2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-28 21:07:47 +00:00
ovs/lib/timeval.c
Gurucharan Shetty 8661af7986 timeval: Provide a variation for time/warp command.
The new command is of the form 'time/warp LARGE_MSECS MSECS'.
It advances the current monotonic time by LARGE_MSECS. This is done MSECS
at a time in each run of the main thread. This gives other threads
time to run after the clock has been advanced by MSECS.

The old command would continue to work.

Rationale: On Windows, process creation is slower. When we have tests
that run 'ovs-appctl time/warp MSECS' hundreds of times in a for loop,
the time it takes to complete the test increases. This is specially
true for bfd tests. For e.g, the 11 bfd tests would take 3.5 minutes
to complete before this change and now takes a little less than 2 minutes.

Signed-off-by: Gurucharan Shetty <gshetty@nicira.com>
Acked-by: Ben Pfaff <blp@nicira.com>
2014-06-13 11:31:17 -07:00

794 lines
22 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "timeval.h"
#include <errno.h>
#include <poll.h>
#include <pthread.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <unistd.h>
#include "coverage.h"
#include "dummy.h"
#include "dynamic-string.h"
#include "fatal-signal.h"
#include "hash.h"
#include "hmap.h"
#include "ovs-rcu.h"
#include "ovs-thread.h"
#include "signals.h"
#include "seq.h"
#include "unixctl.h"
#include "util.h"
#include "vlog.h"
VLOG_DEFINE_THIS_MODULE(timeval);
#ifdef _WIN32
typedef unsigned int clockid_t;
#ifndef CLOCK_MONOTONIC
#define CLOCK_MONOTONIC 1
#endif
#ifndef CLOCK_REALTIME
#define CLOCK_REALTIME 2
#endif
/* Number of 100 ns intervals from January 1, 1601 till January 1, 1970. */
static ULARGE_INTEGER unix_epoch;
#endif /* _WIN32 */
/* Structure set by unixctl time/warp command. */
struct large_warp {
struct unixctl_conn *conn; /* Connection waiting for warp response. */
long long int total_warp; /* Total offset to be added to monotonic time. */
long long int warp; /* 'total_warp' offset done in steps of 'warp'. */
unsigned int main_thread_id; /* Identification for the main thread. */
};
struct clock {
clockid_t id; /* CLOCK_MONOTONIC or CLOCK_REALTIME. */
/* Features for use by unit tests. Protected by 'mutex'. */
struct ovs_mutex mutex;
atomic_bool slow_path; /* True if warped or stopped. */
struct timespec warp OVS_GUARDED; /* Offset added for unit tests. */
bool stopped OVS_GUARDED; /* Disable real-time updates if true. */
struct timespec cache OVS_GUARDED; /* Last time read from kernel. */
struct large_warp large_warp OVS_GUARDED; /* Connection information waiting
for warp response. */
};
/* Our clocks. */
static struct clock monotonic_clock; /* CLOCK_MONOTONIC, if available. */
static struct clock wall_clock; /* CLOCK_REALTIME. */
/* The monotonic time at which the time module was initialized. */
static long long int boot_time;
/* True only when timeval_dummy_register() is called. */
static bool timewarp_enabled;
/* Reference to the seq struct. Threads other than main thread can
* wait on timewarp_seq and be waken up when time is warped. */
static struct seq *timewarp_seq;
/* Last value of 'timewarp_seq'. */
DEFINE_STATIC_PER_THREAD_DATA(uint64_t, last_seq, 0);
/* Monotonic time in milliseconds at which to die with SIGALRM (if not
* LLONG_MAX). */
static long long int deadline = LLONG_MAX;
/* Monotonic time, in milliseconds, at which the last call to time_poll() woke
* up. */
DEFINE_STATIC_PER_THREAD_DATA(long long int, last_wakeup, 0);
static void log_poll_interval(long long int last_wakeup);
static struct rusage *get_recent_rusage(void);
static void refresh_rusage(void);
static void timespec_add(struct timespec *sum,
const struct timespec *a, const struct timespec *b);
static void
init_clock(struct clock *c, clockid_t id)
{
memset(c, 0, sizeof *c);
c->id = id;
ovs_mutex_init(&c->mutex);
atomic_init(&c->slow_path, false);
xclock_gettime(c->id, &c->cache);
timewarp_seq = seq_create();
memset(&c->large_warp, 0, sizeof(c->large_warp));
}
static void
do_init_time(void)
{
struct timespec ts;
#ifdef _WIN32
/* Calculate number of 100-nanosecond intervals till 01/01/1970. */
SYSTEMTIME unix_epoch_st = { 1970, 1, 0, 1, 0, 0, 0, 0};
FILETIME unix_epoch_ft;
SystemTimeToFileTime(&unix_epoch_st, &unix_epoch_ft);
unix_epoch.LowPart = unix_epoch_ft.dwLowDateTime;
unix_epoch.HighPart = unix_epoch_ft.dwHighDateTime;
#endif
coverage_init();
init_clock(&monotonic_clock, (!clock_gettime(CLOCK_MONOTONIC, &ts)
? CLOCK_MONOTONIC
: CLOCK_REALTIME));
init_clock(&wall_clock, CLOCK_REALTIME);
boot_time = timespec_to_msec(&monotonic_clock.cache);
}
/* Initializes the timetracking module, if not already initialized. */
static void
time_init(void)
{
static pthread_once_t once = PTHREAD_ONCE_INIT;
pthread_once(&once, do_init_time);
}
static void
time_timespec__(struct clock *c, struct timespec *ts)
{
bool slow_path;
time_init();
atomic_read_explicit(&c->slow_path, &slow_path, memory_order_relaxed);
if (!slow_path) {
xclock_gettime(c->id, ts);
} else {
struct timespec warp;
struct timespec cache;
bool stopped;
ovs_mutex_lock(&c->mutex);
stopped = c->stopped;
warp = c->warp;
cache = c->cache;
ovs_mutex_unlock(&c->mutex);
if (!stopped) {
xclock_gettime(c->id, &cache);
}
timespec_add(ts, &cache, &warp);
}
}
/* Stores a monotonic timer, accurate within TIME_UPDATE_INTERVAL ms, into
* '*ts'. */
void
time_timespec(struct timespec *ts)
{
time_timespec__(&monotonic_clock, ts);
}
/* Stores the current time, accurate within TIME_UPDATE_INTERVAL ms, into
* '*ts'. */
void
time_wall_timespec(struct timespec *ts)
{
time_timespec__(&wall_clock, ts);
}
static time_t
time_sec__(struct clock *c)
{
struct timespec ts;
time_timespec__(c, &ts);
return ts.tv_sec;
}
/* Returns a monotonic timer, in seconds. */
time_t
time_now(void)
{
return time_sec__(&monotonic_clock);
}
/* Returns the current time, in seconds. */
time_t
time_wall(void)
{
return time_sec__(&wall_clock);
}
static long long int
time_msec__(struct clock *c)
{
struct timespec ts;
time_timespec__(c, &ts);
return timespec_to_msec(&ts);
}
/* Returns a monotonic timer, in ms (within TIME_UPDATE_INTERVAL ms). */
long long int
time_msec(void)
{
return time_msec__(&monotonic_clock);
}
/* Returns the current time, in ms (within TIME_UPDATE_INTERVAL ms). */
long long int
time_wall_msec(void)
{
return time_msec__(&wall_clock);
}
/* Configures the program to die with SIGALRM 'secs' seconds from now, if
* 'secs' is nonzero, or disables the feature if 'secs' is zero. */
void
time_alarm(unsigned int secs)
{
long long int now;
long long int msecs;
assert_single_threaded();
time_init();
now = time_msec();
msecs = secs * 1000LL;
deadline = now < LLONG_MAX - msecs ? now + msecs : LLONG_MAX;
}
/* Like poll(), except:
*
* - The timeout is specified as an absolute time, as defined by
* time_msec(), instead of a duration.
*
* - On error, returns a negative error code (instead of setting errno).
*
* - If interrupted by a signal, retries automatically until the original
* timeout is reached. (Because of this property, this function will
* never return -EINTR.)
*
* Stores the number of milliseconds elapsed during poll in '*elapsed'. */
int
time_poll(struct pollfd *pollfds, int n_pollfds, HANDLE *handles OVS_UNUSED,
long long int timeout_when, int *elapsed)
{
long long int *last_wakeup = last_wakeup_get();
long long int start;
bool quiescent;
int retval = 0;
time_init();
coverage_clear();
coverage_run();
if (*last_wakeup) {
log_poll_interval(*last_wakeup);
}
start = time_msec();
timeout_when = MIN(timeout_when, deadline);
quiescent = ovsrcu_is_quiescent();
for (;;) {
long long int now = time_msec();
int time_left;
if (now >= timeout_when) {
time_left = 0;
} else if ((unsigned long long int) timeout_when - now > INT_MAX) {
time_left = INT_MAX;
} else {
time_left = timeout_when - now;
}
if (!quiescent) {
if (!time_left) {
ovsrcu_quiesce();
} else {
ovsrcu_quiesce_start();
}
}
#ifndef _WIN32
retval = poll(pollfds, n_pollfds, time_left);
if (retval < 0) {
retval = -errno;
}
#else
if (n_pollfds > MAXIMUM_WAIT_OBJECTS) {
VLOG_ERR("Cannot handle more than maximum wait objects\n");
} else if (n_pollfds != 0) {
retval = WaitForMultipleObjects(n_pollfds, handles, FALSE,
time_left);
}
if (retval < 0) {
/* XXX This will be replace by a win error to errno
conversion function */
retval = -WSAGetLastError();
retval = -EINVAL;
}
#endif
if (!quiescent && time_left) {
ovsrcu_quiesce_end();
}
if (deadline <= time_msec()) {
#ifndef _WIN32
fatal_signal_handler(SIGALRM);
#else
VLOG_ERR("wake up from WaitForMultipleObjects after deadline");
fatal_signal_handler(SIGTERM);
#endif
if (retval < 0) {
retval = 0;
}
break;
}
if (retval != -EINTR) {
break;
}
}
*last_wakeup = time_msec();
refresh_rusage();
*elapsed = *last_wakeup - start;
return retval;
}
long long int
timespec_to_msec(const struct timespec *ts)
{
return (long long int) ts->tv_sec * 1000 + ts->tv_nsec / (1000 * 1000);
}
long long int
timeval_to_msec(const struct timeval *tv)
{
return (long long int) tv->tv_sec * 1000 + tv->tv_usec / 1000;
}
/* Returns the monotonic time at which the "time" module was initialized, in
* milliseconds. */
long long int
time_boot_msec(void)
{
time_init();
return boot_time;
}
#ifdef _WIN32
static ULARGE_INTEGER
xgetfiletime(void)
{
ULARGE_INTEGER current_time;
FILETIME current_time_ft;
/* Returns current time in UTC as a 64-bit value representing the number
* of 100-nanosecond intervals since January 1, 1601 . */
GetSystemTimePreciseAsFileTime(&current_time_ft);
current_time.LowPart = current_time_ft.dwLowDateTime;
current_time.HighPart = current_time_ft.dwHighDateTime;
return current_time;
}
static int
clock_gettime(clock_t id, struct timespec *ts)
{
if (id == CLOCK_MONOTONIC) {
static LARGE_INTEGER freq;
LARGE_INTEGER count;
long long int ns;
if (!freq.QuadPart) {
/* Number of counts per second. */
QueryPerformanceFrequency(&freq);
}
/* Total number of counts from a starting point. */
QueryPerformanceCounter(&count);
/* Total nano seconds from a starting point. */
ns = (double) count.QuadPart / freq.QuadPart * 1000000000;
ts->tv_sec = count.QuadPart / freq.QuadPart;
ts->tv_nsec = ns % 1000000000;
} else if (id == CLOCK_REALTIME) {
ULARGE_INTEGER current_time = xgetfiletime();
/* Time from Epoch to now. */
ts->tv_sec = (current_time.QuadPart - unix_epoch.QuadPart) / 10000000;
ts->tv_nsec = ((current_time.QuadPart - unix_epoch.QuadPart) %
10000000) * 100;
} else {
return -1;
}
}
#endif /* _WIN32 */
void
xgettimeofday(struct timeval *tv)
{
#ifndef _WIN32
if (gettimeofday(tv, NULL) == -1) {
VLOG_FATAL("gettimeofday failed (%s)", ovs_strerror(errno));
}
#else
ULARGE_INTEGER current_time = xgetfiletime();
tv->tv_sec = (current_time.QuadPart - unix_epoch.QuadPart) / 10000000;
tv->tv_usec = ((current_time.QuadPart - unix_epoch.QuadPart) %
10000000) / 10;
#endif
}
void
xclock_gettime(clock_t id, struct timespec *ts)
{
if (clock_gettime(id, ts) == -1) {
/* It seems like a bad idea to try to use vlog here because it is
* likely to try to check the current time. */
ovs_abort(errno, "xclock_gettime() failed");
}
}
static void
msec_to_timespec(long long int ms, struct timespec *ts)
{
ts->tv_sec = ms / 1000;
ts->tv_nsec = (ms % 1000) * 1000 * 1000;
}
static void
timewarp_work(void)
{
struct clock *c = &monotonic_clock;
struct timespec warp;
ovs_mutex_lock(&c->mutex);
if (!c->large_warp.conn) {
ovs_mutex_unlock(&c->mutex);
return;
}
if (c->large_warp.total_warp >= c->large_warp.warp) {
msec_to_timespec(c->large_warp.warp, &warp);
timespec_add(&c->warp, &c->warp, &warp);
c->large_warp.total_warp -= c->large_warp.warp;
} else if (c->large_warp.total_warp) {
msec_to_timespec(c->large_warp.total_warp, &warp);
timespec_add(&c->warp, &c->warp, &warp);
c->large_warp.total_warp = 0;
} else {
/* c->large_warp.total_warp is 0. */
msec_to_timespec(c->large_warp.warp, &warp);
timespec_add(&c->warp, &c->warp, &warp);
}
if (!c->large_warp.total_warp) {
unixctl_command_reply(c->large_warp.conn, "warped");
c->large_warp.conn = NULL;
}
ovs_mutex_unlock(&c->mutex);
seq_change(timewarp_seq);
/* give threads (eg. monitor) some chances to run */
#ifndef _WIN32
poll(NULL, 0, 10);
#else
Sleep(10);
#endif
}
/* Perform work needed for "timewarp_seq"'s producer and consumers. */
void
timewarp_run(void)
{
/* The function is a no-op unless timeval_dummy_register() is called. */
if (timewarp_enabled) {
unsigned int thread_id;
ovs_mutex_lock(&monotonic_clock.mutex);
thread_id = monotonic_clock.large_warp.main_thread_id;
ovs_mutex_unlock(&monotonic_clock.mutex);
if (thread_id != ovsthread_id_self()) {
/* For threads other than the thread that changes the sequence,
* wait on it. */
uint64_t *last_seq = last_seq_get();
*last_seq = seq_read(timewarp_seq);
seq_wait(timewarp_seq, *last_seq);
} else {
/* Work on adding the remaining warps. */
timewarp_work();
}
}
}
static long long int
timeval_diff_msec(const struct timeval *a, const struct timeval *b)
{
return timeval_to_msec(a) - timeval_to_msec(b);
}
static void
timespec_add(struct timespec *sum,
const struct timespec *a,
const struct timespec *b)
{
struct timespec tmp;
tmp.tv_sec = a->tv_sec + b->tv_sec;
tmp.tv_nsec = a->tv_nsec + b->tv_nsec;
if (tmp.tv_nsec >= 1000 * 1000 * 1000) {
tmp.tv_nsec -= 1000 * 1000 * 1000;
tmp.tv_sec++;
}
*sum = tmp;
}
static bool
is_warped(const struct clock *c)
{
bool warped;
ovs_mutex_lock(&c->mutex);
warped = monotonic_clock.warp.tv_sec || monotonic_clock.warp.tv_nsec;
ovs_mutex_unlock(&c->mutex);
return warped;
}
static void
log_poll_interval(long long int last_wakeup)
{
long long int interval = time_msec() - last_wakeup;
if (interval >= 1000 && !is_warped(&monotonic_clock)) {
const struct rusage *last_rusage = get_recent_rusage();
struct rusage rusage;
getrusage(RUSAGE_SELF, &rusage);
VLOG_WARN("Unreasonably long %lldms poll interval"
" (%lldms user, %lldms system)",
interval,
timeval_diff_msec(&rusage.ru_utime,
&last_rusage->ru_utime),
timeval_diff_msec(&rusage.ru_stime,
&last_rusage->ru_stime));
if (rusage.ru_minflt > last_rusage->ru_minflt
|| rusage.ru_majflt > last_rusage->ru_majflt) {
VLOG_WARN("faults: %ld minor, %ld major",
rusage.ru_minflt - last_rusage->ru_minflt,
rusage.ru_majflt - last_rusage->ru_majflt);
}
if (rusage.ru_inblock > last_rusage->ru_inblock
|| rusage.ru_oublock > last_rusage->ru_oublock) {
VLOG_WARN("disk: %ld reads, %ld writes",
rusage.ru_inblock - last_rusage->ru_inblock,
rusage.ru_oublock - last_rusage->ru_oublock);
}
if (rusage.ru_nvcsw > last_rusage->ru_nvcsw
|| rusage.ru_nivcsw > last_rusage->ru_nivcsw) {
VLOG_WARN("context switches: %ld voluntary, %ld involuntary",
rusage.ru_nvcsw - last_rusage->ru_nvcsw,
rusage.ru_nivcsw - last_rusage->ru_nivcsw);
}
coverage_log();
}
}
/* CPU usage tracking. */
struct cpu_usage {
long long int when; /* Time that this sample was taken. */
unsigned long long int cpu; /* Total user+system CPU usage when sampled. */
};
struct cpu_tracker {
struct cpu_usage older;
struct cpu_usage newer;
int cpu_usage;
struct rusage recent_rusage;
};
DEFINE_PER_THREAD_MALLOCED_DATA(struct cpu_tracker *, cpu_tracker_var);
static struct cpu_tracker *
get_cpu_tracker(void)
{
struct cpu_tracker *t = cpu_tracker_var_get();
if (!t) {
t = xzalloc(sizeof *t);
t->older.when = LLONG_MIN;
t->newer.when = LLONG_MIN;
cpu_tracker_var_set_unsafe(t);
}
return t;
}
static struct rusage *
get_recent_rusage(void)
{
return &get_cpu_tracker()->recent_rusage;
}
static int
getrusage_thread(struct rusage *rusage OVS_UNUSED)
{
#ifdef RUSAGE_THREAD
return getrusage(RUSAGE_THREAD, rusage);
#else
errno = EINVAL;
return -1;
#endif
}
static void
refresh_rusage(void)
{
struct cpu_tracker *t = get_cpu_tracker();
struct rusage *recent_rusage = &t->recent_rusage;
if (!getrusage_thread(recent_rusage)) {
long long int now = time_msec();
if (now >= t->newer.when + 3 * 1000) {
t->older = t->newer;
t->newer.when = now;
t->newer.cpu = (timeval_to_msec(&recent_rusage->ru_utime) +
timeval_to_msec(&recent_rusage->ru_stime));
if (t->older.when != LLONG_MIN && t->newer.cpu > t->older.cpu) {
unsigned int dividend = t->newer.cpu - t->older.cpu;
unsigned int divisor = (t->newer.when - t->older.when) / 100;
t->cpu_usage = divisor > 0 ? dividend / divisor : -1;
} else {
t->cpu_usage = -1;
}
}
}
}
/* Returns an estimate of this process's CPU usage, as a percentage, over the
* past few seconds of wall-clock time. Returns -1 if no estimate is available
* (which will happen if the process has not been running long enough to have
* an estimate, and can happen for other reasons as well). */
int
get_cpu_usage(void)
{
return get_cpu_tracker()->cpu_usage;
}
/* Unixctl interface. */
/* "time/stop" stops the monotonic time returned by e.g. time_msec() from
* advancing, except due to later calls to "time/warp". */
static void
timeval_stop_cb(struct unixctl_conn *conn,
int argc OVS_UNUSED, const char *argv[] OVS_UNUSED,
void *aux OVS_UNUSED)
{
ovs_mutex_lock(&monotonic_clock.mutex);
atomic_store(&monotonic_clock.slow_path, true);
monotonic_clock.stopped = true;
xclock_gettime(monotonic_clock.id, &monotonic_clock.cache);
ovs_mutex_unlock(&monotonic_clock.mutex);
unixctl_command_reply(conn, NULL);
}
/* "time/warp MSECS" advances the current monotonic time by the specified
* number of milliseconds. Unless "time/stop" has also been executed, the
* monotonic clock continues to tick forward at the normal rate afterward.
*
* "time/warp LARGE_MSECS MSECS" is a variation of the above command. It
* advances the current monotonic time by LARGE_MSECS. This is done MSECS
* at a time in each run of the main thread. This gives other threads
* time to run after the clock has been advanced by MSECS.
*
* Does not affect wall clock readings. */
static void
timeval_warp_cb(struct unixctl_conn *conn,
int argc OVS_UNUSED, const char *argv[], void *aux OVS_UNUSED)
{
long long int total_warp = argc > 2 ? atoll(argv[1]) : 0;
long long int msecs = argc > 2 ? atoll(argv[2]) : atoll(argv[1]);
if (msecs <= 0 || total_warp < 0) {
unixctl_command_reply_error(conn, "invalid MSECS");
return;
}
ovs_mutex_lock(&monotonic_clock.mutex);
if (monotonic_clock.large_warp.conn) {
ovs_mutex_unlock(&monotonic_clock.mutex);
unixctl_command_reply_error(conn, "A previous warp in progress");
return;
}
atomic_store(&monotonic_clock.slow_path, true);
monotonic_clock.large_warp.conn = conn;
monotonic_clock.large_warp.total_warp = total_warp;
monotonic_clock.large_warp.warp = msecs;
monotonic_clock.large_warp.main_thread_id = ovsthread_id_self();
ovs_mutex_unlock(&monotonic_clock.mutex);
timewarp_work();
}
void
timeval_dummy_register(void)
{
timewarp_enabled = true;
unixctl_command_register("time/stop", "", 0, 0, timeval_stop_cb, NULL);
unixctl_command_register("time/warp", "[LARGE_MSECS] MSECS", 1, 2,
timeval_warp_cb, NULL);
}
/* strftime() with an extension for high-resolution timestamps. Any '#'s in
* 'format' will be replaced by subseconds, e.g. use "%S.###" to obtain results
* like "01.123". */
size_t
strftime_msec(char *s, size_t max, const char *format,
const struct tm_msec *tm)
{
size_t n;
/* Visual Studio 2013's behavior is to crash when 0 is passed as second
* argument to strftime. */
n = max ? strftime(s, max, format, &tm->tm) : 0;
if (n) {
char decimals[4];
char *p;
sprintf(decimals, "%03d", tm->msec);
for (p = strchr(s, '#'); p; p = strchr(p, '#')) {
char *d = decimals;
while (*p == '#') {
*p++ = *d ? *d++ : '0';
}
}
}
return n;
}
struct tm_msec *
localtime_msec(long long int now, struct tm_msec *result)
{
time_t now_sec = now / 1000;
localtime_r(&now_sec, &result->tm);
result->msec = now % 1000;
return result;
}
struct tm_msec *
gmtime_msec(long long int now, struct tm_msec *result)
{
time_t now_sec = now / 1000;
gmtime_r(&now_sec, &result->tm);
result->msec = now % 1000;
return result;
}