2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-31 14:25:26 +00:00

lib/dpif-netdev: Integrate megaflow classifier.

Megaflow inserts and removals are simplified:

- No need for classifier internal mutex, as dpif-netdev already has a
  'flow_mutex'.
- Number of memory allocations/frees can be halved.
- Lookup code path can rely on netdev_flow_key always having inline data.

This will also be easier to simplify further when moving to per-thread
megaflow classifiers in the future.

Signed-off-by: Jarno Rajahalme <jrajahalme@nicira.com>
Acked-by: Alex Wang <alexw@nicira.com>
This commit is contained in:
Jarno Rajahalme
2014-10-17 09:37:11 -07:00
parent 965f980af6
commit 0de8783a9d
5 changed files with 535 additions and 247 deletions

View File

@@ -31,7 +31,6 @@
#include <sys/stat.h>
#include <unistd.h>
#include "classifier.h"
#include "cmap.h"
#include "csum.h"
#include "dpif.h"
@@ -43,6 +42,7 @@
#include "cmap.h"
#include "latch.h"
#include "list.h"
#include "match.h"
#include "meta-flow.h"
#include "netdev.h"
#include "netdev-dpdk.h"
@@ -57,6 +57,7 @@
#include "packet-dpif.h"
#include "packets.h"
#include "poll-loop.h"
#include "pvector.h"
#include "random.h"
#include "seq.h"
#include "shash.h"
@@ -68,9 +69,6 @@
VLOG_DEFINE_THIS_MODULE(dpif_netdev);
/* By default, choose a priority in the middle. */
#define NETDEV_RULE_PRIORITY 0x8000
#define FLOW_DUMP_MAX_BATCH 50
/* Use per thread recirc_depth to prevent recirculation loop. */
#define MAX_RECIRC_DEPTH 5
@@ -91,7 +89,9 @@ static struct vlog_rate_limit upcall_rl = VLOG_RATE_LIMIT_INIT(600, 600);
/* Stores a miniflow with inline values */
struct netdev_flow_key {
struct miniflow flow;
uint32_t hash; /* hash function differs for different users. */
uint32_t len;
struct miniflow mf;
uint32_t buf[FLOW_MAX_PACKET_U32S - MINI_N_INLINE];
};
@@ -99,7 +99,7 @@ struct netdev_flow_key {
*
* The cache uses a 32-bit hash of the packet (which can be the RSS hash) to
* search its entries for a miniflow that matches exactly the miniflow of the
* packet. It stores the 'cls_rule'(rule) that matches the miniflow.
* packet. It stores the 'dpcls_rule' (rule) that matches the miniflow.
*
* A cache entry holds a reference to its 'dp_netdev_flow'.
*
@@ -122,10 +122,8 @@ struct netdev_flow_key {
#define EM_FLOW_HASH_SEGS 2
struct emc_entry {
uint32_t hash;
uint32_t mf_len;
struct netdev_flow_key mf;
struct dp_netdev_flow *flow;
struct netdev_flow_key key; /* key.hash used for emc hash value. */
};
struct emc_cache {
@@ -139,7 +137,31 @@ struct emc_cache {
(CURRENT_ENTRY) = &(EMC)->entries[srch_hash__ & EM_FLOW_HASH_MASK], \
i__ < EM_FLOW_HASH_SEGS; \
i__++, srch_hash__ >>= EM_FLOW_HASH_SHIFT)
/* Simple non-wildcarding single-priority classifier. */
struct dpcls {
struct cmap subtables_map;
struct pvector subtables;
};
/* A rule to be inserted to the classifier. */
struct dpcls_rule {
struct cmap_node cmap_node; /* Within struct dpcls_subtable 'rules'. */
struct netdev_flow_key *mask; /* Subtable's mask. */
struct netdev_flow_key flow; /* Matching key. */
/* 'flow' must be the last field, additional space is allocated here. */
};
static void dpcls_init(struct dpcls *);
static void dpcls_destroy(struct dpcls *);
static void dpcls_insert(struct dpcls *, struct dpcls_rule *,
const struct netdev_flow_key *mask);
static void dpcls_remove(struct dpcls *, struct dpcls_rule *);
static bool dpcls_lookup(const struct dpcls *cls,
const struct netdev_flow_key keys[],
struct dpcls_rule **rules, size_t cnt);
/* Datapath based on the network device interface from netdev.h.
*
*
@@ -168,7 +190,7 @@ struct dp_netdev {
* changes to 'cls' must be made while still holding the 'flow_mutex'.
*/
struct ovs_mutex flow_mutex;
struct classifier cls;
struct dpcls cls;
struct cmap flow_table OVS_GUARDED; /* Flow table. */
/* Statistics.
@@ -236,6 +258,7 @@ struct dp_netdev_port {
char *type; /* Port type as requested by user. */
};
/* A flow in dp_netdev's 'flow_table'.
*
*
@@ -275,12 +298,10 @@ struct dp_netdev_port {
*/
struct dp_netdev_flow {
bool dead;
/* Packet classification. */
const struct cls_rule cr; /* In owning dp_netdev's 'cls'. */
/* Hash table index by unmasked flow. */
const struct cmap_node node; /* In owning dp_netdev's 'flow_table'. */
const struct flow flow; /* The flow that created this entry. */
const struct flow flow; /* Unmasked flow that created this entry. */
/* Number of references.
* The classifier owns one reference.
@@ -295,6 +316,10 @@ struct dp_netdev_flow {
/* Actions. */
OVSRCU_TYPE(struct dp_netdev_actions *) actions;
/* Packet classification. */
struct dpcls_rule cr; /* In owning dp_netdev's 'cls'. */
/* 'cr' must be the last member. */
};
static void dp_netdev_flow_unref(struct dp_netdev_flow *);
@@ -410,10 +435,10 @@ emc_cache_init(struct emc_cache *flow_cache)
for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
flow_cache->entries[i].flow = NULL;
flow_cache->entries[i].hash = 0;
flow_cache->entries[i].mf_len = 0;
miniflow_initialize(&flow_cache->entries[i].mf.flow,
flow_cache->entries[i].mf.buf);
flow_cache->entries[i].key.hash = 0;
flow_cache->entries[i].key.len = 0;
miniflow_initialize(&flow_cache->entries[i].key.mf,
flow_cache->entries[i].key.buf);
}
}
@@ -550,7 +575,7 @@ create_dp_netdev(const char *name, const struct dpif_class *class,
atomic_flag_clear(&dp->destroyed);
ovs_mutex_init(&dp->flow_mutex);
classifier_init(&dp->cls, NULL);
dpcls_init(&dp->cls);
cmap_init(&dp->flow_table);
ovsthread_stats_init(&dp->stats);
@@ -653,7 +678,7 @@ dp_netdev_free(struct dp_netdev *dp)
}
ovsthread_stats_destroy(&dp->stats);
classifier_destroy(&dp->cls);
dpcls_destroy(&dp->cls);
cmap_destroy(&dp->flow_table);
ovs_mutex_destroy(&dp->flow_mutex);
seq_destroy(dp->port_seq);
@@ -1092,7 +1117,6 @@ dp_netdev_flow_free(struct dp_netdev_flow *flow)
}
ovsthread_stats_destroy(&flow->stats);
cls_rule_destroy(CONST_CAST(struct cls_rule *, &flow->cr));
dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
free(flow);
}
@@ -1108,10 +1132,9 @@ static void
dp_netdev_remove_flow(struct dp_netdev *dp, struct dp_netdev_flow *flow)
OVS_REQUIRES(dp->flow_mutex)
{
struct cls_rule *cr = CONST_CAST(struct cls_rule *, &flow->cr);
struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
classifier_remove(&dp->cls, cr);
dpcls_remove(&dp->cls, &flow->cr);
cmap_remove(&dp->flow_table, node, flow_hash(&flow->flow, 0));
flow->dead = true;
@@ -1216,7 +1239,7 @@ dpif_netdev_port_poll_wait(const struct dpif *dpif_)
}
static struct dp_netdev_flow *
dp_netdev_flow_cast(const struct cls_rule *cr)
dp_netdev_flow_cast(const struct dpcls_rule *cr)
{
return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
}
@@ -1244,38 +1267,144 @@ static bool dp_netdev_flow_ref(struct dp_netdev_flow *flow)
*/
BUILD_ASSERT_DECL(offsetof(struct miniflow, inline_values)
== sizeof(uint64_t));
BUILD_ASSERT_DECL(offsetof(struct netdev_flow_key, flow) == 0);
static inline struct netdev_flow_key *
miniflow_to_netdev_flow_key(const struct miniflow *mf)
{
return (struct netdev_flow_key *) CONST_CAST(struct miniflow *, mf);
}
/* Given the number of bits set in the miniflow map, returns the size of the
* netdev_flow key */
static inline uint32_t
netdev_flow_key_size(uint32_t flow_u32s)
{
return MINIFLOW_VALUES_SIZE(flow_u32s)
+ offsetof(struct miniflow, inline_values);
return offsetof(struct netdev_flow_key, mf.inline_values) +
MINIFLOW_VALUES_SIZE(flow_u32s);
}
/* Used to compare 'netdev_flow_key's (miniflows) in the exact match cache. */
static inline bool
netdev_flow_key_equal(const struct netdev_flow_key *a,
const struct netdev_flow_key *b,
uint32_t size)
const struct netdev_flow_key *b)
{
return !memcmp(a, b, size);
/* 'b's size and hash may be not set yet. */
return !memcmp(a, b, a->len);
}
/* Used to compare 'netdev_flow_key' in the exact match cache to a miniflow.
* The maps are compared bitwise, so both 'key->mf' 'mf' must have been
* generated by miniflow_extract. */
static inline bool
netdev_flow_key_equal_mf(const struct netdev_flow_key *key,
const struct miniflow *mf)
{
return !memcmp(&key->mf, mf,
key->len - offsetof(struct netdev_flow_key, mf));
}
static inline void
netdev_flow_key_clone(struct netdev_flow_key *dst,
const struct netdev_flow_key *src,
uint32_t size)
const struct netdev_flow_key *src)
{
memcpy(dst, src, size);
memcpy(dst, src, src->len);
}
/* Slow. */
static void
netdev_flow_key_from_flow(struct netdev_flow_key *dst,
const struct flow *src)
{
struct ofpbuf packet;
uint64_t buf_stub[512 / 8];
struct pkt_metadata md = pkt_metadata_from_flow(src);
miniflow_initialize(&dst->mf, dst->buf);
ofpbuf_use_stub(&packet, buf_stub, sizeof buf_stub);
flow_compose(&packet, src);
miniflow_extract(&packet, &md, &dst->mf);
ofpbuf_uninit(&packet);
dst->len = netdev_flow_key_size(count_1bits(dst->mf.map));
dst->hash = 0; /* Not computed yet. */
}
/* Initialize a netdev_flow_key 'mask' from 'match'. */
static inline void
netdev_flow_mask_init(struct netdev_flow_key *mask,
const struct match *match)
{
const uint32_t *mask_u32 = (const uint32_t *) &match->wc.masks;
uint32_t *dst = mask->mf.inline_values;
uint64_t map, mask_map = 0;
uint32_t hash = 0;
int n;
/* Only check masks that make sense for the flow. */
map = flow_wc_map(&match->flow);
while (map) {
uint64_t rm1bit = rightmost_1bit(map);
int i = raw_ctz(map);
if (mask_u32[i]) {
mask_map |= rm1bit;
*dst++ = mask_u32[i];
hash = hash_add(hash, mask_u32[i]);
}
map -= rm1bit;
}
mask->mf.values_inline = true;
mask->mf.map = mask_map;
hash = hash_add(hash, mask_map);
hash = hash_add(hash, mask_map >> 32);
n = dst - mask->mf.inline_values;
mask->hash = hash_finish(hash, n * 4);
mask->len = netdev_flow_key_size(n);
}
/* Initializes 'dst' as a copy of 'src' masked with 'mask'. */
static inline void
netdev_flow_key_init_masked(struct netdev_flow_key *dst,
const struct flow *flow,
const struct netdev_flow_key *mask)
{
uint32_t *dst_u32 = dst->mf.inline_values;
const uint32_t *mask_u32 = mask->mf.inline_values;
uint32_t hash = 0;
uint32_t value;
dst->len = mask->len;
dst->mf.values_inline = true;
dst->mf.map = mask->mf.map;
FLOW_FOR_EACH_IN_MAP(value, flow, mask->mf.map) {
*dst_u32 = value & *mask_u32++;
hash = hash_add(hash, *dst_u32++);
}
dst->hash = hash_finish(hash, (dst_u32 - dst->mf.inline_values) * 4);
}
/* Iterate through all netdev_flow_key u32 values specified by 'MAP' */
#define NETDEV_FLOW_KEY_FOR_EACH_IN_MAP(VALUE, KEY, MAP) \
for (struct mf_for_each_in_map_aux aux__ \
= { (KEY)->mf.inline_values, (KEY)->mf.map, MAP }; \
mf_get_next_in_map(&aux__, &(VALUE)); \
)
/* Returns a hash value for the bits of 'key' where there are 1-bits in
* 'mask'. */
static inline uint32_t
netdev_flow_key_hash_in_mask(const struct netdev_flow_key *key,
const struct netdev_flow_key *mask)
{
const uint32_t *p = mask->mf.inline_values;
uint32_t hash = 0;
uint32_t key_u32;
NETDEV_FLOW_KEY_FOR_EACH_IN_MAP(key_u32, key, mask->mf.map) {
hash = hash_add(hash, key_u32 & *p++);
}
return hash_finish(hash, (p - mask->mf.inline_values) * 4);
}
static inline bool
@@ -1295,7 +1424,7 @@ emc_clear_entry(struct emc_entry *ce)
static inline void
emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
const struct netdev_flow_key *mf, uint32_t hash)
const struct netdev_flow_key *key)
{
if (ce->flow != flow) {
if (ce->flow) {
@@ -1308,30 +1437,22 @@ emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
ce->flow = NULL;
}
}
if (mf) {
uint32_t mf_len = netdev_flow_key_size(count_1bits(mf->flow.map));
netdev_flow_key_clone(&ce->mf, mf, mf_len);
ce->hash = hash;
ce->mf_len = mf_len;
if (key) {
netdev_flow_key_clone(&ce->key, key);
}
}
static inline void
emc_insert(struct emc_cache *cache, const struct miniflow *mf, uint32_t hash,
emc_insert(struct emc_cache *cache, const struct netdev_flow_key *key,
struct dp_netdev_flow *flow)
{
struct emc_entry *to_be_replaced = NULL;
struct emc_entry *current_entry;
EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, hash) {
if (current_entry->hash == hash
&& netdev_flow_key_equal(&current_entry->mf,
miniflow_to_netdev_flow_key(mf),
current_entry->mf_len)) {
EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
if (netdev_flow_key_equal(&current_entry->key, key)) {
/* We found the entry with the 'mf' miniflow */
emc_change_entry(current_entry, flow, NULL, 0);
emc_change_entry(current_entry, flow, NULL);
return;
}
@@ -1340,29 +1461,27 @@ emc_insert(struct emc_cache *cache, const struct miniflow *mf, uint32_t hash,
if (!to_be_replaced
|| (emc_entry_alive(to_be_replaced)
&& !emc_entry_alive(current_entry))
|| current_entry->hash < to_be_replaced->hash) {
|| current_entry->key.hash < to_be_replaced->key.hash) {
to_be_replaced = current_entry;
}
}
/* We didn't find the miniflow in the cache.
* The 'to_be_replaced' entry is where the new flow will be stored */
emc_change_entry(to_be_replaced, flow, miniflow_to_netdev_flow_key(mf),
hash);
emc_change_entry(to_be_replaced, flow, key);
}
static inline struct dp_netdev_flow *
emc_lookup(struct emc_cache *cache, const struct miniflow *mf, uint32_t hash)
emc_lookup(struct emc_cache *cache, const struct netdev_flow_key *key)
{
struct emc_entry *current_entry;
EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, hash) {
if (current_entry->hash == hash && emc_entry_alive(current_entry)
&& netdev_flow_key_equal(&current_entry->mf,
miniflow_to_netdev_flow_key(mf),
current_entry->mf_len)) {
EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, key->hash) {
if (current_entry->key.hash == key->hash
&& emc_entry_alive(current_entry)
&& netdev_flow_key_equal_mf(&current_entry->key, &key->mf)) {
/* We found the entry with the 'mf' miniflow */
/* We found the entry with the 'key->mf' miniflow */
return current_entry->flow;
}
}
@@ -1371,12 +1490,13 @@ emc_lookup(struct emc_cache *cache, const struct miniflow *mf, uint32_t hash)
}
static struct dp_netdev_flow *
dp_netdev_lookup_flow(const struct dp_netdev *dp, const struct miniflow *key)
dp_netdev_lookup_flow(const struct dp_netdev *dp,
const struct netdev_flow_key *key)
{
struct dp_netdev_flow *netdev_flow;
struct cls_rule *rule;
struct dpcls_rule *rule;
classifier_lookup_miniflow_batch(&dp->cls, &key, &rule, 1);
dpcls_lookup(&dp->cls, key, &rule, 1);
netdev_flow = dp_netdev_flow_cast(rule);
return netdev_flow;
@@ -1422,7 +1542,7 @@ dp_netdev_flow_to_dpif_flow(const struct dp_netdev_flow *netdev_flow,
struct flow_wildcards wc;
struct dp_netdev_actions *actions;
minimask_expand(&netdev_flow->cr.match.mask, &wc);
miniflow_expand(&netdev_flow->cr.mask->mf, &wc.masks);
odp_flow_key_from_mask(buffer, &wc.masks, &netdev_flow->flow,
odp_to_u32(wc.masks.in_port.odp_port),
SIZE_MAX, true);
@@ -1552,36 +1672,41 @@ dpif_netdev_flow_get(const struct dpif *dpif, const struct dpif_flow_get *get)
return error;
}
static int
static struct dp_netdev_flow *
dp_netdev_flow_add(struct dp_netdev *dp, struct match *match,
const struct nlattr *actions, size_t actions_len)
OVS_REQUIRES(dp->flow_mutex)
{
struct dp_netdev_flow *netdev_flow;
struct dp_netdev_flow *flow;
struct netdev_flow_key mask;
netdev_flow = xzalloc(sizeof *netdev_flow);
*CONST_CAST(struct flow *, &netdev_flow->flow) = match->flow;
netdev_flow_mask_init(&mask, match);
/* Make sure wc does not have metadata. */
ovs_assert(!(mask.mf.map & (MINIFLOW_MAP(metadata) | MINIFLOW_MAP(regs))));
ovs_refcount_init(&netdev_flow->ref_cnt);
/* Do not allocate extra space. */
flow = xmalloc(sizeof *flow - sizeof flow->cr.flow + mask.len);
flow->dead = false;
*CONST_CAST(struct flow *, &flow->flow) = match->flow;
ovs_refcount_init(&flow->ref_cnt);
ovsthread_stats_init(&flow->stats);
ovsrcu_set(&flow->actions, dp_netdev_actions_create(actions, actions_len));
ovsthread_stats_init(&netdev_flow->stats);
ovsrcu_set(&netdev_flow->actions,
dp_netdev_actions_create(actions, actions_len));
cls_rule_init(CONST_CAST(struct cls_rule *, &netdev_flow->cr),
match, NETDEV_RULE_PRIORITY);
cmap_insert(&dp->flow_table,
CONST_CAST(struct cmap_node *, &netdev_flow->node),
flow_hash(&match->flow, 0));
classifier_insert(&dp->cls,
CONST_CAST(struct cls_rule *, &netdev_flow->cr));
CONST_CAST(struct cmap_node *, &flow->node),
flow_hash(&flow->flow, 0));
netdev_flow_key_init_masked(&flow->cr.flow, &match->flow, &mask);
dpcls_insert(&dp->cls, &flow->cr, &mask);
if (OVS_UNLIKELY(VLOG_IS_DBG_ENABLED())) {
struct match match;
struct ds ds = DS_EMPTY_INITIALIZER;
match.flow = flow->flow;
miniflow_expand(&flow->cr.mask->mf, &match.wc.masks);
ds_put_cstr(&ds, "flow_add: ");
match_format(match, &ds, OFP_DEFAULT_PRIORITY);
match_format(&match, &ds, OFP_DEFAULT_PRIORITY);
ds_put_cstr(&ds, ", actions:");
format_odp_actions(&ds, actions, actions_len);
@@ -1590,7 +1715,7 @@ dp_netdev_flow_add(struct dp_netdev *dp, struct match *match,
ds_destroy(&ds);
}
return 0;
return flow;
}
static void
@@ -1614,7 +1739,7 @@ dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_flow *netdev_flow;
struct miniflow miniflow;
struct netdev_flow_key key;
struct match match;
int error;
@@ -1628,18 +1753,22 @@ dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
if (error) {
return error;
}
miniflow_init(&miniflow, &match.flow);
/* Must produce a netdev_flow_key for lookup.
* This interface is no longer performance critical, since it is not used
* for upcall processing any more. */
netdev_flow_key_from_flow(&key, &match.flow);
ovs_mutex_lock(&dp->flow_mutex);
netdev_flow = dp_netdev_lookup_flow(dp, &miniflow);
netdev_flow = dp_netdev_lookup_flow(dp, &key);
if (!netdev_flow) {
if (put->flags & DPIF_FP_CREATE) {
if (cmap_count(&dp->flow_table) < MAX_FLOWS) {
if (put->stats) {
memset(put->stats, 0, sizeof *put->stats);
}
error = dp_netdev_flow_add(dp, &match, put->actions,
put->actions_len);
dp_netdev_flow_add(dp, &match, put->actions, put->actions_len);
error = 0;
} else {
error = EFBIG;
}
@@ -1674,7 +1803,6 @@ dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
}
}
ovs_mutex_unlock(&dp->flow_mutex);
miniflow_destroy(&miniflow);
return error;
}
@@ -1817,7 +1945,7 @@ dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
struct flow_wildcards wc;
struct ofpbuf buf;
minimask_expand(&netdev_flow->cr.match.mask, &wc);
miniflow_expand(&netdev_flow->cr.mask->mf, &wc.masks);
/* Key. */
ofpbuf_use_stack(&buf, keybuf, sizeof *keybuf);
@@ -2592,23 +2720,21 @@ emc_processing(struct dp_netdev_pmd_thread *pmd, struct dpif_packet **packets,
size_t notfound_cnt = 0;
n_batches = 0;
miniflow_initialize(&key.flow, key.buf);
miniflow_initialize(&key.mf, key.buf);
for (i = 0; i < cnt; i++) {
struct dp_netdev_flow *flow;
uint32_t hash;
if (OVS_UNLIKELY(ofpbuf_size(&packets[i]->ofpbuf) < ETH_HEADER_LEN)) {
dpif_packet_delete(packets[i]);
continue;
}
miniflow_extract(&packets[i]->ofpbuf, &packets[i]->md, &key.flow);
miniflow_extract(&packets[i]->ofpbuf, &packets[i]->md, &key.mf);
key.len = 0; /* Not computed yet. */
key.hash = dpif_netdev_packet_get_dp_hash(packets[i], &key.mf);
hash = dpif_netdev_packet_get_dp_hash(packets[i], &key.flow);
flow = emc_lookup(flow_cache, &key.flow, hash);
if (OVS_UNLIKELY(!dp_netdev_queue_batches(packets[i],
flow, &key.flow,
flow = emc_lookup(flow_cache, &key);
if (OVS_UNLIKELY(!dp_netdev_queue_batches(packets[i], flow, &key.mf,
batches, &n_batches,
ARRAY_SIZE(batches)))) {
if (i != notfound_cnt) {
@@ -2638,51 +2764,51 @@ fast_path_processing(struct dp_netdev_pmd_thread *pmd,
enum { PKT_ARRAY_SIZE = NETDEV_MAX_RX_BATCH };
#endif
struct packet_batch batches[PKT_ARRAY_SIZE];
const struct miniflow *mfs[PKT_ARRAY_SIZE]; /* May NOT be NULL. */
struct cls_rule *rules[PKT_ARRAY_SIZE];
struct dpcls_rule *rules[PKT_ARRAY_SIZE];
struct dp_netdev *dp = pmd->dp;
struct emc_cache *flow_cache = &pmd->flow_cache;
size_t n_batches, i;
bool any_miss;
for (i = 0; i < cnt; i++) {
mfs[i] = &keys[i].flow; /* No bad packets! */
/* Key length is needed in all the cases, hash computed on demand. */
keys[i].len = netdev_flow_key_size(count_1bits(keys[i].mf.map));
}
any_miss = !classifier_lookup_miniflow_batch(&dp->cls, mfs, rules, cnt);
any_miss = !dpcls_lookup(&dp->cls, keys, rules, cnt);
if (OVS_UNLIKELY(any_miss) && !fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
uint64_t actions_stub[512 / 8], slow_stub[512 / 8];
struct ofpbuf actions, put_actions;
struct match match;
ofpbuf_use_stub(&actions, actions_stub, sizeof actions_stub);
ofpbuf_use_stub(&put_actions, slow_stub, sizeof slow_stub);
for (i = 0; i < cnt; i++) {
const struct dp_netdev_flow *netdev_flow;
struct dp_netdev_flow *netdev_flow;
struct ofpbuf *add_actions;
struct match match;
int error;
if (OVS_LIKELY(rules[i] || !mfs[i])) {
if (OVS_LIKELY(rules[i])) {
continue;
}
/* It's possible that an earlier slow path execution installed
* the rule this flow needs. In this case, it's a lot cheaper
* a rule covering this flow. In this case, it's a lot cheaper
* to catch it here than execute a miss. */
netdev_flow = dp_netdev_lookup_flow(dp, mfs[i]);
netdev_flow = dp_netdev_lookup_flow(dp, &keys[i]);
if (netdev_flow) {
rules[i] = CONST_CAST(struct cls_rule *, &netdev_flow->cr);
rules[i] = &netdev_flow->cr;
continue;
}
miniflow_expand(mfs[i], &match.flow);
miniflow_expand(&keys[i].mf, &match.flow);
ofpbuf_clear(&actions);
ofpbuf_clear(&put_actions);
error = dp_netdev_upcall(dp, packets[i], &match.flow, &match.wc,
DPIF_UC_MISS, NULL, &actions,
&put_actions);
DPIF_UC_MISS, NULL, &actions,
&put_actions);
if (OVS_UNLIKELY(error && error != ENOSPC)) {
continue;
}
@@ -2698,19 +2824,26 @@ fast_path_processing(struct dp_netdev_pmd_thread *pmd,
? &put_actions
: &actions;
ovs_mutex_lock(&dp->flow_mutex);
/* XXX: There's a brief race where this flow could have already
* been installed since we last did the flow lookup. This could be
* solved by moving the mutex lock outside the loop, but that's an
* awful long time to be locking everyone out of making flow
* installs. If we move to a per-core classifier, it would be
* reasonable. */
if (OVS_LIKELY(error != ENOSPC)
&& !dp_netdev_lookup_flow(dp, mfs[i])) {
dp_netdev_flow_add(dp, &match, ofpbuf_data(add_actions),
ofpbuf_size(add_actions));
if (OVS_LIKELY(error != ENOSPC)) {
/* XXX: There's a race window where a flow covering this packet
* could have already been installed since we last did the flow
* lookup before upcall. This could be solved by moving the
* mutex lock outside the loop, but that's an awful long time
* to be locking everyone out of making flow installs. If we
* move to a per-core classifier, it would be reasonable. */
ovs_mutex_lock(&dp->flow_mutex);
netdev_flow = dp_netdev_lookup_flow(dp, &keys[i]);
if (OVS_LIKELY(!netdev_flow)) {
netdev_flow = dp_netdev_flow_add(dp, &match,
ofpbuf_data(add_actions),
ofpbuf_size(add_actions));
}
ovs_mutex_unlock(&dp->flow_mutex);
/* EMC uses different hash. */
keys[i].hash = dpif_packet_get_dp_hash(packets[i]);
emc_insert(flow_cache, &keys[i], netdev_flow);
}
ovs_mutex_unlock(&dp->flow_mutex);
}
ofpbuf_uninit(&actions);
@@ -2720,7 +2853,7 @@ fast_path_processing(struct dp_netdev_pmd_thread *pmd,
int dropped_cnt = 0;
for (i = 0; i < cnt; i++) {
if (OVS_UNLIKELY(!rules[i] && mfs[i])) {
if (OVS_UNLIKELY(!rules[i])) {
dpif_packet_delete(packets[i]);
dropped_cnt++;
}
@@ -2734,15 +2867,16 @@ fast_path_processing(struct dp_netdev_pmd_thread *pmd,
struct dpif_packet *packet = packets[i];
struct dp_netdev_flow *flow;
if (OVS_UNLIKELY(!rules[i] || !mfs[i])) {
if (OVS_UNLIKELY(!rules[i])) {
continue;
}
flow = dp_netdev_flow_cast(rules[i]);
emc_insert(flow_cache, mfs[i], dpif_packet_get_dp_hash(packet),
flow);
dp_netdev_queue_batches(packet, flow, mfs[i], batches, &n_batches,
ARRAY_SIZE(batches));
keys[i].hash = dpif_packet_get_dp_hash(packet);
emc_insert(flow_cache, &keys[i], flow);
dp_netdev_queue_batches(packet, flow, &keys[i].mf, batches,
&n_batches, ARRAY_SIZE(batches));
}
for (i = 0; i < n_batches; i++) {
@@ -3087,3 +3221,209 @@ dpif_dummy_register(bool override)
unixctl_command_register("dpif-dummy/delete-port", "dp port",
2, 2, dpif_dummy_delete_port, NULL);
}
/* Datapath Classifier. */
/* A set of rules that all have the same fields wildcarded. */
struct dpcls_subtable {
/* The fields are only used by writers. */
struct cmap_node cmap_node OVS_GUARDED; /* Within dpcls 'subtables_map'. */
/* These fields are accessed by readers. */
struct cmap rules; /* Contains "struct dpcls_rule"s. */
struct netdev_flow_key mask; /* Wildcards for fields (const). */
/* 'mask' must be the last field, additional space is allocated here. */
};
/* Initializes 'cls' as a classifier that initially contains no classification
* rules. */
static void
dpcls_init(struct dpcls *cls)
{
cmap_init(&cls->subtables_map);
pvector_init(&cls->subtables);
}
static void
dpcls_destroy_subtable(struct dpcls *cls, struct dpcls_subtable *subtable)
{
pvector_remove(&cls->subtables, subtable);
cmap_remove(&cls->subtables_map, &subtable->cmap_node,
subtable->mask.hash);
cmap_destroy(&subtable->rules);
ovsrcu_postpone(free, subtable);
}
/* Destroys 'cls'. Rules within 'cls', if any, are not freed; this is the
* caller's responsibility.
* May only be called after all the readers have been terminated. */
static void
dpcls_destroy(struct dpcls *cls)
{
if (cls) {
struct dpcls_subtable *subtable;
CMAP_FOR_EACH (subtable, cmap_node, &cls->subtables_map) {
dpcls_destroy_subtable(cls, subtable);
}
cmap_destroy(&cls->subtables_map);
pvector_destroy(&cls->subtables);
}
}
static struct dpcls_subtable *
dpcls_create_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
{
struct dpcls_subtable *subtable;
/* Need to add one. */
subtable = xmalloc(sizeof *subtable - sizeof subtable->mask + mask->len);
cmap_init(&subtable->rules);
netdev_flow_key_clone(&subtable->mask, mask);
cmap_insert(&cls->subtables_map, &subtable->cmap_node, mask->hash);
pvector_insert(&cls->subtables, subtable, 0);
return subtable;
}
static inline struct dpcls_subtable *
dpcls_find_subtable(struct dpcls *cls, const struct netdev_flow_key *mask)
{
struct dpcls_subtable *subtable;
CMAP_FOR_EACH_WITH_HASH (subtable, cmap_node, mask->hash,
&cls->subtables_map) {
if (netdev_flow_key_equal(&subtable->mask, mask)) {
return subtable;
}
}
return dpcls_create_subtable(cls, mask);
}
/* Insert 'rule' into 'cls'. */
static void
dpcls_insert(struct dpcls *cls, struct dpcls_rule *rule,
const struct netdev_flow_key *mask)
{
struct dpcls_subtable *subtable = dpcls_find_subtable(cls, mask);
rule->mask = &subtable->mask;
cmap_insert(&subtable->rules, &rule->cmap_node, rule->flow.hash);
}
/* Removes 'rule' from 'cls', also destructing the 'rule'. */
static void
dpcls_remove(struct dpcls *cls, struct dpcls_rule *rule)
{
struct dpcls_subtable *subtable;
ovs_assert(rule->mask);
INIT_CONTAINER(subtable, rule->mask, mask);
if (cmap_remove(&subtable->rules, &rule->cmap_node, rule->flow.hash)
== 0) {
dpcls_destroy_subtable(cls, subtable);
}
}
/* Returns true if 'target' satisifies 'key' in 'mask', that is, if each 1-bit
* in 'mask' the values in 'key' and 'target' are the same.
*
* Note: 'key' and 'mask' have the same mask, and 'key' is already masked. */
static inline bool
dpcls_rule_matches_key(const struct dpcls_rule *rule,
const struct netdev_flow_key *target)
{
const uint32_t *keyp = rule->flow.mf.inline_values;
const uint32_t *maskp = rule->mask->mf.inline_values;
uint32_t target_u32;
NETDEV_FLOW_KEY_FOR_EACH_IN_MAP(target_u32, target, rule->flow.mf.map) {
if (OVS_UNLIKELY((target_u32 & *maskp++) != *keyp++)) {
return false;
}
}
return true;
}
/* For each miniflow in 'flows' performs a classifier lookup writing the result
* into the corresponding slot in 'rules'. If a particular entry in 'flows' is
* NULL it is skipped.
*
* This function is optimized for use in the userspace datapath and therefore
* does not implement a lot of features available in the standard
* classifier_lookup() function. Specifically, it does not implement
* priorities, instead returning any rule which matches the flow.
*
* Returns true if all flows found a corresponding rule. */
static bool
dpcls_lookup(const struct dpcls *cls, const struct netdev_flow_key keys[],
struct dpcls_rule **rules, const size_t cnt)
{
/* The batch size 16 was experimentally found faster than 8 or 32. */
typedef uint16_t map_type;
#define MAP_BITS (sizeof(map_type) * CHAR_BIT)
#if !defined(__CHECKER__) && !defined(_WIN32)
const int N_MAPS = DIV_ROUND_UP(cnt, MAP_BITS);
#else
enum { N_MAPS = DIV_ROUND_UP(NETDEV_MAX_RX_BATCH, MAP_BITS) };
#endif
map_type maps[N_MAPS];
struct dpcls_subtable *subtable;
memset(maps, 0xff, sizeof maps);
if (cnt % MAP_BITS) {
maps[N_MAPS - 1] >>= MAP_BITS - cnt % MAP_BITS; /* Clear extra bits. */
}
memset(rules, 0, cnt * sizeof *rules);
PVECTOR_FOR_EACH (subtable, &cls->subtables) {
const struct netdev_flow_key *mkeys = keys;
struct dpcls_rule **mrules = rules;
map_type remains = 0;
int m;
BUILD_ASSERT_DECL(sizeof remains == sizeof *maps);
for (m = 0; m < N_MAPS; m++, mkeys += MAP_BITS, mrules += MAP_BITS) {
uint32_t hashes[MAP_BITS];
const struct cmap_node *nodes[MAP_BITS];
unsigned long map = maps[m];
int i;
if (!map) {
continue; /* Skip empty maps. */
}
/* Compute hashes for the remaining keys. */
ULONG_FOR_EACH_1(i, map) {
hashes[i] = netdev_flow_key_hash_in_mask(&mkeys[i],
&subtable->mask);
}
/* Lookup. */
map = cmap_find_batch(&subtable->rules, map, hashes, nodes);
/* Check results. */
ULONG_FOR_EACH_1(i, map) {
struct dpcls_rule *rule;
CMAP_NODE_FOR_EACH (rule, cmap_node, nodes[i]) {
if (OVS_LIKELY(dpcls_rule_matches_key(rule, &mkeys[i]))) {
mrules[i] = rule;
goto next;
}
}
ULONG_SET0(map, i); /* Did not match. */
next:
; /* Keep Sparse happy. */
}
maps[m] &= ~map; /* Clear the found rules. */
remains |= maps[m];
}
if (!remains) {
return true; /* All found. */
}
}
return false; /* Some misses. */
}