2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 01:51:26 +00:00
ovs/ofproto/ofproto-dpif-upcall.c
Ilya Maximets 0d9dc8e9ca dpif-netlink: Provide original upcall pid in 'execute' commands.
When a packet enters kernel datapath and there is no flow to handle it,
packet goes to userspace through a MISS upcall.  With per-CPU upcall
dispatch mechanism, we're using the current CPU id to select the
Netlink PID on which to send this packet.  This allows us to send
packets from the same traffic flow through the same handler.

The handler will process the packet, install required flow into the
kernel and re-inject the original packet via OVS_PACKET_CMD_EXECUTE.

While handling OVS_PACKET_CMD_EXECUTE, however, we may hit a
recirculation action that will pass the (likely modified) packet
through the flow lookup again.  And if the flow is not found, the
packet will be sent to userspace again through another MISS upcall.

However, the handler thread in userspace is likely running on a
different CPU core, and the OVS_PACKET_CMD_EXECUTE request is handled
in the syscall context of that thread.  So, when the time comes to
send the packet through another upcall, the per-CPU dispatch will
choose a different Netlink PID, and this packet will end up processed
by a different handler thread on a different CPU.

The process continues as long as there are new recirculations, each
time the packet goes to a different handler thread before it is sent
out of the OVS datapath to the destination port.  In real setups the
number of recirculations can go up to 4 or 5, sometimes more.

There is always a chance to re-order packets while processing upcalls,
because userspace will first install the flow and then re-inject the
original packet.  So, there is a race window when the flow is already
installed and the second packet can match it inside the kernel and be
forwarded to the destination before the first packet is re-injected.
But the fact that packets are going through multiple upcalls handled
by different userspace threads makes the reordering noticeably more
likely, because we not only have a race between the kernel and a
userspace handler (which is hard to avoid), but also between multiple
userspace handlers.

For example, let's assume that 10 packets got enqueued through a MISS
upcall for handler-1, it will start processing them, will install the
flow into the kernel and start re-injecting packets back, from where
they will go through another MISS to handler-2.  Handler-2 will install
the flow into the kernel and start re-injecting the packets, while
handler-1 continues to re-inject the last of the 10 packets, they will
hit the flow installed by handler-2 and be forwarded without going to
the handler-2, while handler-2 still re-injects the first of these 10
packets.  Given multiple recirculations and misses, these 10 packets
may end up completely mixed up on the output from the datapath.

Let's provide the original upcall PID via the new netlink attribute
OVS_PACKET_ATTR_UPCALL_PID.  This way the upcall triggered during the
execution will go to the same handler.  Packets will be enqueued to
the same socket and re-injected in the same order.  This doesn't
eliminate re-ordering as stated above, since we still have a race
between the kernel and the handler thread, but it allows to eliminate
races between multiple handlers.

The openvswitch kernel module ignores unknown attributes for the
OVS_PACKET_CMD_EXECUTE, so it's safe to provide it even on older
kernels.

Reported-at: https://issues.redhat.com/browse/FDP-1479
Link: https://lore.kernel.org/netdev/20250702155043.2331772-1-i.maximets@ovn.org/
Acked-by: Eelco Chaudron <echaudro@redhat.com>
Acked-by: Flavio Leitner <fbl@sysclose.org>
Signed-off-by: Ilya Maximets <i.maximets@ovn.org>
2025-07-10 12:20:54 +02:00

3742 lines
131 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include <config.h>
#include "ofproto-dpif-upcall.h"
#include <errno.h>
#include <stdbool.h>
#include <inttypes.h>
#include "connmgr.h"
#include "coverage.h"
#include "cmap.h"
#include "lib/dpif-provider.h"
#include "dpif.h"
#include "openvswitch/dynamic-string.h"
#include "fail-open.h"
#include "guarded-list.h"
#include "latch.h"
#include "openvswitch/list.h"
#include "netlink.h"
#include "openvswitch/ofpbuf.h"
#include "ofproto-dpif-ipfix.h"
#include "ofproto-dpif-sflow.h"
#include "ofproto-dpif-xlate.h"
#include "ofproto-dpif-xlate-cache.h"
#include "ofproto-dpif-trace.h"
#include "ovs-rcu.h"
#include "packets.h"
#include "openvswitch/poll-loop.h"
#include "seq.h"
#include "tunnel.h"
#include "unixctl.h"
#include "openvswitch/usdt-probes.h"
#include "openvswitch/vlog.h"
#include "lib/netdev-provider.h"
#define UPCALL_MAX_BATCH 64
#define REVALIDATE_MAX_BATCH 50
#define UINT64_THREE_QUARTERS (UINT64_MAX / 4 * 3)
VLOG_DEFINE_THIS_MODULE(ofproto_dpif_upcall);
COVERAGE_DEFINE(dumped_duplicate_flow);
COVERAGE_DEFINE(dumped_inconsistent_flow);
COVERAGE_DEFINE(dumped_new_flow);
COVERAGE_DEFINE(handler_duplicate_upcall);
COVERAGE_DEFINE(revalidate_missed_dp_flow);
COVERAGE_DEFINE(revalidate_missing_dp_flow);
COVERAGE_DEFINE(ukey_dp_change);
COVERAGE_DEFINE(ukey_invalid_stat_reset);
COVERAGE_DEFINE(ukey_replace_contention);
COVERAGE_DEFINE(upcall_flow_limit_grew);
COVERAGE_DEFINE(upcall_flow_limit_hit);
COVERAGE_DEFINE(upcall_flow_limit_kill);
COVERAGE_DEFINE(upcall_flow_limit_reduced);
COVERAGE_DEFINE(upcall_flow_limit_scaled);
COVERAGE_DEFINE(upcall_ukey_contention);
COVERAGE_DEFINE(upcall_ukey_replace);
/* A thread that reads upcalls from dpif, forwards each upcall's packet,
* and possibly sets up a kernel flow as a cache. */
struct handler {
struct udpif *udpif; /* Parent udpif. */
pthread_t thread; /* Thread ID. */
uint32_t handler_id; /* Handler id. */
};
/* In the absence of a multiple-writer multiple-reader datastructure for
* storing udpif_keys ("ukeys"), we use a large number of cmaps, each with its
* own lock for writing. */
#define N_UMAPS 512 /* per udpif. */
struct umap {
struct ovs_mutex mutex; /* Take for writing to the following. */
struct cmap cmap; /* Datapath flow keys. */
};
/* A thread that processes datapath flows, updates OpenFlow statistics, and
* updates or removes them if necessary.
*
* Revalidator threads operate in two phases: "dump" and "sweep". In between
* each phase, all revalidators sync up so that all revalidator threads are
* either in one phase or the other, but not a combination.
*
* During the dump phase, revalidators fetch flows from the datapath and
* attribute the statistics to OpenFlow rules. Each datapath flow has a
* corresponding ukey which caches the most recently seen statistics. If
* a flow needs to be deleted (for example, because it is unused over a
* period of time), revalidator threads may delete the flow during the
* dump phase. The datapath is not guaranteed to reliably dump all flows
* from the datapath, and there is no mapping between datapath flows to
* revalidators, so a particular flow may be handled by zero or more
* revalidators during a single dump phase. To avoid duplicate attribution
* of statistics, ukeys are never deleted during this phase.
*
* During the sweep phase, each revalidator takes ownership of a different
* slice of umaps and sweeps through all ukeys in those umaps to figure out
* whether they need to be deleted. During this phase, revalidators may
* fetch individual flows which were not dumped during the dump phase to
* validate them and attribute statistics.
*/
struct revalidator {
struct udpif *udpif; /* Parent udpif. */
pthread_t thread; /* Thread ID. */
unsigned int id; /* ovsthread_id_self(). */
};
/* An upcall handler for ofproto_dpif.
*
* udpif keeps records of two kind of logically separate units:
*
* upcall handling
* ---------------
*
* - An array of 'struct handler's for upcall handling and flow
* installation.
*
* flow revalidation
* -----------------
*
* - Revalidation threads which read the datapath flow table and maintains
* them.
*/
struct udpif {
struct ovs_list list_node; /* In all_udpifs list. */
struct dpif *dpif; /* Datapath handle. */
struct dpif_backer *backer; /* Opaque dpif_backer pointer. */
struct handler *handlers; /* Upcall handlers. */
uint32_t n_handlers;
struct revalidator *revalidators; /* Flow revalidators. */
uint32_t n_revalidators;
struct latch exit_latch; /* Tells child threads to exit. */
/* Revalidation. */
struct seq *reval_seq; /* Incremented to force revalidation. */
bool reval_exit; /* Set by leader on 'exit_latch. */
struct ovs_barrier reval_barrier; /* Barrier used by revalidators. */
struct dpif_flow_dump *dump; /* DPIF flow dump state. */
long long int dump_duration; /* Duration of the last flow dump. */
struct seq *dump_seq; /* Increments each dump iteration. */
atomic_bool enable_ufid; /* If true, skip dumping flow attrs. */
/* These variables provide a mechanism for the main thread to pause
* all revalidation without having to completely shut the threads down.
* 'pause_latch' is shared between the main thread and the lead
* revalidator thread, so when it is desirable to halt revalidation, the
* main thread will set the latch. 'pause' and 'pause_barrier' are shared
* by revalidator threads. The lead revalidator will set 'pause' when it
* observes the latch has been set, and this will cause all revalidator
* threads to wait on 'pause_barrier' at the beginning of the next
* revalidation round. */
bool pause; /* Set by leader on 'pause_latch. */
struct latch pause_latch; /* Set to force revalidators pause. */
struct ovs_barrier pause_barrier; /* Barrier used to pause all */
/* revalidators by main thread. */
/* There are 'N_UMAPS' maps containing 'struct udpif_key' elements.
*
* During the flow dump phase, revalidators insert into these with a random
* distribution. During the garbage collection phase, each revalidator
* takes care of garbage collecting a slice of these maps. */
struct umap *ukeys;
/* Datapath flow statistics. */
unsigned int max_n_flows;
unsigned int avg_n_flows;
/* Following fields are accessed and modified by different threads. */
atomic_uint flow_limit; /* Datapath flow hard limit. */
/* n_flows_mutex prevents multiple threads updating these concurrently. */
atomic_uint n_flows; /* Number of flows in the datapath. */
atomic_llong n_flows_timestamp; /* Last time n_flows was updated. */
struct ovs_mutex n_flows_mutex;
/* Following fields are accessed and modified only from the main thread. */
struct unixctl_conn **conns; /* Connections waiting on dump_seq. */
uint64_t conn_seq; /* Corresponds to 'dump_seq' when
conns[n_conns-1] was stored. */
size_t n_conns; /* Number of connections waiting. */
long long int offload_rebalance_time; /* Time of last offload rebalance */
};
enum upcall_type {
BAD_UPCALL, /* Some kind of bug somewhere. */
MISS_UPCALL, /* A flow miss. */
SLOW_PATH_UPCALL, /* Slow path upcall. */
SFLOW_UPCALL, /* sFlow sample. */
FLOW_SAMPLE_UPCALL, /* Per-flow sampling. */
IPFIX_UPCALL, /* Per-bridge sampling. */
CONTROLLER_UPCALL /* Destined for the controller. */
};
enum reval_result {
UKEY_KEEP,
UKEY_DELETE,
UKEY_MODIFY
};
struct upcall {
struct ofproto_dpif *ofproto; /* Parent ofproto. */
const struct recirc_id_node *recirc; /* Recirculation context. */
bool have_recirc_ref; /* Reference held on recirc ctx? */
/* The flow and packet are only required to be constant when using
* dpif-netdev. If a modification is absolutely necessary, a const cast
* may be used with other datapaths. */
const struct flow *flow; /* Parsed representation of the packet. */
enum odp_key_fitness fitness; /* Fitness of 'flow' relative to ODP key. */
const ovs_u128 *ufid; /* Unique identifier for 'flow'. */
unsigned pmd_id; /* Datapath poll mode driver id. */
const struct dp_packet *packet; /* Packet associated with this upcall. */
ofp_port_t ofp_in_port; /* OpenFlow in port, or OFPP_NONE. */
uint16_t mru; /* If !0, Maximum receive unit of
fragmented IP packet */
uint64_t hash;
uint32_t pid; /* Socket PID this upcall was received from,
* or zero. */
enum upcall_type type; /* Type of the upcall. */
const struct nlattr *actions; /* Flow actions in DPIF_UC_ACTION Upcalls. */
bool xout_initialized; /* True if 'xout' must be uninitialized. */
struct xlate_out xout; /* Result of xlate_actions(). */
struct ofpbuf odp_actions; /* Datapath actions from xlate_actions(). */
struct flow_wildcards wc; /* Dependencies that megaflow must match. */
struct ofpbuf put_actions; /* Actions 'put' in the fastpath. */
struct dpif_ipfix *ipfix; /* IPFIX pointer or NULL. */
struct dpif_sflow *sflow; /* SFlow pointer or NULL. */
struct udpif_key *ukey; /* Revalidator flow cache. */
bool ukey_persists; /* Set true to keep 'ukey' beyond the
lifetime of this upcall. */
uint64_t reval_seq; /* udpif->reval_seq at translation time. */
/* Not used by the upcall callback interface. */
const struct nlattr *key; /* Datapath flow key. */
size_t key_len; /* Datapath flow key length. */
const struct nlattr *out_tun_key; /* Datapath output tunnel key. */
struct user_action_cookie cookie;
uint64_t odp_actions_stub[1024 / 8]; /* Stub for odp_actions. */
};
/* Ukeys must transition through these states using transition_ukey(). */
enum ukey_state {
UKEY_CREATED = 0,
UKEY_VISIBLE, /* Ukey is in umap, datapath flow install is queued. */
UKEY_OPERATIONAL, /* Ukey is in umap, datapath flow is installed. */
UKEY_INCONSISTENT, /* Ukey is in umap, datapath flow is inconsistent. */
UKEY_EVICTING, /* Ukey is in umap, datapath flow delete is queued. */
UKEY_EVICTED, /* Ukey is in umap, datapath flow is deleted. */
UKEY_DELETED, /* Ukey removed from umap, ukey free is deferred. */
};
#define N_UKEY_STATES (UKEY_DELETED + 1)
/* Ukey delete reasons used by USDT probes. Please keep in sync with the
* definition in utilities/usdt-scripts/flow_reval_monitor.py. */
enum flow_del_reason {
FDR_NONE = 0, /* No delete reason specified. */
FDR_AVOID_CACHING, /* Cache avoidance flag set. */
FDR_BAD_ODP_FIT, /* Bad ODP flow fit. */
FDR_FLOW_IDLE, /* Flow idle timeout. */
FDR_FLOW_LIMIT, /* Kill all flows condition reached. */
FDR_FLOW_WILDCARDED, /* Flow needs a narrower wildcard mask. */
FDR_NO_OFPROTO, /* Bridge not found. */
FDR_PURGE, /* User requested flow deletion. */
FDR_TOO_EXPENSIVE, /* Too expensive to revalidate. */
FDR_UPDATE_FAIL, /* Datapath update failed. */
FDR_XLATION_ERROR, /* Flow translation error. */
FDR_FLOW_MISSING_DP, /* Flow is missing from the datapath. */
};
/* 'udpif_key's are responsible for tracking the little bit of state udpif
* needs to do flow expiration which can't be pulled directly from the
* datapath. They may be created by any handler or revalidator thread at any
* time, and read by any revalidator during the dump phase. They are however
* each owned by a single revalidator which takes care of destroying them
* during the garbage-collection phase.
*
* The mutex within the ukey protects some members of the ukey. The ukey
* itself is protected by RCU and is held within a umap in the parent udpif.
* Adding or removing a ukey from a umap is only safe when holding the
* corresponding umap lock. */
struct udpif_key {
struct cmap_node cmap_node; /* In parent revalidator 'ukeys' map. */
/* These elements are read only once created, and therefore aren't
* protected by a mutex. */
const struct nlattr *key; /* Datapath flow key. */
size_t key_len; /* Length of 'key'. */
const struct nlattr *mask; /* Datapath flow mask. */
size_t mask_len; /* Length of 'mask'. */
ovs_u128 ufid; /* Unique flow identifier. */
bool ufid_present; /* True if 'ufid' is in datapath. */
uint32_t hash; /* Pre-computed hash for 'key'. */
unsigned pmd_id; /* Datapath poll mode driver id. */
struct ovs_mutex mutex; /* Guards the following. */
struct dpif_flow_stats stats OVS_GUARDED; /* Last known stats.*/
const char *dp_layer OVS_GUARDED; /* Last known dp_layer. */
long long int created OVS_GUARDED; /* Estimate of creation time. */
uint64_t dump_seq OVS_GUARDED; /* Tracks udpif->dump_seq. */
uint64_t reval_seq OVS_GUARDED; /* Tracks udpif->reval_seq. */
enum ukey_state state OVS_GUARDED; /* Tracks ukey lifetime. */
uint32_t missed_dumps OVS_GUARDED; /* Missed consecutive dumps. */
/* 'state' debug information. */
unsigned int state_thread OVS_GUARDED; /* Thread that transitions. */
const char *state_where OVS_GUARDED; /* transition_ukey() locator. */
/* Datapath flow actions as nlattrs. Protected by RCU. Read with
* ukey_get_actions(), and write with ukey_set_actions(). */
OVSRCU_TYPE(struct ofpbuf *) actions;
struct xlate_cache *xcache OVS_GUARDED; /* Cache for xlate entries that
* are affected by this ukey.
* Used for stats and learning.*/
union {
struct odputil_keybuf buf;
struct nlattr nla;
} keybuf, maskbuf;
uint32_t key_recirc_id; /* Non-zero if reference is held by the ukey. */
struct recirc_refs recircs; /* Action recirc IDs with references held. */
#define OFFL_REBAL_INTVL_MSEC 3000 /* dynamic offload rebalance freq */
struct netdev *in_netdev; /* in_odp_port's netdev */
bool offloaded; /* True if flow is offloaded */
uint64_t flow_pps_rate; /* Packets-Per-Second rate */
long long int flow_time; /* last pps update time */
uint64_t flow_packets; /* #pkts seen in interval */
uint64_t flow_backlog_packets; /* prev-mode #pkts (offl or kernel) */
};
/* Datapath operation with optional ukey attached. */
struct ukey_op {
struct udpif_key *ukey;
struct dpif_flow_stats stats; /* Stats for 'op'. */
struct dpif_op dop; /* Flow operation. */
};
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
static struct ovs_list all_udpifs = OVS_LIST_INITIALIZER(&all_udpifs);
static size_t recv_upcalls(struct handler *);
static int process_upcall(struct udpif *, struct upcall *,
struct ofpbuf *odp_actions, struct flow_wildcards *);
static void handle_upcalls(struct udpif *, struct upcall *, size_t n_upcalls);
static void udpif_stop_threads(struct udpif *, bool delete_flows);
static void udpif_start_threads(struct udpif *, uint32_t n_handlers,
uint32_t n_revalidators);
static void udpif_pause_revalidators(struct udpif *);
static void udpif_resume_revalidators(struct udpif *);
static void *udpif_upcall_handler(void *);
static void *udpif_revalidator(void *);
static unsigned long udpif_get_n_flows(struct udpif *);
static void revalidate(struct revalidator *);
static void revalidator_pause(struct revalidator *);
static void revalidator_sweep(struct revalidator *);
static void revalidator_purge(struct revalidator *);
static void upcall_unixctl_show(struct unixctl_conn *conn, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_disable_megaflows(struct unixctl_conn *, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_enable_megaflows(struct unixctl_conn *, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_disable_ufid(struct unixctl_conn *, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_enable_ufid(struct unixctl_conn *, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_set_flow_limit(struct unixctl_conn *conn, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_dump_wait(struct unixctl_conn *conn, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_purge(struct unixctl_conn *conn, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_pause(struct unixctl_conn *conn, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_resume(struct unixctl_conn *conn, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_ofproto_detrace(struct unixctl_conn *, int argc,
const char *argv[], void *aux);
static struct udpif_key *ukey_create_from_upcall(struct upcall *,
struct flow_wildcards *);
static int ukey_create_from_dpif_flow(const struct udpif *,
const struct dpif_flow *,
struct udpif_key **);
static void ukey_get_actions(struct udpif_key *, const struct nlattr **actions,
size_t *size);
static bool ukey_install__(struct udpif *, struct udpif_key *ukey)
OVS_TRY_LOCK(true, ukey->mutex);
static bool ukey_install(struct udpif *udpif, struct udpif_key *ukey);
static void transition_ukey_at(struct udpif_key *ukey, enum ukey_state dst,
const char *where)
OVS_REQUIRES(ukey->mutex);
#define transition_ukey(UKEY, DST) \
transition_ukey_at(UKEY, DST, OVS_SOURCE_LOCATOR)
static struct udpif_key *ukey_lookup(struct udpif *udpif,
const ovs_u128 *ufid,
const unsigned pmd_id);
static int ukey_acquire(struct udpif *, const struct dpif_flow *,
struct udpif_key **result, int *error);
static void ukey_delete__(struct udpif_key *);
static void ukey_delete(struct umap *, struct udpif_key *);
static enum upcall_type classify_upcall(enum dpif_upcall_type type,
const struct nlattr *userdata,
struct user_action_cookie *cookie);
static void put_op_init(struct ukey_op *op, struct udpif_key *ukey,
enum dpif_flow_put_flags flags);
static void delete_op_init(struct udpif *udpif, struct ukey_op *op,
struct udpif_key *ukey);
static int upcall_receive(struct upcall *, const struct dpif_backer *,
const struct dp_packet *packet, enum dpif_upcall_type,
const struct nlattr *userdata, const struct flow *,
const unsigned int mru,
const ovs_u128 *ufid, const unsigned pmd_id,
char **errorp);
static void upcall_uninit(struct upcall *);
static void udpif_flow_rebalance(struct udpif *udpif);
static int udpif_flow_program(struct udpif *udpif, struct udpif_key *ukey,
enum dpif_offload_type offload_type);
static int udpif_flow_unprogram(struct udpif *udpif, struct udpif_key *ukey,
enum dpif_offload_type offload_type);
static upcall_callback upcall_cb;
static dp_purge_callback dp_purge_cb;
static atomic_bool enable_megaflows = true;
static atomic_bool enable_ufid = true;
void
udpif_init(void)
{
static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
if (ovsthread_once_start(&once)) {
unixctl_command_register("upcall/show", "", 0, 0, upcall_unixctl_show,
NULL);
unixctl_command_register("upcall/disable-megaflows", "", 0, 0,
upcall_unixctl_disable_megaflows, NULL);
unixctl_command_register("upcall/enable-megaflows", "", 0, 0,
upcall_unixctl_enable_megaflows, NULL);
unixctl_command_register("upcall/disable-ufid", "", 0, 0,
upcall_unixctl_disable_ufid, NULL);
unixctl_command_register("upcall/enable-ufid", "", 0, 0,
upcall_unixctl_enable_ufid, NULL);
unixctl_command_register("upcall/set-flow-limit", "flow-limit-number",
1, 1, upcall_unixctl_set_flow_limit, NULL);
unixctl_command_register("revalidator/wait", "", 0, 0,
upcall_unixctl_dump_wait, NULL);
unixctl_command_register("revalidator/purge", "", 0, 0,
upcall_unixctl_purge, NULL);
unixctl_command_register("revalidator/pause", NULL, 0, 0,
upcall_unixctl_pause, NULL);
unixctl_command_register("revalidator/resume", NULL, 0, 0,
upcall_unixctl_resume, NULL);
unixctl_command_register("ofproto/detrace", "UFID [pmd=PMD-ID]", 1, 2,
upcall_unixctl_ofproto_detrace, NULL);
ovsthread_once_done(&once);
}
}
struct udpif *
udpif_create(struct dpif_backer *backer, struct dpif *dpif)
{
struct udpif *udpif = xzalloc(sizeof *udpif);
udpif->dpif = dpif;
udpif->backer = backer;
atomic_init(&udpif->flow_limit, MIN(ofproto_flow_limit, 10000));
udpif->reval_seq = seq_create();
udpif->dump_seq = seq_create();
latch_init(&udpif->exit_latch);
latch_init(&udpif->pause_latch);
ovs_list_push_back(&all_udpifs, &udpif->list_node);
atomic_init(&udpif->enable_ufid, false);
atomic_init(&udpif->n_flows, 0);
atomic_init(&udpif->n_flows_timestamp, LLONG_MIN);
ovs_mutex_init(&udpif->n_flows_mutex);
udpif->ukeys = xmalloc(N_UMAPS * sizeof *udpif->ukeys);
for (int i = 0; i < N_UMAPS; i++) {
cmap_init(&udpif->ukeys[i].cmap);
ovs_mutex_init(&udpif->ukeys[i].mutex);
}
dpif_register_upcall_cb(dpif, upcall_cb, udpif);
dpif_register_dp_purge_cb(dpif, dp_purge_cb, udpif);
return udpif;
}
void
udpif_run(struct udpif *udpif)
{
if (udpif->conns && udpif->conn_seq != seq_read(udpif->dump_seq)) {
int i;
for (i = 0; i < udpif->n_conns; i++) {
unixctl_command_reply(udpif->conns[i], NULL);
}
free(udpif->conns);
udpif->conns = NULL;
udpif->n_conns = 0;
}
}
void
udpif_destroy(struct udpif *udpif)
{
udpif_stop_threads(udpif, false);
dpif_register_dp_purge_cb(udpif->dpif, NULL, udpif);
dpif_register_upcall_cb(udpif->dpif, NULL, udpif);
for (int i = 0; i < N_UMAPS; i++) {
struct udpif_key *ukey;
CMAP_FOR_EACH (ukey, cmap_node, &udpif->ukeys[i].cmap) {
ukey_delete__(ukey);
}
cmap_destroy(&udpif->ukeys[i].cmap);
ovs_mutex_destroy(&udpif->ukeys[i].mutex);
}
free(udpif->ukeys);
udpif->ukeys = NULL;
ovs_list_remove(&udpif->list_node);
latch_destroy(&udpif->exit_latch);
latch_destroy(&udpif->pause_latch);
seq_destroy(udpif->reval_seq);
seq_destroy(udpif->dump_seq);
ovs_mutex_destroy(&udpif->n_flows_mutex);
free(udpif);
}
/* Stops the handler and revalidator threads.
*
* If 'delete_flows' is true, we delete ukeys and delete all flows from the
* datapath. Otherwise, we end up double-counting stats for flows that remain
* in the datapath. If 'delete_flows' is false, we skip this step. This is
* appropriate if OVS is about to exit anyway and it is desirable to let
* existing network connections continue being forwarded afterward. */
static void
udpif_stop_threads(struct udpif *udpif, bool delete_flows)
{
if (udpif && (udpif->n_handlers != 0 || udpif->n_revalidators != 0)) {
size_t i;
/* Tell the threads to exit. */
latch_set(&udpif->exit_latch);
/* Wait for the threads to exit. Quiesce because this can take a long
* time.. */
ovsrcu_quiesce_start();
for (i = 0; i < udpif->n_handlers; i++) {
xpthread_join(udpif->handlers[i].thread, NULL);
}
for (i = 0; i < udpif->n_revalidators; i++) {
xpthread_join(udpif->revalidators[i].thread, NULL);
}
dpif_disable_upcall(udpif->dpif);
ovsrcu_quiesce_end();
if (delete_flows) {
for (i = 0; i < udpif->n_revalidators; i++) {
revalidator_purge(&udpif->revalidators[i]);
}
}
latch_poll(&udpif->exit_latch);
ovs_barrier_destroy(&udpif->reval_barrier);
ovs_barrier_destroy(&udpif->pause_barrier);
free(udpif->revalidators);
udpif->revalidators = NULL;
udpif->n_revalidators = 0;
free(udpif->handlers);
udpif->handlers = NULL;
udpif->n_handlers = 0;
}
}
/* Starts the handler and revalidator threads. */
static void
udpif_start_threads(struct udpif *udpif, uint32_t n_handlers_,
uint32_t n_revalidators_)
{
if (udpif && n_revalidators_) {
/* Creating a thread can take a significant amount of time on some
* systems, even hundred of milliseconds, so quiesce around it. */
ovsrcu_quiesce_start();
udpif->n_handlers = n_handlers_;
udpif->n_revalidators = n_revalidators_;
if (udpif->n_handlers) {
udpif->handlers = xzalloc(udpif->n_handlers
* sizeof *udpif->handlers);
for (size_t i = 0; i < udpif->n_handlers; i++) {
struct handler *handler = &udpif->handlers[i];
handler->udpif = udpif;
handler->handler_id = i;
handler->thread = ovs_thread_create(
"handler", udpif_upcall_handler, handler);
}
} else {
udpif->handlers = NULL;
}
atomic_init(&udpif->enable_ufid, udpif->backer->rt_support.ufid);
dpif_enable_upcall(udpif->dpif);
ovs_barrier_init(&udpif->reval_barrier, udpif->n_revalidators);
ovs_barrier_init(&udpif->pause_barrier, udpif->n_revalidators + 1);
udpif->reval_exit = false;
udpif->pause = false;
udpif->offload_rebalance_time = time_msec();
udpif->revalidators = xzalloc(udpif->n_revalidators
* sizeof *udpif->revalidators);
for (size_t i = 0; i < udpif->n_revalidators; i++) {
struct revalidator *revalidator = &udpif->revalidators[i];
revalidator->udpif = udpif;
revalidator->thread = ovs_thread_create(
"revalidator", udpif_revalidator, revalidator);
}
ovsrcu_quiesce_end();
}
}
/* Pauses all revalidators. Should only be called by the main thread.
* When function returns, all revalidators are paused and will proceed
* only after udpif_resume_revalidators() is called. */
static void
udpif_pause_revalidators(struct udpif *udpif)
{
if (udpif->backer->recv_set_enable) {
latch_set(&udpif->pause_latch);
ovs_barrier_block(&udpif->pause_barrier);
}
}
/* Resumes the pausing of revalidators. Should only be called by the
* main thread. */
static void
udpif_resume_revalidators(struct udpif *udpif)
{
if (udpif->backer->recv_set_enable) {
latch_poll(&udpif->pause_latch);
ovs_barrier_block(&udpif->pause_barrier);
}
}
/* Tells 'udpif' how many threads it should use to handle upcalls.
* 'n_handlers_' and 'n_revalidators_' can never be zero. 'udpif''s
* datapath handle must have packet reception enabled before starting
* threads. */
void
udpif_set_threads(struct udpif *udpif, uint32_t n_handlers_,
uint32_t n_revalidators_)
{
ovs_assert(udpif);
uint32_t n_handlers_requested;
uint32_t n_revalidators_requested;
bool forced = false;
if (dpif_number_handlers_required(udpif->dpif, &n_handlers_requested)) {
forced = true;
if (!n_revalidators_) {
n_revalidators_requested = (n_handlers_requested
? n_handlers_requested
: MAX(count_cpu_cores(), 2)) / 4 + 1;
} else {
n_revalidators_requested = n_revalidators_;
}
} else {
int threads = MAX(count_cpu_cores(), 2);
n_revalidators_requested = MAX(n_revalidators_, 0);
n_handlers_requested = MAX(n_handlers_, 0);
if (!n_revalidators_requested) {
n_revalidators_requested = n_handlers_requested
? MAX(threads - (int) n_handlers_requested, 1)
: threads / 4 + 1;
}
if (!n_handlers_requested) {
n_handlers_requested = MAX(threads -
(int) n_revalidators_requested, 1);
}
}
if (udpif->n_handlers != n_handlers_requested
|| udpif->n_revalidators != n_revalidators_requested) {
if (forced) {
VLOG_INFO("Overriding n-handler-threads to %u, setting "
"n-revalidator-threads to %u", n_handlers_requested,
n_revalidators_requested);
} else {
VLOG_INFO("Setting n-handler-threads to %u, setting "
"n-revalidator-threads to %u", n_handlers_requested,
n_revalidators_requested);
}
udpif_stop_threads(udpif, true);
}
if (!udpif->handlers && !udpif->revalidators) {
VLOG_INFO("Starting %u threads", n_handlers_requested +
n_revalidators_requested);
int error;
error = dpif_handlers_set(udpif->dpif, n_handlers_requested);
if (error) {
VLOG_ERR("failed to configure handlers in dpif %s: %s",
dpif_name(udpif->dpif), ovs_strerror(error));
return;
}
udpif_start_threads(udpif, n_handlers_requested,
n_revalidators_requested);
}
}
/* Notifies 'udpif' that something changed which may render previous
* xlate_actions() results invalid. */
void
udpif_revalidate(struct udpif *udpif)
{
seq_change(udpif->reval_seq);
}
/* Returns a seq which increments every time 'udpif' pulls stats from the
* datapath. Callers can use this to get a sense of when might be a good time
* to do periodic work which relies on relatively up to date statistics. */
struct seq *
udpif_dump_seq(struct udpif *udpif)
{
return udpif->dump_seq;
}
void
udpif_get_memory_usage(struct udpif *udpif, struct simap *usage)
{
size_t i;
simap_increase(usage, "handlers", udpif->n_handlers);
simap_increase(usage, "revalidators", udpif->n_revalidators);
for (i = 0; i < N_UMAPS; i++) {
simap_increase(usage, "udpif keys", cmap_count(&udpif->ukeys[i].cmap));
}
}
/* Remove flows from a single datapath. */
void
udpif_flush(struct udpif *udpif)
{
uint32_t n_handlers_ = udpif->n_handlers;
uint32_t n_revalidators_ = udpif->n_revalidators;
udpif_stop_threads(udpif, true);
dpif_flow_flush(udpif->dpif);
udpif_start_threads(udpif, n_handlers_, n_revalidators_);
}
/* Removes all flows from all datapaths. */
static void
udpif_flush_all_datapaths(void)
{
struct udpif *udpif;
LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
udpif_flush(udpif);
}
}
static bool
udpif_use_ufid(struct udpif *udpif)
{
bool enable;
atomic_read_relaxed(&enable_ufid, &enable);
return enable && udpif->backer->rt_support.ufid;
}
static unsigned long
udpif_get_n_flows(struct udpif *udpif)
{
long long int time, now;
unsigned long flow_count;
now = time_msec();
atomic_read_relaxed(&udpif->n_flows_timestamp, &time);
if (time < now - 100 && !ovs_mutex_trylock(&udpif->n_flows_mutex)) {
struct dpif_dp_stats stats;
atomic_store_relaxed(&udpif->n_flows_timestamp, now);
dpif_get_dp_stats(udpif->dpif, &stats);
flow_count = stats.n_flows;
if (!dpif_synced_dp_layers(udpif->dpif)) {
/* If the dpif layer does not sync the flows, we need to include
* the hardware offloaded flows separately. */
uint64_t hw_flows;
if (!dpif_get_n_offloaded_flows(udpif->dpif, &hw_flows)) {
flow_count += hw_flows;
}
}
atomic_store_relaxed(&udpif->n_flows, flow_count);
ovs_mutex_unlock(&udpif->n_flows_mutex);
} else {
atomic_read_relaxed(&udpif->n_flows, &flow_count);
}
return flow_count;
}
/* The upcall handler thread tries to read a batch of UPCALL_MAX_BATCH
* upcalls from dpif, processes the batch and installs corresponding flows
* in dpif. */
static void *
udpif_upcall_handler(void *arg)
{
struct handler *handler = arg;
struct udpif *udpif = handler->udpif;
while (!latch_is_set(&handler->udpif->exit_latch)) {
if (recv_upcalls(handler)) {
poll_immediate_wake();
} else {
dpif_recv_wait(udpif->dpif, handler->handler_id);
latch_wait(&udpif->exit_latch);
}
poll_block();
}
return NULL;
}
static size_t
recv_upcalls(struct handler *handler)
{
struct udpif *udpif = handler->udpif;
uint64_t recv_stubs[UPCALL_MAX_BATCH][512 / 8];
struct ofpbuf recv_bufs[UPCALL_MAX_BATCH];
struct dpif_upcall dupcalls[UPCALL_MAX_BATCH];
struct upcall upcalls[UPCALL_MAX_BATCH];
struct flow flows[UPCALL_MAX_BATCH];
size_t n_upcalls, i;
n_upcalls = 0;
while (n_upcalls < UPCALL_MAX_BATCH) {
struct ofpbuf *recv_buf = &recv_bufs[n_upcalls];
struct dpif_upcall *dupcall = &dupcalls[n_upcalls];
struct upcall *upcall = &upcalls[n_upcalls];
struct flow *flow = &flows[n_upcalls];
unsigned int mru = 0;
char *errorp = NULL;
uint64_t hash = 0;
int error;
ofpbuf_use_stub(recv_buf, recv_stubs[n_upcalls],
sizeof recv_stubs[n_upcalls]);
if (dpif_recv(udpif->dpif, handler->handler_id, dupcall, recv_buf)) {
ofpbuf_uninit(recv_buf);
break;
}
upcall->fitness = odp_flow_key_to_flow(dupcall->key, dupcall->key_len,
flow, NULL);
if (upcall->fitness == ODP_FIT_ERROR) {
goto free_dupcall;
}
if (dupcall->mru) {
mru = nl_attr_get_u16(dupcall->mru);
}
if (dupcall->hash) {
hash = nl_attr_get_u64(dupcall->hash);
}
error = upcall_receive(upcall, udpif->backer, &dupcall->packet,
dupcall->type, dupcall->userdata, flow, mru,
&dupcall->ufid, PMD_ID_NULL, &errorp);
if (error) {
if (error == ENODEV) {
/* Received packet on datapath port for which we couldn't
* associate an ofproto. This can happen if a port is removed
* while traffic is being received. Print a rate-limited
* message in case it happens frequently. */
dpif_flow_put(udpif->dpif, DPIF_FP_CREATE, dupcall->key,
dupcall->key_len, NULL, 0, NULL, 0,
&dupcall->ufid, PMD_ID_NULL, NULL);
VLOG_INFO_RL(&rl, "received packet on unassociated datapath "
"port %"PRIu32"%s%s%s", flow->in_port.odp_port,
errorp ? " (" : "", errorp ? errorp : "",
errorp ? ")" : "");
}
free(errorp);
goto free_dupcall;
}
upcall->key = dupcall->key;
upcall->key_len = dupcall->key_len;
upcall->ufid = &dupcall->ufid;
upcall->hash = hash;
upcall->pid = dupcall->pid;
upcall->out_tun_key = dupcall->out_tun_key;
upcall->actions = dupcall->actions;
pkt_metadata_from_flow(&dupcall->packet.md, flow);
flow_extract(&dupcall->packet, flow);
error = process_upcall(udpif, upcall,
&upcall->odp_actions, &upcall->wc);
if (error) {
goto cleanup;
}
n_upcalls++;
continue;
cleanup:
upcall_uninit(upcall);
free_dupcall:
dp_packet_uninit(&dupcall->packet);
ofpbuf_uninit(recv_buf);
}
if (n_upcalls) {
handle_upcalls(handler->udpif, upcalls, n_upcalls);
for (i = 0; i < n_upcalls; i++) {
dp_packet_uninit(&dupcalls[i].packet);
ofpbuf_uninit(&recv_bufs[i]);
upcall_uninit(&upcalls[i]);
}
}
return n_upcalls;
}
static void
udpif_run_flow_rebalance(struct udpif *udpif)
{
long long int now = 0;
/* Don't rebalance if OFFL_REBAL_INTVL_MSEC have not elapsed */
now = time_msec();
if (now < udpif->offload_rebalance_time + OFFL_REBAL_INTVL_MSEC) {
return;
}
if (!netdev_any_oor()) {
return;
}
VLOG_DBG("Offload rebalance: Found OOR netdevs");
udpif->offload_rebalance_time = now;
udpif_flow_rebalance(udpif);
}
static void *
udpif_revalidator(void *arg)
{
/* Used by all revalidators. */
struct revalidator *revalidator = arg;
struct udpif *udpif = revalidator->udpif;
bool leader = revalidator == &udpif->revalidators[0];
/* Used only by the leader. */
long long int start_time = 0;
uint64_t last_reval_seq = 0;
size_t n_flows = 0;
revalidator->id = ovsthread_id_self();
for (;;) {
if (leader) {
uint64_t reval_seq;
recirc_run(); /* Recirculation cleanup. */
reval_seq = seq_read(udpif->reval_seq);
last_reval_seq = reval_seq;
n_flows = udpif_get_n_flows(udpif);
udpif->max_n_flows = MAX(n_flows, udpif->max_n_flows);
udpif->avg_n_flows = (udpif->avg_n_flows + n_flows) / 2;
/* Only the leader checks the pause latch to prevent a race where
* some threads think it's false and proceed to block on
* reval_barrier and others think it's true and block indefinitely
* on the pause_barrier */
udpif->pause = latch_is_set(&udpif->pause_latch);
/* Only the leader checks the exit latch to prevent a race where
* some threads think it's true and exit and others think it's
* false and block indefinitely on the reval_barrier */
udpif->reval_exit = latch_is_set(&udpif->exit_latch);
start_time = time_msec();
if (!udpif->reval_exit && !udpif->pause) {
bool terse_dump;
terse_dump = udpif_use_ufid(udpif);
udpif->dump = dpif_flow_dump_create(udpif->dpif, terse_dump,
NULL);
OVS_USDT_PROBE(udpif_revalidator, start_dump, udpif, n_flows);
}
}
/* Wait for the leader to reach this point. */
ovs_barrier_block(&udpif->reval_barrier);
if (udpif->pause) {
revalidator_pause(revalidator);
if (!udpif->reval_exit) {
/* The main thread resumed all validators, but the leader
* didn't start the dump, go to next iteration. */
continue;
}
}
if (udpif->reval_exit) {
break;
}
revalidate(revalidator);
/* Wait for all flows to have been dumped before we garbage collect. */
ovs_barrier_block(&udpif->reval_barrier);
revalidator_sweep(revalidator);
/* Wait for all revalidators to finish garbage collection. */
ovs_barrier_block(&udpif->reval_barrier);
if (leader) {
unsigned int flow_limit;
long long int duration;
atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
dpif_flow_dump_destroy(udpif->dump);
seq_change(udpif->dump_seq);
if (netdev_is_offload_rebalance_policy_enabled()) {
udpif_run_flow_rebalance(udpif);
}
duration = MAX(time_msec() - start_time, 1);
udpif->dump_duration = duration;
if (duration > 2000) {
flow_limit /= duration / 1000;
COVERAGE_INC(upcall_flow_limit_scaled);
} else if (duration > 1300) {
flow_limit = flow_limit * 3 / 4;
COVERAGE_INC(upcall_flow_limit_reduced);
} else if (duration < 1000 &&
flow_limit < n_flows * 1000 / duration) {
flow_limit += 1000;
COVERAGE_INC(upcall_flow_limit_grew);
}
flow_limit = MIN(ofproto_flow_limit, MAX(flow_limit, 1000));
atomic_store_relaxed(&udpif->flow_limit, flow_limit);
if (duration > 2000) {
VLOG_WARN("Spent an unreasonably long %lldms dumping flows",
duration);
}
OVS_USDT_PROBE(udpif_revalidator, sweep_done, udpif, n_flows,
MIN(ofproto_max_idle, ofproto_max_revalidator));
poll_timer_wait_until(start_time + MIN(ofproto_max_idle,
ofproto_max_revalidator));
seq_wait(udpif->reval_seq, last_reval_seq);
latch_wait(&udpif->exit_latch);
latch_wait(&udpif->pause_latch);
poll_block();
if (!latch_is_set(&udpif->pause_latch) &&
!latch_is_set(&udpif->exit_latch)) {
long long int now = time_msec();
/* Block again if we are woken up within 5ms of the last start
* time. */
start_time += 5;
if (now < start_time) {
poll_timer_wait_until(start_time);
latch_wait(&udpif->exit_latch);
latch_wait(&udpif->pause_latch);
poll_block();
}
}
}
}
return NULL;
}
static enum upcall_type
classify_upcall(enum dpif_upcall_type type, const struct nlattr *userdata,
struct user_action_cookie *cookie)
{
/* First look at the upcall type. */
switch (type) {
case DPIF_UC_ACTION:
break;
case DPIF_UC_MISS:
return MISS_UPCALL;
case DPIF_N_UC_TYPES:
default:
VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, type);
return BAD_UPCALL;
}
/* "action" upcalls need a closer look. */
if (!userdata) {
VLOG_WARN_RL(&rl, "action upcall missing cookie");
return BAD_UPCALL;
}
size_t userdata_len = nl_attr_get_size(userdata);
if (userdata_len != sizeof *cookie) {
VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %"PRIuSIZE,
userdata_len);
return BAD_UPCALL;
}
memcpy(cookie, nl_attr_get(userdata), sizeof *cookie);
if (cookie->type == USER_ACTION_COOKIE_SFLOW) {
return SFLOW_UPCALL;
} else if (cookie->type == USER_ACTION_COOKIE_SLOW_PATH) {
return SLOW_PATH_UPCALL;
} else if (cookie->type == USER_ACTION_COOKIE_FLOW_SAMPLE) {
return FLOW_SAMPLE_UPCALL;
} else if (cookie->type == USER_ACTION_COOKIE_IPFIX) {
return IPFIX_UPCALL;
} else if (cookie->type == USER_ACTION_COOKIE_CONTROLLER) {
return CONTROLLER_UPCALL;
} else {
VLOG_WARN_RL(&rl, "invalid user cookie of type %"PRIu16
" and size %"PRIuSIZE, cookie->type, userdata_len);
return BAD_UPCALL;
}
}
/* Calculates slow path actions for 'xout'. 'buf' must statically be
* initialized with at least 128 bytes of space. */
static void
compose_slow_path(struct udpif *udpif, struct xlate_out *xout,
odp_port_t odp_in_port, ofp_port_t ofp_in_port,
struct ofpbuf *buf, uint32_t meter_id,
struct uuid *ofproto_uuid)
{
struct user_action_cookie cookie;
odp_port_t port;
uint32_t pid;
memset(&cookie, 0, sizeof cookie);
cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
cookie.ofp_in_port = ofp_in_port;
cookie.ofproto_uuid = *ofproto_uuid;
cookie.slow_path.reason = xout->slow;
port = xout->slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP)
? ODPP_NONE
: odp_in_port;
pid = dpif_port_get_pid(udpif->dpif, port);
size_t offset;
size_t ac_offset;
if (meter_id != UINT32_MAX) {
/* If slowpath meter is configured, generate clone(meter, userspace)
* action. */
offset = nl_msg_start_nested(buf, OVS_ACTION_ATTR_SAMPLE);
nl_msg_put_u32(buf, OVS_SAMPLE_ATTR_PROBABILITY, UINT32_MAX);
ac_offset = nl_msg_start_nested(buf, OVS_SAMPLE_ATTR_ACTIONS);
nl_msg_put_u32(buf, OVS_ACTION_ATTR_METER, meter_id);
}
odp_put_userspace_action(pid, &cookie, sizeof cookie,
ODPP_NONE, false, buf, NULL);
if (meter_id != UINT32_MAX) {
nl_msg_end_nested(buf, ac_offset);
nl_msg_end_nested(buf, offset);
}
}
/* If there is no error, the upcall must be destroyed with upcall_uninit()
* before quiescing, as the referred objects are guaranteed to exist only
* until the calling thread quiesces. Otherwise, do not call upcall_uninit()
* since the 'upcall->put_actions' remains uninitialized. */
static int
upcall_receive(struct upcall *upcall, const struct dpif_backer *backer,
const struct dp_packet *packet, enum dpif_upcall_type type,
const struct nlattr *userdata, const struct flow *flow,
const unsigned int mru,
const ovs_u128 *ufid, const unsigned pmd_id,
char **errorp)
{
int error;
upcall->type = classify_upcall(type, userdata, &upcall->cookie);
if (upcall->type == BAD_UPCALL) {
return EAGAIN;
} else if (upcall->type == MISS_UPCALL) {
error = xlate_lookup(backer, flow, &upcall->ofproto, &upcall->ipfix,
&upcall->sflow, NULL, &upcall->ofp_in_port,
errorp);
if (error) {
return error;
}
} else {
struct ofproto_dpif *ofproto
= ofproto_dpif_lookup_by_uuid(&upcall->cookie.ofproto_uuid);
if (!ofproto) {
if (errorp) {
*errorp = xstrdup("upcall could not find ofproto");
} else {
VLOG_INFO_RL(&rl, "upcall could not find ofproto");
}
return ENODEV;
}
upcall->ofproto = ofproto;
upcall->ipfix = ofproto->ipfix;
upcall->sflow = ofproto->sflow;
upcall->ofp_in_port = upcall->cookie.ofp_in_port;
}
upcall->recirc = NULL;
upcall->have_recirc_ref = false;
upcall->flow = flow;
upcall->packet = packet;
upcall->ufid = ufid;
upcall->pmd_id = pmd_id;
ofpbuf_use_stub(&upcall->odp_actions, upcall->odp_actions_stub,
sizeof upcall->odp_actions_stub);
ofpbuf_init(&upcall->put_actions, 0);
upcall->xout_initialized = false;
upcall->ukey_persists = false;
upcall->ukey = NULL;
upcall->key = NULL;
upcall->key_len = 0;
upcall->mru = mru;
upcall->pid = 0;
upcall->out_tun_key = NULL;
upcall->actions = NULL;
return 0;
}
static void
upcall_xlate(struct udpif *udpif, struct upcall *upcall,
struct ofpbuf *odp_actions, struct flow_wildcards *wc)
{
struct dpif_flow_stats stats;
enum xlate_error xerr;
struct xlate_in xin;
struct ds output;
stats.n_packets = 1;
stats.n_bytes = dp_packet_size(upcall->packet);
stats.used = time_msec();
stats.tcp_flags = ntohs(upcall->flow->tcp_flags);
xlate_in_init(&xin, upcall->ofproto,
ofproto_dpif_get_tables_version(upcall->ofproto),
upcall->flow, upcall->ofp_in_port, NULL,
stats.tcp_flags, upcall->packet, wc, odp_actions);
if (upcall->type == MISS_UPCALL) {
xin.resubmit_stats = &stats;
if (xin.frozen_state) {
/* We may install a datapath flow only if we get a reference to the
* recirculation context (otherwise we could have recirculation
* upcalls using recirculation ID for which no context can be
* found). We may still execute the flow's actions even if we
* don't install the flow. */
upcall->recirc = recirc_id_node_from_state(xin.frozen_state);
upcall->have_recirc_ref = recirc_id_node_try_ref_rcu(upcall->recirc);
}
} else {
/* For non-miss upcalls, we are either executing actions (one of which
* is an userspace action) for an upcall, in which case the stats have
* already been taken care of, or there's a flow in the datapath which
* this packet was accounted to. Presumably the revalidators will deal
* with pushing its stats eventually. */
}
upcall->reval_seq = seq_read(udpif->reval_seq);
xerr = xlate_actions(&xin, &upcall->xout);
/* Translate again and log the ofproto trace for
* these two error types. */
if (xerr == XLATE_RECURSION_TOO_DEEP ||
xerr == XLATE_TOO_MANY_RESUBMITS) {
static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(1, 1);
/* This is a huge log, so be conservative. */
if (!VLOG_DROP_WARN(&rll)) {
ds_init(&output);
ofproto_trace(upcall->ofproto, upcall->flow,
upcall->packet, NULL, 0, NULL, &output,
false);
VLOG_WARN("%s", ds_cstr(&output));
ds_destroy(&output);
}
}
if (wc) {
/* Convert the input port wildcard from OFP to ODP format. There's no
* real way to do this for arbitrary bitmasks since the numbering spaces
* aren't the same. However, flow translation always exact matches the
* whole thing, so we can do the same here. */
WC_MASK_FIELD(wc, in_port.odp_port);
}
upcall->xout_initialized = true;
if (upcall->fitness == ODP_FIT_TOO_LITTLE) {
upcall->xout.slow |= SLOW_MATCH;
}
if (!upcall->xout.slow) {
ofpbuf_use_const(&upcall->put_actions,
odp_actions->data, odp_actions->size);
} else {
/* upcall->put_actions already initialized by upcall_receive(). */
compose_slow_path(udpif, &upcall->xout,
upcall->flow->in_port.odp_port, upcall->ofp_in_port,
&upcall->put_actions,
upcall->ofproto->up.slowpath_meter_id,
&upcall->ofproto->uuid);
}
/* This function is also called for slow-pathed flows. As we are only
* going to create new datapath flows for actual datapath misses, there is
* no point in creating a ukey otherwise. */
if (upcall->type == MISS_UPCALL) {
upcall->ukey = ukey_create_from_upcall(upcall, wc);
}
}
static void
upcall_uninit(struct upcall *upcall)
{
if (upcall) {
if (upcall->xout_initialized) {
xlate_out_uninit(&upcall->xout);
}
ofpbuf_uninit(&upcall->odp_actions);
ofpbuf_uninit(&upcall->put_actions);
if (upcall->ukey) {
if (!upcall->ukey_persists) {
ukey_delete__(upcall->ukey);
}
} else if (upcall->have_recirc_ref) {
/* The reference was transferred to the ukey if one was created. */
recirc_id_node_unref(upcall->recirc);
}
}
}
/* If there are less flows than the limit, and this is a miss upcall which
*
* - Has no recirc_id, OR
* - Has a recirc_id and we can get a reference on the recirc ctx,
*
* Then we should install the flow (true). Otherwise, return false. */
static bool
should_install_flow(struct udpif *udpif, struct upcall *upcall)
{
unsigned int flow_limit;
if (upcall->type != MISS_UPCALL) {
return false;
} else if (upcall->recirc && !upcall->have_recirc_ref) {
VLOG_DBG_RL(&rl, "upcall: no reference for recirc flow");
return false;
}
atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
if (udpif_get_n_flows(udpif) >= flow_limit) {
COVERAGE_INC(upcall_flow_limit_hit);
VLOG_WARN_RL(&rl,
"upcall: datapath reached the dynamic limit of %u flows.",
flow_limit);
return false;
}
return true;
}
static int
upcall_cb(const struct dp_packet *packet, const struct flow *flow, ovs_u128 *ufid,
unsigned pmd_id, enum dpif_upcall_type type,
const struct nlattr *userdata, struct ofpbuf *actions,
struct flow_wildcards *wc, struct ofpbuf *put_actions, void *aux)
{
struct udpif *udpif = aux;
struct upcall upcall;
bool megaflow;
int error;
atomic_read_relaxed(&enable_megaflows, &megaflow);
error = upcall_receive(&upcall, udpif->backer, packet, type, userdata,
flow, 0, ufid, pmd_id, NULL);
if (error) {
return error;
}
upcall.fitness = ODP_FIT_PERFECT;
error = process_upcall(udpif, &upcall, actions, wc);
if (error) {
goto out;
}
if (upcall.xout.slow && put_actions) {
ofpbuf_put(put_actions, upcall.put_actions.data,
upcall.put_actions.size);
}
if (OVS_UNLIKELY(!megaflow && wc)) {
flow_wildcards_init_for_packet(wc, flow);
}
if (!should_install_flow(udpif, &upcall)) {
error = ENOSPC;
goto out;
}
if (upcall.ukey && !ukey_install(udpif, upcall.ukey)) {
error = ENOSPC;
}
out:
if (!error) {
upcall.ukey_persists = true;
}
upcall_uninit(&upcall);
return error;
}
static size_t
dpif_get_actions(struct udpif *udpif, struct upcall *upcall,
const struct nlattr **actions)
{
size_t actions_len = 0;
if (upcall->actions) {
/* Actions were passed up from datapath. */
*actions = nl_attr_get(upcall->actions);
actions_len = nl_attr_get_size(upcall->actions);
}
if (actions_len == 0) {
/* Lookup actions in userspace cache. */
struct udpif_key *ukey = ukey_lookup(udpif, upcall->ufid,
upcall->pmd_id);
if (ukey) {
ukey_get_actions(ukey, actions, &actions_len);
}
}
return actions_len;
}
static size_t
dpif_read_actions(struct udpif *udpif, struct upcall *upcall,
const struct flow *flow, enum upcall_type type,
void *upcall_data)
{
const struct nlattr *actions = NULL;
size_t actions_len = dpif_get_actions(udpif, upcall, &actions);
if (!actions || !actions_len) {
return 0;
}
switch (type) {
case SFLOW_UPCALL:
dpif_sflow_read_actions(flow, actions, actions_len, upcall_data, true);
break;
case FLOW_SAMPLE_UPCALL:
case IPFIX_UPCALL:
dpif_ipfix_read_actions(flow, actions, actions_len, upcall_data);
break;
case BAD_UPCALL:
case MISS_UPCALL:
case SLOW_PATH_UPCALL:
case CONTROLLER_UPCALL:
default:
break;
}
return actions_len;
}
static int
process_upcall(struct udpif *udpif, struct upcall *upcall,
struct ofpbuf *odp_actions, struct flow_wildcards *wc)
{
const struct dp_packet *packet = upcall->packet;
const struct flow *flow = upcall->flow;
size_t actions_len = 0;
switch (upcall->type) {
case MISS_UPCALL:
case SLOW_PATH_UPCALL:
upcall_xlate(udpif, upcall, odp_actions, wc);
return 0;
case SFLOW_UPCALL:
if (upcall->sflow) {
struct dpif_sflow_actions sflow_actions;
memset(&sflow_actions, 0, sizeof sflow_actions);
actions_len = dpif_read_actions(udpif, upcall, flow,
upcall->type, &sflow_actions);
dpif_sflow_received(upcall->sflow, packet, flow,
flow->in_port.odp_port, &upcall->cookie,
actions_len > 0 ? &sflow_actions : NULL);
}
break;
case IPFIX_UPCALL:
case FLOW_SAMPLE_UPCALL:
if (upcall->ipfix) {
struct flow_tnl output_tunnel_key;
struct dpif_ipfix_actions ipfix_actions;
memset(&ipfix_actions, 0, sizeof ipfix_actions);
if (upcall->out_tun_key) {
if (odp_tun_key_from_attr(upcall->out_tun_key,
&output_tunnel_key,
NULL) != ODP_FIT_ERROR) {
return EINVAL;
}
}
actions_len = dpif_read_actions(udpif, upcall, flow,
upcall->type, &ipfix_actions);
if (upcall->type == IPFIX_UPCALL) {
dpif_ipfix_bridge_sample(upcall->ipfix, packet, flow,
flow->in_port.odp_port,
upcall->cookie.ipfix.output_odp_port,
upcall->out_tun_key ?
&output_tunnel_key : NULL,
actions_len > 0 ?
&ipfix_actions: NULL);
} else {
/* The flow reflects exactly the contents of the packet.
* Sample the packet using it. */
dpif_ipfix_flow_sample(upcall->ipfix, packet, flow,
&upcall->cookie, flow->in_port.odp_port,
upcall->out_tun_key ?
&output_tunnel_key : NULL,
actions_len > 0 ? &ipfix_actions: NULL);
}
}
break;
case CONTROLLER_UPCALL:
{
struct user_action_cookie *cookie = &upcall->cookie;
if (cookie->controller.dont_send) {
return 0;
}
uint32_t recirc_id = cookie->controller.recirc_id;
if (!recirc_id) {
break;
}
const struct recirc_id_node *recirc_node
= recirc_id_node_find(recirc_id);
if (!recirc_node) {
break;
}
const struct frozen_state *state = &recirc_node->state;
struct ofproto_async_msg *am = xmalloc(sizeof *am);
*am = (struct ofproto_async_msg) {
.controller_id = cookie->controller.controller_id,
.oam = OAM_PACKET_IN,
.pin = {
.up = {
.base = {
.packet = xmemdup(dp_packet_data(packet),
dp_packet_size(packet)),
.packet_len = dp_packet_size(packet),
.reason = cookie->controller.reason,
.table_id = state->table_id,
.cookie = get_32aligned_be64(
&cookie->controller.rule_cookie),
.userdata = (recirc_node->state.userdata_len
? xmemdup(recirc_node->state.userdata,
recirc_node->state.userdata_len)
: NULL),
.userdata_len = recirc_node->state.userdata_len,
},
},
.max_len = cookie->controller.max_len,
},
};
if (cookie->controller.continuation) {
am->pin.up.stack = (state->stack_size
? xmemdup(state->stack, state->stack_size)
: NULL),
am->pin.up.stack_size = state->stack_size,
am->pin.up.mirrors = state->mirrors,
am->pin.up.conntracked = state->conntracked,
am->pin.up.actions = (state->ofpacts_len
? xmemdup(state->ofpacts,
state->ofpacts_len) : NULL),
am->pin.up.actions_len = state->ofpacts_len,
am->pin.up.action_set = (state->action_set_len
? xmemdup(state->action_set,
state->action_set_len)
: NULL),
am->pin.up.action_set_len = state->action_set_len,
am->pin.up.bridge = upcall->ofproto->uuid;
am->pin.up.odp_port = upcall->packet->md.in_port.odp_port;
}
/* We don't want to use the upcall 'flow', since it may be
* more specific than the point at which the "controller"
* action was specified. */
struct flow frozen_flow;
frozen_flow = *flow;
if (!state->conntracked) {
flow_clear_conntrack(&frozen_flow);
}
frozen_metadata_to_flow(&upcall->ofproto->up, &state->metadata,
&frozen_flow);
flow_get_metadata(&frozen_flow, &am->pin.up.base.flow_metadata);
ofproto_dpif_send_async_msg(upcall->ofproto, am);
}
break;
case BAD_UPCALL:
break;
}
return EAGAIN;
}
static void
handle_upcalls(struct udpif *udpif, struct upcall *upcalls,
size_t n_upcalls)
{
struct dpif_op *opsp[UPCALL_MAX_BATCH * 2];
struct ukey_op ops[UPCALL_MAX_BATCH * 2];
size_t n_ops, n_opsp, i;
/* Handle the packets individually in order of arrival.
*
* - For SLOW_CFM, SLOW_LACP, SLOW_STP, SLOW_BFD, and SLOW_LLDP,
* translation is what processes received packets for these
* protocols.
*
* - For SLOW_ACTION, translation executes the actions directly.
*
* The loop fills 'ops' with an array of operations to execute in the
* datapath. */
n_ops = 0;
for (i = 0; i < n_upcalls; i++) {
struct upcall *upcall = &upcalls[i];
const struct dp_packet *packet = upcall->packet;
struct ukey_op *op;
if (should_install_flow(udpif, upcall)) {
struct udpif_key *ukey = upcall->ukey;
if (ukey_install(udpif, ukey)) {
upcall->ukey_persists = true;
put_op_init(&ops[n_ops++], ukey, DPIF_FP_CREATE);
}
}
if (upcall->odp_actions.size) {
op = &ops[n_ops++];
op->ukey = NULL;
op->dop.type = DPIF_OP_EXECUTE;
op->dop.execute.packet = CONST_CAST(struct dp_packet *, packet);
op->dop.execute.flow = upcall->flow;
odp_key_to_dp_packet(upcall->key, upcall->key_len,
op->dop.execute.packet);
op->dop.execute.actions = upcall->odp_actions.data;
op->dop.execute.actions_len = upcall->odp_actions.size;
op->dop.execute.needs_help = (upcall->xout.slow & SLOW_ACTION) != 0;
op->dop.execute.probe = false;
op->dop.execute.mtu = upcall->mru;
op->dop.execute.hash = upcall->hash;
op->dop.execute.upcall_pid = upcall->pid;
}
}
/* Execute batch. */
n_opsp = 0;
for (i = 0; i < n_ops; i++) {
opsp[n_opsp++] = &ops[i].dop;
}
dpif_operate(udpif->dpif, opsp, n_opsp, DPIF_OFFLOAD_AUTO);
for (i = 0; i < n_ops; i++) {
struct udpif_key *ukey = ops[i].ukey;
if (ukey) {
ovs_mutex_lock(&ukey->mutex);
if (ops[i].dop.error) {
transition_ukey(ukey, UKEY_EVICTED);
} else if (ukey->state < UKEY_OPERATIONAL) {
transition_ukey(ukey, UKEY_OPERATIONAL);
}
ovs_mutex_unlock(&ukey->mutex);
}
}
}
static uint32_t
get_ukey_hash(const ovs_u128 *ufid, const unsigned pmd_id)
{
return hash_2words(ufid->u32[0], pmd_id);
}
static struct udpif_key *
ukey_lookup(struct udpif *udpif, const ovs_u128 *ufid, const unsigned pmd_id)
{
struct udpif_key *ukey;
int idx = get_ukey_hash(ufid, pmd_id) % N_UMAPS;
struct cmap *cmap = &udpif->ukeys[idx].cmap;
CMAP_FOR_EACH_WITH_HASH (ukey, cmap_node,
get_ukey_hash(ufid, pmd_id), cmap) {
if (ovs_u128_equals(ukey->ufid, *ufid)) {
return ukey;
}
}
return NULL;
}
/* Provides safe lockless access of RCU protected 'ukey->actions'. Callers may
* alternatively access the field directly if they take 'ukey->mutex'. */
static void
ukey_get_actions(struct udpif_key *ukey, const struct nlattr **actions, size_t *size)
{
const struct ofpbuf *buf = ovsrcu_get(struct ofpbuf *, &ukey->actions);
*actions = buf->data;
*size = buf->size;
}
static void
ukey_set_actions(struct udpif_key *ukey, const struct ofpbuf *actions)
{
struct ofpbuf *old_actions = ovsrcu_get_protected(struct ofpbuf *,
&ukey->actions);
if (old_actions) {
ovsrcu_postpone(ofpbuf_delete, old_actions);
}
ovsrcu_set(&ukey->actions, ofpbuf_clone(actions));
}
static struct udpif_key *
ukey_create__(const struct nlattr *key, size_t key_len,
const struct nlattr *mask, size_t mask_len,
bool ufid_present, const ovs_u128 *ufid,
const unsigned pmd_id, const struct ofpbuf *actions,
uint64_t reval_seq, long long int used,
uint32_t key_recirc_id, struct xlate_out *xout)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct udpif_key *ukey = xmalloc(sizeof *ukey);
memcpy(&ukey->keybuf, key, key_len);
ukey->key = &ukey->keybuf.nla;
ukey->key_len = key_len;
memcpy(&ukey->maskbuf, mask, mask_len);
ukey->mask = &ukey->maskbuf.nla;
ukey->mask_len = mask_len;
ukey->ufid_present = ufid_present;
ukey->ufid = *ufid;
ukey->pmd_id = pmd_id;
ukey->hash = get_ukey_hash(&ukey->ufid, pmd_id);
ovsrcu_init(&ukey->actions, NULL);
ukey_set_actions(ukey, actions);
ovs_mutex_init(&ukey->mutex);
ukey->dump_seq = 0; /* Not yet dumped */
ukey->reval_seq = reval_seq;
ukey->state = UKEY_CREATED;
ukey->state_thread = ovsthread_id_self();
ukey->state_where = OVS_SOURCE_LOCATOR;
ukey->created = ukey->flow_time = time_msec();
ukey->missed_dumps = 0;
memset(&ukey->stats, 0, sizeof ukey->stats);
ukey->stats.used = used;
ukey->dp_layer = NULL;
ukey->xcache = NULL;
ukey->offloaded = false;
ukey->in_netdev = NULL;
ukey->flow_packets = ukey->flow_backlog_packets = 0;
ukey->key_recirc_id = key_recirc_id;
recirc_refs_init(&ukey->recircs);
if (xout) {
/* Take ownership of the action recirc id references. */
recirc_refs_swap(&ukey->recircs, &xout->recircs);
}
return ukey;
}
static struct udpif_key *
ukey_create_from_upcall(struct upcall *upcall, struct flow_wildcards *wc)
{
struct odputil_keybuf keystub, maskstub;
struct ofpbuf keybuf, maskbuf;
bool megaflow;
struct odp_flow_key_parms odp_parms = {
.flow = upcall->flow,
.mask = wc ? &wc->masks : NULL,
};
odp_parms.support = upcall->ofproto->backer->rt_support.odp;
if (upcall->key_len) {
ofpbuf_use_const(&keybuf, upcall->key, upcall->key_len);
} else {
/* dpif-netdev doesn't provide a netlink-formatted flow key in the
* upcall, so convert the upcall's flow here. */
ofpbuf_use_stack(&keybuf, &keystub, sizeof keystub);
odp_flow_key_from_flow(&odp_parms, &keybuf);
}
atomic_read_relaxed(&enable_megaflows, &megaflow);
ofpbuf_use_stack(&maskbuf, &maskstub, sizeof maskstub);
if (megaflow && wc) {
odp_parms.key_buf = &keybuf;
odp_flow_key_from_mask(&odp_parms, &maskbuf);
}
return ukey_create__(keybuf.data, keybuf.size, maskbuf.data, maskbuf.size,
true, upcall->ufid, upcall->pmd_id,
&upcall->put_actions, upcall->reval_seq, 0,
upcall->have_recirc_ref ? upcall->recirc->id : 0,
&upcall->xout);
}
static int
ukey_create_from_dpif_flow(const struct udpif *udpif,
const struct dpif_flow *flow,
struct udpif_key **ukey)
{
struct dpif_flow full_flow;
struct ofpbuf actions;
uint64_t reval_seq;
uint64_t stub[DPIF_FLOW_BUFSIZE / 8];
const struct nlattr *a;
unsigned int left;
if (!flow->key_len || !flow->actions_len) {
struct ofpbuf buf;
int err;
/* If the key or actions were not provided by the datapath, fetch the
* full flow. */
ofpbuf_use_stack(&buf, &stub, sizeof stub);
err = dpif_flow_get(udpif->dpif, flow->key, flow->key_len,
flow->ufid_present ? &flow->ufid : NULL,
flow->pmd_id, &buf, &full_flow);
if (err) {
return err;
}
flow = &full_flow;
}
/* Check the flow actions for recirculation action. As recirculation
* relies on OVS userspace internal state, we need to delete all old
* datapath flows with either a non-zero recirc_id in the key, or any
* recirculation actions upon OVS restart. */
NL_ATTR_FOR_EACH (a, left, flow->key, flow->key_len) {
if (nl_attr_type(a) == OVS_KEY_ATTR_RECIRC_ID
&& nl_attr_get_u32(a) != 0) {
return EINVAL;
}
}
NL_ATTR_FOR_EACH (a, left, flow->actions, flow->actions_len) {
if (nl_attr_type(a) == OVS_ACTION_ATTR_RECIRC) {
return EINVAL;
}
}
reval_seq = seq_read(udpif->reval_seq) - 1; /* Ensure revalidation. */
ofpbuf_use_const(&actions, flow->actions, flow->actions_len);
*ukey = ukey_create__(flow->key, flow->key_len,
flow->mask, flow->mask_len, flow->ufid_present,
&flow->ufid, flow->pmd_id, &actions,
reval_seq, flow->stats.used, 0, NULL);
return 0;
}
static bool
try_ukey_replace(struct umap *umap, struct udpif_key *old_ukey,
struct udpif_key *new_ukey)
OVS_REQUIRES(umap->mutex)
OVS_TRY_LOCK(true, new_ukey->mutex)
{
bool replaced = false;
if (!ovs_mutex_trylock(&old_ukey->mutex)) {
if (old_ukey->state == UKEY_EVICTED) {
/* The flow was deleted during the current revalidator dump,
* but its ukey won't be fully cleaned up until the sweep phase.
* In the mean time, we are receiving upcalls for this traffic.
* Expedite the (new) flow install by replacing the ukey. */
ovs_mutex_lock(&new_ukey->mutex);
cmap_replace(&umap->cmap, &old_ukey->cmap_node,
&new_ukey->cmap_node, new_ukey->hash);
new_ukey->dump_seq = old_ukey->dump_seq;
ovsrcu_postpone(ukey_delete__, old_ukey);
transition_ukey(old_ukey, UKEY_DELETED);
transition_ukey(new_ukey, UKEY_VISIBLE);
replaced = true;
COVERAGE_INC(upcall_ukey_replace);
} else {
COVERAGE_INC(handler_duplicate_upcall);
}
ovs_mutex_unlock(&old_ukey->mutex);
} else {
COVERAGE_INC(ukey_replace_contention);
}
return replaced;
}
/* Attempts to insert a ukey into the shared ukey maps.
*
* On success, returns true, installs the ukey and returns it in a locked
* state. Otherwise, returns false. */
static bool
ukey_install__(struct udpif *udpif, struct udpif_key *new_ukey)
OVS_TRY_LOCK(true, new_ukey->mutex)
{
struct umap *umap;
struct udpif_key *old_ukey;
uint32_t idx;
bool locked = false;
idx = new_ukey->hash % N_UMAPS;
umap = &udpif->ukeys[idx];
ovs_mutex_lock(&umap->mutex);
old_ukey = ukey_lookup(udpif, &new_ukey->ufid, new_ukey->pmd_id);
if (old_ukey) {
/* Uncommon case: A ukey is already installed with the same UFID. */
if (old_ukey->key_len == new_ukey->key_len
&& !memcmp(old_ukey->key, new_ukey->key, new_ukey->key_len)) {
locked = try_ukey_replace(umap, old_ukey, new_ukey);
} else {
struct ds ds = DS_EMPTY_INITIALIZER;
odp_format_ufid(&old_ukey->ufid, &ds);
ds_put_cstr(&ds, " ");
odp_flow_key_format(old_ukey->key, old_ukey->key_len, &ds);
ds_put_cstr(&ds, "\n");
odp_format_ufid(&new_ukey->ufid, &ds);
ds_put_cstr(&ds, " ");
odp_flow_key_format(new_ukey->key, new_ukey->key_len, &ds);
VLOG_WARN_RL(&rl, "Conflicting ukey for flows:\n%s", ds_cstr(&ds));
ds_destroy(&ds);
}
} else {
ovs_mutex_lock(&new_ukey->mutex);
cmap_insert(&umap->cmap, &new_ukey->cmap_node, new_ukey->hash);
transition_ukey(new_ukey, UKEY_VISIBLE);
locked = true;
}
ovs_mutex_unlock(&umap->mutex);
return locked;
}
static void
transition_ukey_at(struct udpif_key *ukey, enum ukey_state dst,
const char *where)
OVS_REQUIRES(ukey->mutex)
{
if (dst < ukey->state) {
VLOG_ABORT("Invalid ukey transition %d->%d (last transitioned from "
"thread %u at %s)", ukey->state, dst, ukey->state_thread,
ukey->state_where);
}
if (ukey->state == dst && dst == UKEY_OPERATIONAL) {
return;
}
/* Valid state transitions:
* UKEY_CREATED -> UKEY_VISIBLE
* Ukey is now visible in the umap.
* UKEY_VISIBLE -> UKEY_OPERATIONAL
* A handler has installed the flow, and the flow is in the datapath.
* UKEY_VISIBLE -> UKEY_EVICTING
* A handler installs the flow, then revalidator sweeps the ukey before
* the flow is dumped. Most likely the flow was installed; start trying
* to delete it.
* UKEY_VISIBLE -> UKEY_EVICTED
* A handler attempts to install the flow, but the datapath rejects it.
* Consider that the datapath has already destroyed it.
* UKEY_OPERATIONAL -> UKEY_INCONSISTENT
* A revalidator modifies the flow with error returns.
* UKEY_INCONSISTENT -> UKEY_EVICTING
* A revalidator decides to evict the datapath flow.
* UKEY_OPERATIONAL -> UKEY_EVICTING
* A revalidator decides to evict the datapath flow.
* UKEY_EVICTING -> UKEY_EVICTED
* A revalidator has evicted the datapath flow.
* UKEY_EVICTED -> UKEY_DELETED
* A revalidator has removed the ukey from the umap and is deleting it.
*/
if (ukey->state == dst - 1 ||
(ukey->state == UKEY_VISIBLE && dst < UKEY_DELETED) ||
(ukey->state == UKEY_OPERATIONAL && dst == UKEY_EVICTING)) {
ukey->state = dst;
} else {
struct ds ds = DS_EMPTY_INITIALIZER;
odp_format_ufid(&ukey->ufid, &ds);
VLOG_WARN_RL(&rl, "Invalid state transition for ukey %s: %d -> %d",
ds_cstr(&ds), ukey->state, dst);
ds_destroy(&ds);
}
ukey->state_thread = ovsthread_id_self();
ukey->state_where = where;
}
static bool
ukey_install(struct udpif *udpif, struct udpif_key *ukey)
{
bool installed;
installed = ukey_install__(udpif, ukey);
if (installed) {
ovs_mutex_unlock(&ukey->mutex);
}
return installed;
}
/* Searches for a ukey in 'udpif->ukeys' that matches 'flow' and attempts to
* lock the ukey. If the ukey does not exist, create it.
*
* Returns 0 on success, setting *result to the matching ukey and returning it
* in a locked state. Otherwise, returns an errno and clears *result. EBUSY
* indicates that another thread is handling this flow. Other errors indicate
* an unexpected condition creating a new ukey.
*
* *error is an output parameter provided to appease the threadsafety analyser,
* and its value matches the return value. */
static int
ukey_acquire(struct udpif *udpif, const struct dpif_flow *flow,
struct udpif_key **result, int *error)
OVS_TRY_LOCK(0, (*result)->mutex)
{
struct udpif_key *ukey;
int retval;
ukey = ukey_lookup(udpif, &flow->ufid, flow->pmd_id);
if (ukey) {
retval = ovs_mutex_trylock(&ukey->mutex);
} else {
/* Usually we try to avoid installing flows from revalidator threads,
* because locking on a umap may cause handler threads to block.
* However there are certain cases, like when ovs-vswitchd is
* restarted, where it is desirable to handle flows that exist in the
* datapath gracefully (ie, don't just clear the datapath). */
bool install;
retval = ukey_create_from_dpif_flow(udpif, flow, &ukey);
if (retval) {
goto done;
}
install = ukey_install__(udpif, ukey);
if (install) {
retval = 0;
} else {
ukey_delete__(ukey);
retval = EBUSY;
}
}
done:
*error = retval;
if (retval) {
*result = NULL;
} else {
*result = ukey;
}
return retval;
}
static void
ukey_delete__(struct udpif_key *ukey)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
if (ukey) {
if (ukey->key_recirc_id) {
recirc_free_id(ukey->key_recirc_id);
}
recirc_refs_unref(&ukey->recircs);
xlate_cache_delete(ukey->xcache);
ofpbuf_delete(ovsrcu_get(struct ofpbuf *, &ukey->actions));
ovs_mutex_destroy(&ukey->mutex);
free(ukey);
}
}
static void
ukey_delete(struct umap *umap, struct udpif_key *ukey)
OVS_REQUIRES(umap->mutex)
{
ovs_mutex_lock(&ukey->mutex);
if (ukey->state < UKEY_DELETED) {
cmap_remove(&umap->cmap, &ukey->cmap_node, ukey->hash);
ovsrcu_postpone(ukey_delete__, ukey);
transition_ukey(ukey, UKEY_DELETED);
}
ovs_mutex_unlock(&ukey->mutex);
}
static bool
should_revalidate(const struct udpif *udpif, const struct udpif_key *ukey,
uint64_t packets)
OVS_REQUIRES(ukey->mutex)
{
long long int metric, now, duration;
long long int used = ukey->stats.used;
if (!ofproto_min_revalidate_pps) {
return true;
}
if (!used) {
/* Always revalidate the first time a flow is dumped. */
return true;
}
if (udpif->dump_duration < ofproto_max_revalidator / 2) {
/* We are likely to handle full revalidation for the flows. */
return true;
}
/* Calculate the mean time between seeing these packets. If this
* exceeds the threshold, then delete the flow rather than performing
* costly revalidation for flows that aren't being hit frequently.
*
* This is targeted at situations where the dump_duration is high (~1s),
* and revalidation is triggered by a call to udpif_revalidate(). In
* these situations, revalidation of all flows causes fluctuations in the
* flow_limit due to the interaction with the dump_duration and max_idle.
* This tends to result in deletion of low-throughput flows anyway, so
* skip the revalidation and just delete those flows. */
packets = MAX(packets, 1);
now = MAX(used, time_msec());
duration = now - used;
metric = duration / packets;
if (metric < 1000 / ofproto_min_revalidate_pps ||
(ukey->offloaded && duration < ofproto_offloaded_stats_delay)) {
/* The flow is receiving more than min-revalidate-pps, so keep it.
* Or it's a hardware offloaded flow that might take up to X seconds
* to update its statistics. Until we are sure the statistics had a
* chance to be updated, also keep it. */
return true;
}
return false;
}
struct reval_context {
/* Optional output parameters */
struct flow_wildcards *wc;
struct ofpbuf *odp_actions;
struct netflow **netflow;
struct xlate_cache *xcache;
/* Required output parameters */
struct xlate_out xout;
struct flow flow;
};
/* Translates 'key' into a flow, populating 'ctx' as it goes along.
*
* Returns 0 on success, otherwise a positive errno value.
*
* The caller is responsible for uninitializing ctx->xout on success.
*/
static int
xlate_key(struct udpif *udpif, const struct nlattr *key, unsigned int len,
const struct dpif_flow_stats *push, struct reval_context *ctx)
{
struct ofproto_dpif *ofproto;
ofp_port_t ofp_in_port;
enum odp_key_fitness fitness;
struct xlate_in xin;
int error;
fitness = odp_flow_key_to_flow(key, len, &ctx->flow, NULL);
if (fitness == ODP_FIT_ERROR) {
return EINVAL;
}
error = xlate_lookup(udpif->backer, &ctx->flow, &ofproto, NULL, NULL,
ctx->netflow, &ofp_in_port, NULL);
if (error) {
return error;
}
xlate_in_init(&xin, ofproto, ofproto_dpif_get_tables_version(ofproto),
&ctx->flow, ofp_in_port, NULL, push->tcp_flags,
NULL, ctx->wc, ctx->odp_actions);
if (push->n_packets) {
xin.resubmit_stats = push;
xin.allow_side_effects = true;
}
xin.xcache = ctx->xcache;
xlate_actions(&xin, &ctx->xout);
if (fitness == ODP_FIT_TOO_LITTLE) {
ctx->xout.slow |= SLOW_MATCH;
}
return 0;
}
static int
xlate_ukey(struct udpif *udpif, const struct udpif_key *ukey,
uint16_t tcp_flags, struct reval_context *ctx)
{
struct dpif_flow_stats push = {
.tcp_flags = tcp_flags,
};
return xlate_key(udpif, ukey->key, ukey->key_len, &push, ctx);
}
static int
populate_xcache(struct udpif *udpif, struct udpif_key *ukey,
uint16_t tcp_flags)
OVS_REQUIRES(ukey->mutex)
{
struct reval_context ctx = {
.odp_actions = NULL,
.netflow = NULL,
.wc = NULL,
};
int error;
ovs_assert(!ukey->xcache);
ukey->xcache = ctx.xcache = xlate_cache_new();
error = xlate_ukey(udpif, ukey, tcp_flags, &ctx);
if (error) {
return error;
}
xlate_out_uninit(&ctx.xout);
return 0;
}
static enum reval_result
revalidate_ukey__(struct udpif *udpif, const struct udpif_key *ukey,
uint16_t tcp_flags, struct ofpbuf *odp_actions,
struct recirc_refs *recircs, struct xlate_cache *xcache,
enum flow_del_reason *del_reason)
{
struct xlate_out *xoutp;
struct netflow *netflow;
struct flow_wildcards dp_mask, wc;
enum reval_result result;
struct reval_context ctx = {
.odp_actions = odp_actions,
.netflow = &netflow,
.xcache = xcache,
.wc = &wc,
};
OVS_USDT_PROBE(revalidate_ukey__, entry, udpif, ukey, tcp_flags,
odp_actions, recircs, xcache);
result = UKEY_DELETE;
xoutp = NULL;
netflow = NULL;
if (xlate_ukey(udpif, ukey, tcp_flags, &ctx)) {
*del_reason = FDR_XLATION_ERROR;
goto exit;
}
xoutp = &ctx.xout;
if (xoutp->avoid_caching) {
*del_reason = FDR_AVOID_CACHING;
goto exit;
}
if (xoutp->slow) {
struct ofproto_dpif *ofproto;
ofp_port_t ofp_in_port;
ofproto = xlate_lookup_ofproto(udpif->backer, &ctx.flow, &ofp_in_port,
NULL);
ofpbuf_clear(odp_actions);
if (!ofproto) {
*del_reason = FDR_NO_OFPROTO;
goto exit;
}
compose_slow_path(udpif, xoutp, ctx.flow.in_port.odp_port,
ofp_in_port, odp_actions,
ofproto->up.slowpath_meter_id, &ofproto->uuid);
}
if (odp_flow_key_to_mask(ukey->mask, ukey->mask_len, &dp_mask, &ctx.flow,
NULL)
== ODP_FIT_ERROR) {
*del_reason = FDR_BAD_ODP_FIT;
goto exit;
}
/* Do not modify if any bit is wildcarded by the installed datapath flow,
* but not the newly revalidated wildcard mask (wc), i.e., if revalidation
* tells that the datapath flow is now too generic and must be narrowed
* down. Note that we do not know if the datapath has ignored any of the
* wildcarded bits, so we may be overly conservative here. */
if (flow_wildcards_has_extra(&dp_mask, ctx.wc)) {
*del_reason = FDR_FLOW_WILDCARDED;
goto exit;
}
if (!ofpbuf_equal(odp_actions,
ovsrcu_get(struct ofpbuf *, &ukey->actions))) {
/* The datapath mask was OK, but the actions seem to have changed.
* Let's modify it in place. */
result = UKEY_MODIFY;
/* Transfer recirc action ID references to the caller. */
recirc_refs_swap(recircs, &xoutp->recircs);
goto exit;
}
result = UKEY_KEEP;
exit:
if (netflow && result == UKEY_DELETE) {
netflow_flow_clear(netflow, &ctx.flow);
}
xlate_out_uninit(xoutp);
OVS_USDT_PROBE(revalidate_ukey__, exit, udpif, ukey, result);
return result;
}
static void
log_unexpected_stats_jump(struct udpif_key *ukey,
const struct dpif_flow_stats *stats)
OVS_REQUIRES(ukey->mutex)
{
static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(1, 5);
struct ds ds = DS_EMPTY_INITIALIZER;
struct ofpbuf *actions;
odp_format_ufid(&ukey->ufid, &ds);
ds_put_cstr(&ds, ", ");
odp_flow_key_format(ukey->key, ukey->key_len, &ds);
ds_put_cstr(&ds, ", actions:");
actions = ovsrcu_get(struct ofpbuf *, &ukey->actions);
format_odp_actions(&ds, actions->data, actions->size, NULL);
VLOG_WARN_RL(&rll, "Unexpected jump in packet stats from %"PRIu64
" to %"PRIu64" when handling ukey %s",
ukey->stats.n_packets, stats->n_packets, ds_cstr(&ds));
ds_destroy(&ds);
}
/* Verifies that the datapath actions of 'ukey' are still correct, and pushes
* 'stats' for it.
*
* Returns a recommended action for 'ukey', options include:
* UKEY_DELETE The ukey should be deleted.
* UKEY_KEEP The ukey is fine as is.
* UKEY_MODIFY The ukey's actions should be changed but is otherwise
* fine. Callers should change the actions to those found
* in the caller supplied 'odp_actions' buffer. The
* recirculation references can be found in 'recircs' and
* must be handled by the caller.
*
* If the result is UKEY_MODIFY, then references to all recirc_ids used by the
* new flow will be held within 'recircs' (which may be none).
*
* The caller is responsible for both initializing 'recircs' prior this call,
* and ensuring any references are eventually freed.
*/
static enum reval_result
revalidate_ukey(struct udpif *udpif, struct udpif_key *ukey,
const struct dpif_flow_stats *stats,
struct ofpbuf *odp_actions, uint64_t reval_seq,
struct recirc_refs *recircs, enum flow_del_reason *del_reason)
OVS_REQUIRES(ukey->mutex)
{
bool need_revalidate = ukey->reval_seq != reval_seq;
enum reval_result result = UKEY_DELETE;
struct dpif_flow_stats push;
ofpbuf_clear(odp_actions);
push.used = stats->used;
push.tcp_flags = stats->tcp_flags;
push.n_packets = stats->n_packets - ukey->stats.n_packets;
push.n_bytes = stats->n_bytes - ukey->stats.n_bytes;
if (stats->n_packets < ukey->stats.n_packets &&
ukey->stats.n_packets < UINT64_THREE_QUARTERS) {
/* Report cases where the packet counter is lower than the previous
* instance, but exclude the potential wrapping of an uint64_t. */
COVERAGE_INC(ukey_invalid_stat_reset);
log_unexpected_stats_jump(ukey, stats);
}
if (need_revalidate) {
if (should_revalidate(udpif, ukey, push.n_packets)) {
if (!ukey->xcache) {
ukey->xcache = xlate_cache_new();
} else {
xlate_cache_clear(ukey->xcache);
}
result = revalidate_ukey__(udpif, ukey, push.tcp_flags,
odp_actions, recircs, ukey->xcache,
del_reason);
} else {
/* Delete, since it is too expensive to revalidate. */
*del_reason = FDR_TOO_EXPENSIVE;
}
} else if (!push.n_packets || ukey->xcache
|| !populate_xcache(udpif, ukey, push.tcp_flags)) {
result = UKEY_KEEP;
}
/* Stats for deleted flows will be attributed upon flow deletion. Skip. */
if (result != UKEY_DELETE) {
xlate_push_stats(ukey->xcache, &push, ukey->offloaded);
ukey->stats = *stats;
ukey->reval_seq = reval_seq;
}
return result;
}
static void
delete_op_init__(struct udpif *udpif, struct ukey_op *op,
const struct dpif_flow *flow)
{
op->ukey = NULL;
op->dop.type = DPIF_OP_FLOW_DEL;
op->dop.flow_del.key = flow->key;
op->dop.flow_del.key_len = flow->key_len;
op->dop.flow_del.ufid = flow->ufid_present ? &flow->ufid : NULL;
op->dop.flow_del.pmd_id = flow->pmd_id;
op->dop.flow_del.stats = &op->stats;
op->dop.flow_del.terse = udpif_use_ufid(udpif);
}
static void
delete_op_init(struct udpif *udpif, struct ukey_op *op, struct udpif_key *ukey)
{
op->ukey = ukey;
op->dop.type = DPIF_OP_FLOW_DEL;
op->dop.flow_del.key = ukey->key;
op->dop.flow_del.key_len = ukey->key_len;
op->dop.flow_del.ufid = ukey->ufid_present ? &ukey->ufid : NULL;
op->dop.flow_del.pmd_id = ukey->pmd_id;
op->dop.flow_del.stats = &op->stats;
op->dop.flow_del.terse = udpif_use_ufid(udpif);
}
static void
put_op_init(struct ukey_op *op, struct udpif_key *ukey,
enum dpif_flow_put_flags flags)
{
op->ukey = ukey;
op->dop.type = DPIF_OP_FLOW_PUT;
op->dop.flow_put.flags = flags;
op->dop.flow_put.key = ukey->key;
op->dop.flow_put.key_len = ukey->key_len;
op->dop.flow_put.mask = ukey->mask;
op->dop.flow_put.mask_len = ukey->mask_len;
op->dop.flow_put.ufid = ukey->ufid_present ? &ukey->ufid : NULL;
op->dop.flow_put.pmd_id = ukey->pmd_id;
op->dop.flow_put.stats = NULL;
ukey_get_actions(ukey, &op->dop.flow_put.actions,
&op->dop.flow_put.actions_len);
}
/* Executes datapath operations 'ops' and attributes stats retrieved from the
* datapath as part of those operations. */
static void
push_dp_ops(struct udpif *udpif, struct ukey_op *ops, size_t n_ops)
{
struct dpif_op *opsp[REVALIDATE_MAX_BATCH];
size_t i;
ovs_assert(n_ops <= REVALIDATE_MAX_BATCH);
for (i = 0; i < n_ops; i++) {
opsp[i] = &ops[i].dop;
}
dpif_operate(udpif->dpif, opsp, n_ops, DPIF_OFFLOAD_AUTO);
for (i = 0; i < n_ops; i++) {
struct ukey_op *op = &ops[i];
if (op->dop.error) {
if (op->ukey) {
ovs_mutex_lock(&op->ukey->mutex);
if (op->dop.type == DPIF_OP_FLOW_DEL) {
transition_ukey(op->ukey, UKEY_EVICTED);
} else {
/* Modification of the flow failed. */
transition_ukey(op->ukey, UKEY_INCONSISTENT);
}
ovs_mutex_unlock(&op->ukey->mutex);
}
continue;
}
if (op->dop.type != DPIF_OP_FLOW_DEL) {
/* Only deleted flows need their stats pushed. */
continue;
}
struct dpif_flow_stats *push, *stats, push_buf;
stats = op->dop.flow_del.stats;
push = &push_buf;
if (op->ukey) {
ovs_mutex_lock(&op->ukey->mutex);
transition_ukey(op->ukey, UKEY_EVICTED);
push->used = MAX(stats->used, op->ukey->stats.used);
push->tcp_flags = stats->tcp_flags | op->ukey->stats.tcp_flags;
push->n_packets = stats->n_packets - op->ukey->stats.n_packets;
push->n_bytes = stats->n_bytes - op->ukey->stats.n_bytes;
if (stats->n_packets < op->ukey->stats.n_packets &&
op->ukey->stats.n_packets < UINT64_THREE_QUARTERS) {
/* Report cases where the packet counter is lower than the
* previous instance, but exclude the potential wrapping of an
* uint64_t. */
COVERAGE_INC(ukey_invalid_stat_reset);
}
ovs_mutex_unlock(&op->ukey->mutex);
} else {
push = stats;
}
if (push->n_packets || netflow_exists()) {
const struct nlattr *key = op->dop.flow_del.key;
size_t key_len = op->dop.flow_del.key_len;
struct netflow *netflow;
struct reval_context ctx = {
.netflow = &netflow,
};
int error;
if (op->ukey) {
ovs_mutex_lock(&op->ukey->mutex);
if (op->ukey->xcache) {
xlate_push_stats(op->ukey->xcache, push, false);
ovs_mutex_unlock(&op->ukey->mutex);
continue;
}
ovs_mutex_unlock(&op->ukey->mutex);
key = op->ukey->key;
key_len = op->ukey->key_len;
}
error = xlate_key(udpif, key, key_len, push, &ctx);
if (error) {
static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(1, 5);
VLOG_WARN_RL(&rll, "xlate_key failed (%s)!",
ovs_strerror(error));
} else {
xlate_out_uninit(&ctx.xout);
if (netflow) {
netflow_flow_clear(netflow, &ctx.flow);
}
}
}
}
}
/* Executes datapath operations 'ops', attributes stats retrieved from the
* datapath, and deletes ukeys corresponding to deleted flows. */
static void
push_ukey_ops(struct udpif *udpif, struct umap *umap,
struct ukey_op *ops, size_t n_ops)
{
int i;
push_dp_ops(udpif, ops, n_ops);
ovs_mutex_lock(&umap->mutex);
for (i = 0; i < n_ops; i++) {
if (ops[i].dop.type == DPIF_OP_FLOW_DEL) {
ukey_delete(umap, ops[i].ukey);
}
}
ovs_mutex_unlock(&umap->mutex);
}
static void
log_unexpected_flow(const struct dpif_flow *flow, int error)
{
struct ds ds = DS_EMPTY_INITIALIZER;
ds_put_format(&ds, "Failed to acquire udpif_key corresponding to "
"unexpected flow (%s): ", ovs_strerror(error));
odp_format_ufid(&flow->ufid, &ds);
static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(10, 60);
VLOG_WARN_RL(&rll, "%s", ds_cstr(&ds));
ds_destroy(&ds);
}
static void
reval_op_init(struct ukey_op *op, enum reval_result result,
struct udpif *udpif, struct udpif_key *ukey,
struct recirc_refs *recircs, struct ofpbuf *odp_actions)
OVS_REQUIRES(ukey->mutex)
{
if (result == UKEY_DELETE) {
delete_op_init(udpif, op, ukey);
transition_ukey(ukey, UKEY_EVICTING);
} else if (result == UKEY_MODIFY) {
/* Store the new recircs. */
recirc_refs_swap(&ukey->recircs, recircs);
/* Release old recircs. */
recirc_refs_unref(recircs);
/* ukey->key_recirc_id remains, as the key is the same as before. */
ukey_set_actions(ukey, odp_actions);
put_op_init(op, ukey, DPIF_FP_MODIFY);
}
}
static void
ukey_netdev_unref(struct udpif_key *ukey)
{
if (!ukey->in_netdev) {
return;
}
netdev_close(ukey->in_netdev);
ukey->in_netdev = NULL;
}
/*
* Given a udpif_key, get its input port (netdev) by parsing the flow keys
* and actions. The flow may not contain flow attributes if it is a terse
* dump; read its attributes from the ukey and then parse the flow to get
* the port info. Save them in udpif_key.
*/
static void
ukey_to_flow_netdev(struct udpif *udpif, struct udpif_key *ukey)
{
const char *dpif_type_str = dpif_normalize_type(dpif_type(udpif->dpif));
const struct nlattr *k;
unsigned int left;
/* Remove existing references to netdev */
ukey_netdev_unref(ukey);
/* Find the input port and get a reference to its netdev */
NL_ATTR_FOR_EACH (k, left, ukey->key, ukey->key_len) {
enum ovs_key_attr type = nl_attr_type(k);
if (type == OVS_KEY_ATTR_IN_PORT) {
ukey->in_netdev = netdev_ports_get(nl_attr_get_odp_port(k),
dpif_type_str);
} else if (type == OVS_KEY_ATTR_TUNNEL) {
struct flow_tnl tnl;
enum odp_key_fitness res;
if (ukey->in_netdev) {
netdev_close(ukey->in_netdev);
ukey->in_netdev = NULL;
}
res = odp_tun_key_from_attr(k, &tnl, NULL);
if (res != ODP_FIT_ERROR) {
ukey->in_netdev = flow_get_tunnel_netdev(&tnl);
break;
}
}
}
}
static uint64_t
udpif_flow_packet_delta(struct udpif_key *ukey, const struct dpif_flow *f)
{
return f->stats.n_packets + ukey->flow_backlog_packets -
ukey->flow_packets;
}
static long long int
udpif_flow_time_delta(struct udpif *udpif, struct udpif_key *ukey)
{
return (udpif->dpif->current_ms - ukey->flow_time) / 1000;
}
/*
* Save backlog packet count while switching modes
* between offloaded and kernel datapaths.
*/
static void
udpif_set_ukey_backlog_packets(struct udpif_key *ukey)
{
ukey->flow_backlog_packets = ukey->flow_packets;
}
/* Gather pps-rate for the given dpif_flow and save it in its ukey */
static void
udpif_update_flow_pps(struct udpif *udpif, struct udpif_key *ukey,
const struct dpif_flow *f)
{
uint64_t pps;
/* Update pps-rate only when we are close to rebalance interval */
if (udpif->dpif->current_ms - ukey->flow_time < OFFL_REBAL_INTVL_MSEC) {
return;
}
ukey->offloaded = f->attrs.offloaded;
pps = udpif_flow_packet_delta(ukey, f) /
udpif_flow_time_delta(udpif, ukey);
ukey->flow_pps_rate = pps;
ukey->flow_packets = ukey->flow_backlog_packets + f->stats.n_packets;
ukey->flow_time = udpif->dpif->current_ms;
}
static long long int
udpif_update_used(struct udpif *udpif, struct udpif_key *ukey,
struct dpif_flow_stats *stats)
OVS_REQUIRES(ukey->mutex)
{
if (!udpif->dump->terse) {
return ukey->created;
}
if (stats->n_packets > ukey->stats.n_packets) {
stats->used = udpif->dpif->current_ms;
} else if (ukey->stats.used) {
stats->used = ukey->stats.used;
} else {
stats->used = ukey->created;
}
return stats->used;
}
static void
revalidate(struct revalidator *revalidator)
{
uint64_t odp_actions_stub[1024 / 8];
struct ofpbuf odp_actions = OFPBUF_STUB_INITIALIZER(odp_actions_stub);
struct udpif *udpif = revalidator->udpif;
struct dpif_flow_dump_thread *dump_thread;
uint64_t dump_seq, reval_seq;
bool kill_warn_print = true;
unsigned int flow_limit;
dump_seq = seq_read(udpif->dump_seq);
reval_seq = seq_read(udpif->reval_seq);
atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
dump_thread = dpif_flow_dump_thread_create(udpif->dump);
for (;;) {
struct ukey_op ops[REVALIDATE_MAX_BATCH];
int n_ops = 0;
struct dpif_flow flows[REVALIDATE_MAX_BATCH];
const struct dpif_flow *f;
int n_dumped;
long long int max_idle;
long long int now;
size_t kill_all_limit;
size_t n_dp_flows;
bool kill_them_all;
n_dumped = dpif_flow_dump_next(dump_thread, flows, ARRAY_SIZE(flows));
if (!n_dumped) {
break;
}
/* In normal operation we want to keep flows around until they have
* been idle for 'ofproto_max_idle' milliseconds. However:
*
* - If the number of datapath flows climbs above 'flow_limit',
* drop that down to 100 ms to try to bring the flows down to
* the limit.
*
* - If the number of datapath flows climbs above twice
* 'flow_limit', delete all the datapath flows as an emergency
* measure. (We reassess this condition for the next batch of
* datapath flows, so we will recover before all the flows are
* gone.) */
n_dp_flows = udpif_get_n_flows(udpif);
if (n_dp_flows >= flow_limit) {
COVERAGE_INC(upcall_flow_limit_hit);
}
kill_them_all = false;
kill_all_limit = flow_limit * 2;
if (OVS_UNLIKELY(n_dp_flows > kill_all_limit)) {
static struct vlog_rate_limit rlem = VLOG_RATE_LIMIT_INIT(1, 1);
kill_them_all = true;
COVERAGE_INC(upcall_flow_limit_kill);
if (kill_warn_print) {
kill_warn_print = false;
VLOG_WARN_RL(&rlem,
"Number of datapath flows (%"PRIuSIZE") twice as high as "
"current dynamic flow limit (%"PRIuSIZE"). "
"Starting to delete flows unconditionally "
"as an emergency measure.", n_dp_flows, kill_all_limit);
}
}
max_idle = n_dp_flows > flow_limit ? 100 : ofproto_max_idle;
udpif->dpif->current_ms = now = time_msec();
for (f = flows; f < &flows[n_dumped]; f++) {
long long int used = f->stats.used;
struct recirc_refs recircs = RECIRC_REFS_EMPTY_INITIALIZER;
enum flow_del_reason del_reason = FDR_NONE;
struct dpif_flow_stats stats = f->stats;
enum reval_result result;
struct udpif_key *ukey;
bool already_dumped;
int error;
if (ukey_acquire(udpif, f, &ukey, &error)) {
if (error == EBUSY) {
/* Another thread is processing this flow, so don't bother
* processing it.*/
COVERAGE_INC(upcall_ukey_contention);
} else {
log_unexpected_flow(f, error);
if (error != ENOENT) {
delete_op_init__(udpif, &ops[n_ops++], f);
}
}
continue;
}
ukey->offloaded = f->attrs.offloaded;
if (!ukey->dp_layer
|| (!dpif_synced_dp_layers(udpif->dpif)
&& strcmp(ukey->dp_layer, f->attrs.dp_layer))) {
if (ukey->dp_layer) {
/* The dp_layer has changed this is probably due to an
* earlier revalidate cycle moving it to/from hw offload.
* In this case we should reset the ukey stored statistics,
* as they are from the deleted DP flow. */
COVERAGE_INC(ukey_dp_change);
memset(&ukey->stats, 0, sizeof ukey->stats);
}
ukey->dp_layer = f->attrs.dp_layer;
}
already_dumped = ukey->dump_seq == dump_seq;
if (already_dumped) {
/* The flow has already been handled during this flow dump
* operation. Skip it. */
if (ukey->xcache) {
COVERAGE_INC(dumped_duplicate_flow);
} else {
COVERAGE_INC(dumped_new_flow);
}
ovs_mutex_unlock(&ukey->mutex);
continue;
}
if (ukey->state == UKEY_INCONSISTENT) {
ukey->dump_seq = dump_seq;
reval_op_init(&ops[n_ops++], UKEY_DELETE, udpif, ukey,
&recircs, &odp_actions);
ovs_mutex_unlock(&ukey->mutex);
COVERAGE_INC(dumped_inconsistent_flow);
continue;
}
if (ukey->state <= UKEY_OPERATIONAL) {
/* The flow is now confirmed to be in the datapath. */
transition_ukey(ukey, UKEY_OPERATIONAL);
} else {
VLOG_INFO("Unexpected ukey transition from state %d "
"(last transitioned from thread %u at %s)",
ukey->state, ukey->state_thread, ukey->state_where);
ovs_mutex_unlock(&ukey->mutex);
continue;
}
if (!used) {
used = udpif_update_used(udpif, ukey, &stats);
}
if (kill_them_all || (used && used < now - max_idle)) {
result = UKEY_DELETE;
del_reason = (kill_them_all) ? FDR_FLOW_LIMIT : FDR_FLOW_IDLE;
} else {
result = revalidate_ukey(udpif, ukey, &stats, &odp_actions,
reval_seq, &recircs, &del_reason);
}
ukey->dump_seq = dump_seq;
if (netdev_is_offload_rebalance_policy_enabled() &&
result != UKEY_DELETE) {
udpif_update_flow_pps(udpif, ukey, f);
}
OVS_USDT_PROBE(revalidate, flow_result, udpif, ukey, result,
del_reason);
if (result != UKEY_KEEP) {
/* Takes ownership of 'recircs'. */
reval_op_init(&ops[n_ops++], result, udpif, ukey, &recircs,
&odp_actions);
}
ovs_mutex_unlock(&ukey->mutex);
}
if (n_ops) {
/* Push datapath ops but defer ukey deletion to 'sweep' phase. */
push_dp_ops(udpif, ops, n_ops);
}
ovsrcu_quiesce();
}
dpif_flow_dump_thread_destroy(dump_thread);
ofpbuf_uninit(&odp_actions);
}
/* Pauses the 'revalidator', can only proceed after main thread
* calls udpif_resume_revalidators(). */
static void
revalidator_pause(struct revalidator *revalidator)
{
/* The first block is for sync'ing the pause with main thread. */
ovs_barrier_block(&revalidator->udpif->pause_barrier);
/* The second block is for pausing until main thread resumes. */
ovs_barrier_block(&revalidator->udpif->pause_barrier);
}
static void
revalidator_sweep__(struct revalidator *revalidator, bool purge)
{
struct udpif *udpif;
uint64_t dump_seq, reval_seq;
int slice;
udpif = revalidator->udpif;
dump_seq = seq_read(udpif->dump_seq);
reval_seq = seq_read(udpif->reval_seq);
slice = revalidator - udpif->revalidators;
ovs_assert(slice < udpif->n_revalidators);
for (int i = slice; i < N_UMAPS; i += udpif->n_revalidators) {
uint64_t odp_actions_stub[1024 / 8];
struct ofpbuf odp_actions = OFPBUF_STUB_INITIALIZER(odp_actions_stub);
struct ukey_op ops[REVALIDATE_MAX_BATCH];
struct udpif_key *ukey;
struct umap *umap = &udpif->ukeys[i];
size_t n_ops = 0;
CMAP_FOR_EACH(ukey, cmap_node, &umap->cmap) {
enum flow_del_reason del_reason = FDR_NONE;
enum ukey_state ukey_state;
/* Handler threads could be holding a ukey lock while it installs a
* new flow, so don't hang around waiting for access to it. */
if (ovs_mutex_trylock(&ukey->mutex)) {
COVERAGE_INC(upcall_ukey_contention);
continue;
}
ukey_state = ukey->state;
if (ukey_state == UKEY_OPERATIONAL
|| (ukey_state == UKEY_INCONSISTENT)
|| (ukey_state == UKEY_VISIBLE && purge)) {
struct recirc_refs recircs = RECIRC_REFS_EMPTY_INITIALIZER;
bool seq_mismatch = (ukey->dump_seq != dump_seq
&& ukey->reval_seq != reval_seq);
enum reval_result result;
if (purge || ukey_state == UKEY_INCONSISTENT) {
result = UKEY_DELETE;
del_reason = purge ? FDR_PURGE : FDR_UPDATE_FAIL;
} else if (!seq_mismatch) {
result = UKEY_KEEP;
} else {
struct dpif_flow_stats stats;
COVERAGE_INC(revalidate_missed_dp_flow);
memcpy(&stats, &ukey->stats, sizeof stats);
result = revalidate_ukey(udpif, ukey, &stats, &odp_actions,
reval_seq, &recircs, &del_reason);
}
if (ukey->dump_seq != dump_seq) {
ukey->missed_dumps++;
if (ukey->missed_dumps >= 4) {
/* If the flow was not dumped for 4 revalidator rounds,
* we can assume the datapath flow no longer exists
* and the ukey should be deleted. */
COVERAGE_INC(revalidate_missing_dp_flow);
del_reason = FDR_FLOW_MISSING_DP;
result = UKEY_DELETE;
}
} else {
ukey->missed_dumps = 0;
}
if (result != UKEY_KEEP) {
/* Clears 'recircs' if filled by revalidate_ukey(). */
reval_op_init(&ops[n_ops++], result, udpif, ukey, &recircs,
&odp_actions);
}
OVS_USDT_PROBE(revalidator_sweep__, flow_sweep_result, udpif,
ukey, result, del_reason);
}
ovs_mutex_unlock(&ukey->mutex);
if (ukey_state == UKEY_EVICTED) {
/* The common flow deletion case involves deletion of the flow
* during the dump phase and ukey deletion here. */
ovs_mutex_lock(&umap->mutex);
ukey_delete(umap, ukey);
ovs_mutex_unlock(&umap->mutex);
}
if (n_ops == REVALIDATE_MAX_BATCH) {
/* Update/delete missed flows and clean up corresponding ukeys
* if necessary. */
push_ukey_ops(udpif, umap, ops, n_ops);
n_ops = 0;
}
}
if (n_ops) {
push_ukey_ops(udpif, umap, ops, n_ops);
}
ofpbuf_uninit(&odp_actions);
ovsrcu_quiesce();
}
}
static void
revalidator_sweep(struct revalidator *revalidator)
{
revalidator_sweep__(revalidator, false);
}
static void
revalidator_purge(struct revalidator *revalidator)
{
revalidator_sweep__(revalidator, true);
}
/* In reaction to dpif purge, purges all 'ukey's with same 'pmd_id'. */
static void
dp_purge_cb(void *aux, unsigned pmd_id)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct udpif *udpif = aux;
size_t i;
udpif_pause_revalidators(udpif);
for (i = 0; i < N_UMAPS; i++) {
struct ukey_op ops[REVALIDATE_MAX_BATCH];
struct udpif_key *ukey;
struct umap *umap = &udpif->ukeys[i];
size_t n_ops = 0;
CMAP_FOR_EACH(ukey, cmap_node, &umap->cmap) {
if (ukey->pmd_id == pmd_id) {
delete_op_init(udpif, &ops[n_ops++], ukey);
transition_ukey(ukey, UKEY_EVICTING);
if (n_ops == REVALIDATE_MAX_BATCH) {
push_ukey_ops(udpif, umap, ops, n_ops);
n_ops = 0;
}
}
}
if (n_ops) {
push_ukey_ops(udpif, umap, ops, n_ops);
}
ovsrcu_quiesce();
}
udpif_resume_revalidators(udpif);
}
static void
upcall_unixctl_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
{
struct ds ds = DS_EMPTY_INITIALIZER;
uint64_t n_offloaded_flows;
struct udpif *udpif;
LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
unsigned int flow_limit;
bool ufid_enabled;
size_t i;
atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
ufid_enabled = udpif_use_ufid(udpif);
ds_put_format(&ds, "%s:\n", dpif_name(udpif->dpif));
ds_put_format(&ds, " flows : (current %lu)"
" (avg %u) (max %u) (limit %u)\n", udpif_get_n_flows(udpif),
udpif->avg_n_flows, udpif->max_n_flows, flow_limit);
if (!dpif_get_n_offloaded_flows(udpif->dpif, &n_offloaded_flows)) {
ds_put_format(&ds, " offloaded flows : %"PRIu64"\n",
n_offloaded_flows);
}
ds_put_format(&ds, " dump duration : %lldms\n", udpif->dump_duration);
ds_put_format(&ds, " ufid enabled : ");
if (ufid_enabled) {
ds_put_format(&ds, "true\n");
} else {
ds_put_format(&ds, "false\n");
}
ds_put_char(&ds, '\n');
for (i = 0; i < udpif->n_revalidators; i++) {
struct revalidator *revalidator = &udpif->revalidators[i];
int j, elements = 0;
for (j = i; j < N_UMAPS; j += udpif->n_revalidators) {
elements += cmap_count(&udpif->ukeys[j].cmap);
}
ds_put_format(&ds, " %u: (keys %d)\n", revalidator->id, elements);
}
}
unixctl_command_reply(conn, ds_cstr(&ds));
ds_destroy(&ds);
}
/* Disable using the megaflows.
*
* This command is only needed for advanced debugging, so it's not
* documented in the man page. */
static void
upcall_unixctl_disable_megaflows(struct unixctl_conn *conn,
int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED,
void *aux OVS_UNUSED)
{
atomic_store_relaxed(&enable_megaflows, false);
udpif_flush_all_datapaths();
unixctl_command_reply(conn, "megaflows disabled");
}
/* Re-enable using megaflows.
*
* This command is only needed for advanced debugging, so it's not
* documented in the man page. */
static void
upcall_unixctl_enable_megaflows(struct unixctl_conn *conn,
int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED,
void *aux OVS_UNUSED)
{
atomic_store_relaxed(&enable_megaflows, true);
udpif_flush_all_datapaths();
unixctl_command_reply(conn, "megaflows enabled");
}
/* Disable skipping flow attributes during flow dump.
*
* This command is only needed for advanced debugging, so it's not
* documented in the man page. */
static void
upcall_unixctl_disable_ufid(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
{
atomic_store_relaxed(&enable_ufid, false);
unixctl_command_reply(conn, "Datapath dumping tersely using UFID disabled");
}
/* Re-enable skipping flow attributes during flow dump.
*
* This command is only needed for advanced debugging, so it's not documented
* in the man page. */
static void
upcall_unixctl_enable_ufid(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
{
atomic_store_relaxed(&enable_ufid, true);
unixctl_command_reply(conn, "Datapath dumping tersely using UFID enabled "
"for supported datapaths");
}
/* Set the flow limit.
*
* This command is only needed for advanced debugging, so it's not
* documented in the man page. */
static void
upcall_unixctl_set_flow_limit(struct unixctl_conn *conn,
int argc OVS_UNUSED,
const char *argv[],
void *aux OVS_UNUSED)
{
struct ds ds = DS_EMPTY_INITIALIZER;
struct udpif *udpif;
unsigned int flow_limit = atoi(argv[1]);
LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
atomic_store_relaxed(&udpif->flow_limit, flow_limit);
}
ds_put_format(&ds, "set flow_limit to %u\n", flow_limit);
unixctl_command_reply(conn, ds_cstr(&ds));
ds_destroy(&ds);
}
static void
upcall_unixctl_dump_wait(struct unixctl_conn *conn,
int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED,
void *aux OVS_UNUSED)
{
if (ovs_list_is_singleton(&all_udpifs)) {
struct udpif *udpif = NULL;
size_t len;
udpif = OBJECT_CONTAINING(ovs_list_front(&all_udpifs), udpif, list_node);
len = (udpif->n_conns + 1) * sizeof *udpif->conns;
udpif->conn_seq = seq_read(udpif->dump_seq);
udpif->conns = xrealloc(udpif->conns, len);
udpif->conns[udpif->n_conns++] = conn;
} else {
unixctl_command_reply_error(conn, "can't wait on multiple udpifs.");
}
}
static void
upcall_unixctl_purge(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
{
struct udpif *udpif;
LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
bool wake_up = false;
int n;
if (!latch_is_set(&udpif->pause_latch)) {
udpif_pause_revalidators(udpif);
wake_up = true;
}
for (n = 0; n < udpif->n_revalidators; n++) {
revalidator_purge(&udpif->revalidators[n]);
}
if (wake_up) {
udpif_resume_revalidators(udpif);
}
}
unixctl_command_reply(conn, "");
}
static void
upcall_unixctl_pause(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
{
struct udpif *udpif;
LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
udpif_pause_revalidators(udpif);
}
unixctl_command_reply(conn, "");
}
static void
upcall_unixctl_resume(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
{
struct udpif *udpif;
LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
udpif_resume_revalidators(udpif);
}
unixctl_command_reply(conn, "");
}
static void
upcall_unixctl_ofproto_detrace(struct unixctl_conn *conn, int argc,
const char *argv[], void *aux OVS_UNUSED)
{
const char *key_s = argv[1];
const char *pmd_str = NULL;
unsigned int pmd_id;
ovs_u128 ufid;
if (odp_ufid_from_string(key_s, &ufid) <= 0) {
unixctl_command_reply_error(conn, "failed to parse ufid");
return;
}
if (argc == 3) {
pmd_str = argv[2];
if (!ovs_scan(pmd_str, "pmd=%d", &pmd_id)) {
unixctl_command_reply_error(conn,
"Invalid pmd argument format. "
"Expecting 'pmd=PMD-ID'");
return;
}
}
struct ds ds = DS_EMPTY_INITIALIZER;
struct udpif *udpif;
LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
if (!pmd_str) {
const char *type = dpif_normalize_type(dpif_type(udpif->dpif));
pmd_id = !strcmp(type, "system") ? PMD_ID_NULL : NON_PMD_CORE_ID;
}
struct udpif_key *ukey = ukey_lookup(udpif, &ufid, pmd_id);
if (!ukey) {
ds_put_format(&ds, "UFID was not found for %s\n",
dpif_name(udpif->dpif));
continue;
}
ovs_mutex_lock(&ukey->mutex);
/* It only makes sense to format rules for ukeys that are (still)
* in use. */
if ((ukey->state == UKEY_VISIBLE || ukey->state == UKEY_OPERATIONAL)
&& ukey->xcache) {
xlate_xcache_format(&ds, ukey->xcache);
} else {
ds_put_format(&ds, "Cache was not found for %s\n",
dpif_name(udpif->dpif));
}
ovs_mutex_unlock(&ukey->mutex);
}
unixctl_command_reply(conn, ds_cstr(&ds));
ds_destroy(&ds);
}
/* Flows are sorted in the following order:
* netdev, flow state (offloaded/kernel path), flow_pps_rate.
*/
static int
flow_compare_rebalance(const void *elem1, const void *elem2)
{
const struct udpif_key *f1 = *(struct udpif_key **)elem1;
const struct udpif_key *f2 = *(struct udpif_key **)elem2;
int64_t diff;
if (f1->in_netdev < f2->in_netdev) {
return -1;
} else if (f1->in_netdev > f2->in_netdev) {
return 1;
}
if (f1->offloaded != f2->offloaded) {
return f2->offloaded - f1->offloaded;
}
diff = (f1->offloaded == true) ?
f1->flow_pps_rate - f2->flow_pps_rate :
f2->flow_pps_rate - f1->flow_pps_rate;
return (diff < 0) ? -1 : 1;
}
/* Insert flows from pending array during rebalancing */
static int
rebalance_insert_pending(struct udpif *udpif, struct udpif_key **pending_flows,
int pending_count, int insert_count,
uint64_t rate_threshold)
{
int count = 0;
for (int i = 0; i < pending_count; i++) {
struct udpif_key *flow = pending_flows[i];
int err;
/* Stop offloading pending flows if the insert count is
* reached and the flow rate is less than the threshold
*/
if (count >= insert_count && flow->flow_pps_rate < rate_threshold) {
break;
}
/* Offload the flow to netdev */
err = udpif_flow_program(udpif, flow, DPIF_OFFLOAD_ALWAYS);
if (err == ENOSPC) {
/* Stop if we are out of resources */
break;
}
if (err) {
continue;
}
/* Offload succeeded; delete it from the kernel datapath */
udpif_flow_unprogram(udpif, flow, DPIF_OFFLOAD_NEVER);
/* Change the state of the flow, adjust dpif counters */
flow->offloaded = true;
udpif_set_ukey_backlog_packets(flow);
count++;
}
return count;
}
/* Remove flows from offloaded array during rebalancing */
static void
rebalance_remove_offloaded(struct udpif *udpif,
struct udpif_key **offloaded_flows,
int offload_count)
{
for (int i = 0; i < offload_count; i++) {
struct udpif_key *flow = offloaded_flows[i];
int err;
/* Install the flow into kernel path first */
err = udpif_flow_program(udpif, flow, DPIF_OFFLOAD_NEVER);
if (err) {
continue;
}
/* Success; now remove offloaded flow from netdev */
err = udpif_flow_unprogram(udpif, flow, DPIF_OFFLOAD_ALWAYS);
if (err) {
udpif_flow_unprogram(udpif, flow, DPIF_OFFLOAD_NEVER);
continue;
}
udpif_set_ukey_backlog_packets(flow);
flow->offloaded = false;
}
}
/*
* Rebalance offloaded flows on a netdev that's in OOR state.
*
* The rebalancing is done in two phases. In the first phase, we check if
* the pending flows can be offloaded (if some resources became available
* in the meantime) by trying to offload each pending flow. If all pending
* flows get successfully offloaded, the OOR state is cleared on the netdev
* and there's nothing to rebalance.
*
* If some of the pending flows could not be offloaded, i.e, we still see
* the OOR error, then we move to the second phase of rebalancing. In this
* phase, the rebalancer compares pps-rate of an offloaded flow with the
* least pps-rate with that of a pending flow with the highest pps-rate from
* their respective sorted arrays. If pps-rate of the offloaded flow is less
* than the pps-rate of the pending flow, then it deletes the offloaded flow
* from the HW/netdev and adds it to kernel datapath and then offloads pending
* to HW/netdev. This process is repeated for every pair of offloaded and
* pending flows in the ordered list. The process stops when we encounter an
* offloaded flow that has a higher pps-rate than the corresponding pending
* flow. The entire rebalancing process is repeated in the next iteration.
*/
static bool
rebalance_device(struct udpif *udpif, struct udpif_key **offloaded_flows,
int offload_count, struct udpif_key **pending_flows,
int pending_count)
{
/* Phase 1 */
int num_inserted = rebalance_insert_pending(udpif, pending_flows,
pending_count, pending_count,
0);
if (num_inserted) {
VLOG_DBG("Offload rebalance: Phase1: inserted %d pending flows",
num_inserted);
}
/* Adjust pending array */
pending_flows = &pending_flows[num_inserted];
pending_count -= num_inserted;
if (!pending_count) {
/*
* Successfully offloaded all pending flows. The device
* is no longer in OOR state; done rebalancing this device.
*/
return false;
}
/*
* Phase 2; determine how many offloaded flows to churn.
*/
#define OFFL_REBAL_MAX_CHURN 1024
int churn_count = 0;
while (churn_count < OFFL_REBAL_MAX_CHURN && churn_count < offload_count
&& churn_count < pending_count) {
if (pending_flows[churn_count]->flow_pps_rate <=
offloaded_flows[churn_count]->flow_pps_rate)
break;
churn_count++;
}
if (churn_count) {
VLOG_DBG("Offload rebalance: Phase2: removing %d offloaded flows",
churn_count);
}
/* Bail early if nothing to churn */
if (!churn_count) {
return true;
}
/* Remove offloaded flows */
rebalance_remove_offloaded(udpif, offloaded_flows, churn_count);
/* Adjust offloaded array */
offloaded_flows = &offloaded_flows[churn_count];
offload_count -= churn_count;
/* Replace offloaded flows with pending flows */
num_inserted = rebalance_insert_pending(udpif, pending_flows,
pending_count, churn_count,
offload_count ?
offloaded_flows[0]->flow_pps_rate :
0);
if (num_inserted) {
VLOG_DBG("Offload rebalance: Phase2: inserted %d pending flows",
num_inserted);
}
return true;
}
static struct udpif_key **
udpif_add_oor_flows(struct udpif_key **sort_flows, size_t *total_flow_count,
size_t *alloc_flow_count, struct udpif_key *ukey)
{
if (*total_flow_count >= *alloc_flow_count) {
sort_flows = x2nrealloc(sort_flows, alloc_flow_count, sizeof ukey);
}
sort_flows[(*total_flow_count)++] = ukey;
return sort_flows;
}
/*
* Build sort_flows[] initially with flows that
* reference an 'OOR' netdev as their input port.
*/
static struct udpif_key **
udpif_build_oor_flows(struct udpif_key **sort_flows, size_t *total_flow_count,
size_t *alloc_flow_count, struct udpif_key *ukey,
int *oor_netdev_count)
{
struct netdev *netdev;
int count;
/* Input netdev must be available for the flow */
netdev = ukey->in_netdev;
if (!netdev) {
return sort_flows;
}
/* Is the in-netdev for this flow in OOR state ? */
if (!netdev_get_hw_info(netdev, HW_INFO_TYPE_OOR)) {
ukey_netdev_unref(ukey);
return sort_flows;
}
/* Add the flow to sort_flows[] */
sort_flows = udpif_add_oor_flows(sort_flows, total_flow_count,
alloc_flow_count, ukey);
if (ukey->offloaded) {
count = netdev_get_hw_info(netdev, HW_INFO_TYPE_OFFL_COUNT);
ovs_assert(count >= 0);
if (count++ == 0) {
(*oor_netdev_count)++;
}
netdev_set_hw_info(netdev, HW_INFO_TYPE_OFFL_COUNT, count);
} else {
count = netdev_get_hw_info(netdev, HW_INFO_TYPE_PEND_COUNT);
ovs_assert(count >= 0);
netdev_set_hw_info(netdev, HW_INFO_TYPE_PEND_COUNT, ++count);
}
return sort_flows;
}
/*
* Rebalance offloaded flows on HW netdevs that are in OOR state.
*/
static void
udpif_flow_rebalance(struct udpif *udpif)
{
struct udpif_key **sort_flows = NULL;
size_t alloc_flow_count = 0;
size_t total_flow_count = 0;
int oor_netdev_count = 0;
int offload_index = 0;
int pending_index;
/* Collect flows (offloaded and pending) that reference OOR netdevs */
for (size_t i = 0; i < N_UMAPS; i++) {
struct udpif_key *ukey;
struct umap *umap = &udpif->ukeys[i];
CMAP_FOR_EACH (ukey, cmap_node, &umap->cmap) {
ukey_to_flow_netdev(udpif, ukey);
sort_flows = udpif_build_oor_flows(sort_flows, &total_flow_count,
&alloc_flow_count, ukey,
&oor_netdev_count);
}
}
/* Sort flows by OOR netdevs, state (offloaded/pending) and pps-rate */
qsort(sort_flows, total_flow_count, sizeof(struct udpif_key *),
flow_compare_rebalance);
/*
* We now have flows referencing OOR netdevs, that are sorted. We also
* have a count of offloaded and pending flows on each of the netdevs
* that are in OOR state. Now rebalance each oor-netdev.
*/
while (oor_netdev_count) {
struct netdev *netdev;
int offload_count;
int pending_count;
bool oor;
netdev = sort_flows[offload_index]->in_netdev;
ovs_assert(netdev_get_hw_info(netdev, HW_INFO_TYPE_OOR) == true);
VLOG_DBG("Offload rebalance: netdev: %s is OOR", netdev->name);
offload_count = netdev_get_hw_info(netdev, HW_INFO_TYPE_OFFL_COUNT);
pending_count = netdev_get_hw_info(netdev, HW_INFO_TYPE_PEND_COUNT);
pending_index = offload_index + offload_count;
oor = rebalance_device(udpif,
&sort_flows[offload_index], offload_count,
&sort_flows[pending_index], pending_count);
netdev_set_hw_info(netdev, HW_INFO_TYPE_OOR, oor);
offload_index = pending_index + pending_count;
netdev_set_hw_info(netdev, HW_INFO_TYPE_OFFL_COUNT, 0);
netdev_set_hw_info(netdev, HW_INFO_TYPE_PEND_COUNT, 0);
oor_netdev_count--;
}
for (int i = 0; i < total_flow_count; i++) {
struct udpif_key *ukey = sort_flows[i];
ukey_netdev_unref(ukey);
}
free(sort_flows);
}
static int
udpif_flow_program(struct udpif *udpif, struct udpif_key *ukey,
enum dpif_offload_type offload_type)
{
struct dpif_op *opsp;
struct ukey_op uop;
opsp = &uop.dop;
put_op_init(&uop, ukey, DPIF_FP_CREATE);
dpif_operate(udpif->dpif, &opsp, 1, offload_type);
return opsp->error;
}
static int
udpif_flow_unprogram(struct udpif *udpif, struct udpif_key *ukey,
enum dpif_offload_type offload_type)
{
struct dpif_op *opsp;
struct ukey_op uop;
opsp = &uop.dop;
delete_op_init(udpif, &uop, ukey);
dpif_operate(udpif->dpif, &opsp, 1, offload_type);
return opsp->error;
}