2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-28 21:07:47 +00:00
ovs/lib/conntrack-private.h

344 lines
10 KiB
C
Raw Normal View History

/*
* Copyright (c) 2015, 2016, 2017 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef CONNTRACK_PRIVATE_H
#define CONNTRACK_PRIVATE_H 1
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/ip6.h>
#include "conntrack.h"
#include "ct-dpif.h"
#include "openvswitch/hmap.h"
#include "openvswitch/list.h"
#include "openvswitch/types.h"
#include "packets.h"
#include "unaligned.h"
#include "dp-packet.h"
struct ct_endpoint {
union ct_addr addr;
union {
ovs_be16 port;
struct {
ovs_be16 icmp_id;
uint8_t icmp_type;
uint8_t icmp_code;
};
};
};
/* Verify that there is no padding in struct ct_endpoint, to facilitate
* hashing in ct_endpoint_hash_add(). */
BUILD_ASSERT_DECL(sizeof(struct ct_endpoint) == sizeof(union ct_addr) + 4);
/* Changes to this structure need to be reflected in conn_key_hash()
* and conn_key_cmp(). */
struct conn_key {
struct ct_endpoint src;
struct ct_endpoint dst;
ovs_be16 dl_type;
uint16_t zone;
uint8_t nw_proto;
};
struct nat_conn_key_node {
struct hmap_node node;
struct conn_key key;
struct conn_key value;
};
/* This is used for alg expectations; an expectation is a
* context created in preparation for establishing a data
* connection. The expectation is created by the control
* connection. */
struct alg_exp_node {
/* Node in alg_expectations. */
struct hmap_node node;
/* Node in alg_expectation_refs. */
struct hindex_node node_ref;
/* Key of data connection to be created. */
struct conn_key key;
/* Corresponding key of the control connection. */
struct conn_key master_key;
/* The NAT replacement address to be used by the data connection. */
union ct_addr alg_nat_repl_addr;
/* The data connection inherits the master control
* connection label and mark. */
ovs_u128 master_label;
uint32_t master_mark;
/* True if for NAT application, the alg replaces the dest address;
* otherwise, the source address is replaced. */
bool nat_rpl_dst;
};
struct conn {
struct conn_key key;
struct conn_key rev_key;
/* Only used for orig_tuple support. */
struct conn_key master_key;
long long expiration;
struct ovs_list exp_node;
struct hmap_node node;
ovs_u128 label;
/* XXX: consider flattening. */
struct nat_action_info_t *nat_info;
char *alg;
int seq_skew;
uint32_t mark;
uint8_t conn_type;
/* TCP sequence skew due to NATTing of FTP control messages. */
uint8_t seq_skew_dir;
/* True if alg data connection. */
uint8_t alg_related;
};
enum ct_update_res {
CT_UPDATE_INVALID,
CT_UPDATE_VALID,
CT_UPDATE_NEW,
};
enum ct_conn_type {
CT_CONN_TYPE_DEFAULT,
CT_CONN_TYPE_UN_NAT,
};
/* 'struct ct_lock' is a wrapper for an adaptive mutex. It's useful to try
* different types of locks (e.g. spinlocks) */
struct OVS_LOCKABLE ct_lock {
struct ovs_mutex lock;
};
static inline void ct_lock_init(struct ct_lock *lock)
{
ovs_mutex_init_adaptive(&lock->lock);
}
static inline void ct_lock_lock(struct ct_lock *lock)
OVS_ACQUIRES(lock)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
ovs_mutex_lock(&lock->lock);
}
static inline void ct_lock_unlock(struct ct_lock *lock)
OVS_RELEASES(lock)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
ovs_mutex_unlock(&lock->lock);
}
static inline void ct_lock_destroy(struct ct_lock *lock)
{
ovs_mutex_destroy(&lock->lock);
}
struct OVS_LOCKABLE ct_rwlock {
struct ovs_rwlock lock;
};
static inline void ct_rwlock_init(struct ct_rwlock *lock)
{
ovs_rwlock_init(&lock->lock);
}
static inline void ct_rwlock_wrlock(struct ct_rwlock *lock)
OVS_ACQ_WRLOCK(lock)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
ovs_rwlock_wrlock(&lock->lock);
}
static inline void ct_rwlock_rdlock(struct ct_rwlock *lock)
OVS_ACQ_RDLOCK(lock)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
ovs_rwlock_rdlock(&lock->lock);
}
static inline void ct_rwlock_unlock(struct ct_rwlock *lock)
OVS_RELEASES(lock)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
ovs_rwlock_unlock(&lock->lock);
}
static inline void ct_rwlock_destroy(struct ct_rwlock *lock)
{
ovs_rwlock_destroy(&lock->lock);
}
/* Timeouts: all the possible timeout states passed to update_expiration()
* are listed here. The name will be prefix by CT_TM_ and the value is in
* milliseconds */
#define CT_TIMEOUTS \
CT_TIMEOUT(TCP_FIRST_PACKET, 30 * 1000) \
CT_TIMEOUT(TCP_OPENING, 30 * 1000) \
CT_TIMEOUT(TCP_ESTABLISHED, 24 * 60 * 60 * 1000) \
CT_TIMEOUT(TCP_CLOSING, 15 * 60 * 1000) \
CT_TIMEOUT(TCP_FIN_WAIT, 45 * 1000) \
CT_TIMEOUT(TCP_CLOSED, 30 * 1000) \
CT_TIMEOUT(OTHER_FIRST, 60 * 1000) \
CT_TIMEOUT(OTHER_MULTIPLE, 60 * 1000) \
CT_TIMEOUT(OTHER_BIDIR, 30 * 1000) \
CT_TIMEOUT(ICMP_FIRST, 60 * 1000) \
CT_TIMEOUT(ICMP_REPLY, 30 * 1000)
/* The smallest of the above values: it is used as an upper bound for the
* interval between two rounds of cleanup of expired entries */
#define CT_TM_MIN (30 * 1000)
#define CT_TIMEOUT(NAME, VAL) BUILD_ASSERT_DECL(VAL >= CT_TM_MIN);
CT_TIMEOUTS
#undef CT_TIMEOUT
enum ct_timeout {
#define CT_TIMEOUT(NAME, VALUE) CT_TM_##NAME,
CT_TIMEOUTS
#undef CT_TIMEOUT
N_CT_TM
};
/* Locking:
*
* The connections are kept in different buckets, which are completely
* independent. The connection bucket is determined by the hash of its key.
*
* Each bucket has two locks. Acquisition order is, from outermost to
* innermost:
*
* cleanup_mutex
* lock
*
* */
struct conntrack_bucket {
/* Protects 'connections' and 'exp_lists'. Used in the fast path */
struct ct_lock lock;
/* Contains the connections in the bucket, indexed by 'struct conn_key' */
struct hmap connections OVS_GUARDED;
/* For each possible timeout we have a list of connections. When the
* timeout of a connection is updated, we move it to the back of the list.
* Since the connection in a list have the same relative timeout, the list
* will be ordered, with the oldest connections to the front. */
struct ovs_list exp_lists[N_CT_TM] OVS_GUARDED;
/* Protects 'next_cleanup'. Used to make sure that there's only one thread
* performing the cleanup. */
struct ovs_mutex cleanup_mutex;
long long next_cleanup OVS_GUARDED;
};
#define CONNTRACK_BUCKETS_SHIFT 8
#define CONNTRACK_BUCKETS (1 << CONNTRACK_BUCKETS_SHIFT)
struct conntrack {
/* Independent buckets containing the connections */
struct conntrack_bucket buckets[CONNTRACK_BUCKETS];
/* Salt for hashing a connection key. */
uint32_t hash_basis;
/* The thread performing periodic cleanup of the connection
* tracker. */
pthread_t clean_thread;
/* Latch to destroy the 'clean_thread' */
struct latch clean_thread_exit;
/* Number of connections currently in the connection tracker. */
atomic_count n_conn;
/* Connections limit. When this limit is reached, no new connection
* will be accepted. */
atomic_uint n_conn_limit;
/* The following resources are referenced during nat connection
* creation and deletion. */
struct hmap nat_conn_keys OVS_GUARDED;
/* Hash table for alg expectations. Expectations are created
* by control connections to help create data connections. */
struct hmap alg_expectations OVS_GUARDED;
/* Used to lookup alg expectations from the control context. */
struct hindex alg_expectation_refs OVS_GUARDED;
/* Expiry list for alg expectations. */
struct ovs_list alg_exp_list OVS_GUARDED;
/* This lock is used during NAT connection creation and deletion;
* it is taken after a bucket lock and given back before that
* bucket unlock.
* This lock is similarly used to guard alg_expectations and
* alg_expectation_refs. If a bucket lock is also held during
* the normal code flow, then is must be taken first and released
* last.
*/
struct ct_rwlock resources_lock;
/* Fragmentation handling context. */
struct ipf *ipf;
};
struct ct_l4_proto {
struct conn *(*new_conn)(struct conntrack_bucket *, struct dp_packet *pkt,
long long now);
bool (*valid_new)(struct dp_packet *pkt);
enum ct_update_res (*conn_update)(struct conn *conn,
struct conntrack_bucket *,
struct dp_packet *pkt, bool reply,
long long now);
void (*conn_get_protoinfo)(const struct conn *,
struct ct_dpif_protoinfo *);
};
extern struct ct_l4_proto ct_proto_tcp;
extern struct ct_l4_proto ct_proto_other;
extern struct ct_l4_proto ct_proto_icmp4;
extern struct ct_l4_proto ct_proto_icmp6;
extern long long ct_timeout_val[];
static inline void
conn_init_expiration(struct conntrack_bucket *ctb, struct conn *conn,
enum ct_timeout tm, long long now)
{
conn->expiration = now + ct_timeout_val[tm];
ovs_list_push_back(&ctb->exp_lists[tm], &conn->exp_node);
}
static inline void
conn_update_expiration(struct conntrack_bucket *ctb, struct conn *conn,
enum ct_timeout tm, long long now)
{
ovs_list_remove(&conn->exp_node);
conn_init_expiration(ctb, conn, tm, now);
}
static inline uint32_t
tcp_payload_length(struct dp_packet *pkt)
{
const char *tcp_payload = dp_packet_get_tcp_payload(pkt);
if (tcp_payload) {
return ((char *) dp_packet_tail(pkt) - dp_packet_l2_pad_size(pkt)
- tcp_payload);
} else {
return 0;
}
}
#endif /* conntrack-private.h */