
if (attrs[CTA_STATUS]) {
entry->status = ips_status_to_dpif_flags(
ntohl(nl_attr_get_be32(attrs[CTA_STATUS])));
}
if (attrs[CTA_TIMEOUT]) {
entry->timeout = ntohl(nl_attr_get_be32(attrs[CTA_TIMEOUT]));
}
if (attrs[CTA_MARK]) {
entry->mark = ntohl(nl_attr_get_be32(attrs[CTA_MARK]));
}
if (attrs[CTA_LABELS]) {
entry->have_labels = true;
memcpy(&entry->labels, nl_attr_get(attrs[CTA_LABELS]),
MIN(sizeof entry->labels, nl_attr_get_size(attrs[CTA_LABELS])));
}
if (attrs[CTA_PROTOINFO] &&
!nl_ct_parse_protoinfo(attrs[CTA_PROTOINFO], &entry->protoinfo)) {
return false;
}
if (attrs[CTA_HELP] &&
!nl_ct_parse_helper(attrs[CTA_HELP], &entry->helper)) {
return false;
}
if (attrs[CTA_TUPLE_MASTER] &&
!nl_ct_parse_tuple(attrs[CTA_TUPLE_MASTER], &entry->tuple_master,
nfgen_family)) {
return false;
}
return true;
}
bool
nl_ct_parse_entry(struct ofpbuf *buf, struct ct_dpif_entry *entry,
enum nl_ct_event_type *event_type)
{
struct nlattr *attrs[ARRAY_SIZE(nfnlgrp_conntrack_policy)];
uint8_t nfgen_family;
memset(entry, 0, sizeof *entry);
if (!nl_ct_parse_header_policy(buf, event_type, &nfgen_family, attrs)) {
return false;
};
if (!nl_ct_attrs_to_ct_dpif_entry(entry, attrs, nfgen_family)) {
ct_dpif_entry_uninit(entry);
memset(entry, 0, sizeof *entry);
return false;
}
return true;
}
/* NetFilter utility functions. */
/* Puts a nlmsghdr and nfgenmsg at the beginning of 'msg', which must be
* initially empty. 'expected_payload' should be an estimate of the number of
* payload bytes to be supplied; if the size of the payload is unknown a value
* of 0 is acceptable.
*
* Non-zero 'family' is the address family of items to get (e.g. AF_INET).
*
* 'flags' is a bit-mask that indicates what kind of request is being made. It
* is often NLM_F_REQUEST indicating that a request is being made, commonly
* or'd with NLM_F_ACK to request an acknowledgement. NLM_F_DUMP flag reguests
* a dump of the table.
*
* 'subsystem' is a netfilter subsystem id, e.g., NFNL_SUBSYS_CTNETLINK.
*
* 'cmd' is an enumerated value specific to the 'subsystem'.
*
* Sets the new nlmsghdr's nlmsg_pid field to 0 for now. nl_sock_send() will
* fill it in just before sending the message.
*
* nl_msg_put_nlmsghdr() should be used to compose Netlink messages that are
* not NetFilter Netlink messages. */
static void
nl_msg_put_nfgenmsg(struct ofpbuf *msg, size_t expected_payload,
int family, uint8_t subsystem, uint8_t cmd,
uint32_t flags)
{
struct nfgenmsg *nfm;
nl_msg_put_nlmsghdr(msg, sizeof *nfm + expected_payload,
subsystem << 8 | cmd, flags);
ovs_assert(msg->size == NLMSG_HDRLEN);
nfm = nl_msg_put_uninit(msg, sizeof *nfm);
nfm->nfgen_family = family;
nfm->version = NFNETLINK_V0;
nfm->res_id = 0;
#ifdef _WIN32
/* nfgenmsg contains ovsHdr padding in windows */
nfm->ovsHdr.dp_ifindex = 0;
#endif
}