2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-23 10:28:00 +00:00
ovs/lib/ovs-thread.c

776 lines
22 KiB
C
Raw Normal View History

/*
* Copyright (c) 2013, 2014 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "ovs-thread.h"
#include <errno.h>
#include <poll.h>
#ifndef _WIN32
#include <signal.h>
#endif
#include <stdlib.h>
#include <unistd.h>
#include "compiler.h"
#include "hash.h"
netdev-dpdk: Fix race condition with DPDK mempools in non pmd threads DPDK mempools rely on rte_lcore_id() to implement a thread-local cache. Our non pmd threads had rte_lcore_id() == 0. This allowed concurrent access to the "thread-local" cache, causing crashes. This commit resolves the issue with the following changes: - Every non pmd thread has the same lcore_id (0, for management reasons), which is not shared with any pmd thread (lcore_id for pmd threads now start from 1) - DPDK mbufs must be allocated/freed in pmd threads. When there is the need to use mempools in non pmd threads, like in dpdk_do_tx_copy(), a mutex must be held. - The previous change does not allow us anymore to pass DPDK mbufs to handler threads: therefore this commit partially revert 143859ec63d45e. Now packets are copied for upcall processing. We can remove the extra memcpy by processing upcalls in the pmd thread itself. With the introduction of the extra locking, the packet throughput will be lower in the following cases: - When using internal (tap) devices with DPDK devices on the same datapath. Anyway, to support internal devices efficiently, we needed DPDK KNI devices, which will be proper pmd devices and will not need this locking. - When packets are processed in the slow path by non pmd threads. This overhead can be avoided by handling the upcalls directly in pmd threads (a change that has already been proposed by Ryan Wilson) Also, the following two fixes have been introduced: - In dpdk_free_buf() use rte_pktmbuf_free_seg() instead of rte_mempool_put(). This allows OVS to run properly with CONFIG_RTE_LIBRTE_MBUF_DEBUG DPDK option - Do not bulk free mbufs in a transmission queue. They may belong to different mempools Signed-off-by: Daniele Di Proietto <ddiproietto@vmware.com> Acked-by: Pravin B Shelar <pshelar@nicira.com>
2014-07-17 14:29:36 -07:00
#include "netdev-dpdk.h"
#include "ovs-rcu.h"
#include "poll-loop.h"
#include "seq.h"
#include "socket-util.h"
#include "util.h"
#ifdef __CHECKER__
/* Omit the definitions in this file because they are somewhat difficult to
* write without prompting "sparse" complaints, without ugliness or
* cut-and-paste. Since "sparse" is just a checker, not a compiler, it
* doesn't matter that we don't define them. */
#else
#include "vlog.h"
VLOG_DEFINE_THIS_MODULE(ovs_thread);
/* If there is a reason that we cannot fork anymore (unless the fork will be
* immediately followed by an exec), then this points to a string that
* explains why. */
static const char *must_not_fork;
/* True if we created any threads beyond the main initial thread. */
static bool multithreaded;
#define LOCK_FUNCTION(TYPE, FUN) \
void \
ovs_##TYPE##_##FUN##_at(const struct ovs_##TYPE *l_, \
const char *where) \
OVS_NO_THREAD_SAFETY_ANALYSIS \
{ \
struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \
int error; \
\
/* Verify that 'l' was initialized. */ \
if (OVS_UNLIKELY(!l->where)) { \
ovs_abort(0, "%s: %s() passed uninitialized ovs_"#TYPE, \
where, __func__); \
} \
\
error = pthread_##TYPE##_##FUN(&l->lock); \
if (OVS_UNLIKELY(error)) { \
ovs_abort(error, "%s: pthread_%s_%s failed", where, #TYPE, #FUN); \
} \
l->where = where; \
}
LOCK_FUNCTION(mutex, lock);
LOCK_FUNCTION(rwlock, rdlock);
LOCK_FUNCTION(rwlock, wrlock);
#define TRY_LOCK_FUNCTION(TYPE, FUN) \
int \
ovs_##TYPE##_##FUN##_at(const struct ovs_##TYPE *l_, \
const char *where) \
OVS_NO_THREAD_SAFETY_ANALYSIS \
{ \
struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \
int error; \
\
/* Verify that 'l' was initialized. */ \
if (OVS_UNLIKELY(!l->where)) { \
ovs_abort(0, "%s: %s() passed uninitialized ovs_"#TYPE, \
where, __func__); \
} \
\
error = pthread_##TYPE##_##FUN(&l->lock); \
if (OVS_UNLIKELY(error) && error != EBUSY) { \
ovs_abort(error, "%s: pthread_%s_%s failed", where, #TYPE, #FUN); \
} \
if (!error) { \
l->where = where; \
} \
return error; \
}
TRY_LOCK_FUNCTION(mutex, trylock);
TRY_LOCK_FUNCTION(rwlock, tryrdlock);
TRY_LOCK_FUNCTION(rwlock, trywrlock);
#define UNLOCK_FUNCTION(TYPE, FUN, WHERE) \
void \
ovs_##TYPE##_##FUN(const struct ovs_##TYPE *l_) \
OVS_NO_THREAD_SAFETY_ANALYSIS \
{ \
struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \
int error; \
\
/* Verify that 'l' was initialized. */ \
ovs_assert(l->where); \
\
l->where = WHERE; \
error = pthread_##TYPE##_##FUN(&l->lock); \
if (OVS_UNLIKELY(error)) { \
ovs_abort(error, "pthread_%s_%sfailed", #TYPE, #FUN); \
} \
}
UNLOCK_FUNCTION(mutex, unlock, "<unlocked>");
UNLOCK_FUNCTION(mutex, destroy, NULL);
UNLOCK_FUNCTION(rwlock, unlock, "<unlocked>");
UNLOCK_FUNCTION(rwlock, destroy, NULL);
#define XPTHREAD_FUNC1(FUNCTION, PARAM1) \
void \
x##FUNCTION(PARAM1 arg1) \
{ \
int error = FUNCTION(arg1); \
if (OVS_UNLIKELY(error)) { \
ovs_abort(error, "%s failed", #FUNCTION); \
} \
}
#define XPTHREAD_FUNC2(FUNCTION, PARAM1, PARAM2) \
void \
x##FUNCTION(PARAM1 arg1, PARAM2 arg2) \
{ \
int error = FUNCTION(arg1, arg2); \
if (OVS_UNLIKELY(error)) { \
ovs_abort(error, "%s failed", #FUNCTION); \
} \
}
#define XPTHREAD_FUNC3(FUNCTION, PARAM1, PARAM2, PARAM3)\
void \
x##FUNCTION(PARAM1 arg1, PARAM2 arg2, PARAM3 arg3) \
{ \
int error = FUNCTION(arg1, arg2, arg3); \
if (OVS_UNLIKELY(error)) { \
ovs_abort(error, "%s failed", #FUNCTION); \
} \
}
XPTHREAD_FUNC1(pthread_mutex_lock, pthread_mutex_t *);
XPTHREAD_FUNC1(pthread_mutex_unlock, pthread_mutex_t *);
XPTHREAD_FUNC1(pthread_mutexattr_init, pthread_mutexattr_t *);
XPTHREAD_FUNC1(pthread_mutexattr_destroy, pthread_mutexattr_t *);
XPTHREAD_FUNC2(pthread_mutexattr_settype, pthread_mutexattr_t *, int);
XPTHREAD_FUNC2(pthread_mutexattr_gettype, pthread_mutexattr_t *, int *);
XPTHREAD_FUNC1(pthread_rwlockattr_init, pthread_rwlockattr_t *);
XPTHREAD_FUNC1(pthread_rwlockattr_destroy, pthread_rwlockattr_t *);
#ifdef PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP
XPTHREAD_FUNC2(pthread_rwlockattr_setkind_np, pthread_rwlockattr_t *, int);
#endif
XPTHREAD_FUNC2(pthread_cond_init, pthread_cond_t *, pthread_condattr_t *);
XPTHREAD_FUNC1(pthread_cond_destroy, pthread_cond_t *);
XPTHREAD_FUNC1(pthread_cond_signal, pthread_cond_t *);
XPTHREAD_FUNC1(pthread_cond_broadcast, pthread_cond_t *);
XPTHREAD_FUNC2(pthread_join, pthread_t, void **);
typedef void destructor_func(void *);
XPTHREAD_FUNC2(pthread_key_create, pthread_key_t *, destructor_func *);
XPTHREAD_FUNC1(pthread_key_delete, pthread_key_t);
XPTHREAD_FUNC2(pthread_setspecific, pthread_key_t, const void *);
#ifndef _WIN32
XPTHREAD_FUNC3(pthread_sigmask, int, const sigset_t *, sigset_t *);
#endif
static void
ovs_mutex_init__(const struct ovs_mutex *l_, int type)
{
struct ovs_mutex *l = CONST_CAST(struct ovs_mutex *, l_);
pthread_mutexattr_t attr;
int error;
l->where = "<unlocked>";
xpthread_mutexattr_init(&attr);
xpthread_mutexattr_settype(&attr, type);
error = pthread_mutex_init(&l->lock, &attr);
if (OVS_UNLIKELY(error)) {
ovs_abort(error, "pthread_mutex_init failed");
}
xpthread_mutexattr_destroy(&attr);
}
/* Initializes 'mutex' as a normal (non-recursive) mutex. */
void
ovs_mutex_init(const struct ovs_mutex *mutex)
{
ovs_mutex_init__(mutex, PTHREAD_MUTEX_ERRORCHECK);
}
/* Initializes 'mutex' as a recursive mutex. */
void
ovs_mutex_init_recursive(const struct ovs_mutex *mutex)
{
ovs_mutex_init__(mutex, PTHREAD_MUTEX_RECURSIVE);
}
/* Initializes 'mutex' as a recursive mutex. */
void
ovs_mutex_init_adaptive(const struct ovs_mutex *mutex)
{
#ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
ovs_mutex_init__(mutex, PTHREAD_MUTEX_ADAPTIVE_NP);
#else
ovs_mutex_init(mutex);
#endif
}
void
ovs_rwlock_init(const struct ovs_rwlock *l_)
{
struct ovs_rwlock *l = CONST_CAST(struct ovs_rwlock *, l_);
pthread_rwlockattr_t attr;
int error;
l->where = "<unlocked>";
xpthread_rwlockattr_init(&attr);
#ifdef PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP
xpthread_rwlockattr_setkind_np(
&attr, PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
#endif
error = pthread_rwlock_init(&l->lock, NULL);
if (OVS_UNLIKELY(error)) {
ovs_abort(error, "pthread_rwlock_init failed");
}
xpthread_rwlockattr_destroy(&attr);
}
void
ovs_mutex_cond_wait(pthread_cond_t *cond, const struct ovs_mutex *mutex_)
{
struct ovs_mutex *mutex = CONST_CAST(struct ovs_mutex *, mutex_);
int error;
ovsrcu_quiesce_start();
error = pthread_cond_wait(cond, &mutex->lock);
ovsrcu_quiesce_end();
if (OVS_UNLIKELY(error)) {
ovs_abort(error, "pthread_cond_wait failed");
}
}
/* Initializes the 'barrier'. 'size' is the number of threads
* expected to hit the barrier. */
void
ovs_barrier_init(struct ovs_barrier *barrier, uint32_t size)
{
barrier->size = size;
atomic_count_init(&barrier->count, 0);
barrier->seq = seq_create();
}
/* Destroys the 'barrier'. */
void
ovs_barrier_destroy(struct ovs_barrier *barrier)
{
seq_destroy(barrier->seq);
}
/* Makes the calling thread block on the 'barrier' until all
* 'barrier->size' threads hit the barrier.
* ovs_barrier provides the necessary acquire-release semantics to make
* the effects of prior memory accesses of all the participating threads
* visible on return and to prevent the following memory accesses to be
* reordered before the ovs_barrier_block(). */
void
ovs_barrier_block(struct ovs_barrier *barrier)
{
uint64_t seq = seq_read(barrier->seq);
uint32_t orig;
orig = atomic_count_inc(&barrier->count);
if (orig + 1 == barrier->size) {
atomic_count_set(&barrier->count, 0);
/* seq_change() serves as a release barrier against the other threads,
* so the zeroed count is visible to them as they continue. */
seq_change(barrier->seq);
} else {
/* To prevent thread from waking up by other event,
* keeps waiting for the change of 'barrier->seq'. */
while (seq == seq_read(barrier->seq)) {
seq_wait(barrier->seq, seq);
poll_block();
}
}
}
DEFINE_EXTERN_PER_THREAD_DATA(ovsthread_id, 0);
struct ovsthread_aux {
void *(*start)(void *);
void *arg;
char name[16];
};
static void *
ovsthread_wrapper(void *aux_)
{
static atomic_count next_id = ATOMIC_COUNT_INIT(1);
struct ovsthread_aux *auxp = aux_;
struct ovsthread_aux aux;
unsigned int id;
id = atomic_count_inc(&next_id);
*ovsthread_id_get() = id;
aux = *auxp;
free(auxp);
/* The order of the following calls is important, because
* ovsrcu_quiesce_end() saves a copy of the thread name. */
set_subprogram_name("%s%u", aux.name, id);
ovsrcu_quiesce_end();
netdev-dpdk: Fix race condition with DPDK mempools in non pmd threads DPDK mempools rely on rte_lcore_id() to implement a thread-local cache. Our non pmd threads had rte_lcore_id() == 0. This allowed concurrent access to the "thread-local" cache, causing crashes. This commit resolves the issue with the following changes: - Every non pmd thread has the same lcore_id (0, for management reasons), which is not shared with any pmd thread (lcore_id for pmd threads now start from 1) - DPDK mbufs must be allocated/freed in pmd threads. When there is the need to use mempools in non pmd threads, like in dpdk_do_tx_copy(), a mutex must be held. - The previous change does not allow us anymore to pass DPDK mbufs to handler threads: therefore this commit partially revert 143859ec63d45e. Now packets are copied for upcall processing. We can remove the extra memcpy by processing upcalls in the pmd thread itself. With the introduction of the extra locking, the packet throughput will be lower in the following cases: - When using internal (tap) devices with DPDK devices on the same datapath. Anyway, to support internal devices efficiently, we needed DPDK KNI devices, which will be proper pmd devices and will not need this locking. - When packets are processed in the slow path by non pmd threads. This overhead can be avoided by handling the upcalls directly in pmd threads (a change that has already been proposed by Ryan Wilson) Also, the following two fixes have been introduced: - In dpdk_free_buf() use rte_pktmbuf_free_seg() instead of rte_mempool_put(). This allows OVS to run properly with CONFIG_RTE_LIBRTE_MBUF_DEBUG DPDK option - Do not bulk free mbufs in a transmission queue. They may belong to different mempools Signed-off-by: Daniele Di Proietto <ddiproietto@vmware.com> Acked-by: Pravin B Shelar <pshelar@nicira.com>
2014-07-17 14:29:36 -07:00
thread_set_nonpmd();
return aux.start(aux.arg);
}
/* Starts a thread that calls 'start(arg)'. Sets the thread's name to 'name'
* (suffixed by its ovsthread_id()). Returns the new thread's pthread_t. */
pthread_t
ovs_thread_create(const char *name, void *(*start)(void *), void *arg)
{
struct ovsthread_aux *aux;
pthread_t thread;
int error;
forbid_forking("multiple threads exist");
multithreaded = true;
ovsrcu_quiesce_end();
aux = xmalloc(sizeof *aux);
aux->start = start;
aux->arg = arg;
ovs_strlcpy(aux->name, name, sizeof aux->name);
error = pthread_create(&thread, NULL, ovsthread_wrapper, aux);
if (error) {
ovs_abort(error, "pthread_create failed");
}
return thread;
}
bool
ovsthread_once_start__(struct ovsthread_once *once)
{
ovs_mutex_lock(&once->mutex);
/* Mutex synchronizes memory, so we get the current value of 'done'. */
if (!once->done) {
return true;
}
ovs_mutex_unlock(&once->mutex);
return false;
}
void
ovsthread_once_done(struct ovsthread_once *once)
{
/* We need release semantics here, so that the following store may not
* be moved ahead of any of the preceding initialization operations.
* A release atomic_thread_fence provides that prior memory accesses
* will not be reordered to take place after the following store. */
atomic_thread_fence(memory_order_release);
once->done = true;
ovs_mutex_unlock(&once->mutex);
}
bool
single_threaded(void)
{
return !multithreaded;
}
/* Asserts that the process has not yet created any threads (beyond the initial
* thread).
*
* ('where' is used in logging. Commonly one would use
* assert_single_threaded() to automatically provide the caller's source file
* and line number for 'where'.) */
void
assert_single_threaded_at(const char *where)
{
if (multithreaded) {
VLOG_FATAL("%s: attempted operation not allowed when multithreaded",
where);
}
}
#ifndef _WIN32
/* Forks the current process (checking that this is allowed). Aborts with
* VLOG_FATAL if fork() returns an error, and otherwise returns the value
* returned by fork().
*
* ('where' is used in logging. Commonly one would use xfork() to
* automatically provide the caller's source file and line number for
* 'where'.) */
pid_t
xfork_at(const char *where)
{
pid_t pid;
if (must_not_fork) {
VLOG_FATAL("%s: attempted to fork but forking not allowed (%s)",
where, must_not_fork);
}
pid = fork();
if (pid < 0) {
VLOG_FATAL("%s: fork failed (%s)", where, ovs_strerror(errno));
}
return pid;
}
#endif
/* Notes that the process must not call fork() from now on, for the specified
* 'reason'. (The process may still fork() if it execs itself immediately
* afterward.) */
void
forbid_forking(const char *reason)
{
ovs_assert(reason != NULL);
must_not_fork = reason;
}
/* Returns true if the process is allowed to fork, false otherwise. */
bool
may_fork(void)
{
return !must_not_fork;
}
/* ovsthread_stats. */
void
ovsthread_stats_init(struct ovsthread_stats *stats)
{
int i;
ovs_mutex_init(&stats->mutex);
for (i = 0; i < ARRAY_SIZE(stats->buckets); i++) {
stats->buckets[i] = NULL;
}
}
void
ovsthread_stats_destroy(struct ovsthread_stats *stats)
{
ovs_mutex_destroy(&stats->mutex);
}
void *
ovsthread_stats_bucket_get(struct ovsthread_stats *stats,
void *(*new_bucket)(void))
{
unsigned int idx = ovsthread_id_self() & (ARRAY_SIZE(stats->buckets) - 1);
void *bucket = stats->buckets[idx];
if (!bucket) {
ovs_mutex_lock(&stats->mutex);
bucket = stats->buckets[idx];
if (!bucket) {
bucket = stats->buckets[idx] = new_bucket();
}
ovs_mutex_unlock(&stats->mutex);
}
return bucket;
}
size_t
ovs_thread_stats_next_bucket(const struct ovsthread_stats *stats, size_t i)
{
for (; i < ARRAY_SIZE(stats->buckets); i++) {
if (stats->buckets[i]) {
break;
}
}
return i;
}
/* Parses /proc/cpuinfo for the total number of physical cores on this system
* across all CPU packages, not counting hyper-threads.
*
* Sets *n_cores to the total number of cores on this system, or 0 if the
* number cannot be determined. */
static void
parse_cpuinfo(long int *n_cores)
{
static const char file_name[] = "/proc/cpuinfo";
char line[128];
uint64_t cpu = 0; /* Support up to 64 CPU packages on a single system. */
long int cores = 0;
FILE *stream;
stream = fopen(file_name, "r");
if (!stream) {
VLOG_DBG("%s: open failed (%s)", file_name, ovs_strerror(errno));
return;
}
while (fgets(line, sizeof line, stream)) {
unsigned int id;
/* Find the next CPU package. */
if (ovs_scan(line, "physical id%*[^:]: %u", &id)) {
if (id > 63) {
VLOG_WARN("Counted over 64 CPU packages on this system. "
"Parsing %s for core count may be inaccurate.",
file_name);
cores = 0;
break;
}
if (cpu & (1ULL << id)) {
/* We've already counted this package's cores. */
continue;
}
cpu |= 1ULL << id;
/* Find the number of cores for this package. */
while (fgets(line, sizeof line, stream)) {
int count;
if (ovs_scan(line, "cpu cores%*[^:]: %u", &count)) {
cores += count;
break;
}
}
}
}
fclose(stream);
*n_cores = cores;
}
/* Returns the total number of cores on this system, or 0 if the number cannot
* be determined.
*
* Tries not to count hyper-threads, but may be inaccurate - particularly on
* platforms that do not provide /proc/cpuinfo, but also if /proc/cpuinfo is
* formatted different to the layout that parse_cpuinfo() expects. */
int
count_cpu_cores(void)
{
static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
static long int n_cores;
if (ovsthread_once_start(&once)) {
#ifndef _WIN32
parse_cpuinfo(&n_cores);
if (!n_cores) {
n_cores = sysconf(_SC_NPROCESSORS_ONLN);
}
#else
SYSTEM_INFO sysinfo;
GetSystemInfo(&sysinfo);
n_cores = sysinfo.dwNumberOfProcessors;
#endif
ovsthread_once_done(&once);
}
return n_cores > 0 ? n_cores : 0;
}
/* ovsthread_key. */
#define L1_SIZE 1024
#define L2_SIZE 1024
#define MAX_KEYS (L1_SIZE * L2_SIZE)
/* A piece of thread-specific data. */
struct ovsthread_key {
struct ovs_list list_node; /* In 'inuse_keys' or 'free_keys'. */
void (*destructor)(void *); /* Called at thread exit. */
/* Indexes into the per-thread array in struct ovsthread_key_slots.
* This key's data is stored in p1[index / L2_SIZE][index % L2_SIZE]. */
unsigned int index;
};
/* Per-thread data structure. */
struct ovsthread_key_slots {
struct ovs_list list_node; /* In 'slots_list'. */
void **p1[L1_SIZE];
};
/* Contains "struct ovsthread_key_slots *". */
static pthread_key_t tsd_key;
/* Guards data structures below. */
static struct ovs_mutex key_mutex = OVS_MUTEX_INITIALIZER;
/* 'inuse_keys' holds "struct ovsthread_key"s that have been created and not
* yet destroyed.
*
* 'free_keys' holds "struct ovsthread_key"s that have been deleted and are
* ready for reuse. (We keep them around only to be able to easily locate
* free indexes.)
*
* Together, 'inuse_keys' and 'free_keys' hold an ovsthread_key for every index
* from 0 to n_keys - 1, inclusive. */
static struct ovs_list inuse_keys OVS_GUARDED_BY(key_mutex)
= LIST_INITIALIZER(&inuse_keys);
static struct ovs_list free_keys OVS_GUARDED_BY(key_mutex)
= LIST_INITIALIZER(&free_keys);
static unsigned int n_keys OVS_GUARDED_BY(key_mutex);
/* All existing struct ovsthread_key_slots. */
static struct ovs_list slots_list OVS_GUARDED_BY(key_mutex)
= LIST_INITIALIZER(&slots_list);
static void *
clear_slot(struct ovsthread_key_slots *slots, unsigned int index)
{
void **p2 = slots->p1[index / L2_SIZE];
if (p2) {
void **valuep = &p2[index % L2_SIZE];
void *value = *valuep;
*valuep = NULL;
return value;
} else {
return NULL;
}
}
static void
ovsthread_key_destruct__(void *slots_)
{
struct ovsthread_key_slots *slots = slots_;
struct ovsthread_key *key;
unsigned int n;
int i;
ovs_mutex_lock(&key_mutex);
list_remove(&slots->list_node);
LIST_FOR_EACH (key, list_node, &inuse_keys) {
void *value = clear_slot(slots, key->index);
if (value && key->destructor) {
key->destructor(value);
}
}
n = n_keys;
ovs_mutex_unlock(&key_mutex);
for (i = 0; i < n / L2_SIZE; i++) {
free(slots->p1[i]);
}
free(slots);
}
/* Initializes '*keyp' as a thread-specific data key. The data items are
* initially null in all threads.
*
* If a thread exits with non-null data, then 'destructor', if nonnull, will be
* called passing the final data value as its argument. 'destructor' must not
* call any thread-specific data functions in this API.
*
* This function is similar to xpthread_key_create(). */
void
ovsthread_key_create(ovsthread_key_t *keyp, void (*destructor)(void *))
{
static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
struct ovsthread_key *key;
if (ovsthread_once_start(&once)) {
xpthread_key_create(&tsd_key, ovsthread_key_destruct__);
ovsthread_once_done(&once);
}
ovs_mutex_lock(&key_mutex);
if (list_is_empty(&free_keys)) {
key = xmalloc(sizeof *key);
key->index = n_keys++;
if (key->index >= MAX_KEYS) {
abort();
}
} else {
key = CONTAINER_OF(list_pop_back(&free_keys),
struct ovsthread_key, list_node);
}
list_push_back(&inuse_keys, &key->list_node);
key->destructor = destructor;
ovs_mutex_unlock(&key_mutex);
*keyp = key;
}
/* Frees 'key'. The destructor supplied to ovsthread_key_create(), if any, is
* not called.
*
* This function is similar to xpthread_key_delete(). */
void
ovsthread_key_delete(ovsthread_key_t key)
{
struct ovsthread_key_slots *slots;
ovs_mutex_lock(&key_mutex);
/* Move 'key' from 'inuse_keys' to 'free_keys'. */
list_remove(&key->list_node);
list_push_back(&free_keys, &key->list_node);
/* Clear this slot in all threads. */
LIST_FOR_EACH (slots, list_node, &slots_list) {
clear_slot(slots, key->index);
}
ovs_mutex_unlock(&key_mutex);
}
static void **
ovsthread_key_lookup__(const struct ovsthread_key *key)
{
struct ovsthread_key_slots *slots;
void **p2;
slots = pthread_getspecific(tsd_key);
if (!slots) {
slots = xzalloc(sizeof *slots);
ovs_mutex_lock(&key_mutex);
pthread_setspecific(tsd_key, slots);
list_push_back(&slots_list, &slots->list_node);
ovs_mutex_unlock(&key_mutex);
}
p2 = slots->p1[key->index / L2_SIZE];
if (!p2) {
p2 = xzalloc(L2_SIZE * sizeof *p2);
slots->p1[key->index / L2_SIZE] = p2;
}
return &p2[key->index % L2_SIZE];
}
/* Sets the value of thread-specific data item 'key', in the current thread, to
* 'value'.
*
* This function is similar to pthread_setspecific(). */
void
ovsthread_setspecific(ovsthread_key_t key, const void *value)
{
*ovsthread_key_lookup__(key) = CONST_CAST(void *, value);
}
/* Returns the value of thread-specific data item 'key' in the current thread.
*
* This function is similar to pthread_getspecific(). */
void *
ovsthread_getspecific(ovsthread_key_t key)
{
return *ovsthread_key_lookup__(key);
}
#endif