2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-31 22:35:15 +00:00

classifier: Rename struct cls_table as cls_subtable.

The naming of the classifier table has been a source of confusion,
since each OpenFlow table is implemented as a classifier, which
consists of multiple (sub)tables.  This name change hopefully makes
classifier related discussion a bit less confusing.

For consistency, relevant field names as well as the function and
variable names have been renamed in similar fashion.

Signed-off-by: Jarno Rajahalme <jrajahalme@nicira.com>
Signed-off-by: Ben Pfaff <blp@nicira.com>
This commit is contained in:
Jarno Rajahalme
2013-10-29 16:39:52 -07:00
committed by Ben Pfaff
parent 00467f7367
commit 0386824614
5 changed files with 226 additions and 214 deletions

View File

@@ -27,26 +27,26 @@
#include "packets.h"
#include "ovs-thread.h"
static struct cls_table *find_table(const struct classifier *,
static struct cls_subtable *find_subtable(const struct classifier *,
const struct minimask *);
static struct cls_table *insert_table(struct classifier *,
static struct cls_subtable *insert_subtable(struct classifier *,
const struct minimask *);
static void destroy_table(struct classifier *, struct cls_table *);
static void destroy_subtable(struct classifier *, struct cls_subtable *);
static void update_tables_after_insertion(struct classifier *,
struct cls_table *,
static void update_subtables_after_insertion(struct classifier *,
struct cls_subtable *,
unsigned int new_priority);
static void update_tables_after_removal(struct classifier *,
struct cls_table *,
static void update_subtables_after_removal(struct classifier *,
struct cls_subtable *,
unsigned int del_priority);
static struct cls_rule *find_match(const struct cls_table *,
static struct cls_rule *find_match(const struct cls_subtable *,
const struct flow *);
static struct cls_rule *find_equal(struct cls_table *,
static struct cls_rule *find_equal(struct cls_subtable *,
const struct miniflow *, uint32_t hash);
static struct cls_rule *insert_rule(struct classifier *,
struct cls_table *, struct cls_rule *);
struct cls_subtable *, struct cls_rule *);
/* Iterates RULE over HEAD and all of the cls_rules on HEAD->list. */
#define FOR_EACH_RULE_IN_LIST(RULE, HEAD) \
@@ -152,8 +152,8 @@ void
classifier_init(struct classifier *cls)
{
cls->n_rules = 0;
hmap_init(&cls->tables);
list_init(&cls->tables_priority);
hmap_init(&cls->subtables);
list_init(&cls->subtables_priority);
hmap_init(&cls->partitions);
ovs_rwlock_init(&cls->rwlock);
}
@@ -164,13 +164,14 @@ void
classifier_destroy(struct classifier *cls)
{
if (cls) {
struct cls_table *partition, *next_partition;
struct cls_table *table, *next_table;
struct cls_subtable *partition, *next_partition;
struct cls_subtable *subtable, *next_subtable;
HMAP_FOR_EACH_SAFE (table, next_table, hmap_node, &cls->tables) {
destroy_table(cls, table);
HMAP_FOR_EACH_SAFE (subtable, next_subtable, hmap_node,
&cls->subtables) {
destroy_subtable(cls, subtable);
}
hmap_destroy(&cls->tables);
hmap_destroy(&cls->subtables);
HMAP_FOR_EACH_SAFE (partition, next_partition, hmap_node,
&cls->partitions) {
@@ -218,7 +219,7 @@ find_partition(const struct classifier *cls, ovs_be64 metadata, uint32_t hash)
}
static struct cls_partition *
create_partition(struct classifier *cls, struct cls_table *table,
create_partition(struct classifier *cls, struct cls_subtable *subtable,
ovs_be64 metadata)
{
uint32_t hash = hash_metadata(metadata);
@@ -230,7 +231,7 @@ create_partition(struct classifier *cls, struct cls_table *table,
tag_tracker_init(&partition->tracker);
hmap_insert(&cls->partitions, &partition->hmap_node, hash);
}
tag_tracker_add(&partition->tracker, &partition->tags, table->tag);
tag_tracker_add(&partition->tracker, &partition->tags, subtable->tag);
return partition;
}
@@ -251,23 +252,23 @@ struct cls_rule *
classifier_replace(struct classifier *cls, struct cls_rule *rule)
{
struct cls_rule *old_rule;
struct cls_table *table;
struct cls_subtable *subtable;
table = find_table(cls, &rule->match.mask);
if (!table) {
table = insert_table(cls, &rule->match.mask);
subtable = find_subtable(cls, &rule->match.mask);
if (!subtable) {
subtable = insert_subtable(cls, &rule->match.mask);
}
old_rule = insert_rule(cls, table, rule);
old_rule = insert_rule(cls, subtable, rule);
if (!old_rule) {
if (minimask_get_metadata_mask(&rule->match.mask) == OVS_BE64_MAX) {
ovs_be64 metadata = miniflow_get_metadata(&rule->match.flow);
rule->partition = create_partition(cls, table, metadata);
rule->partition = create_partition(cls, subtable, metadata);
} else {
rule->partition = NULL;
}
table->n_table_rules++;
subtable->n_rules++;
cls->n_rules++;
} else {
rule->partition = old_rule->partition;
@@ -296,36 +297,36 @@ classifier_remove(struct classifier *cls, struct cls_rule *rule)
{
struct cls_partition *partition;
struct cls_rule *head;
struct cls_table *table;
struct cls_subtable *subtable;
table = find_table(cls, &rule->match.mask);
head = find_equal(table, &rule->match.flow, rule->hmap_node.hash);
subtable = find_subtable(cls, &rule->match.mask);
head = find_equal(subtable, &rule->match.flow, rule->hmap_node.hash);
if (head != rule) {
list_remove(&rule->list);
} else if (list_is_empty(&rule->list)) {
hmap_remove(&table->rules, &rule->hmap_node);
hmap_remove(&subtable->rules, &rule->hmap_node);
} else {
struct cls_rule *next = CONTAINER_OF(rule->list.next,
struct cls_rule, list);
list_remove(&rule->list);
hmap_replace(&table->rules, &rule->hmap_node, &next->hmap_node);
hmap_replace(&subtable->rules, &rule->hmap_node, &next->hmap_node);
}
partition = rule->partition;
if (partition) {
tag_tracker_subtract(&partition->tracker, &partition->tags,
table->tag);
subtable->tag);
if (!partition->tags) {
hmap_remove(&cls->partitions, &partition->hmap_node);
free(partition);
}
}
if (--table->n_table_rules == 0) {
destroy_table(cls, table);
if (--subtable->n_rules == 0) {
destroy_subtable(cls, subtable);
} else {
update_tables_after_removal(cls, table, rule->priority);
update_subtables_after_removal(cls, subtable, rule->priority);
}
cls->n_rules--;
}
@@ -343,27 +344,27 @@ classifier_lookup(const struct classifier *cls, const struct flow *flow,
struct flow_wildcards *wc)
{
const struct cls_partition *partition;
struct cls_table *table;
struct cls_subtable *subtable;
struct cls_rule *best;
tag_type tags;
/* Determine 'tags' such that, if 'table->tag' doesn't intersect them, then
* 'flow' cannot possibly match in 'table':
/* Determine 'tags' such that, if 'subtable->tag' doesn't intersect them,
* then 'flow' cannot possibly match in 'subtable':
*
* - If flow->metadata maps to a given 'partition', then we can use
* 'tags' for 'partition->tags'.
*
* - If flow->metadata has no partition, then no rule in 'cls' has an
* exact-match for flow->metadata. That means that we don't need to
* search any table that includes flow->metadata in its mask.
* search any subtable that includes flow->metadata in its mask.
*
* In either case, we always need to search any cls_tables that do not
* In either case, we always need to search any cls_subtables that do not
* include flow->metadata in its mask. One way to do that would be to
* check the "cls_table"s explicitly for that, but that would require an
* extra branch per table. Instead, we mark such a cls_table's 'tags' as
* TAG_ALL and make sure that 'tags' is never empty. This means that
* 'tags' always intersects such a cls_table's 'tags', so we don't need a
* special case.
* check the "cls_subtable"s explicitly for that, but that would require an
* extra branch per subtable. Instead, we mark such a cls_subtable's
* 'tags' as TAG_ALL and make sure that 'tags' is never empty. This means
* that 'tags' always intersects such a cls_subtable's 'tags', so we don't
* need a special case.
*/
partition = (hmap_is_empty(&cls->partitions)
? NULL
@@ -372,32 +373,33 @@ classifier_lookup(const struct classifier *cls, const struct flow *flow,
tags = partition ? partition->tags : TAG_ARBITRARY;
best = NULL;
LIST_FOR_EACH (table, list_node, &cls->tables_priority) {
LIST_FOR_EACH (subtable, list_node, &cls->subtables_priority) {
struct cls_rule *rule;
if (!tag_intersects(tags, table->tag)) {
if (!tag_intersects(tags, subtable->tag)) {
continue;
}
rule = find_match(table, flow);
rule = find_match(subtable, flow);
if (wc) {
flow_wildcards_fold_minimask(wc, &table->mask);
flow_wildcards_fold_minimask(wc, &subtable->mask);
}
if (rule) {
best = rule;
LIST_FOR_EACH_CONTINUE (table, list_node, &cls->tables_priority) {
if (table->max_priority <= best->priority) {
/* Tables in descending priority order,
LIST_FOR_EACH_CONTINUE (subtable, list_node,
&cls->subtables_priority) {
if (subtable->max_priority <= best->priority) {
/* Subtables are in descending priority order,
* can not find anything better. */
return best;
}
if (!tag_intersects(tags, table->tag)) {
if (!tag_intersects(tags, subtable->tag)) {
continue;
}
rule = find_match(table, flow);
rule = find_match(subtable, flow);
if (wc) {
flow_wildcards_fold_minimask(wc, &table->mask);
flow_wildcards_fold_minimask(wc, &subtable->mask);
}
if (rule && rule->priority > best->priority) {
best = rule;
@@ -417,19 +419,19 @@ classifier_find_rule_exactly(const struct classifier *cls,
const struct cls_rule *target)
{
struct cls_rule *head, *rule;
struct cls_table *table;
struct cls_subtable *subtable;
table = find_table(cls, &target->match.mask);
if (!table) {
subtable = find_subtable(cls, &target->match.mask);
if (!subtable) {
return NULL;
}
/* Skip if there is no hope. */
if (target->priority > table->max_priority) {
if (target->priority > subtable->max_priority) {
return NULL;
}
head = find_equal(table, &target->match.flow,
head = find_equal(subtable, &target->match.flow,
miniflow_hash_in_minimask(&target->match.flow,
&target->match.mask, 0));
FOR_EACH_RULE_IN_LIST (rule, head) {
@@ -465,20 +467,20 @@ bool
classifier_rule_overlaps(const struct classifier *cls,
const struct cls_rule *target)
{
struct cls_table *table;
struct cls_subtable *subtable;
/* Iterate tables in the descending max priority order. */
LIST_FOR_EACH (table, list_node, &cls->tables_priority) {
/* Iterate subtables in the descending max priority order. */
LIST_FOR_EACH (subtable, list_node, &cls->subtables_priority) {
uint32_t storage[FLOW_U32S];
struct minimask mask;
struct cls_rule *head;
if (target->priority > table->max_priority) {
break; /* Can skip this and the rest of the tables. */
if (target->priority > subtable->max_priority) {
break; /* Can skip this and the rest of the subtables. */
}
minimask_combine(&mask, &target->match.mask, &table->mask, storage);
HMAP_FOR_EACH (head, hmap_node, &table->rules) {
minimask_combine(&mask, &target->match.mask, &subtable->mask, storage);
HMAP_FOR_EACH (head, hmap_node, &subtable->rules) {
struct cls_rule *rule;
FOR_EACH_RULE_IN_LIST (rule, head) {
@@ -551,12 +553,13 @@ rule_matches(const struct cls_rule *rule, const struct cls_rule *target)
}
static struct cls_rule *
search_table(const struct cls_table *table, const struct cls_rule *target)
search_subtable(const struct cls_subtable *subtable,
const struct cls_rule *target)
{
if (!target || !minimask_has_extra(&table->mask, &target->match.mask)) {
if (!target || !minimask_has_extra(&subtable->mask, &target->match.mask)) {
struct cls_rule *rule;
HMAP_FOR_EACH (rule, hmap_node, &table->rules) {
HMAP_FOR_EACH (rule, hmap_node, &subtable->rules) {
if (rule_matches(rule, target)) {
return rule;
}
@@ -586,12 +589,12 @@ cls_cursor_init(struct cls_cursor *cursor, const struct classifier *cls,
struct cls_rule *
cls_cursor_first(struct cls_cursor *cursor)
{
struct cls_table *table;
struct cls_subtable *subtable;
HMAP_FOR_EACH (table, hmap_node, &cursor->cls->tables) {
struct cls_rule *rule = search_table(table, cursor->target);
HMAP_FOR_EACH (subtable, hmap_node, &cursor->cls->subtables) {
struct cls_rule *rule = search_subtable(subtable, cursor->target);
if (rule) {
cursor->table = table;
cursor->subtable = subtable;
return rule;
}
}
@@ -605,7 +608,7 @@ struct cls_rule *
cls_cursor_next(struct cls_cursor *cursor, const struct cls_rule *rule_)
{
struct cls_rule *rule = CONST_CAST(struct cls_rule *, rule_);
const struct cls_table *table;
const struct cls_subtable *subtable;
struct cls_rule *next;
next = next_rule_in_list__(rule);
@@ -614,20 +617,20 @@ cls_cursor_next(struct cls_cursor *cursor, const struct cls_rule *rule_)
}
/* 'next' is the head of the list, that is, the rule that is included in
* the table's hmap. (This is important when the classifier contains rules
* that differ only in priority.) */
* the subtable's hmap. (This is important when the classifier contains
* rules that differ only in priority.) */
rule = next;
HMAP_FOR_EACH_CONTINUE (rule, hmap_node, &cursor->table->rules) {
HMAP_FOR_EACH_CONTINUE (rule, hmap_node, &cursor->subtable->rules) {
if (rule_matches(rule, cursor->target)) {
return rule;
}
}
table = cursor->table;
HMAP_FOR_EACH_CONTINUE (table, hmap_node, &cursor->cls->tables) {
rule = search_table(table, cursor->target);
subtable = cursor->subtable;
HMAP_FOR_EACH_CONTINUE (subtable, hmap_node, &cursor->cls->subtables) {
rule = search_subtable(subtable, cursor->target);
if (rule) {
cursor->table = table;
cursor->subtable = subtable;
return rule;
}
}
@@ -635,145 +638,149 @@ cls_cursor_next(struct cls_cursor *cursor, const struct cls_rule *rule_)
return NULL;
}
static struct cls_table *
find_table(const struct classifier *cls, const struct minimask *mask)
static struct cls_subtable *
find_subtable(const struct classifier *cls, const struct minimask *mask)
{
struct cls_table *table;
struct cls_subtable *subtable;
HMAP_FOR_EACH_IN_BUCKET (table, hmap_node, minimask_hash(mask, 0),
&cls->tables) {
if (minimask_equal(mask, &table->mask)) {
return table;
HMAP_FOR_EACH_IN_BUCKET (subtable, hmap_node, minimask_hash(mask, 0),
&cls->subtables) {
if (minimask_equal(mask, &subtable->mask)) {
return subtable;
}
}
return NULL;
}
static struct cls_table *
insert_table(struct classifier *cls, const struct minimask *mask)
static struct cls_subtable *
insert_subtable(struct classifier *cls, const struct minimask *mask)
{
uint32_t hash = minimask_hash(mask, 0);
struct cls_table *table;
struct cls_subtable *subtable;
table = xzalloc(sizeof *table);
hmap_init(&table->rules);
minimask_clone(&table->mask, mask);
hmap_insert(&cls->tables, &table->hmap_node, minimask_hash(mask, 0));
list_push_back(&cls->tables_priority, &table->list_node);
table->tag = (minimask_get_metadata_mask(mask) == OVS_BE64_MAX
subtable = xzalloc(sizeof *subtable);
hmap_init(&subtable->rules);
minimask_clone(&subtable->mask, mask);
hmap_insert(&cls->subtables, &subtable->hmap_node, minimask_hash(mask, 0));
list_push_back(&cls->subtables_priority, &subtable->list_node);
subtable->tag = (minimask_get_metadata_mask(mask) == OVS_BE64_MAX
? tag_create_deterministic(hash)
: TAG_ALL);
return table;
return subtable;
}
static void
destroy_table(struct classifier *cls, struct cls_table *table)
destroy_subtable(struct classifier *cls, struct cls_subtable *subtable)
{
minimask_destroy(&table->mask);
hmap_remove(&cls->tables, &table->hmap_node);
hmap_destroy(&table->rules);
list_remove(&table->list_node);
free(table);
minimask_destroy(&subtable->mask);
hmap_remove(&cls->subtables, &subtable->hmap_node);
hmap_destroy(&subtable->rules);
list_remove(&subtable->list_node);
free(subtable);
}
/* This function performs the following updates for 'table' in 'cls' following
* the addition of a new rule with priority 'new_priority' to 'table':
/* This function performs the following updates for 'subtable' in 'cls'
* following the addition of a new rule with priority 'new_priority' to
* 'subtable':
*
* - Update 'table->max_priority' and 'table->max_count' if necessary.
* - Update 'subtable->max_priority' and 'subtable->max_count' if necessary.
*
* - Update 'table''s position in 'cls->tables_priority' if necessary.
* - Update 'subtable''s position in 'cls->subtables_priority' if necessary.
*
* This function should only be called after adding a new rule, not after
* replacing a rule by an identical one or modifying a rule in-place. */
static void
update_tables_after_insertion(struct classifier *cls, struct cls_table *table,
update_subtables_after_insertion(struct classifier *cls,
struct cls_subtable *subtable,
unsigned int new_priority)
{
if (new_priority == table->max_priority) {
++table->max_count;
} else if (new_priority > table->max_priority) {
struct cls_table *iter;
if (new_priority == subtable->max_priority) {
++subtable->max_count;
} else if (new_priority > subtable->max_priority) {
struct cls_subtable *iter;
table->max_priority = new_priority;
table->max_count = 1;
subtable->max_priority = new_priority;
subtable->max_count = 1;
/* Possibly move 'table' earlier in the priority list. If we break out
* of the loop, then 'table' should be moved just after that 'iter'.
* If the loop terminates normally, then 'iter' will be the list head
* and we'll move table just after that (e.g. to the front of the
* list). */
iter = table;
/* Possibly move 'subtable' earlier in the priority list. If we break
* out of the loop, then 'subtable' should be moved just after that
* 'iter'. If the loop terminates normally, then 'iter' will be the
* list head and we'll move subtable just after that (e.g. to the front
* of the list). */
iter = subtable;
LIST_FOR_EACH_REVERSE_CONTINUE (iter, list_node,
&cls->tables_priority) {
if (iter->max_priority >= table->max_priority) {
&cls->subtables_priority) {
if (iter->max_priority >= subtable->max_priority) {
break;
}
}
/* Move 'table' just after 'iter' (unless it's already there). */
if (iter->list_node.next != &table->list_node) {
/* Move 'subtable' just after 'iter' (unless it's already there). */
if (iter->list_node.next != &subtable->list_node) {
list_splice(iter->list_node.next,
&table->list_node, table->list_node.next);
&subtable->list_node, subtable->list_node.next);
}
}
}
/* This function performs the following updates for 'table' in 'cls' following
* the deletion of a rule with priority 'del_priority' from 'table':
/* This function performs the following updates for 'subtable' in 'cls'
* following the deletion of a rule with priority 'del_priority' from
* 'subtable':
*
* - Update 'table->max_priority' and 'table->max_count' if necessary.
* - Update 'subtable->max_priority' and 'subtable->max_count' if necessary.
*
* - Update 'table''s position in 'cls->tables_priority' if necessary.
* - Update 'subtable''s position in 'cls->subtables_priority' if necessary.
*
* This function should only be called after removing a rule, not after
* replacing a rule by an identical one or modifying a rule in-place. */
static void
update_tables_after_removal(struct classifier *cls, struct cls_table *table,
update_subtables_after_removal(struct classifier *cls,
struct cls_subtable *subtable,
unsigned int del_priority)
{
struct cls_table *iter;
struct cls_subtable *iter;
if (del_priority == table->max_priority && --table->max_count == 0) {
if (del_priority == subtable->max_priority && --subtable->max_count == 0) {
struct cls_rule *head;
table->max_priority = 0;
HMAP_FOR_EACH (head, hmap_node, &table->rules) {
if (head->priority > table->max_priority) {
table->max_priority = head->priority;
table->max_count = 1;
} else if (head->priority == table->max_priority) {
++table->max_count;
subtable->max_priority = 0;
HMAP_FOR_EACH (head, hmap_node, &subtable->rules) {
if (head->priority > subtable->max_priority) {
subtable->max_priority = head->priority;
subtable->max_count = 1;
} else if (head->priority == subtable->max_priority) {
++subtable->max_count;
}
}
/* Possibly move 'table' later in the priority list. If we break out
* of the loop, then 'table' should be moved just before that 'iter'.
* If the loop terminates normally, then 'iter' will be the list head
* and we'll move table just before that (e.g. to the back of the
* list). */
iter = table;
LIST_FOR_EACH_CONTINUE (iter, list_node, &cls->tables_priority) {
if (iter->max_priority <= table->max_priority) {
/* Possibly move 'subtable' later in the priority list. If we break
* out of the loop, then 'subtable' should be moved just before that
* 'iter'. If the loop terminates normally, then 'iter' will be the
* list head and we'll move subtable just before that (e.g. to the back
* of the list). */
iter = subtable;
LIST_FOR_EACH_CONTINUE (iter, list_node, &cls->subtables_priority) {
if (iter->max_priority <= subtable->max_priority) {
break;
}
}
/* Move 'table' just before 'iter' (unless it's already there). */
if (iter->list_node.prev != &table->list_node) {
/* Move 'subtable' just before 'iter' (unless it's already there). */
if (iter->list_node.prev != &subtable->list_node) {
list_splice(&iter->list_node,
&table->list_node, table->list_node.next);
&subtable->list_node, subtable->list_node.next);
}
}
}
static struct cls_rule *
find_match(const struct cls_table *table, const struct flow *flow)
find_match(const struct cls_subtable *subtable, const struct flow *flow)
{
uint32_t hash = flow_hash_in_minimask(flow, &table->mask, 0);
uint32_t hash = flow_hash_in_minimask(flow, &subtable->mask, 0);
struct cls_rule *rule;
HMAP_FOR_EACH_WITH_HASH (rule, hmap_node, hash, &table->rules) {
HMAP_FOR_EACH_WITH_HASH (rule, hmap_node, hash, &subtable->rules) {
if (minimatch_matches_flow(&rule->match, flow)) {
return rule;
}
@@ -783,11 +790,12 @@ find_match(const struct cls_table *table, const struct flow *flow)
}
static struct cls_rule *
find_equal(struct cls_table *table, const struct miniflow *flow, uint32_t hash)
find_equal(struct cls_subtable *subtable, const struct miniflow *flow,
uint32_t hash)
{
struct cls_rule *head;
HMAP_FOR_EACH_WITH_HASH (head, hmap_node, hash, &table->rules) {
HMAP_FOR_EACH_WITH_HASH (head, hmap_node, hash, &subtable->rules) {
if (miniflow_equal(&head->match.flow, flow)) {
return head;
}
@@ -796,8 +804,8 @@ find_equal(struct cls_table *table, const struct miniflow *flow, uint32_t hash)
}
static struct cls_rule *
insert_rule(struct classifier *cls,
struct cls_table *table, struct cls_rule *new)
insert_rule(struct classifier *cls, struct cls_subtable *subtable,
struct cls_rule *new)
{
struct cls_rule *head;
struct cls_rule *old = NULL;
@@ -805,9 +813,9 @@ insert_rule(struct classifier *cls,
new->hmap_node.hash = miniflow_hash_in_minimask(&new->match.flow,
&new->match.mask, 0);
head = find_equal(table, &new->match.flow, new->hmap_node.hash);
head = find_equal(subtable, &new->match.flow, new->hmap_node.hash);
if (!head) {
hmap_insert(&table->rules, &new->hmap_node, new->hmap_node.hash);
hmap_insert(&subtable->rules, &new->hmap_node, new->hmap_node.hash);
list_init(&new->list);
goto out;
} else {
@@ -818,7 +826,7 @@ insert_rule(struct classifier *cls,
if (new->priority >= rule->priority) {
if (rule == head) {
/* 'new' is the new highest-priority flow in the list. */
hmap_replace(&table->rules,
hmap_replace(&subtable->rules,
&rule->hmap_node, &new->hmap_node);
}
@@ -839,7 +847,7 @@ insert_rule(struct classifier *cls,
out:
if (!old) {
update_tables_after_insertion(cls, table, new->priority);
update_subtables_after_insertion(cls, subtable, new->priority);
}
return old;
}

View File

@@ -47,17 +47,18 @@
*
* This is how the classifier works. In a "struct classifier", each form of
* "struct cls_rule" present (based on its ->match.mask) goes into a separate
* "struct cls_table". A lookup does a hash lookup in every "struct cls_table"
* in the classifier and tracks the highest-priority match that it finds. The
* tables are kept in a descending priority order according to the highest
* priority rule in each table, which allows lookup to skip over tables that
* can't possibly have a higher-priority match than already found.
* "struct cls_subtable". A lookup does a hash lookup in every "struct
* cls_subtable" in the classifier and tracks the highest-priority match that
* it finds. The subtables are kept in a descending priority order according
* to the highest priority rule in each subtable, which allows lookup to skip
* over subtables that can't possibly have a higher-priority match than
* already found.
*
* One detail: a classifier can contain multiple rules that are identical other
* than their priority. When this happens, only the highest priority rule out
* of a group of otherwise identical rules is stored directly in the "struct
* cls_table", with the other almost-identical rules chained off a linked list
* inside that highest-priority rule.
* cls_subtable", with the other almost-identical rules chained off a linked
* list inside that highest-priority rule.
*
*
* Partitioning
@@ -74,24 +75,24 @@
* The classifier has a special optimization to speed up matching in this
* scenario:
*
* - Each cls_table that matches on metadata gets a tag derived from the
* table's mask, so that it is likely that each table has a unique tag.
* (Duplicate tags have a performance cost but do not affect
* - Each cls_subtable that matches on metadata gets a tag derived from the
* subtable's mask, so that it is likely that each subtable has a unique
* tag. (Duplicate tags have a performance cost but do not affect
* correctness.)
*
* - For each metadata value matched by any cls_rule, the classifier
* constructs a "struct cls_partition" indexed by the metadata value.
* The cls_partition has a 'tags' member whose value is the bitwise-OR of
* the tags of each cls_table that contains any rule that matches on the
* cls_partition's metadata value. In other words, struct cls_partition
* associates metadata values with tables that need to be checked with
* flows with that specific metadata value.
* the tags of each cls_subtable that contains any rule that matches on
* the cls_partition's metadata value. In other words, struct
* cls_partition associates metadata values with subtables that need to
* be checked with flows with that specific metadata value.
*
* Thus, a flow lookup can start by looking up the partition associated with
* the flow's metadata, and then skip over any cls_table whose 'tag' does not
* intersect the partition's 'tags'. (The flow must also be looked up in any
* cls_table that doesn't match on metadata. We handle that by giving any such
* cls_table TAG_ALL as its 'tags' so that it matches any tag.)
* the flow's metadata, and then skip over any cls_subtable whose 'tag' does
* not intersect the partition's 'tags'. (The flow must also be looked up in
* any cls_subtable that doesn't match on metadata. We handle that by giving
* any such cls_subtable TAG_ALL as its 'tags' so that it matches any tag.)
*
*
* Thread-safety
@@ -122,35 +123,38 @@ extern struct ovs_mutex ofproto_mutex;
/* A flow classifier. */
struct classifier {
int n_rules; /* Total number of rules. */
struct hmap tables; /* Contains "struct cls_table"s. */
struct list tables_priority; /* Tables in descending priority order */
struct hmap subtables; /* Contains "struct cls_subtable"s. */
struct list subtables_priority; /* Subtables in descending priority order.
*/
struct hmap partitions; /* Contains "struct cls_partition"s. */
struct ovs_rwlock rwlock OVS_ACQ_AFTER(ofproto_mutex);
};
/* A set of rules that all have the same fields wildcarded. */
struct cls_table {
struct hmap_node hmap_node; /* Within struct classifier 'tables' hmap. */
struct list list_node; /* Within classifier 'tables_priority_list' */
struct cls_subtable {
struct hmap_node hmap_node; /* Within struct classifier 'subtables' hmap.
*/
struct list list_node; /* Within classifier 'subtables_priority' list.
*/
struct hmap rules; /* Contains "struct cls_rule"s. */
struct minimask mask; /* Wildcards for fields. */
int n_table_rules; /* Number of rules, including duplicates. */
unsigned int max_priority; /* Max priority of any rule in the table. */
int n_rules; /* Number of rules, including duplicates. */
unsigned int max_priority; /* Max priority of any rule in the subtable. */
unsigned int max_count; /* Count of max_priority rules. */
tag_type tag; /* Tag generated from mask for partitioning. */
};
/* Returns true if 'table' is a "catch-all" table that will match every
/* Returns true if 'table' is a "catch-all" subtable that will match every
* packet (if there is no higher-priority match). */
static inline bool
cls_table_is_catchall(const struct cls_table *table)
cls_subtable_is_catchall(const struct cls_subtable *subtable)
{
return minimask_is_catchall(&table->mask);
return minimask_is_catchall(&subtable->mask);
}
/* A rule in a "struct cls_table". */
/* A rule in a "struct cls_subtable". */
struct cls_rule {
struct hmap_node hmap_node; /* Within struct cls_table 'rules'. */
struct hmap_node hmap_node; /* Within struct cls_subtable 'rules'. */
struct list list; /* List of identical, lower-priority rules. */
struct minimatch match; /* Matching rule. */
unsigned int priority; /* Larger numbers are higher priorities. */
@@ -158,12 +162,12 @@ struct cls_rule {
};
/* Associates a metadata value (that is, a value of the OpenFlow 1.1+ metadata
* field) with tags for the "cls_table"s that contain rules that match that
* field) with tags for the "cls_subtable"s that contain rules that match that
* metadata value. */
struct cls_partition {
struct hmap_node hmap_node; /* In struct classifier's 'partitions' hmap. */
ovs_be64 metadata; /* metadata value for this partition. */
tag_type tags; /* OR of each included flow's cls_table tag. */
tag_type tags; /* OR of each flow's cls_subtable tag. */
struct tag_tracker tracker; /* Tracks the bits in 'tags'. */
};
@@ -219,14 +223,14 @@ struct cls_rule *classifier_find_match_exactly(const struct classifier *cls,
struct cls_cursor {
const struct classifier *cls;
const struct cls_table *table;
const struct cls_subtable *subtable;
const struct cls_rule *target;
};
void cls_cursor_init(struct cls_cursor *cursor, const struct classifier *cls,
const struct cls_rule *match) OVS_REQ_RDLOCK(cls->rwlock);
struct cls_rule *cls_cursor_first(struct cls_cursor *cursor);
struct cls_rule *cls_cursor_next(struct cls_cursor *cursor, const struct cls_rule *);
struct cls_rule *cls_cursor_next(struct cls_cursor *, const struct cls_rule *);
#define CLS_CURSOR_FOR_EACH(RULE, MEMBER, CURSOR) \
for (ASSIGN_CONTAINER(RULE, cls_cursor_first(CURSOR), MEMBER); \

View File

@@ -1505,14 +1505,14 @@ run(struct ofproto *ofproto_)
if (time_msec() >= ofproto->consistency_rl
&& !classifier_is_empty(&ofproto->facets)
&& !ofproto->backer->need_revalidate) {
struct cls_table *table;
struct cls_subtable *table;
struct cls_rule *cr;
struct facet *facet;
ofproto->consistency_rl = time_msec() + 250;
table = CONTAINER_OF(hmap_random_node(&ofproto->facets.tables),
struct cls_table, hmap_node);
table = CONTAINER_OF(hmap_random_node(&ofproto->facets.subtables),
struct cls_subtable, hmap_node);
cr = CONTAINER_OF(hmap_random_node(&table->rules), struct cls_rule,
hmap_node);
facet = CONTAINER_OF(cr, struct facet, cr);

View File

@@ -6767,10 +6767,10 @@ ofproto_get_vlan_usage(struct ofproto *ofproto, unsigned long int *vlan_bitmap)
ofproto->vlans_changed = false;
OFPROTO_FOR_EACH_TABLE (oftable, ofproto) {
const struct cls_table *table;
const struct cls_subtable *table;
ovs_rwlock_rdlock(&oftable->cls.rwlock);
HMAP_FOR_EACH (table, hmap_node, &oftable->cls.tables) {
HMAP_FOR_EACH (table, hmap_node, &oftable->cls.subtables) {
if (minimask_get_vid_mask(&table->mask) == VLAN_VID_MASK) {
const struct cls_rule *rule;

View File

@@ -459,7 +459,7 @@ static void
check_tables(const struct classifier *cls, int n_tables, int n_rules,
int n_dups) OVS_REQ_RDLOCK(cls->rwlock)
{
const struct cls_table *table;
const struct cls_subtable *table;
struct test_rule *test_rule;
struct cls_cursor cursor;
int found_tables = 0;
@@ -467,7 +467,7 @@ check_tables(const struct classifier *cls, int n_tables, int n_rules,
int found_dups = 0;
int found_rules2 = 0;
HMAP_FOR_EACH (table, hmap_node, &cls->tables) {
HMAP_FOR_EACH (table, hmap_node, &cls->subtables) {
const struct cls_rule *head;
unsigned int max_priority = 0;
unsigned int max_count = 0;
@@ -501,8 +501,8 @@ check_tables(const struct classifier *cls, int n_tables, int n_rules,
assert(table->max_count == max_count);
}
assert(found_tables == hmap_count(&cls->tables));
assert(n_tables == -1 || n_tables == hmap_count(&cls->tables));
assert(found_tables == hmap_count(&cls->subtables));
assert(n_tables == -1 || n_tables == hmap_count(&cls->subtables));
assert(n_rules == -1 || found_rules == n_rules);
assert(n_dups == -1 || found_dups == n_dups);