2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-23 02:17:42 +00:00
ovs/lib/dpif-netdev.c

1417 lines
38 KiB
C
Raw Normal View History

/*
* Copyright (c) 2009, 2010, 2011 Nicira Networks.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "dpif.h"
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <net/if.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <unistd.h>
#include "csum.h"
#include "dpif.h"
#include "dpif-provider.h"
#include "dummy.h"
#include "dynamic-string.h"
#include "flow.h"
#include "hmap.h"
#include "list.h"
#include "netdev.h"
#include "netlink.h"
#include "odp-util.h"
#include "ofp-print.h"
#include "ofpbuf.h"
#include "packets.h"
#include "poll-loop.h"
#include "shash.h"
#include "timeval.h"
#include "util.h"
#include "vlog.h"
VLOG_DEFINE_THIS_MODULE(dpif_netdev);
/* Configuration parameters. */
enum { MAX_PORTS = 256 }; /* Maximum number of ports. */
enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
/* Enough headroom to add a vlan tag, plus an extra 2 bytes to allow IP
* headers to be aligned on a 4-byte boundary. */
enum { DP_NETDEV_HEADROOM = 2 + VLAN_HEADER_LEN };
datapath: Report kernel's flow key when passing packets up to userspace. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. This commit takes one step in that direction by making the kernel report its idea of the flow that a packet belongs to whenever it passes a packet up to userspace. This means that userspace can intelligently figure out what to do: - If userspace's notion of the flow for the packet matches the kernel's, then nothing special is necessary. - If the kernel has a more specific notion for the flow than userspace, for example if the kernel decoded IPv6 headers but userspace stopped at the Ethernet type (because it does not understand IPv6), then again nothing special is necessary: userspace can still set up the flow in the usual way. - If userspace has a more specific notion for the flow than the kernel, for example if userspace decoded an IPv6 header but the kernel stopped at the Ethernet type, then userspace can forward the packet manually, without setting up a flow in the kernel. (This case is bad from a performance point of view, but at least it is correct.) This commit does not actually make userspace flexible enough to handle changes in the kernel flow key structure, although userspace does now have enough information to do that intelligently. This will have to wait for later commits. This commit is bigger than it would otherwise be because it is rolled together with changing "struct odp_msg" to a sequence of Netlink attributes. The alternative, to do each of those changes in a separate patch, seemed like overkill because it meant that either we would have to introduce and then kill off Netlink attributes for in_port and tun_id, if Netlink conversion went first, or shove yet another variable-length header into the stuff already after odp_msg, if adding the flow key to odp_msg went first. This commit will slow down performance of checksumming packets sent up to userspace. I'm not entirely pleased with how I did it. I considered a couple of alternatives, but none of them seemed that much better. Suggestions welcome. Not changing anything wasn't an option, unfortunately. At any rate some slowdown will become unavoidable when OVS actually starts using Netlink instead of just Netlink framing. (Actually, I thought of one option where we could avoid that: make userspace do the checksum instead, by passing csum_start and csum_offset as part of what goes to userspace. But that's not perfect either.) Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2011-01-24 14:59:57 -08:00
/* Queues. */
enum { N_QUEUES = 2 }; /* Number of queues for dpif_recv(). */
enum { MAX_QUEUE_LEN = 128 }; /* Maximum number of packets per queue. */
enum { QUEUE_MASK = MAX_QUEUE_LEN - 1 };
BUILD_ASSERT_DECL(IS_POW2(MAX_QUEUE_LEN));
struct dp_netdev_queue {
struct dpif_upcall *upcalls[MAX_QUEUE_LEN];
unsigned int head, tail;
};
/* Datapath based on the network device interface from netdev.h. */
struct dp_netdev {
const struct dpif_class *class;
char *name;
int open_cnt;
bool destroyed;
bool drop_frags; /* Drop all IP fragments, if true. */
datapath: Report kernel's flow key when passing packets up to userspace. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. This commit takes one step in that direction by making the kernel report its idea of the flow that a packet belongs to whenever it passes a packet up to userspace. This means that userspace can intelligently figure out what to do: - If userspace's notion of the flow for the packet matches the kernel's, then nothing special is necessary. - If the kernel has a more specific notion for the flow than userspace, for example if the kernel decoded IPv6 headers but userspace stopped at the Ethernet type (because it does not understand IPv6), then again nothing special is necessary: userspace can still set up the flow in the usual way. - If userspace has a more specific notion for the flow than the kernel, for example if userspace decoded an IPv6 header but the kernel stopped at the Ethernet type, then userspace can forward the packet manually, without setting up a flow in the kernel. (This case is bad from a performance point of view, but at least it is correct.) This commit does not actually make userspace flexible enough to handle changes in the kernel flow key structure, although userspace does now have enough information to do that intelligently. This will have to wait for later commits. This commit is bigger than it would otherwise be because it is rolled together with changing "struct odp_msg" to a sequence of Netlink attributes. The alternative, to do each of those changes in a separate patch, seemed like overkill because it meant that either we would have to introduce and then kill off Netlink attributes for in_port and tun_id, if Netlink conversion went first, or shove yet another variable-length header into the stuff already after odp_msg, if adding the flow key to odp_msg went first. This commit will slow down performance of checksumming packets sent up to userspace. I'm not entirely pleased with how I did it. I considered a couple of alternatives, but none of them seemed that much better. Suggestions welcome. Not changing anything wasn't an option, unfortunately. At any rate some slowdown will become unavoidable when OVS actually starts using Netlink instead of just Netlink framing. (Actually, I thought of one option where we could avoid that: make userspace do the checksum instead, by passing csum_start and csum_offset as part of what goes to userspace. But that's not perfect either.) Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2011-01-24 14:59:57 -08:00
struct dp_netdev_queue queues[N_QUEUES];
struct hmap flow_table; /* Flow table. */
/* Statistics. */
long long int n_frags; /* Number of dropped IP fragments. */
long long int n_hit; /* Number of flow table matches. */
long long int n_missed; /* Number of flow table misses. */
long long int n_lost; /* Number of misses not passed to client. */
/* Ports. */
int n_ports;
struct dp_netdev_port *ports[MAX_PORTS];
struct list port_list;
unsigned int serial;
};
/* A port in a netdev-based datapath. */
struct dp_netdev_port {
int port_no; /* Index into dp_netdev's 'ports'. */
struct list node; /* Element in dp_netdev's 'port_list'. */
struct netdev *netdev;
bool internal; /* Internal port? */
};
/* A flow in dp_netdev's 'flow_table'. */
struct dp_netdev_flow {
struct hmap_node node; /* Element in dp_netdev's 'flow_table'. */
struct flow key;
/* Statistics. */
2010-08-24 16:00:46 -07:00
struct timespec used; /* Last used time. */
long long int packet_count; /* Number of packets matched. */
long long int byte_count; /* Number of bytes matched. */
uint16_t tcp_ctl; /* Bitwise-OR of seen tcp_ctl values. */
/* Actions. */
struct nlattr *actions;
size_t actions_len;
};
/* Interface to netdev-based datapath. */
struct dpif_netdev {
struct dpif dpif;
struct dp_netdev *dp;
int listen_mask;
unsigned int dp_serial;
};
/* All netdev-based datapaths. */
static struct shash dp_netdevs = SHASH_INITIALIZER(&dp_netdevs);
/* Maximum port MTU seen so far. */
static int max_mtu = ETH_PAYLOAD_MAX;
static int get_port_by_number(struct dp_netdev *, uint16_t port_no,
struct dp_netdev_port **portp);
static int get_port_by_name(struct dp_netdev *, const char *devname,
struct dp_netdev_port **portp);
static void dp_netdev_free(struct dp_netdev *);
static void dp_netdev_flow_flush(struct dp_netdev *);
static int do_add_port(struct dp_netdev *, const char *devname,
const char *type, uint16_t port_no);
static int do_del_port(struct dp_netdev *, uint16_t port_no);
static int dpif_netdev_open(const struct dpif_class *, const char *name,
bool create, struct dpif **);
static int dp_netdev_output_control(struct dp_netdev *, const struct ofpbuf *,
datapath: Report kernel's flow key when passing packets up to userspace. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. This commit takes one step in that direction by making the kernel report its idea of the flow that a packet belongs to whenever it passes a packet up to userspace. This means that userspace can intelligently figure out what to do: - If userspace's notion of the flow for the packet matches the kernel's, then nothing special is necessary. - If the kernel has a more specific notion for the flow than userspace, for example if the kernel decoded IPv6 headers but userspace stopped at the Ethernet type (because it does not understand IPv6), then again nothing special is necessary: userspace can still set up the flow in the usual way. - If userspace has a more specific notion for the flow than the kernel, for example if userspace decoded an IPv6 header but the kernel stopped at the Ethernet type, then userspace can forward the packet manually, without setting up a flow in the kernel. (This case is bad from a performance point of view, but at least it is correct.) This commit does not actually make userspace flexible enough to handle changes in the kernel flow key structure, although userspace does now have enough information to do that intelligently. This will have to wait for later commits. This commit is bigger than it would otherwise be because it is rolled together with changing "struct odp_msg" to a sequence of Netlink attributes. The alternative, to do each of those changes in a separate patch, seemed like overkill because it meant that either we would have to introduce and then kill off Netlink attributes for in_port and tun_id, if Netlink conversion went first, or shove yet another variable-length header into the stuff already after odp_msg, if adding the flow key to odp_msg went first. This commit will slow down performance of checksumming packets sent up to userspace. I'm not entirely pleased with how I did it. I considered a couple of alternatives, but none of them seemed that much better. Suggestions welcome. Not changing anything wasn't an option, unfortunately. At any rate some slowdown will become unavoidable when OVS actually starts using Netlink instead of just Netlink framing. (Actually, I thought of one option where we could avoid that: make userspace do the checksum instead, by passing csum_start and csum_offset as part of what goes to userspace. But that's not perfect either.) Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2011-01-24 14:59:57 -08:00
int queue_no, const struct flow *,
uint64_t arg);
static int dp_netdev_execute_actions(struct dp_netdev *,
struct ofpbuf *, struct flow *,
const struct nlattr *actions,
size_t actions_len);
static struct dpif_class dpif_dummy_class;
static struct dpif_netdev *
dpif_netdev_cast(const struct dpif *dpif)
{
assert(dpif->dpif_class->open == dpif_netdev_open);
return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
}
static struct dp_netdev *
get_dp_netdev(const struct dpif *dpif)
{
return dpif_netdev_cast(dpif)->dp;
}
static struct dpif *
create_dpif_netdev(struct dp_netdev *dp)
{
uint16_t netflow_id = hash_string(dp->name, 0);
struct dpif_netdev *dpif;
dp->open_cnt++;
dpif = xmalloc(sizeof *dpif);
dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
dpif->dp = dp;
dpif->listen_mask = 0;
dpif->dp_serial = dp->serial;
return &dpif->dpif;
}
static int
create_dp_netdev(const char *name, const struct dpif_class *class,
struct dp_netdev **dpp)
{
struct dp_netdev *dp;
int error;
int i;
dp = xzalloc(sizeof *dp);
dp->class = class;
dp->name = xstrdup(name);
dp->open_cnt = 0;
dp->drop_frags = false;
for (i = 0; i < N_QUEUES; i++) {
datapath: Report kernel's flow key when passing packets up to userspace. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. This commit takes one step in that direction by making the kernel report its idea of the flow that a packet belongs to whenever it passes a packet up to userspace. This means that userspace can intelligently figure out what to do: - If userspace's notion of the flow for the packet matches the kernel's, then nothing special is necessary. - If the kernel has a more specific notion for the flow than userspace, for example if the kernel decoded IPv6 headers but userspace stopped at the Ethernet type (because it does not understand IPv6), then again nothing special is necessary: userspace can still set up the flow in the usual way. - If userspace has a more specific notion for the flow than the kernel, for example if userspace decoded an IPv6 header but the kernel stopped at the Ethernet type, then userspace can forward the packet manually, without setting up a flow in the kernel. (This case is bad from a performance point of view, but at least it is correct.) This commit does not actually make userspace flexible enough to handle changes in the kernel flow key structure, although userspace does now have enough information to do that intelligently. This will have to wait for later commits. This commit is bigger than it would otherwise be because it is rolled together with changing "struct odp_msg" to a sequence of Netlink attributes. The alternative, to do each of those changes in a separate patch, seemed like overkill because it meant that either we would have to introduce and then kill off Netlink attributes for in_port and tun_id, if Netlink conversion went first, or shove yet another variable-length header into the stuff already after odp_msg, if adding the flow key to odp_msg went first. This commit will slow down performance of checksumming packets sent up to userspace. I'm not entirely pleased with how I did it. I considered a couple of alternatives, but none of them seemed that much better. Suggestions welcome. Not changing anything wasn't an option, unfortunately. At any rate some slowdown will become unavoidable when OVS actually starts using Netlink instead of just Netlink framing. (Actually, I thought of one option where we could avoid that: make userspace do the checksum instead, by passing csum_start and csum_offset as part of what goes to userspace. But that's not perfect either.) Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2011-01-24 14:59:57 -08:00
dp->queues[i].head = dp->queues[i].tail = 0;
}
hmap_init(&dp->flow_table);
list_init(&dp->port_list);
error = do_add_port(dp, name, "internal", ODPP_LOCAL);
if (error) {
dp_netdev_free(dp);
return error;
}
shash_add(&dp_netdevs, name, dp);
*dpp = dp;
return 0;
}
static int
dpif_netdev_open(const struct dpif_class *class, const char *name,
bool create, struct dpif **dpifp)
{
struct dp_netdev *dp;
dp = shash_find_data(&dp_netdevs, name);
if (!dp) {
if (!create) {
return ENODEV;
} else {
int error = create_dp_netdev(name, class, &dp);
if (error) {
return error;
}
assert(dp != NULL);
}
} else {
if (dp->class != class) {
return EINVAL;
} else if (create) {
return EEXIST;
}
}
*dpifp = create_dpif_netdev(dp);
return 0;
}
static void
dp_netdev_free(struct dp_netdev *dp)
{
int i;
dp_netdev_flow_flush(dp);
while (dp->n_ports > 0) {
struct dp_netdev_port *port = CONTAINER_OF(
dp->port_list.next, struct dp_netdev_port, node);
do_del_port(dp, port->port_no);
}
for (i = 0; i < N_QUEUES; i++) {
datapath: Report kernel's flow key when passing packets up to userspace. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. This commit takes one step in that direction by making the kernel report its idea of the flow that a packet belongs to whenever it passes a packet up to userspace. This means that userspace can intelligently figure out what to do: - If userspace's notion of the flow for the packet matches the kernel's, then nothing special is necessary. - If the kernel has a more specific notion for the flow than userspace, for example if the kernel decoded IPv6 headers but userspace stopped at the Ethernet type (because it does not understand IPv6), then again nothing special is necessary: userspace can still set up the flow in the usual way. - If userspace has a more specific notion for the flow than the kernel, for example if userspace decoded an IPv6 header but the kernel stopped at the Ethernet type, then userspace can forward the packet manually, without setting up a flow in the kernel. (This case is bad from a performance point of view, but at least it is correct.) This commit does not actually make userspace flexible enough to handle changes in the kernel flow key structure, although userspace does now have enough information to do that intelligently. This will have to wait for later commits. This commit is bigger than it would otherwise be because it is rolled together with changing "struct odp_msg" to a sequence of Netlink attributes. The alternative, to do each of those changes in a separate patch, seemed like overkill because it meant that either we would have to introduce and then kill off Netlink attributes for in_port and tun_id, if Netlink conversion went first, or shove yet another variable-length header into the stuff already after odp_msg, if adding the flow key to odp_msg went first. This commit will slow down performance of checksumming packets sent up to userspace. I'm not entirely pleased with how I did it. I considered a couple of alternatives, but none of them seemed that much better. Suggestions welcome. Not changing anything wasn't an option, unfortunately. At any rate some slowdown will become unavoidable when OVS actually starts using Netlink instead of just Netlink framing. (Actually, I thought of one option where we could avoid that: make userspace do the checksum instead, by passing csum_start and csum_offset as part of what goes to userspace. But that's not perfect either.) Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2011-01-24 14:59:57 -08:00
struct dp_netdev_queue *q = &dp->queues[i];
unsigned int j;
for (j = q->tail; j != q->head; j++) {
struct dpif_upcall *upcall = q->upcalls[j & QUEUE_MASK];
ofpbuf_delete(upcall->packet);
free(upcall);
}
}
hmap_destroy(&dp->flow_table);
free(dp->name);
free(dp);
}
static void
dpif_netdev_close(struct dpif *dpif)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
assert(dp->open_cnt > 0);
if (--dp->open_cnt == 0 && dp->destroyed) {
shash_find_and_delete(&dp_netdevs, dp->name);
dp_netdev_free(dp);
}
free(dpif);
}
static int
dpif_netdev_destroy(struct dpif *dpif)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
dp->destroyed = true;
return 0;
}
static int
dpif_netdev_get_stats(const struct dpif *dpif, struct odp_stats *stats)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
memset(stats, 0, sizeof *stats);
stats->n_ports = dp->n_ports;
stats->max_ports = MAX_PORTS;
stats->n_frags = dp->n_frags;
stats->n_hit = dp->n_hit;
stats->n_missed = dp->n_missed;
stats->n_lost = dp->n_lost;
stats->max_miss_queue = MAX_QUEUE_LEN;
stats->max_action_queue = MAX_QUEUE_LEN;
return 0;
}
static int
dpif_netdev_get_drop_frags(const struct dpif *dpif, bool *drop_fragsp)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
*drop_fragsp = dp->drop_frags;
return 0;
}
static int
dpif_netdev_set_drop_frags(struct dpif *dpif, bool drop_frags)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
dp->drop_frags = drop_frags;
return 0;
}
static int
do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
uint16_t port_no)
{
struct dp_netdev_port *port;
struct netdev_options netdev_options;
struct netdev *netdev;
bool internal;
int mtu;
int error;
/* XXX reject devices already in some dp_netdev. */
if (type[0] == '\0' || !strcmp(type, "system")) {
internal = false;
} else if (!strcmp(type, "internal")) {
internal = true;
} else {
VLOG_WARN("%s: unsupported port type %s", devname, type);
return EINVAL;
}
/* Open and validate network device. */
memset(&netdev_options, 0, sizeof netdev_options);
netdev_options.name = devname;
netdev_options.ethertype = NETDEV_ETH_TYPE_ANY;
if (dp->class == &dpif_dummy_class) {
netdev_options.type = "dummy";
} else if (internal) {
netdev_options.type = "tap";
}
error = netdev_open(&netdev_options, &netdev);
if (error) {
return error;
}
/* XXX reject loopback devices */
/* XXX reject non-Ethernet devices */
error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, false);
if (error) {
netdev_close(netdev);
return error;
}
port = xmalloc(sizeof *port);
port->port_no = port_no;
port->netdev = netdev;
port->internal = internal;
netdev_get_mtu(netdev, &mtu);
if (mtu > max_mtu) {
max_mtu = mtu;
}
list_push_back(&dp->port_list, &port->node);
dp->ports[port_no] = port;
dp->n_ports++;
dp->serial++;
return 0;
}
static int
dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
uint16_t *port_nop)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
int port_no;
for (port_no = 0; port_no < MAX_PORTS; port_no++) {
if (!dp->ports[port_no]) {
*port_nop = port_no;
return do_add_port(dp, netdev_get_name(netdev),
netdev_get_type(netdev), port_no);
}
}
return EFBIG;
}
static int
dpif_netdev_port_del(struct dpif *dpif, uint16_t port_no)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
return port_no == ODPP_LOCAL ? EINVAL : do_del_port(dp, port_no);
}
static bool
is_valid_port_number(uint16_t port_no)
{
return port_no < MAX_PORTS;
}
static int
get_port_by_number(struct dp_netdev *dp,
uint16_t port_no, struct dp_netdev_port **portp)
{
if (!is_valid_port_number(port_no)) {
*portp = NULL;
return EINVAL;
} else {
*portp = dp->ports[port_no];
return *portp ? 0 : ENOENT;
}
}
static int
get_port_by_name(struct dp_netdev *dp,
const char *devname, struct dp_netdev_port **portp)
{
struct dp_netdev_port *port;
LIST_FOR_EACH (port, node, &dp->port_list) {
if (!strcmp(netdev_get_name(port->netdev), devname)) {
*portp = port;
return 0;
}
}
return ENOENT;
}
static int
do_del_port(struct dp_netdev *dp, uint16_t port_no)
{
struct dp_netdev_port *port;
char *name;
int error;
error = get_port_by_number(dp, port_no, &port);
if (error) {
return error;
}
list_remove(&port->node);
dp->ports[port->port_no] = NULL;
dp->n_ports--;
dp->serial++;
name = xstrdup(netdev_get_name(port->netdev));
netdev_close(port->netdev);
free(name);
free(port);
return 0;
}
static void
answer_port_query(const struct dp_netdev_port *port,
struct dpif_port *dpif_port)
{
dpif_port->name = xstrdup(netdev_get_name(port->netdev));
dpif_port->type = xstrdup(port->internal ? "internal" : "system");
dpif_port->port_no = port->port_no;
}
static int
dpif_netdev_port_query_by_number(const struct dpif *dpif, uint16_t port_no,
struct dpif_port *dpif_port)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_port *port;
int error;
error = get_port_by_number(dp, port_no, &port);
if (!error) {
answer_port_query(port, dpif_port);
}
return error;
}
static int
dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
struct dpif_port *dpif_port)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_port *port;
int error;
error = get_port_by_name(dp, devname, &port);
if (!error) {
answer_port_query(port, dpif_port);
}
return error;
}
static void
dp_netdev_free_flow(struct dp_netdev *dp, struct dp_netdev_flow *flow)
{
hmap_remove(&dp->flow_table, &flow->node);
free(flow->actions);
free(flow);
}
static void
dp_netdev_flow_flush(struct dp_netdev *dp)
{
struct dp_netdev_flow *flow, *next;
HMAP_FOR_EACH_SAFE (flow, next, node, &dp->flow_table) {
dp_netdev_free_flow(dp, flow);
}
}
static int
dpif_netdev_flow_flush(struct dpif *dpif)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
dp_netdev_flow_flush(dp);
return 0;
}
2011-01-10 13:12:12 -08:00
struct dp_netdev_port_state {
uint32_t port_no;
char *name;
2011-01-10 13:12:12 -08:00
};
static int
dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
{
*statep = xzalloc(sizeof(struct dp_netdev_port_state));
return 0;
}
static int
2011-01-10 13:12:12 -08:00
dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
struct dpif_port *dpif_port)
{
2011-01-10 13:12:12 -08:00
struct dp_netdev_port_state *state = state_;
struct dp_netdev *dp = get_dp_netdev(dpif);
2011-01-10 13:12:12 -08:00
uint32_t port_no;
2011-01-10 13:12:12 -08:00
for (port_no = state->port_no; port_no < MAX_PORTS; port_no++) {
struct dp_netdev_port *port = dp->ports[port_no];
if (port) {
free(state->name);
state->name = xstrdup(netdev_get_name(port->netdev));
dpif_port->name = state->name;
dpif_port->type = port->internal ? "internal" : "system";
dpif_port->port_no = port->port_no;
2011-01-10 13:12:12 -08:00
state->port_no = port_no + 1;
return 0;
}
}
2011-01-10 13:12:12 -08:00
return EOF;
}
static int
dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
2011-01-10 13:12:12 -08:00
{
struct dp_netdev_port_state *state = state_;
free(state->name);
2011-01-10 13:12:12 -08:00
free(state);
return 0;
}
static int
dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
{
struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
if (dpif->dp_serial != dpif->dp->serial) {
dpif->dp_serial = dpif->dp->serial;
return ENOBUFS;
} else {
return EAGAIN;
}
}
static void
dpif_netdev_port_poll_wait(const struct dpif *dpif_)
{
struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
if (dpif->dp_serial != dpif->dp->serial) {
poll_immediate_wake();
}
}
static struct dp_netdev_flow *
dp_netdev_lookup_flow(const struct dp_netdev *dp, const struct flow *key)
{
struct dp_netdev_flow *flow;
HMAP_FOR_EACH_WITH_HASH (flow, node, flow_hash(key, 0), &dp->flow_table) {
if (flow_equal(&flow->key, key)) {
return flow;
}
}
return NULL;
}
/* The caller must fill in odp_flow->key itself. */
static void
answer_flow_query(struct dp_netdev_flow *flow, uint32_t query_flags,
struct odp_flow *odp_flow)
{
if (flow) {
odp_flow->stats.n_packets = flow->packet_count;
odp_flow->stats.n_bytes = flow->byte_count;
odp_flow->stats.used_sec = flow->used.tv_sec;
odp_flow->stats.used_nsec = flow->used.tv_nsec;
odp_flow->stats.tcp_flags = TCP_FLAGS(flow->tcp_ctl);
odp_flow->stats.reserved = 0;
odp_flow->stats.error = 0;
if (odp_flow->actions_len > 0) {
memcpy(odp_flow->actions, flow->actions,
MIN(odp_flow->actions_len, flow->actions_len));
odp_flow->actions_len = flow->actions_len;
}
if (query_flags & ODPFF_ZERO_TCP_FLAGS) {
flow->tcp_ctl = 0;
}
} else {
odp_flow->stats.error = ENOENT;
}
}
static int
dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
struct flow *flow)
{
if (odp_flow_key_to_flow(key, key_len, flow)) {
/* This should not happen: it indicates that odp_flow_key_from_flow()
* and odp_flow_key_to_flow() disagree on the acceptable form of a
* flow. Log the problem as an error, with enough details to enable
* debugging. */
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
if (!VLOG_DROP_ERR(&rl)) {
struct ds s;
ds_init(&s);
odp_flow_key_format(key, key_len, &s);
VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
ds_destroy(&s);
}
return EINVAL;
}
return 0;
}
static int
dpif_netdev_flow_get(const struct dpif *dpif, struct odp_flow flows[], int n)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
int i;
for (i = 0; i < n; i++) {
struct odp_flow *odp_flow = &flows[i];
struct flow key;
int error;
error = dpif_netdev_flow_from_nlattrs(odp_flow->key, odp_flow->key_len,
&key);
if (error) {
return error;
}
answer_flow_query(dp_netdev_lookup_flow(dp, &key),
odp_flow->flags, odp_flow);
}
return 0;
}
static int
dpif_netdev_validate_actions(const struct nlattr *actions,
size_t actions_len, bool *mutates)
{
const struct nlattr *a;
unsigned int left;
*mutates = false;
NL_ATTR_FOR_EACH (a, left, actions, actions_len) {
uint16_t type = nl_attr_type(a);
int len = odp_action_len(type);
if (len != nl_attr_get_size(a)) {
return EINVAL;
}
switch (type) {
case ODPAT_OUTPUT:
if (nl_attr_get_u32(a) >= MAX_PORTS) {
return EINVAL;
}
break;
case ODPAT_CONTROLLER:
case ODPAT_DROP_SPOOFED_ARP:
break;
case ODPAT_SET_DL_TCI:
*mutates = true;
if (nl_attr_get_be16(a) & htons(VLAN_CFI)) {
return EINVAL;
}
break;
case ODPAT_SET_NW_TOS:
*mutates = true;
if (nl_attr_get_u8(a) & IP_ECN_MASK) {
return EINVAL;
}
break;
case ODPAT_STRIP_VLAN:
case ODPAT_SET_DL_SRC:
case ODPAT_SET_DL_DST:
case ODPAT_SET_NW_SRC:
case ODPAT_SET_NW_DST:
case ODPAT_SET_TP_SRC:
case ODPAT_SET_TP_DST:
*mutates = true;
break;
case ODPAT_SET_TUNNEL:
case ODPAT_SET_PRIORITY:
case ODPAT_POP_PRIORITY:
default:
return EOPNOTSUPP;
}
}
return 0;
}
static int
set_flow_actions(struct dp_netdev_flow *flow, struct odp_flow *odp_flow)
{
bool mutates;
int error;
error = dpif_netdev_validate_actions(odp_flow->actions,
odp_flow->actions_len, &mutates);
if (error) {
return error;
}
flow->actions = xrealloc(flow->actions, odp_flow->actions_len);
flow->actions_len = odp_flow->actions_len;
memcpy(flow->actions, odp_flow->actions, odp_flow->actions_len);
return 0;
}
static int
add_flow(struct dpif *dpif, const struct flow *key, struct odp_flow *odp_flow)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_flow *flow;
int error;
flow = xzalloc(sizeof *flow);
flow->key = *key;
error = set_flow_actions(flow, odp_flow);
if (error) {
free(flow);
return error;
}
hmap_insert(&dp->flow_table, &flow->node, flow_hash(&flow->key, 0));
return 0;
}
static void
clear_stats(struct dp_netdev_flow *flow)
{
flow->used.tv_sec = 0;
flow->used.tv_nsec = 0;
flow->packet_count = 0;
flow->byte_count = 0;
flow->tcp_ctl = 0;
}
static int
dpif_netdev_flow_put(struct dpif *dpif, struct odp_flow_put *put)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_flow *flow;
struct flow key;
int error;
error = dpif_netdev_flow_from_nlattrs(put->flow.key, put->flow.key_len,
&key);
if (error) {
return error;
}
flow = dp_netdev_lookup_flow(dp, &key);
if (!flow) {
if (put->flags & ODPPF_CREATE) {
if (hmap_count(&dp->flow_table) < MAX_FLOWS) {
return add_flow(dpif, &key, &put->flow);
} else {
return EFBIG;
}
} else {
return ENOENT;
}
} else {
if (put->flags & ODPPF_MODIFY) {
int error = set_flow_actions(flow, &put->flow);
if (!error && put->flags & ODPPF_ZERO_STATS) {
clear_stats(flow);
}
return error;
} else {
return EEXIST;
}
}
}
static int
dpif_netdev_flow_del(struct dpif *dpif, struct odp_flow *odp_flow)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_flow *flow;
struct flow key;
int error;
error = dpif_netdev_flow_from_nlattrs(odp_flow->key, odp_flow->key_len,
&key);
if (error) {
return error;
}
flow = dp_netdev_lookup_flow(dp, &key);
if (flow) {
answer_flow_query(flow, 0, odp_flow);
dp_netdev_free_flow(dp, flow);
return 0;
} else {
return ENOENT;
}
}
datapath: Change listing flows to use an iterator concept. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. In turn, that means that flow keys must become variable-length. This does not, however, fit in well with the ODP_FLOW_LIST ioctl in its current form, because that would require userspace to know how much space to allocate for each flow's key in advance, or to allocate as much space as could possibly be needed. Neither choice is very attractive. This commit prepares for a different solution, by replacing ODP_FLOW_LIST by a new ioctl ODP_FLOW_DUMP that retrieves a single flow from the datapath on each call. It is much cleaner to allocate the maximum amount of space for a single flow key than to do so for possibly a very large number of flow keys. As a side effect, this patch also fixes a race condition that sometimes made "ovs-dpctl dump-flows" print an error: previously, flows were listed and then their actions were retrieved, which left a window in which ovs-vswitchd could delete the flow. Now dumping a flow and its actions is a single step, closing that window. Dumping all of the flows in a datapath is no longer an atomic step, so now it is possible to miss some flows or see a single flow twice during iteration, if the flow table is modified by another process. It doesn't look like this should be a problem for ovs-vswitchd. It would be faster to retrieve a number of flows in batch instead of just one at a time, but that will naturally happen later when the kernel datapath interface is changed to use Netlink, so this patch does not bother with it. Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2010-12-28 10:39:52 -08:00
struct dp_netdev_flow_state {
uint32_t bucket;
uint32_t offset;
};
static int
datapath: Change listing flows to use an iterator concept. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. In turn, that means that flow keys must become variable-length. This does not, however, fit in well with the ODP_FLOW_LIST ioctl in its current form, because that would require userspace to know how much space to allocate for each flow's key in advance, or to allocate as much space as could possibly be needed. Neither choice is very attractive. This commit prepares for a different solution, by replacing ODP_FLOW_LIST by a new ioctl ODP_FLOW_DUMP that retrieves a single flow from the datapath on each call. It is much cleaner to allocate the maximum amount of space for a single flow key than to do so for possibly a very large number of flow keys. As a side effect, this patch also fixes a race condition that sometimes made "ovs-dpctl dump-flows" print an error: previously, flows were listed and then their actions were retrieved, which left a window in which ovs-vswitchd could delete the flow. Now dumping a flow and its actions is a single step, closing that window. Dumping all of the flows in a datapath is no longer an atomic step, so now it is possible to miss some flows or see a single flow twice during iteration, if the flow table is modified by another process. It doesn't look like this should be a problem for ovs-vswitchd. It would be faster to retrieve a number of flows in batch instead of just one at a time, but that will naturally happen later when the kernel datapath interface is changed to use Netlink, so this patch does not bother with it. Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2010-12-28 10:39:52 -08:00
dpif_netdev_flow_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
{
datapath: Change listing flows to use an iterator concept. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. In turn, that means that flow keys must become variable-length. This does not, however, fit in well with the ODP_FLOW_LIST ioctl in its current form, because that would require userspace to know how much space to allocate for each flow's key in advance, or to allocate as much space as could possibly be needed. Neither choice is very attractive. This commit prepares for a different solution, by replacing ODP_FLOW_LIST by a new ioctl ODP_FLOW_DUMP that retrieves a single flow from the datapath on each call. It is much cleaner to allocate the maximum amount of space for a single flow key than to do so for possibly a very large number of flow keys. As a side effect, this patch also fixes a race condition that sometimes made "ovs-dpctl dump-flows" print an error: previously, flows were listed and then their actions were retrieved, which left a window in which ovs-vswitchd could delete the flow. Now dumping a flow and its actions is a single step, closing that window. Dumping all of the flows in a datapath is no longer an atomic step, so now it is possible to miss some flows or see a single flow twice during iteration, if the flow table is modified by another process. It doesn't look like this should be a problem for ovs-vswitchd. It would be faster to retrieve a number of flows in batch instead of just one at a time, but that will naturally happen later when the kernel datapath interface is changed to use Netlink, so this patch does not bother with it. Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2010-12-28 10:39:52 -08:00
*statep = xzalloc(sizeof(struct dp_netdev_flow_state));
return 0;
}
static int
dpif_netdev_flow_dump_next(const struct dpif *dpif, void *state_,
struct odp_flow *odp_flow)
{
struct dp_netdev_flow_state *state = state_;
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_flow *flow;
datapath: Change listing flows to use an iterator concept. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. In turn, that means that flow keys must become variable-length. This does not, however, fit in well with the ODP_FLOW_LIST ioctl in its current form, because that would require userspace to know how much space to allocate for each flow's key in advance, or to allocate as much space as could possibly be needed. Neither choice is very attractive. This commit prepares for a different solution, by replacing ODP_FLOW_LIST by a new ioctl ODP_FLOW_DUMP that retrieves a single flow from the datapath on each call. It is much cleaner to allocate the maximum amount of space for a single flow key than to do so for possibly a very large number of flow keys. As a side effect, this patch also fixes a race condition that sometimes made "ovs-dpctl dump-flows" print an error: previously, flows were listed and then their actions were retrieved, which left a window in which ovs-vswitchd could delete the flow. Now dumping a flow and its actions is a single step, closing that window. Dumping all of the flows in a datapath is no longer an atomic step, so now it is possible to miss some flows or see a single flow twice during iteration, if the flow table is modified by another process. It doesn't look like this should be a problem for ovs-vswitchd. It would be faster to retrieve a number of flows in batch instead of just one at a time, but that will naturally happen later when the kernel datapath interface is changed to use Netlink, so this patch does not bother with it. Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2010-12-28 10:39:52 -08:00
struct hmap_node *node;
struct ofpbuf key;
datapath: Change listing flows to use an iterator concept. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. In turn, that means that flow keys must become variable-length. This does not, however, fit in well with the ODP_FLOW_LIST ioctl in its current form, because that would require userspace to know how much space to allocate for each flow's key in advance, or to allocate as much space as could possibly be needed. Neither choice is very attractive. This commit prepares for a different solution, by replacing ODP_FLOW_LIST by a new ioctl ODP_FLOW_DUMP that retrieves a single flow from the datapath on each call. It is much cleaner to allocate the maximum amount of space for a single flow key than to do so for possibly a very large number of flow keys. As a side effect, this patch also fixes a race condition that sometimes made "ovs-dpctl dump-flows" print an error: previously, flows were listed and then their actions were retrieved, which left a window in which ovs-vswitchd could delete the flow. Now dumping a flow and its actions is a single step, closing that window. Dumping all of the flows in a datapath is no longer an atomic step, so now it is possible to miss some flows or see a single flow twice during iteration, if the flow table is modified by another process. It doesn't look like this should be a problem for ovs-vswitchd. It would be faster to retrieve a number of flows in batch instead of just one at a time, but that will naturally happen later when the kernel datapath interface is changed to use Netlink, so this patch does not bother with it. Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2010-12-28 10:39:52 -08:00
node = hmap_at_position(&dp->flow_table, &state->bucket, &state->offset);
if (!node) {
return EOF;
}
datapath: Change listing flows to use an iterator concept. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. In turn, that means that flow keys must become variable-length. This does not, however, fit in well with the ODP_FLOW_LIST ioctl in its current form, because that would require userspace to know how much space to allocate for each flow's key in advance, or to allocate as much space as could possibly be needed. Neither choice is very attractive. This commit prepares for a different solution, by replacing ODP_FLOW_LIST by a new ioctl ODP_FLOW_DUMP that retrieves a single flow from the datapath on each call. It is much cleaner to allocate the maximum amount of space for a single flow key than to do so for possibly a very large number of flow keys. As a side effect, this patch also fixes a race condition that sometimes made "ovs-dpctl dump-flows" print an error: previously, flows were listed and then their actions were retrieved, which left a window in which ovs-vswitchd could delete the flow. Now dumping a flow and its actions is a single step, closing that window. Dumping all of the flows in a datapath is no longer an atomic step, so now it is possible to miss some flows or see a single flow twice during iteration, if the flow table is modified by another process. It doesn't look like this should be a problem for ovs-vswitchd. It would be faster to retrieve a number of flows in batch instead of just one at a time, but that will naturally happen later when the kernel datapath interface is changed to use Netlink, so this patch does not bother with it. Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2010-12-28 10:39:52 -08:00
flow = CONTAINER_OF(node, struct dp_netdev_flow, node);
ofpbuf_use_stack(&key, odp_flow->key, odp_flow->key_len);
odp_flow_key_from_flow(&key, &flow->key);
odp_flow->key_len = key.size;
ofpbuf_uninit(&key);
datapath: Change listing flows to use an iterator concept. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. In turn, that means that flow keys must become variable-length. This does not, however, fit in well with the ODP_FLOW_LIST ioctl in its current form, because that would require userspace to know how much space to allocate for each flow's key in advance, or to allocate as much space as could possibly be needed. Neither choice is very attractive. This commit prepares for a different solution, by replacing ODP_FLOW_LIST by a new ioctl ODP_FLOW_DUMP that retrieves a single flow from the datapath on each call. It is much cleaner to allocate the maximum amount of space for a single flow key than to do so for possibly a very large number of flow keys. As a side effect, this patch also fixes a race condition that sometimes made "ovs-dpctl dump-flows" print an error: previously, flows were listed and then their actions were retrieved, which left a window in which ovs-vswitchd could delete the flow. Now dumping a flow and its actions is a single step, closing that window. Dumping all of the flows in a datapath is no longer an atomic step, so now it is possible to miss some flows or see a single flow twice during iteration, if the flow table is modified by another process. It doesn't look like this should be a problem for ovs-vswitchd. It would be faster to retrieve a number of flows in batch instead of just one at a time, but that will naturally happen later when the kernel datapath interface is changed to use Netlink, so this patch does not bother with it. Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2010-12-28 10:39:52 -08:00
answer_flow_query(flow, 0, odp_flow);
return 0;
}
static int
dpif_netdev_flow_dump_done(const struct dpif *dpif OVS_UNUSED, void *state)
{
free(state);
return 0;
}
static int
dpif_netdev_execute(struct dpif *dpif,
const struct nlattr *actions, size_t actions_len,
const struct ofpbuf *packet)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct ofpbuf copy;
bool mutates;
struct flow key;
int error;
if (packet->size < ETH_HEADER_LEN || packet->size > UINT16_MAX) {
return EINVAL;
}
error = dpif_netdev_validate_actions(actions, actions_len, &mutates);
if (error) {
return error;
}
if (mutates) {
/* We need a deep copy of 'packet' since we're going to modify its
* data. */
ofpbuf_init(&copy, DP_NETDEV_HEADROOM + packet->size);
ofpbuf_reserve(&copy, DP_NETDEV_HEADROOM);
ofpbuf_put(&copy, packet->data, packet->size);
} else {
/* We still need a shallow copy of 'packet', even though we won't
* modify its data, because flow_extract() modifies packet->l2, etc.
* We could probably get away with modifying those but it's more polite
* if we don't. */
copy = *packet;
}
flow_extract(&copy, 0, -1, &key);
error = dp_netdev_execute_actions(dp, &copy, &key, actions, actions_len);
if (mutates) {
ofpbuf_uninit(&copy);
}
return error;
}
static int
dpif_netdev_recv_get_mask(const struct dpif *dpif, int *listen_mask)
{
struct dpif_netdev *dpif_netdev = dpif_netdev_cast(dpif);
*listen_mask = dpif_netdev->listen_mask;
return 0;
}
static int
dpif_netdev_recv_set_mask(struct dpif *dpif, int listen_mask)
{
struct dpif_netdev *dpif_netdev = dpif_netdev_cast(dpif);
if (!(listen_mask & ~ODPL_ALL)) {
dpif_netdev->listen_mask = listen_mask;
return 0;
} else {
return EINVAL;
}
}
datapath: Report kernel's flow key when passing packets up to userspace. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. This commit takes one step in that direction by making the kernel report its idea of the flow that a packet belongs to whenever it passes a packet up to userspace. This means that userspace can intelligently figure out what to do: - If userspace's notion of the flow for the packet matches the kernel's, then nothing special is necessary. - If the kernel has a more specific notion for the flow than userspace, for example if the kernel decoded IPv6 headers but userspace stopped at the Ethernet type (because it does not understand IPv6), then again nothing special is necessary: userspace can still set up the flow in the usual way. - If userspace has a more specific notion for the flow than the kernel, for example if userspace decoded an IPv6 header but the kernel stopped at the Ethernet type, then userspace can forward the packet manually, without setting up a flow in the kernel. (This case is bad from a performance point of view, but at least it is correct.) This commit does not actually make userspace flexible enough to handle changes in the kernel flow key structure, although userspace does now have enough information to do that intelligently. This will have to wait for later commits. This commit is bigger than it would otherwise be because it is rolled together with changing "struct odp_msg" to a sequence of Netlink attributes. The alternative, to do each of those changes in a separate patch, seemed like overkill because it meant that either we would have to introduce and then kill off Netlink attributes for in_port and tun_id, if Netlink conversion went first, or shove yet another variable-length header into the stuff already after odp_msg, if adding the flow key to odp_msg went first. This commit will slow down performance of checksumming packets sent up to userspace. I'm not entirely pleased with how I did it. I considered a couple of alternatives, but none of them seemed that much better. Suggestions welcome. Not changing anything wasn't an option, unfortunately. At any rate some slowdown will become unavoidable when OVS actually starts using Netlink instead of just Netlink framing. (Actually, I thought of one option where we could avoid that: make userspace do the checksum instead, by passing csum_start and csum_offset as part of what goes to userspace. But that's not perfect either.) Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2011-01-24 14:59:57 -08:00
static struct dp_netdev_queue *
find_nonempty_queue(struct dpif *dpif)
{
struct dpif_netdev *dpif_netdev = dpif_netdev_cast(dpif);
struct dp_netdev *dp = get_dp_netdev(dpif);
int mask = dpif_netdev->listen_mask;
int i;
for (i = 0; i < N_QUEUES; i++) {
datapath: Report kernel's flow key when passing packets up to userspace. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. This commit takes one step in that direction by making the kernel report its idea of the flow that a packet belongs to whenever it passes a packet up to userspace. This means that userspace can intelligently figure out what to do: - If userspace's notion of the flow for the packet matches the kernel's, then nothing special is necessary. - If the kernel has a more specific notion for the flow than userspace, for example if the kernel decoded IPv6 headers but userspace stopped at the Ethernet type (because it does not understand IPv6), then again nothing special is necessary: userspace can still set up the flow in the usual way. - If userspace has a more specific notion for the flow than the kernel, for example if userspace decoded an IPv6 header but the kernel stopped at the Ethernet type, then userspace can forward the packet manually, without setting up a flow in the kernel. (This case is bad from a performance point of view, but at least it is correct.) This commit does not actually make userspace flexible enough to handle changes in the kernel flow key structure, although userspace does now have enough information to do that intelligently. This will have to wait for later commits. This commit is bigger than it would otherwise be because it is rolled together with changing "struct odp_msg" to a sequence of Netlink attributes. The alternative, to do each of those changes in a separate patch, seemed like overkill because it meant that either we would have to introduce and then kill off Netlink attributes for in_port and tun_id, if Netlink conversion went first, or shove yet another variable-length header into the stuff already after odp_msg, if adding the flow key to odp_msg went first. This commit will slow down performance of checksumming packets sent up to userspace. I'm not entirely pleased with how I did it. I considered a couple of alternatives, but none of them seemed that much better. Suggestions welcome. Not changing anything wasn't an option, unfortunately. At any rate some slowdown will become unavoidable when OVS actually starts using Netlink instead of just Netlink framing. (Actually, I thought of one option where we could avoid that: make userspace do the checksum instead, by passing csum_start and csum_offset as part of what goes to userspace. But that's not perfect either.) Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2011-01-24 14:59:57 -08:00
struct dp_netdev_queue *q = &dp->queues[i];
if (q->head != q->tail && mask & (1u << i)) {
return q;
}
}
datapath: Report kernel's flow key when passing packets up to userspace. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. This commit takes one step in that direction by making the kernel report its idea of the flow that a packet belongs to whenever it passes a packet up to userspace. This means that userspace can intelligently figure out what to do: - If userspace's notion of the flow for the packet matches the kernel's, then nothing special is necessary. - If the kernel has a more specific notion for the flow than userspace, for example if the kernel decoded IPv6 headers but userspace stopped at the Ethernet type (because it does not understand IPv6), then again nothing special is necessary: userspace can still set up the flow in the usual way. - If userspace has a more specific notion for the flow than the kernel, for example if userspace decoded an IPv6 header but the kernel stopped at the Ethernet type, then userspace can forward the packet manually, without setting up a flow in the kernel. (This case is bad from a performance point of view, but at least it is correct.) This commit does not actually make userspace flexible enough to handle changes in the kernel flow key structure, although userspace does now have enough information to do that intelligently. This will have to wait for later commits. This commit is bigger than it would otherwise be because it is rolled together with changing "struct odp_msg" to a sequence of Netlink attributes. The alternative, to do each of those changes in a separate patch, seemed like overkill because it meant that either we would have to introduce and then kill off Netlink attributes for in_port and tun_id, if Netlink conversion went first, or shove yet another variable-length header into the stuff already after odp_msg, if adding the flow key to odp_msg went first. This commit will slow down performance of checksumming packets sent up to userspace. I'm not entirely pleased with how I did it. I considered a couple of alternatives, but none of them seemed that much better. Suggestions welcome. Not changing anything wasn't an option, unfortunately. At any rate some slowdown will become unavoidable when OVS actually starts using Netlink instead of just Netlink framing. (Actually, I thought of one option where we could avoid that: make userspace do the checksum instead, by passing csum_start and csum_offset as part of what goes to userspace. But that's not perfect either.) Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2011-01-24 14:59:57 -08:00
return NULL;
}
static int
datapath: Report kernel's flow key when passing packets up to userspace. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. This commit takes one step in that direction by making the kernel report its idea of the flow that a packet belongs to whenever it passes a packet up to userspace. This means that userspace can intelligently figure out what to do: - If userspace's notion of the flow for the packet matches the kernel's, then nothing special is necessary. - If the kernel has a more specific notion for the flow than userspace, for example if the kernel decoded IPv6 headers but userspace stopped at the Ethernet type (because it does not understand IPv6), then again nothing special is necessary: userspace can still set up the flow in the usual way. - If userspace has a more specific notion for the flow than the kernel, for example if userspace decoded an IPv6 header but the kernel stopped at the Ethernet type, then userspace can forward the packet manually, without setting up a flow in the kernel. (This case is bad from a performance point of view, but at least it is correct.) This commit does not actually make userspace flexible enough to handle changes in the kernel flow key structure, although userspace does now have enough information to do that intelligently. This will have to wait for later commits. This commit is bigger than it would otherwise be because it is rolled together with changing "struct odp_msg" to a sequence of Netlink attributes. The alternative, to do each of those changes in a separate patch, seemed like overkill because it meant that either we would have to introduce and then kill off Netlink attributes for in_port and tun_id, if Netlink conversion went first, or shove yet another variable-length header into the stuff already after odp_msg, if adding the flow key to odp_msg went first. This commit will slow down performance of checksumming packets sent up to userspace. I'm not entirely pleased with how I did it. I considered a couple of alternatives, but none of them seemed that much better. Suggestions welcome. Not changing anything wasn't an option, unfortunately. At any rate some slowdown will become unavoidable when OVS actually starts using Netlink instead of just Netlink framing. (Actually, I thought of one option where we could avoid that: make userspace do the checksum instead, by passing csum_start and csum_offset as part of what goes to userspace. But that's not perfect either.) Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2011-01-24 14:59:57 -08:00
dpif_netdev_recv(struct dpif *dpif, struct dpif_upcall *upcall)
{
datapath: Report kernel's flow key when passing packets up to userspace. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. This commit takes one step in that direction by making the kernel report its idea of the flow that a packet belongs to whenever it passes a packet up to userspace. This means that userspace can intelligently figure out what to do: - If userspace's notion of the flow for the packet matches the kernel's, then nothing special is necessary. - If the kernel has a more specific notion for the flow than userspace, for example if the kernel decoded IPv6 headers but userspace stopped at the Ethernet type (because it does not understand IPv6), then again nothing special is necessary: userspace can still set up the flow in the usual way. - If userspace has a more specific notion for the flow than the kernel, for example if userspace decoded an IPv6 header but the kernel stopped at the Ethernet type, then userspace can forward the packet manually, without setting up a flow in the kernel. (This case is bad from a performance point of view, but at least it is correct.) This commit does not actually make userspace flexible enough to handle changes in the kernel flow key structure, although userspace does now have enough information to do that intelligently. This will have to wait for later commits. This commit is bigger than it would otherwise be because it is rolled together with changing "struct odp_msg" to a sequence of Netlink attributes. The alternative, to do each of those changes in a separate patch, seemed like overkill because it meant that either we would have to introduce and then kill off Netlink attributes for in_port and tun_id, if Netlink conversion went first, or shove yet another variable-length header into the stuff already after odp_msg, if adding the flow key to odp_msg went first. This commit will slow down performance of checksumming packets sent up to userspace. I'm not entirely pleased with how I did it. I considered a couple of alternatives, but none of them seemed that much better. Suggestions welcome. Not changing anything wasn't an option, unfortunately. At any rate some slowdown will become unavoidable when OVS actually starts using Netlink instead of just Netlink framing. (Actually, I thought of one option where we could avoid that: make userspace do the checksum instead, by passing csum_start and csum_offset as part of what goes to userspace. But that's not perfect either.) Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2011-01-24 14:59:57 -08:00
struct dp_netdev_queue *q = find_nonempty_queue(dpif);
if (q) {
struct dpif_upcall *u = q->upcalls[q->tail++ & QUEUE_MASK];
*upcall = *u;
free(u);
return 0;
} else {
return EAGAIN;
}
}
static void
dpif_netdev_recv_wait(struct dpif *dpif)
{
datapath: Report kernel's flow key when passing packets up to userspace. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. This commit takes one step in that direction by making the kernel report its idea of the flow that a packet belongs to whenever it passes a packet up to userspace. This means that userspace can intelligently figure out what to do: - If userspace's notion of the flow for the packet matches the kernel's, then nothing special is necessary. - If the kernel has a more specific notion for the flow than userspace, for example if the kernel decoded IPv6 headers but userspace stopped at the Ethernet type (because it does not understand IPv6), then again nothing special is necessary: userspace can still set up the flow in the usual way. - If userspace has a more specific notion for the flow than the kernel, for example if userspace decoded an IPv6 header but the kernel stopped at the Ethernet type, then userspace can forward the packet manually, without setting up a flow in the kernel. (This case is bad from a performance point of view, but at least it is correct.) This commit does not actually make userspace flexible enough to handle changes in the kernel flow key structure, although userspace does now have enough information to do that intelligently. This will have to wait for later commits. This commit is bigger than it would otherwise be because it is rolled together with changing "struct odp_msg" to a sequence of Netlink attributes. The alternative, to do each of those changes in a separate patch, seemed like overkill because it meant that either we would have to introduce and then kill off Netlink attributes for in_port and tun_id, if Netlink conversion went first, or shove yet another variable-length header into the stuff already after odp_msg, if adding the flow key to odp_msg went first. This commit will slow down performance of checksumming packets sent up to userspace. I'm not entirely pleased with how I did it. I considered a couple of alternatives, but none of them seemed that much better. Suggestions welcome. Not changing anything wasn't an option, unfortunately. At any rate some slowdown will become unavoidable when OVS actually starts using Netlink instead of just Netlink framing. (Actually, I thought of one option where we could avoid that: make userspace do the checksum instead, by passing csum_start and csum_offset as part of what goes to userspace. But that's not perfect either.) Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2011-01-24 14:59:57 -08:00
if (find_nonempty_queue(dpif)) {
poll_immediate_wake();
} else {
/* No messages ready to be received, and dp_wait() will ensure that we
* wake up to queue new messages, so there is nothing to do. */
}
}
static void
dp_netdev_flow_used(struct dp_netdev_flow *flow, struct flow *key,
const struct ofpbuf *packet)
{
time_timespec(&flow->used);
flow->packet_count++;
flow->byte_count += packet->size;
if (key->dl_type == htons(ETH_TYPE_IP) && key->nw_proto == IPPROTO_TCP) {
struct tcp_header *th = packet->l4;
flow->tcp_ctl |= th->tcp_ctl;
}
}
static void
dp_netdev_port_input(struct dp_netdev *dp, struct dp_netdev_port *port,
struct ofpbuf *packet)
{
struct dp_netdev_flow *flow;
struct flow key;
if (packet->size < ETH_HEADER_LEN) {
return;
}
if (flow_extract(packet, 0, port->port_no, &key) && dp->drop_frags) {
dp->n_frags++;
return;
}
flow = dp_netdev_lookup_flow(dp, &key);
if (flow) {
dp_netdev_flow_used(flow, &key, packet);
dp_netdev_execute_actions(dp, packet, &key,
flow->actions, flow->actions_len);
dp->n_hit++;
} else {
dp->n_missed++;
datapath: Report kernel's flow key when passing packets up to userspace. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. This commit takes one step in that direction by making the kernel report its idea of the flow that a packet belongs to whenever it passes a packet up to userspace. This means that userspace can intelligently figure out what to do: - If userspace's notion of the flow for the packet matches the kernel's, then nothing special is necessary. - If the kernel has a more specific notion for the flow than userspace, for example if the kernel decoded IPv6 headers but userspace stopped at the Ethernet type (because it does not understand IPv6), then again nothing special is necessary: userspace can still set up the flow in the usual way. - If userspace has a more specific notion for the flow than the kernel, for example if userspace decoded an IPv6 header but the kernel stopped at the Ethernet type, then userspace can forward the packet manually, without setting up a flow in the kernel. (This case is bad from a performance point of view, but at least it is correct.) This commit does not actually make userspace flexible enough to handle changes in the kernel flow key structure, although userspace does now have enough information to do that intelligently. This will have to wait for later commits. This commit is bigger than it would otherwise be because it is rolled together with changing "struct odp_msg" to a sequence of Netlink attributes. The alternative, to do each of those changes in a separate patch, seemed like overkill because it meant that either we would have to introduce and then kill off Netlink attributes for in_port and tun_id, if Netlink conversion went first, or shove yet another variable-length header into the stuff already after odp_msg, if adding the flow key to odp_msg went first. This commit will slow down performance of checksumming packets sent up to userspace. I'm not entirely pleased with how I did it. I considered a couple of alternatives, but none of them seemed that much better. Suggestions welcome. Not changing anything wasn't an option, unfortunately. At any rate some slowdown will become unavoidable when OVS actually starts using Netlink instead of just Netlink framing. (Actually, I thought of one option where we could avoid that: make userspace do the checksum instead, by passing csum_start and csum_offset as part of what goes to userspace. But that's not perfect either.) Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2011-01-24 14:59:57 -08:00
dp_netdev_output_control(dp, packet, _ODPL_MISS_NR, &key, 0);
}
}
static void
dp_netdev_run(void)
{
struct shash_node *node;
struct ofpbuf packet;
ofpbuf_init(&packet, DP_NETDEV_HEADROOM + VLAN_ETH_HEADER_LEN + max_mtu);
SHASH_FOR_EACH (node, &dp_netdevs) {
struct dp_netdev *dp = node->data;
struct dp_netdev_port *port;
LIST_FOR_EACH (port, node, &dp->port_list) {
int error;
/* Reset packet contents. */
ofpbuf_clear(&packet);
ofpbuf_reserve(&packet, DP_NETDEV_HEADROOM);
error = netdev_recv(port->netdev, &packet);
if (!error) {
dp_netdev_port_input(dp, port, &packet);
} else if (error != EAGAIN && error != EOPNOTSUPP) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
netdev_get_name(port->netdev), strerror(error));
}
}
}
ofpbuf_uninit(&packet);
}
static void
dp_netdev_wait(void)
{
struct shash_node *node;
SHASH_FOR_EACH (node, &dp_netdevs) {
struct dp_netdev *dp = node->data;
struct dp_netdev_port *port;
LIST_FOR_EACH (port, node, &dp->port_list) {
netdev_recv_wait(port->netdev);
}
}
}
/* Modify the TCI field of 'packet'. If a VLAN tag is present, its TCI field
* is replaced by 'tci'. If a VLAN tag is not present, one is added with the
* TCI field set to 'tci'.
*/
static void
dp_netdev_set_dl_tci(struct ofpbuf *packet, uint16_t tci)
{
struct vlan_eth_header *veh;
struct eth_header *eh;
eh = packet->l2;
if (packet->size >= sizeof(struct vlan_eth_header)
&& eh->eth_type == htons(ETH_TYPE_VLAN)) {
veh = packet->l2;
veh->veth_tci = tci;
} else {
/* Insert new 802.1Q header. */
struct vlan_eth_header tmp;
memcpy(tmp.veth_dst, eh->eth_dst, ETH_ADDR_LEN);
memcpy(tmp.veth_src, eh->eth_src, ETH_ADDR_LEN);
tmp.veth_type = htons(ETH_TYPE_VLAN);
tmp.veth_tci = tci;
tmp.veth_next_type = eh->eth_type;
veh = ofpbuf_push_uninit(packet, VLAN_HEADER_LEN);
memcpy(veh, &tmp, sizeof tmp);
packet->l2 = (char*)packet->l2 - VLAN_HEADER_LEN;
}
}
static void
dp_netdev_strip_vlan(struct ofpbuf *packet)
{
struct vlan_eth_header *veh = packet->l2;
if (packet->size >= sizeof *veh
&& veh->veth_type == htons(ETH_TYPE_VLAN)) {
struct eth_header tmp;
memcpy(tmp.eth_dst, veh->veth_dst, ETH_ADDR_LEN);
memcpy(tmp.eth_src, veh->veth_src, ETH_ADDR_LEN);
tmp.eth_type = veh->veth_next_type;
ofpbuf_pull(packet, VLAN_HEADER_LEN);
packet->l2 = (char*)packet->l2 + VLAN_HEADER_LEN;
memcpy(packet->data, &tmp, sizeof tmp);
}
}
static void
dp_netdev_set_dl_src(struct ofpbuf *packet, const uint8_t dl_addr[ETH_ADDR_LEN])
{
struct eth_header *eh = packet->l2;
memcpy(eh->eth_src, dl_addr, sizeof eh->eth_src);
}
static void
dp_netdev_set_dl_dst(struct ofpbuf *packet, const uint8_t dl_addr[ETH_ADDR_LEN])
{
struct eth_header *eh = packet->l2;
memcpy(eh->eth_dst, dl_addr, sizeof eh->eth_dst);
}
static bool
is_ip(const struct ofpbuf *packet, const struct flow *key)
{
return key->dl_type == htons(ETH_TYPE_IP) && packet->l4;
}
static void
dp_netdev_set_nw_addr(struct ofpbuf *packet, const struct flow *key,
const struct nlattr *a)
{
if (is_ip(packet, key)) {
struct ip_header *nh = packet->l3;
ovs_be32 ip = nl_attr_get_be32(a);
uint16_t type = nl_attr_type(a);
uint32_t *field;
field = type == ODPAT_SET_NW_SRC ? &nh->ip_src : &nh->ip_dst;
if (key->nw_proto == IP_TYPE_TCP && packet->l7) {
struct tcp_header *th = packet->l4;
th->tcp_csum = recalc_csum32(th->tcp_csum, *field, ip);
} else if (key->nw_proto == IP_TYPE_UDP && packet->l7) {
struct udp_header *uh = packet->l4;
if (uh->udp_csum) {
uh->udp_csum = recalc_csum32(uh->udp_csum, *field, ip);
if (!uh->udp_csum) {
uh->udp_csum = 0xffff;
}
}
}
nh->ip_csum = recalc_csum32(nh->ip_csum, *field, ip);
*field = ip;
}
}
static void
dp_netdev_set_nw_tos(struct ofpbuf *packet, const struct flow *key,
uint8_t nw_tos)
{
if (is_ip(packet, key)) {
struct ip_header *nh = packet->l3;
uint8_t *field = &nh->ip_tos;
/* Set the DSCP bits and preserve the ECN bits. */
uint8_t new = nw_tos | (nh->ip_tos & IP_ECN_MASK);
nh->ip_csum = recalc_csum16(nh->ip_csum, htons((uint16_t)*field),
htons((uint16_t) new));
*field = new;
}
}
static void
dp_netdev_set_tp_port(struct ofpbuf *packet, const struct flow *key,
const struct nlattr *a)
{
if (is_ip(packet, key)) {
uint16_t type = nl_attr_type(a);
ovs_be16 port = nl_attr_get_be16(a);
uint16_t *field;
if (key->nw_proto == IPPROTO_TCP && packet->l7) {
struct tcp_header *th = packet->l4;
field = type == ODPAT_SET_TP_SRC ? &th->tcp_src : &th->tcp_dst;
th->tcp_csum = recalc_csum16(th->tcp_csum, *field, port);
*field = port;
} else if (key->nw_proto == IPPROTO_UDP && packet->l7) {
struct udp_header *uh = packet->l4;
field = type == ODPAT_SET_TP_SRC ? &uh->udp_src : &uh->udp_dst;
uh->udp_csum = recalc_csum16(uh->udp_csum, *field, port);
*field = port;
} else {
return;
}
}
}
static void
dp_netdev_output_port(struct dp_netdev *dp, struct ofpbuf *packet,
uint16_t out_port)
{
2010-08-24 16:00:46 -07:00
struct dp_netdev_port *p = dp->ports[out_port];
if (p) {
netdev_send(p->netdev, packet);
}
}
static int
dp_netdev_output_control(struct dp_netdev *dp, const struct ofpbuf *packet,
datapath: Report kernel's flow key when passing packets up to userspace. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. This commit takes one step in that direction by making the kernel report its idea of the flow that a packet belongs to whenever it passes a packet up to userspace. This means that userspace can intelligently figure out what to do: - If userspace's notion of the flow for the packet matches the kernel's, then nothing special is necessary. - If the kernel has a more specific notion for the flow than userspace, for example if the kernel decoded IPv6 headers but userspace stopped at the Ethernet type (because it does not understand IPv6), then again nothing special is necessary: userspace can still set up the flow in the usual way. - If userspace has a more specific notion for the flow than the kernel, for example if userspace decoded an IPv6 header but the kernel stopped at the Ethernet type, then userspace can forward the packet manually, without setting up a flow in the kernel. (This case is bad from a performance point of view, but at least it is correct.) This commit does not actually make userspace flexible enough to handle changes in the kernel flow key structure, although userspace does now have enough information to do that intelligently. This will have to wait for later commits. This commit is bigger than it would otherwise be because it is rolled together with changing "struct odp_msg" to a sequence of Netlink attributes. The alternative, to do each of those changes in a separate patch, seemed like overkill because it meant that either we would have to introduce and then kill off Netlink attributes for in_port and tun_id, if Netlink conversion went first, or shove yet another variable-length header into the stuff already after odp_msg, if adding the flow key to odp_msg went first. This commit will slow down performance of checksumming packets sent up to userspace. I'm not entirely pleased with how I did it. I considered a couple of alternatives, but none of them seemed that much better. Suggestions welcome. Not changing anything wasn't an option, unfortunately. At any rate some slowdown will become unavoidable when OVS actually starts using Netlink instead of just Netlink framing. (Actually, I thought of one option where we could avoid that: make userspace do the checksum instead, by passing csum_start and csum_offset as part of what goes to userspace. But that's not perfect either.) Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2011-01-24 14:59:57 -08:00
int queue_no, const struct flow *flow, uint64_t arg)
{
datapath: Report kernel's flow key when passing packets up to userspace. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. This commit takes one step in that direction by making the kernel report its idea of the flow that a packet belongs to whenever it passes a packet up to userspace. This means that userspace can intelligently figure out what to do: - If userspace's notion of the flow for the packet matches the kernel's, then nothing special is necessary. - If the kernel has a more specific notion for the flow than userspace, for example if the kernel decoded IPv6 headers but userspace stopped at the Ethernet type (because it does not understand IPv6), then again nothing special is necessary: userspace can still set up the flow in the usual way. - If userspace has a more specific notion for the flow than the kernel, for example if userspace decoded an IPv6 header but the kernel stopped at the Ethernet type, then userspace can forward the packet manually, without setting up a flow in the kernel. (This case is bad from a performance point of view, but at least it is correct.) This commit does not actually make userspace flexible enough to handle changes in the kernel flow key structure, although userspace does now have enough information to do that intelligently. This will have to wait for later commits. This commit is bigger than it would otherwise be because it is rolled together with changing "struct odp_msg" to a sequence of Netlink attributes. The alternative, to do each of those changes in a separate patch, seemed like overkill because it meant that either we would have to introduce and then kill off Netlink attributes for in_port and tun_id, if Netlink conversion went first, or shove yet another variable-length header into the stuff already after odp_msg, if adding the flow key to odp_msg went first. This commit will slow down performance of checksumming packets sent up to userspace. I'm not entirely pleased with how I did it. I considered a couple of alternatives, but none of them seemed that much better. Suggestions welcome. Not changing anything wasn't an option, unfortunately. At any rate some slowdown will become unavoidable when OVS actually starts using Netlink instead of just Netlink framing. (Actually, I thought of one option where we could avoid that: make userspace do the checksum instead, by passing csum_start and csum_offset as part of what goes to userspace. But that's not perfect either.) Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2011-01-24 14:59:57 -08:00
struct dp_netdev_queue *q = &dp->queues[queue_no];
struct dpif_upcall *upcall;
struct ofpbuf *buf;
size_t key_len;
datapath: Report kernel's flow key when passing packets up to userspace. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. This commit takes one step in that direction by making the kernel report its idea of the flow that a packet belongs to whenever it passes a packet up to userspace. This means that userspace can intelligently figure out what to do: - If userspace's notion of the flow for the packet matches the kernel's, then nothing special is necessary. - If the kernel has a more specific notion for the flow than userspace, for example if the kernel decoded IPv6 headers but userspace stopped at the Ethernet type (because it does not understand IPv6), then again nothing special is necessary: userspace can still set up the flow in the usual way. - If userspace has a more specific notion for the flow than the kernel, for example if userspace decoded an IPv6 header but the kernel stopped at the Ethernet type, then userspace can forward the packet manually, without setting up a flow in the kernel. (This case is bad from a performance point of view, but at least it is correct.) This commit does not actually make userspace flexible enough to handle changes in the kernel flow key structure, although userspace does now have enough information to do that intelligently. This will have to wait for later commits. This commit is bigger than it would otherwise be because it is rolled together with changing "struct odp_msg" to a sequence of Netlink attributes. The alternative, to do each of those changes in a separate patch, seemed like overkill because it meant that either we would have to introduce and then kill off Netlink attributes for in_port and tun_id, if Netlink conversion went first, or shove yet another variable-length header into the stuff already after odp_msg, if adding the flow key to odp_msg went first. This commit will slow down performance of checksumming packets sent up to userspace. I'm not entirely pleased with how I did it. I considered a couple of alternatives, but none of them seemed that much better. Suggestions welcome. Not changing anything wasn't an option, unfortunately. At any rate some slowdown will become unavoidable when OVS actually starts using Netlink instead of just Netlink framing. (Actually, I thought of one option where we could avoid that: make userspace do the checksum instead, by passing csum_start and csum_offset as part of what goes to userspace. But that's not perfect either.) Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2011-01-24 14:59:57 -08:00
if (q->head - q->tail >= MAX_QUEUE_LEN) {
dp->n_lost++;
return ENOBUFS;
}
datapath: Report kernel's flow key when passing packets up to userspace. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. This commit takes one step in that direction by making the kernel report its idea of the flow that a packet belongs to whenever it passes a packet up to userspace. This means that userspace can intelligently figure out what to do: - If userspace's notion of the flow for the packet matches the kernel's, then nothing special is necessary. - If the kernel has a more specific notion for the flow than userspace, for example if the kernel decoded IPv6 headers but userspace stopped at the Ethernet type (because it does not understand IPv6), then again nothing special is necessary: userspace can still set up the flow in the usual way. - If userspace has a more specific notion for the flow than the kernel, for example if userspace decoded an IPv6 header but the kernel stopped at the Ethernet type, then userspace can forward the packet manually, without setting up a flow in the kernel. (This case is bad from a performance point of view, but at least it is correct.) This commit does not actually make userspace flexible enough to handle changes in the kernel flow key structure, although userspace does now have enough information to do that intelligently. This will have to wait for later commits. This commit is bigger than it would otherwise be because it is rolled together with changing "struct odp_msg" to a sequence of Netlink attributes. The alternative, to do each of those changes in a separate patch, seemed like overkill because it meant that either we would have to introduce and then kill off Netlink attributes for in_port and tun_id, if Netlink conversion went first, or shove yet another variable-length header into the stuff already after odp_msg, if adding the flow key to odp_msg went first. This commit will slow down performance of checksumming packets sent up to userspace. I'm not entirely pleased with how I did it. I considered a couple of alternatives, but none of them seemed that much better. Suggestions welcome. Not changing anything wasn't an option, unfortunately. At any rate some slowdown will become unavoidable when OVS actually starts using Netlink instead of just Netlink framing. (Actually, I thought of one option where we could avoid that: make userspace do the checksum instead, by passing csum_start and csum_offset as part of what goes to userspace. But that's not perfect either.) Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2011-01-24 14:59:57 -08:00
buf = ofpbuf_new(ODPUTIL_FLOW_KEY_BYTES + 2 + packet->size);
odp_flow_key_from_flow(buf, flow);
key_len = buf->size;
ofpbuf_pull(buf, key_len);
ofpbuf_reserve(buf, 2);
ofpbuf_put(buf, packet->data, packet->size);
upcall = xzalloc(sizeof *upcall);
upcall->type = queue_no;
upcall->packet = buf;
upcall->key = buf->base;
upcall->key_len = key_len;
upcall->userdata = arg;
q->upcalls[++q->head & QUEUE_MASK] = upcall;
return 0;
}
/* Returns true if 'packet' is an invalid Ethernet+IPv4 ARP packet: one with
* screwy or truncated header fields or one whose inner and outer Ethernet
* address differ. */
static bool
dp_netdev_is_spoofed_arp(struct ofpbuf *packet, const struct flow *key)
{
struct arp_eth_header *arp;
struct eth_header *eth;
ptrdiff_t l3_size;
if (key->dl_type != htons(ETH_TYPE_ARP)) {
return false;
}
l3_size = (char *) ofpbuf_end(packet) - (char *) packet->l3;
if (l3_size < sizeof(struct arp_eth_header)) {
return true;
}
eth = packet->l2;
arp = packet->l3;
return (arp->ar_hrd != htons(ARP_HRD_ETHERNET)
|| arp->ar_pro != htons(ARP_PRO_IP)
|| arp->ar_hln != ETH_HEADER_LEN
|| arp->ar_pln != 4
|| !eth_addr_equals(arp->ar_sha, eth->eth_src));
}
static int
dp_netdev_execute_actions(struct dp_netdev *dp,
struct ofpbuf *packet, struct flow *key,
const struct nlattr *actions,
size_t actions_len)
{
const struct nlattr *a;
unsigned int left;
NL_ATTR_FOR_EACH_UNSAFE (a, left, actions, actions_len) {
switch (nl_attr_type(a)) {
2010-08-24 16:00:46 -07:00
case ODPAT_OUTPUT:
dp_netdev_output_port(dp, packet, nl_attr_get_u32(a));
2010-08-24 16:00:46 -07:00
break;
2010-08-24 16:00:46 -07:00
case ODPAT_CONTROLLER:
dp_netdev_output_control(dp, packet, _ODPL_ACTION_NR,
datapath: Report kernel's flow key when passing packets up to userspace. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. This commit takes one step in that direction by making the kernel report its idea of the flow that a packet belongs to whenever it passes a packet up to userspace. This means that userspace can intelligently figure out what to do: - If userspace's notion of the flow for the packet matches the kernel's, then nothing special is necessary. - If the kernel has a more specific notion for the flow than userspace, for example if the kernel decoded IPv6 headers but userspace stopped at the Ethernet type (because it does not understand IPv6), then again nothing special is necessary: userspace can still set up the flow in the usual way. - If userspace has a more specific notion for the flow than the kernel, for example if userspace decoded an IPv6 header but the kernel stopped at the Ethernet type, then userspace can forward the packet manually, without setting up a flow in the kernel. (This case is bad from a performance point of view, but at least it is correct.) This commit does not actually make userspace flexible enough to handle changes in the kernel flow key structure, although userspace does now have enough information to do that intelligently. This will have to wait for later commits. This commit is bigger than it would otherwise be because it is rolled together with changing "struct odp_msg" to a sequence of Netlink attributes. The alternative, to do each of those changes in a separate patch, seemed like overkill because it meant that either we would have to introduce and then kill off Netlink attributes for in_port and tun_id, if Netlink conversion went first, or shove yet another variable-length header into the stuff already after odp_msg, if adding the flow key to odp_msg went first. This commit will slow down performance of checksumming packets sent up to userspace. I'm not entirely pleased with how I did it. I considered a couple of alternatives, but none of them seemed that much better. Suggestions welcome. Not changing anything wasn't an option, unfortunately. At any rate some slowdown will become unavoidable when OVS actually starts using Netlink instead of just Netlink framing. (Actually, I thought of one option where we could avoid that: make userspace do the checksum instead, by passing csum_start and csum_offset as part of what goes to userspace. But that's not perfect either.) Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2011-01-24 14:59:57 -08:00
key, nl_attr_get_u64(a));
2010-08-24 16:00:46 -07:00
break;
case ODPAT_SET_DL_TCI:
dp_netdev_set_dl_tci(packet, nl_attr_get_be16(a));
break;
2010-08-24 16:00:46 -07:00
case ODPAT_STRIP_VLAN:
dp_netdev_strip_vlan(packet);
break;
2010-08-24 16:00:46 -07:00
case ODPAT_SET_DL_SRC:
dp_netdev_set_dl_src(packet, nl_attr_get_unspec(a, ETH_ADDR_LEN));
2010-08-24 16:00:46 -07:00
break;
2010-08-24 16:00:46 -07:00
case ODPAT_SET_DL_DST:
dp_netdev_set_dl_dst(packet, nl_attr_get_unspec(a, ETH_ADDR_LEN));
2010-08-24 16:00:46 -07:00
break;
2010-08-24 16:00:46 -07:00
case ODPAT_SET_NW_SRC:
case ODPAT_SET_NW_DST:
dp_netdev_set_nw_addr(packet, key, a);
2010-08-24 16:00:46 -07:00
break;
2010-08-24 16:00:46 -07:00
case ODPAT_SET_NW_TOS:
dp_netdev_set_nw_tos(packet, key, nl_attr_get_u8(a));
2010-08-24 16:00:46 -07:00
break;
2010-08-24 16:00:46 -07:00
case ODPAT_SET_TP_SRC:
case ODPAT_SET_TP_DST:
dp_netdev_set_tp_port(packet, key, a);
2010-08-24 16:00:46 -07:00
break;
case ODPAT_DROP_SPOOFED_ARP:
if (dp_netdev_is_spoofed_arp(packet, key)) {
return 0;
}
2010-08-24 16:00:46 -07:00
}
}
return 0;
}
const struct dpif_class dpif_netdev_class = {
"netdev",
dp_netdev_run,
dp_netdev_wait,
NULL, /* enumerate */
dpif_netdev_open,
dpif_netdev_close,
NULL, /* get_all_names */
dpif_netdev_destroy,
dpif_netdev_get_stats,
dpif_netdev_get_drop_frags,
dpif_netdev_set_drop_frags,
dpif_netdev_port_add,
dpif_netdev_port_del,
dpif_netdev_port_query_by_number,
dpif_netdev_port_query_by_name,
2011-01-10 13:12:12 -08:00
dpif_netdev_port_dump_start,
dpif_netdev_port_dump_next,
dpif_netdev_port_dump_done,
dpif_netdev_port_poll,
dpif_netdev_port_poll_wait,
dpif_netdev_flow_get,
dpif_netdev_flow_put,
dpif_netdev_flow_del,
dpif_netdev_flow_flush,
datapath: Change listing flows to use an iterator concept. One of the goals for Open vSwitch is to decouple kernel and userspace software, so that either one can be upgraded or rolled back independent of the other. To do this in full generality, it must be possible to change the kernel's idea of the flow key separately from the userspace version. In turn, that means that flow keys must become variable-length. This does not, however, fit in well with the ODP_FLOW_LIST ioctl in its current form, because that would require userspace to know how much space to allocate for each flow's key in advance, or to allocate as much space as could possibly be needed. Neither choice is very attractive. This commit prepares for a different solution, by replacing ODP_FLOW_LIST by a new ioctl ODP_FLOW_DUMP that retrieves a single flow from the datapath on each call. It is much cleaner to allocate the maximum amount of space for a single flow key than to do so for possibly a very large number of flow keys. As a side effect, this patch also fixes a race condition that sometimes made "ovs-dpctl dump-flows" print an error: previously, flows were listed and then their actions were retrieved, which left a window in which ovs-vswitchd could delete the flow. Now dumping a flow and its actions is a single step, closing that window. Dumping all of the flows in a datapath is no longer an atomic step, so now it is possible to miss some flows or see a single flow twice during iteration, if the flow table is modified by another process. It doesn't look like this should be a problem for ovs-vswitchd. It would be faster to retrieve a number of flows in batch instead of just one at a time, but that will naturally happen later when the kernel datapath interface is changed to use Netlink, so this patch does not bother with it. Signed-off-by: Ben Pfaff <blp@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
2010-12-28 10:39:52 -08:00
dpif_netdev_flow_dump_start,
dpif_netdev_flow_dump_next,
dpif_netdev_flow_dump_done,
dpif_netdev_execute,
dpif_netdev_recv_get_mask,
dpif_netdev_recv_set_mask,
NULL, /* get_sflow_probability */
NULL, /* set_sflow_probability */
NULL, /* queue_to_priority */
dpif_netdev_recv,
dpif_netdev_recv_wait,
};
void
dpif_dummy_register(void)
{
if (!dpif_dummy_class.type) {
dpif_dummy_class = dpif_netdev_class;
dpif_dummy_class.type = "dummy";
dp_register_provider(&dpif_dummy_class);
}
}