mirror of
https://github.com/openvswitch/ovs
synced 2025-08-22 01:51:26 +00:00
Flagging packets with IP version is only needed at the netdev-dpdk level. In most cases, OVS is already inspecting the IP header in packet data, so maintaining such IP version metadata won't save much cycles (given the cost of additional branches necessary for handling outer/inner flags). Cleanup OVS shared code and only set these flags in netdev-dpdk.c. Signed-off-by: David Marchand <david.marchand@redhat.com> Signed-off-by: Ilya Maximets <i.maximets@ovn.org>
2098 lines
64 KiB
C
2098 lines
64 KiB
C
/*
|
|
* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at:
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include "packets.h"
|
|
#include <sys/types.h>
|
|
#include <netinet/in.h>
|
|
#include <arpa/inet.h>
|
|
#include <sys/socket.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet/icmp6.h>
|
|
#include <stdlib.h>
|
|
#include <netdb.h>
|
|
#include "byte-order.h"
|
|
#include "csum.h"
|
|
#include "crc32c.h"
|
|
#include "flow.h"
|
|
#include "openvswitch/hmap.h"
|
|
#include "openvswitch/dynamic-string.h"
|
|
#include "ovs-thread.h"
|
|
#include "odp-util.h"
|
|
#include "dp-packet.h"
|
|
#include "unaligned.h"
|
|
|
|
const struct in6_addr in6addr_exact = IN6ADDR_EXACT_INIT;
|
|
const struct in6_addr in6addr_all_hosts = IN6ADDR_ALL_HOSTS_INIT;
|
|
const struct in6_addr in6addr_all_routers = IN6ADDR_ALL_ROUTERS_INIT;
|
|
|
|
struct in6_addr
|
|
flow_tnl_dst(const struct flow_tnl *tnl)
|
|
{
|
|
return tnl->ip_dst ? in6_addr_mapped_ipv4(tnl->ip_dst) : tnl->ipv6_dst;
|
|
}
|
|
|
|
struct in6_addr
|
|
flow_tnl_src(const struct flow_tnl *tnl)
|
|
{
|
|
return tnl->ip_src ? in6_addr_mapped_ipv4(tnl->ip_src) : tnl->ipv6_src;
|
|
}
|
|
|
|
/* Returns true if 's' consists entirely of hex digits, false otherwise. */
|
|
static bool
|
|
is_all_hex(const char *s)
|
|
{
|
|
return s[strspn(s, "0123456789abcdefABCDEF")] == '\0';
|
|
}
|
|
|
|
/* Parses 's' as a 16-digit hexadecimal number representing a datapath ID. On
|
|
* success stores the dpid into '*dpidp' and returns true, on failure stores 0
|
|
* into '*dpidp' and returns false.
|
|
*
|
|
* Rejects an all-zeros dpid as invalid. */
|
|
bool
|
|
dpid_from_string(const char *s, uint64_t *dpidp)
|
|
{
|
|
size_t len = strlen(s);
|
|
*dpidp = ((len == 16 && is_all_hex(s))
|
|
|| (len <= 18 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')
|
|
&& is_all_hex(s + 2))
|
|
? strtoull(s, NULL, 16)
|
|
: 0);
|
|
return *dpidp != 0;
|
|
}
|
|
|
|
uint64_t
|
|
eth_addr_to_uint64(const struct eth_addr ea)
|
|
{
|
|
return (((uint64_t) ntohs(ea.be16[0]) << 32)
|
|
| ((uint64_t) ntohs(ea.be16[1]) << 16)
|
|
| ntohs(ea.be16[2]));
|
|
}
|
|
|
|
void
|
|
eth_addr_from_uint64(uint64_t x, struct eth_addr *ea)
|
|
{
|
|
ea->be16[0] = htons(x >> 32);
|
|
ea->be16[1] = htons((x & 0xFFFF0000) >> 16);
|
|
ea->be16[2] = htons(x & 0xFFFF);
|
|
}
|
|
|
|
void
|
|
eth_addr_mark_random(struct eth_addr *ea)
|
|
{
|
|
ea->ea[0] &= ~1; /* Unicast. */
|
|
ea->ea[0] |= 2; /* Private. */
|
|
}
|
|
|
|
/* Returns true if 'ea' is a reserved address, that a bridge must never
|
|
* forward, false otherwise.
|
|
*
|
|
* If you change this function's behavior, please update corresponding
|
|
* documentation in vswitch.xml at the same time. */
|
|
bool
|
|
eth_addr_is_reserved(const struct eth_addr ea)
|
|
{
|
|
struct eth_addr_node {
|
|
struct hmap_node hmap_node;
|
|
const uint64_t ea64;
|
|
};
|
|
|
|
static struct eth_addr_node nodes[] = {
|
|
/* STP, IEEE pause frames, and other reserved protocols. */
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000000ULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000001ULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000002ULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000003ULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000004ULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000005ULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000006ULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000007ULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000008ULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000009ULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c200000aULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c200000bULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c200000cULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c200000dULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c200000eULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c200000fULL },
|
|
|
|
/* Extreme protocols. */
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x00e02b000000ULL }, /* EDP. */
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x00e02b000004ULL }, /* EAPS. */
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x00e02b000006ULL }, /* EAPS. */
|
|
|
|
/* Cisco protocols. */
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x01000c000000ULL }, /* ISL. */
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccccULL }, /* PAgP, UDLD, CDP,
|
|
* DTP, VTP. */
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x01000ccccccdULL }, /* PVST+. */
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x01000ccdcdcdULL }, /* STP Uplink Fast,
|
|
* FlexLink. */
|
|
|
|
/* Cisco CFM. */
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc0ULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc1ULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc2ULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc3ULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc4ULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc5ULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc6ULL },
|
|
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc7ULL },
|
|
};
|
|
|
|
static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
|
|
struct eth_addr_node *node;
|
|
static struct hmap addrs;
|
|
uint64_t ea64;
|
|
|
|
if (ovsthread_once_start(&once)) {
|
|
hmap_init(&addrs);
|
|
for (node = nodes; node < &nodes[ARRAY_SIZE(nodes)]; node++) {
|
|
hmap_insert(&addrs, &node->hmap_node, hash_uint64(node->ea64));
|
|
}
|
|
ovsthread_once_done(&once);
|
|
}
|
|
|
|
ea64 = eth_addr_to_uint64(ea);
|
|
HMAP_FOR_EACH_IN_BUCKET (node, hmap_node, hash_uint64(ea64), &addrs) {
|
|
if (node->ea64 == ea64) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Attempts to parse 's' as an Ethernet address. If successful, stores the
|
|
* address in 'ea' and returns true, otherwise zeros 'ea' and returns
|
|
* false. This function checks trailing characters. */
|
|
bool
|
|
eth_addr_from_string(const char *s, struct eth_addr *ea)
|
|
{
|
|
int n = 0;
|
|
if (ovs_scan(s, ETH_ADDR_SCAN_FMT"%n", ETH_ADDR_SCAN_ARGS(*ea), &n)
|
|
&& !s[n]) {
|
|
return true;
|
|
} else {
|
|
*ea = eth_addr_zero;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Fills 'b' with a Reverse ARP packet with Ethernet source address 'eth_src'.
|
|
* This function is used by Open vSwitch to compose packets in cases where
|
|
* context is important but content doesn't (or shouldn't) matter.
|
|
*
|
|
* The returned packet has enough headroom to insert an 802.1Q VLAN header if
|
|
* desired. */
|
|
void
|
|
compose_rarp(struct dp_packet *b, const struct eth_addr eth_src)
|
|
{
|
|
struct eth_header *eth;
|
|
struct arp_eth_header *arp;
|
|
|
|
dp_packet_clear(b);
|
|
dp_packet_prealloc_tailroom(b, 2 + ETH_HEADER_LEN + VLAN_HEADER_LEN
|
|
+ ARP_ETH_HEADER_LEN);
|
|
dp_packet_reserve(b, 2 + VLAN_HEADER_LEN);
|
|
eth = dp_packet_put_uninit(b, sizeof *eth);
|
|
eth->eth_dst = eth_addr_broadcast;
|
|
eth->eth_src = eth_src;
|
|
eth->eth_type = htons(ETH_TYPE_RARP);
|
|
|
|
arp = dp_packet_put_uninit(b, sizeof *arp);
|
|
arp->ar_hrd = htons(ARP_HRD_ETHERNET);
|
|
arp->ar_pro = htons(ARP_PRO_IP);
|
|
arp->ar_hln = sizeof arp->ar_sha;
|
|
arp->ar_pln = sizeof arp->ar_spa;
|
|
arp->ar_op = htons(ARP_OP_RARP);
|
|
arp->ar_sha = eth_src;
|
|
put_16aligned_be32(&arp->ar_spa, htonl(0));
|
|
arp->ar_tha = eth_src;
|
|
put_16aligned_be32(&arp->ar_tpa, htonl(0));
|
|
|
|
dp_packet_set_l3(b, arp);
|
|
b->packet_type = htonl(PT_ETH);
|
|
}
|
|
|
|
/* Insert VLAN header according to given TCI. Packet passed must be Ethernet
|
|
* packet. Ignores the CFI bit of 'tci' using 0 instead.
|
|
*
|
|
* Also adjusts the layer offsets accordingly. */
|
|
void
|
|
eth_push_vlan(struct dp_packet *packet, ovs_be16 tpid, ovs_be16 tci)
|
|
{
|
|
struct vlan_eth_header *veh;
|
|
|
|
/* Insert new 802.1Q header. */
|
|
veh = dp_packet_resize_l2(packet, VLAN_HEADER_LEN);
|
|
memmove(veh, (char *)veh + VLAN_HEADER_LEN, 2 * ETH_ADDR_LEN);
|
|
veh->veth_type = tpid;
|
|
veh->veth_tci = tci & htons(~VLAN_CFI);
|
|
}
|
|
|
|
/* Removes outermost VLAN header (if any is present) from 'packet'.
|
|
*
|
|
* 'packet->l2_5' should initially point to 'packet''s outer-most VLAN header
|
|
* or may be NULL if there are no VLAN headers. */
|
|
void
|
|
eth_pop_vlan(struct dp_packet *packet)
|
|
{
|
|
struct vlan_eth_header *veh = dp_packet_eth(packet);
|
|
|
|
if (veh && dp_packet_size(packet) >= sizeof *veh
|
|
&& eth_type_vlan(veh->veth_type)) {
|
|
|
|
memmove((char *)veh + VLAN_HEADER_LEN, veh, 2 * ETH_ADDR_LEN);
|
|
dp_packet_resize_l2(packet, -VLAN_HEADER_LEN);
|
|
}
|
|
}
|
|
|
|
/* Push Ethernet header onto 'packet' assuming it is layer 3 */
|
|
void
|
|
push_eth(struct dp_packet *packet, const struct eth_addr *dst,
|
|
const struct eth_addr *src)
|
|
{
|
|
struct eth_header *eh;
|
|
|
|
ovs_assert(!dp_packet_is_eth(packet));
|
|
eh = dp_packet_resize_l2(packet, ETH_HEADER_LEN);
|
|
eh->eth_dst = *dst;
|
|
eh->eth_src = *src;
|
|
eh->eth_type = pt_ns_type_be(packet->packet_type);
|
|
packet->packet_type = htonl(PT_ETH);
|
|
}
|
|
|
|
/* Removes Ethernet header, including VLAN header, from 'packet'.
|
|
*
|
|
* Previous to calling this function, 'ofpbuf_l3(packet)' must not be NULL */
|
|
void
|
|
pop_eth(struct dp_packet *packet)
|
|
{
|
|
char *l2_5 = dp_packet_l2_5(packet);
|
|
char *l3 = dp_packet_l3(packet);
|
|
ovs_be16 ethertype;
|
|
int increment;
|
|
|
|
ovs_assert(dp_packet_is_eth(packet));
|
|
ovs_assert(l3 != NULL);
|
|
|
|
if (l2_5) {
|
|
increment = packet->l2_5_ofs;
|
|
ethertype = *(ALIGNED_CAST(ovs_be16 *, (l2_5 - 2)));
|
|
} else {
|
|
increment = packet->l3_ofs;
|
|
ethertype = *(ALIGNED_CAST(ovs_be16 *, (l3 - 2)));
|
|
}
|
|
|
|
dp_packet_resize_l2(packet, -increment);
|
|
packet->packet_type = PACKET_TYPE_BE(OFPHTN_ETHERTYPE, ntohs(ethertype));
|
|
}
|
|
|
|
/* Set ethertype of the packet. */
|
|
static void
|
|
set_ethertype(struct dp_packet *packet, ovs_be16 eth_type)
|
|
{
|
|
struct eth_header *eh = dp_packet_eth(packet);
|
|
|
|
if (!eh) {
|
|
return;
|
|
}
|
|
|
|
if (eth_type_vlan(eh->eth_type)) {
|
|
ovs_be16 *p;
|
|
char *l2_5 = dp_packet_l2_5(packet);
|
|
|
|
p = ALIGNED_CAST(ovs_be16 *,
|
|
(l2_5 ? l2_5 : (char *)dp_packet_l3(packet)) - 2);
|
|
*p = eth_type;
|
|
} else {
|
|
eh->eth_type = eth_type;
|
|
}
|
|
}
|
|
|
|
static bool is_mpls(struct dp_packet *packet)
|
|
{
|
|
return packet->l2_5_ofs != UINT16_MAX;
|
|
}
|
|
|
|
/* Set time to live (TTL) of an MPLS label stack entry (LSE). */
|
|
void
|
|
set_mpls_lse_ttl(ovs_be32 *lse, uint8_t ttl)
|
|
{
|
|
*lse &= ~htonl(MPLS_TTL_MASK);
|
|
*lse |= htonl((ttl << MPLS_TTL_SHIFT) & MPLS_TTL_MASK);
|
|
}
|
|
|
|
/* Set traffic class (TC) of an MPLS label stack entry (LSE). */
|
|
void
|
|
set_mpls_lse_tc(ovs_be32 *lse, uint8_t tc)
|
|
{
|
|
*lse &= ~htonl(MPLS_TC_MASK);
|
|
*lse |= htonl((tc << MPLS_TC_SHIFT) & MPLS_TC_MASK);
|
|
}
|
|
|
|
/* Set label of an MPLS label stack entry (LSE). */
|
|
void
|
|
set_mpls_lse_label(ovs_be32 *lse, ovs_be32 label)
|
|
{
|
|
*lse &= ~htonl(MPLS_LABEL_MASK);
|
|
*lse |= htonl((ntohl(label) << MPLS_LABEL_SHIFT) & MPLS_LABEL_MASK);
|
|
}
|
|
|
|
/* Set bottom of stack (BoS) bit of an MPLS label stack entry (LSE). */
|
|
void
|
|
set_mpls_lse_bos(ovs_be32 *lse, uint8_t bos)
|
|
{
|
|
*lse &= ~htonl(MPLS_BOS_MASK);
|
|
*lse |= htonl((bos << MPLS_BOS_SHIFT) & MPLS_BOS_MASK);
|
|
}
|
|
|
|
/* Compose an MPLS label stack entry (LSE) from its components:
|
|
* label, traffic class (TC), time to live (TTL) and
|
|
* bottom of stack (BoS) bit. */
|
|
ovs_be32
|
|
set_mpls_lse_values(uint8_t ttl, uint8_t tc, uint8_t bos, ovs_be32 label)
|
|
{
|
|
ovs_be32 lse = htonl(0);
|
|
set_mpls_lse_ttl(&lse, ttl);
|
|
set_mpls_lse_tc(&lse, tc);
|
|
set_mpls_lse_bos(&lse, bos);
|
|
set_mpls_lse_label(&lse, label);
|
|
return lse;
|
|
}
|
|
|
|
/* Set MPLS label stack entry to outermost MPLS header.*/
|
|
void
|
|
set_mpls_lse(struct dp_packet *packet, ovs_be32 mpls_lse)
|
|
{
|
|
/* Packet type should be MPLS to set label stack entry. */
|
|
if (is_mpls(packet)) {
|
|
struct mpls_hdr *mh = dp_packet_l2_5(packet);
|
|
|
|
/* Update mpls label stack entry. */
|
|
put_16aligned_be32(&mh->mpls_lse, mpls_lse);
|
|
}
|
|
}
|
|
|
|
/* Push MPLS label stack entry 'lse' onto 'packet' as the outermost MPLS
|
|
* header. If 'packet' does not already have any MPLS labels, then its
|
|
* Ethertype is changed to 'ethtype' (which must be an MPLS Ethertype). */
|
|
void
|
|
push_mpls(struct dp_packet *packet, ovs_be16 ethtype, ovs_be32 lse)
|
|
{
|
|
char * header;
|
|
size_t len;
|
|
|
|
if (!eth_type_mpls(ethtype)) {
|
|
return;
|
|
}
|
|
|
|
if (!is_mpls(packet)) {
|
|
/* Set MPLS label stack offset. */
|
|
packet->l2_5_ofs = packet->l3_ofs;
|
|
}
|
|
|
|
set_ethertype(packet, ethtype);
|
|
|
|
/* Push new MPLS shim header onto packet. */
|
|
len = packet->l2_5_ofs;
|
|
header = dp_packet_resize_l2_5(packet, MPLS_HLEN);
|
|
memmove(header, header + MPLS_HLEN, len);
|
|
memcpy(header + len, &lse, sizeof lse);
|
|
|
|
pkt_metadata_init_conn(&packet->md);
|
|
}
|
|
|
|
void
|
|
add_mpls(struct dp_packet *packet, ovs_be16 ethtype, ovs_be32 lse,
|
|
bool l3_encap)
|
|
{
|
|
if (!eth_type_mpls(ethtype)) {
|
|
return;
|
|
}
|
|
|
|
if (!l3_encap) {
|
|
struct mpls_hdr *header = dp_packet_resize_l2(packet, MPLS_HLEN);
|
|
|
|
put_16aligned_be32(&header->mpls_lse, lse);
|
|
packet->l2_5_ofs = 0;
|
|
packet->packet_type = PACKET_TYPE_BE(OFPHTN_ETHERTYPE,
|
|
ntohs(ethtype));
|
|
} else {
|
|
size_t len;
|
|
char *header;
|
|
|
|
if (!is_mpls(packet)) {
|
|
/* Set MPLS label stack offset. */
|
|
packet->l2_5_ofs = packet->l3_ofs;
|
|
}
|
|
set_ethertype(packet, ethtype);
|
|
|
|
/* Push new MPLS shim header onto packet. */
|
|
len = packet->l2_5_ofs;
|
|
header = dp_packet_resize_l2_5(packet, MPLS_HLEN);
|
|
memmove(header, header + MPLS_HLEN, len);
|
|
memcpy(header + len, &lse, sizeof lse);
|
|
}
|
|
pkt_metadata_init_conn(&packet->md);
|
|
}
|
|
|
|
/* If 'packet' is an MPLS packet, removes its outermost MPLS label stack entry.
|
|
* If the label that was removed was the only MPLS label, changes 'packet''s
|
|
* Ethertype to 'ethtype' (which ordinarily should not be an MPLS
|
|
* Ethertype). */
|
|
void
|
|
pop_mpls(struct dp_packet *packet, ovs_be16 ethtype)
|
|
{
|
|
if (is_mpls(packet)) {
|
|
struct mpls_hdr *mh = dp_packet_l2_5(packet);
|
|
size_t len = packet->l2_5_ofs;
|
|
|
|
set_ethertype(packet, ethtype);
|
|
if (get_16aligned_be32(&mh->mpls_lse) & htonl(MPLS_BOS_MASK)) {
|
|
dp_packet_set_l2_5(packet, NULL);
|
|
}
|
|
/* Shift the l2 header forward. */
|
|
memmove((char*)dp_packet_data(packet) + MPLS_HLEN, dp_packet_data(packet), len);
|
|
dp_packet_resize_l2_5(packet, -MPLS_HLEN);
|
|
|
|
/* Invalidate offload flags as they are not valid after
|
|
* decapsulation of MPLS header. */
|
|
dp_packet_reset_offload(packet);
|
|
|
|
/* packet_type must be reset for the MPLS packets with no l2 header */
|
|
if (!len) {
|
|
if (ethtype == htons(ETH_TYPE_TEB)) {
|
|
/* The inner packet must be classified as ethernet if the
|
|
* ethtype is ETH_TYPE_TEB. */
|
|
packet->packet_type = htonl(PT_ETH);
|
|
} else {
|
|
packet->packet_type = PACKET_TYPE_BE(OFPHTN_ETHERTYPE,
|
|
ntohs(ethtype));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
push_nsh(struct dp_packet *packet, const struct nsh_hdr *nsh_hdr_src)
|
|
{
|
|
struct nsh_hdr *nsh;
|
|
size_t length = nsh_hdr_len(nsh_hdr_src);
|
|
uint8_t next_proto;
|
|
|
|
switch (ntohl(packet->packet_type)) {
|
|
case PT_ETH:
|
|
next_proto = NSH_P_ETHERNET;
|
|
break;
|
|
case PT_IPV4:
|
|
next_proto = NSH_P_IPV4;
|
|
break;
|
|
case PT_IPV6:
|
|
next_proto = NSH_P_IPV6;
|
|
break;
|
|
case PT_NSH:
|
|
next_proto = NSH_P_NSH;
|
|
break;
|
|
default:
|
|
OVS_NOT_REACHED();
|
|
}
|
|
|
|
nsh = (struct nsh_hdr *) dp_packet_resize_l2(packet, length);
|
|
memcpy(nsh, nsh_hdr_src, length);
|
|
nsh->next_proto = next_proto;
|
|
packet->packet_type = htonl(PT_NSH);
|
|
dp_packet_reset_offsets(packet);
|
|
packet->l3_ofs = 0;
|
|
}
|
|
|
|
bool
|
|
pop_nsh(struct dp_packet *packet)
|
|
{
|
|
struct nsh_hdr *nsh = (struct nsh_hdr *) dp_packet_l3(packet);
|
|
size_t length;
|
|
uint32_t next_pt;
|
|
|
|
if (packet->packet_type == htonl(PT_NSH) && nsh) {
|
|
switch (nsh->next_proto) {
|
|
case NSH_P_ETHERNET:
|
|
next_pt = PT_ETH;
|
|
break;
|
|
case NSH_P_IPV4:
|
|
next_pt = PT_IPV4;
|
|
break;
|
|
case NSH_P_IPV6:
|
|
next_pt = PT_IPV6;
|
|
break;
|
|
case NSH_P_NSH:
|
|
next_pt = PT_NSH;
|
|
break;
|
|
default:
|
|
/* Unknown inner packet type. Drop packet. */
|
|
return false;
|
|
}
|
|
|
|
length = nsh_hdr_len(nsh);
|
|
dp_packet_reset_packet(packet, length);
|
|
packet->packet_type = htonl(next_pt);
|
|
/* Packet must be recirculated for further processing. */
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Converts hex digits in 'hex' to an Ethernet packet in '*packetp'. The
|
|
* caller must free '*packetp'. On success, returns NULL. On failure, returns
|
|
* an error message and stores NULL in '*packetp'.
|
|
*
|
|
* Aligns the L3 header of '*packetp' on a 32-bit boundary. */
|
|
const char *
|
|
eth_from_hex(const char *hex, struct dp_packet **packetp)
|
|
{
|
|
struct dp_packet *packet;
|
|
|
|
/* Use 2 bytes of headroom to 32-bit align the L3 header. */
|
|
packet = *packetp = dp_packet_new_with_headroom(strlen(hex) / 2, 2);
|
|
|
|
if (dp_packet_put_hex(packet, hex, NULL)[0] != '\0') {
|
|
dp_packet_delete(packet);
|
|
*packetp = NULL;
|
|
return "Trailing garbage in packet data";
|
|
}
|
|
|
|
if (dp_packet_size(packet) < ETH_HEADER_LEN) {
|
|
dp_packet_delete(packet);
|
|
*packetp = NULL;
|
|
return "Packet data too short for Ethernet";
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void
|
|
eth_format_masked(const struct eth_addr eth,
|
|
const struct eth_addr *mask, struct ds *s)
|
|
{
|
|
ds_put_format(s, ETH_ADDR_FMT, ETH_ADDR_ARGS(eth));
|
|
if (mask && !eth_mask_is_exact(*mask)) {
|
|
ds_put_format(s, "/"ETH_ADDR_FMT, ETH_ADDR_ARGS(*mask));
|
|
}
|
|
}
|
|
|
|
void
|
|
in6_addr_solicited_node(struct in6_addr *addr, const struct in6_addr *ip6)
|
|
{
|
|
union ovs_16aligned_in6_addr *taddr =
|
|
(union ovs_16aligned_in6_addr *) addr;
|
|
memset(taddr->be16, 0, sizeof(taddr->be16));
|
|
taddr->be16[0] = htons(0xff02);
|
|
taddr->be16[5] = htons(0x1);
|
|
taddr->be16[6] = htons(0xff00);
|
|
memcpy(&addr->s6_addr[13], &ip6->s6_addr[13], 3);
|
|
}
|
|
|
|
/*
|
|
* Generates ipv6 EUI64 address from the given eth addr
|
|
* and prefix and stores it in 'lla'
|
|
*/
|
|
void
|
|
in6_generate_eui64(struct eth_addr ea, const struct in6_addr *prefix,
|
|
struct in6_addr *lla)
|
|
{
|
|
union ovs_16aligned_in6_addr *taddr =
|
|
(union ovs_16aligned_in6_addr *) lla;
|
|
union ovs_16aligned_in6_addr *prefix_taddr =
|
|
(union ovs_16aligned_in6_addr *) prefix;
|
|
taddr->be16[0] = prefix_taddr->be16[0];
|
|
taddr->be16[1] = prefix_taddr->be16[1];
|
|
taddr->be16[2] = prefix_taddr->be16[2];
|
|
taddr->be16[3] = prefix_taddr->be16[3];
|
|
taddr->be16[4] = htons(((ea.ea[0] ^ 0x02) << 8) | ea.ea[1]);
|
|
taddr->be16[5] = htons(ea.ea[2] << 8 | 0x00ff);
|
|
taddr->be16[6] = htons(0xfe << 8 | ea.ea[3]);
|
|
taddr->be16[7] = ea.be16[2];
|
|
}
|
|
|
|
/* Generates ipv6 link local address from the given eth addr
|
|
* with prefix 'fe80::/64' and stores it in 'lla'. */
|
|
void
|
|
in6_generate_lla(struct eth_addr ea, struct in6_addr *lla)
|
|
{
|
|
union ovs_16aligned_in6_addr *taddr =
|
|
(union ovs_16aligned_in6_addr *) lla;
|
|
memset(taddr->be16, 0, sizeof(taddr->be16));
|
|
taddr->be16[0] = htons(0xfe80);
|
|
taddr->be16[4] = htons(((ea.ea[0] ^ 0x02) << 8) | ea.ea[1]);
|
|
taddr->be16[5] = htons(ea.ea[2] << 8 | 0x00ff);
|
|
taddr->be16[6] = htons(0xfe << 8 | ea.ea[3]);
|
|
taddr->be16[7] = ea.be16[2];
|
|
}
|
|
|
|
/* Returns true if 'addr' is a link local address. Otherwise, false. */
|
|
bool
|
|
in6_is_lla(struct in6_addr *addr)
|
|
{
|
|
#ifdef s6_addr32
|
|
return addr->s6_addr32[0] == htonl(0xfe800000) && !(addr->s6_addr32[1]);
|
|
#else
|
|
return addr->s6_addr[0] == 0xfe && addr->s6_addr[1] == 0x80 &&
|
|
!(addr->s6_addr[2] | addr->s6_addr[3] | addr->s6_addr[4] |
|
|
addr->s6_addr[5] | addr->s6_addr[6] | addr->s6_addr[7]);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
ipv6_multicast_to_ethernet(struct eth_addr *eth, const struct in6_addr *ip6)
|
|
{
|
|
eth->ea[0] = 0x33;
|
|
eth->ea[1] = 0x33;
|
|
eth->ea[2] = ip6->s6_addr[12];
|
|
eth->ea[3] = ip6->s6_addr[13];
|
|
eth->ea[4] = ip6->s6_addr[14];
|
|
eth->ea[5] = ip6->s6_addr[15];
|
|
}
|
|
|
|
/* Given the IP netmask 'netmask', returns the number of bits of the IP address
|
|
* that it specifies, that is, the number of 1-bits in 'netmask'.
|
|
*
|
|
* If 'netmask' is not a CIDR netmask (see ip_is_cidr()), the return value will
|
|
* still be in the valid range but isn't otherwise meaningful. */
|
|
int
|
|
ip_count_cidr_bits(ovs_be32 netmask)
|
|
{
|
|
return 32 - ctz32(ntohl(netmask));
|
|
}
|
|
|
|
void
|
|
ip_format_masked(ovs_be32 ip, ovs_be32 mask, struct ds *s)
|
|
{
|
|
ds_put_format(s, IP_FMT, IP_ARGS(ip));
|
|
if (mask != OVS_BE32_MAX) {
|
|
if (ip_is_cidr(mask)) {
|
|
ds_put_format(s, "/%d", ip_count_cidr_bits(mask));
|
|
} else {
|
|
ds_put_format(s, "/"IP_FMT, IP_ARGS(mask));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Parses string 's', which must be an IP address. Stores the IP address into
|
|
* '*ip'. Returns true if successful, otherwise false. */
|
|
bool
|
|
ip_parse(const char *s, ovs_be32 *ip)
|
|
{
|
|
return inet_pton(AF_INET, s, ip) == 1;
|
|
}
|
|
|
|
/* Parses string 's', which must be an IP address with a port number
|
|
* with ":" as a separator (e.g.: 192.168.1.2:80).
|
|
* Stores the IP address into '*ip' and port number to '*port'.
|
|
*
|
|
* Returns NULL if successful, otherwise an error message that the caller must
|
|
* free(). */
|
|
char * OVS_WARN_UNUSED_RESULT
|
|
ip_parse_port(const char *s, ovs_be32 *ip, ovs_be16 *port)
|
|
{
|
|
int n = 0;
|
|
if (ovs_scan(s, IP_PORT_SCAN_FMT"%n", IP_PORT_SCAN_ARGS(ip, port), &n)
|
|
&& !s[n]) {
|
|
return NULL;
|
|
}
|
|
|
|
return xasprintf("%s: invalid IP address or port number", s);
|
|
}
|
|
|
|
/* Parses string 's', which must be an IP address with an optional netmask or
|
|
* CIDR prefix length. Stores the IP address into '*ip', netmask into '*mask',
|
|
* (255.255.255.255, if 's' lacks a netmask), and number of scanned characters
|
|
* into '*n'.
|
|
*
|
|
* Returns NULL if successful, otherwise an error message that the caller must
|
|
* free(). */
|
|
char * OVS_WARN_UNUSED_RESULT
|
|
ip_parse_masked_len(const char *s, int *n, ovs_be32 *ip,
|
|
ovs_be32 *mask)
|
|
{
|
|
int prefix;
|
|
|
|
if (ovs_scan_len(s, n, IP_SCAN_FMT"/"IP_SCAN_FMT,
|
|
IP_SCAN_ARGS(ip), IP_SCAN_ARGS(mask))) {
|
|
/* OK. */
|
|
} else if (ovs_scan_len(s, n, IP_SCAN_FMT"/%d",
|
|
IP_SCAN_ARGS(ip), &prefix)) {
|
|
if (prefix < 0 || prefix > 32) {
|
|
return xasprintf("%s: IPv4 network prefix bits not between 0 and "
|
|
"32, inclusive", s);
|
|
}
|
|
*mask = be32_prefix_mask(prefix);
|
|
} else if (ovs_scan_len(s, n, IP_SCAN_FMT, IP_SCAN_ARGS(ip))) {
|
|
*mask = OVS_BE32_MAX;
|
|
} else {
|
|
return xasprintf("%s: invalid IP address", s);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* This function is similar to ip_parse_masked_len(), but doesn't return the
|
|
* number of scanned characters and expects 's' to end after the ip/(optional)
|
|
* mask.
|
|
*
|
|
* Returns NULL if successful, otherwise an error message that the caller must
|
|
* free(). */
|
|
char * OVS_WARN_UNUSED_RESULT
|
|
ip_parse_masked(const char *s, ovs_be32 *ip, ovs_be32 *mask)
|
|
{
|
|
int n = 0;
|
|
|
|
char *error = ip_parse_masked_len(s, &n, ip, mask);
|
|
if (!error && s[n]) {
|
|
return xasprintf("%s: invalid IP address", s);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/* Similar to ip_parse_masked_len(), but the mask, if present, must be a CIDR
|
|
* mask and is returned as a prefix len in '*plen'. */
|
|
char * OVS_WARN_UNUSED_RESULT
|
|
ip_parse_cidr_len(const char *s, int *n, ovs_be32 *ip, unsigned int *plen)
|
|
{
|
|
ovs_be32 mask;
|
|
char *error;
|
|
|
|
error = ip_parse_masked_len(s, n, ip, &mask);
|
|
if (error) {
|
|
return error;
|
|
}
|
|
|
|
if (!ip_is_cidr(mask)) {
|
|
return xasprintf("%s: CIDR network required", s);
|
|
}
|
|
*plen = ip_count_cidr_bits(mask);
|
|
return NULL;
|
|
}
|
|
|
|
/* Similar to ip_parse_cidr_len(), but doesn't return the number of scanned
|
|
* characters and expects 's' to be NULL terminated at the end of the
|
|
* ip/(optional) cidr. */
|
|
char * OVS_WARN_UNUSED_RESULT
|
|
ip_parse_cidr(const char *s, ovs_be32 *ip, unsigned int *plen)
|
|
{
|
|
int n = 0;
|
|
|
|
char *error = ip_parse_cidr_len(s, &n, ip, plen);
|
|
if (!error && s[n]) {
|
|
return xasprintf("%s: invalid IP address", s);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/* Parses string 's', which must be an IPv6 address. Stores the IPv6 address
|
|
* into '*ip'. Returns true if successful, otherwise false. */
|
|
bool
|
|
ipv6_parse(const char *s, struct in6_addr *ip)
|
|
{
|
|
return inet_pton(AF_INET6, s, ip) == 1;
|
|
}
|
|
|
|
/* Parses string 's', which must be an IPv6 address with an optional netmask or
|
|
* CIDR prefix length. Stores the IPv6 address into '*ip' and the netmask into
|
|
* '*mask' (if 's' does not contain a netmask, all-one-bits is assumed), and
|
|
* number of scanned characters into '*n'.
|
|
*
|
|
* Returns NULL if successful, otherwise an error message that the caller must
|
|
* free(). */
|
|
char * OVS_WARN_UNUSED_RESULT
|
|
ipv6_parse_masked_len(const char *s, int *n, struct in6_addr *ip,
|
|
struct in6_addr *mask)
|
|
{
|
|
char ipv6_s[IPV6_SCAN_LEN + 1];
|
|
int prefix;
|
|
|
|
if (ovs_scan_len(s, n, " "IPV6_SCAN_FMT, ipv6_s)
|
|
&& ipv6_parse(ipv6_s, ip)) {
|
|
if (ovs_scan_len(s, n, "/%d", &prefix)) {
|
|
if (prefix < 0 || prefix > 128) {
|
|
return xasprintf("%s: IPv6 network prefix bits not between 0 "
|
|
"and 128, inclusive", s);
|
|
}
|
|
*mask = ipv6_create_mask(prefix);
|
|
} else if (ovs_scan_len(s, n, "/"IPV6_SCAN_FMT, ipv6_s)) {
|
|
if (!ipv6_parse(ipv6_s, mask)) {
|
|
return xasprintf("%s: Invalid IPv6 mask", s);
|
|
}
|
|
/* OK. */
|
|
} else {
|
|
/* OK. No mask. */
|
|
*mask = in6addr_exact;
|
|
}
|
|
return NULL;
|
|
}
|
|
return xasprintf("%s: invalid IPv6 address", s);
|
|
}
|
|
|
|
/* This function is similar to ipv6_parse_masked_len(), but doesn't return the
|
|
* number of scanned characters and expects 's' to end following the
|
|
* ipv6/(optional) mask. */
|
|
char * OVS_WARN_UNUSED_RESULT
|
|
ipv6_parse_masked(const char *s, struct in6_addr *ip, struct in6_addr *mask)
|
|
{
|
|
int n = 0;
|
|
|
|
char *error = ipv6_parse_masked_len(s, &n, ip, mask);
|
|
if (!error && s[n]) {
|
|
return xasprintf("%s: invalid IPv6 address", s);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/* Similar to ipv6_parse_masked_len(), but the mask, if present, must be a CIDR
|
|
* mask and is returned as a prefix length in '*plen'. */
|
|
char * OVS_WARN_UNUSED_RESULT
|
|
ipv6_parse_cidr_len(const char *s, int *n, struct in6_addr *ip,
|
|
unsigned int *plen)
|
|
{
|
|
struct in6_addr mask;
|
|
char *error;
|
|
|
|
error = ipv6_parse_masked_len(s, n, ip, &mask);
|
|
if (error) {
|
|
return error;
|
|
}
|
|
|
|
if (!ipv6_is_cidr(&mask)) {
|
|
return xasprintf("%s: IPv6 CIDR network required", s);
|
|
}
|
|
*plen = ipv6_count_cidr_bits(&mask);
|
|
return NULL;
|
|
}
|
|
|
|
/* Similar to ipv6_parse_cidr_len(), but doesn't return the number of scanned
|
|
* characters and expects 's' to end after the ipv6/(optional) cidr. */
|
|
char * OVS_WARN_UNUSED_RESULT
|
|
ipv6_parse_cidr(const char *s, struct in6_addr *ip, unsigned int *plen)
|
|
{
|
|
int n = 0;
|
|
|
|
char *error = ipv6_parse_cidr_len(s, &n, ip, plen);
|
|
if (!error && s[n]) {
|
|
return xasprintf("%s: invalid IPv6 address", s);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/* Stores the string representation of the IPv6 address 'addr' into the
|
|
* character array 'addr_str', which must be at least INET6_ADDRSTRLEN
|
|
* bytes long. */
|
|
void
|
|
ipv6_format_addr(const struct in6_addr *addr, struct ds *s)
|
|
{
|
|
char *dst;
|
|
|
|
ds_reserve(s, s->length + INET6_ADDRSTRLEN);
|
|
|
|
dst = s->string + s->length;
|
|
inet_ntop(AF_INET6, addr, dst, INET6_ADDRSTRLEN);
|
|
s->length += strlen(dst);
|
|
}
|
|
|
|
/* Same as print_ipv6_addr, but optionally encloses the address in square
|
|
* brackets. */
|
|
void
|
|
ipv6_format_addr_bracket(const struct in6_addr *addr, struct ds *s,
|
|
bool bracket)
|
|
{
|
|
if (bracket) {
|
|
ds_put_char(s, '[');
|
|
}
|
|
ipv6_format_addr(addr, s);
|
|
if (bracket) {
|
|
ds_put_char(s, ']');
|
|
}
|
|
}
|
|
|
|
void
|
|
ipv6_format_mapped(const struct in6_addr *addr, struct ds *s)
|
|
{
|
|
if (IN6_IS_ADDR_V4MAPPED(addr)) {
|
|
ds_put_format(s, IP_FMT, addr->s6_addr[12], addr->s6_addr[13],
|
|
addr->s6_addr[14], addr->s6_addr[15]);
|
|
} else {
|
|
ipv6_format_addr(addr, s);
|
|
}
|
|
}
|
|
|
|
void
|
|
ipv6_format_masked(const struct in6_addr *addr, const struct in6_addr *mask,
|
|
struct ds *s)
|
|
{
|
|
ipv6_format_addr(addr, s);
|
|
if (mask && !ipv6_mask_is_exact(mask)) {
|
|
if (ipv6_is_cidr(mask)) {
|
|
int cidr_bits = ipv6_count_cidr_bits(mask);
|
|
ds_put_format(s, "/%d", cidr_bits);
|
|
} else {
|
|
ds_put_char(s, '/');
|
|
ipv6_format_addr(mask, s);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Stores the string representation of the IPv6 address 'addr' into the
|
|
* character array 'addr_str', which must be at least INET6_ADDRSTRLEN
|
|
* bytes long. If addr is IPv4-mapped, store an IPv4 dotted-decimal string. */
|
|
const char *
|
|
ipv6_string_mapped(char *addr_str, const struct in6_addr *addr)
|
|
{
|
|
ovs_be32 ip;
|
|
ip = in6_addr_get_mapped_ipv4(addr);
|
|
if (ip) {
|
|
return inet_ntop(AF_INET, &ip, addr_str, INET6_ADDRSTRLEN);
|
|
} else {
|
|
return inet_ntop(AF_INET6, addr, addr_str, INET6_ADDRSTRLEN);
|
|
}
|
|
}
|
|
|
|
#ifdef s6_addr32
|
|
#define s6_addrX s6_addr32
|
|
#define IPV6_FOR_EACH(VAR) for (int VAR = 0; VAR < 4; VAR++)
|
|
#else
|
|
#define s6_addrX s6_addr
|
|
#define IPV6_FOR_EACH(VAR) for (int VAR = 0; VAR < 16; VAR++)
|
|
#endif
|
|
|
|
struct in6_addr
|
|
ipv6_addr_bitand(const struct in6_addr *a, const struct in6_addr *b)
|
|
{
|
|
struct in6_addr dst;
|
|
IPV6_FOR_EACH (i) {
|
|
dst.s6_addrX[i] = a->s6_addrX[i] & b->s6_addrX[i];
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
struct in6_addr
|
|
ipv6_addr_bitxor(const struct in6_addr *a, const struct in6_addr *b)
|
|
{
|
|
struct in6_addr dst;
|
|
IPV6_FOR_EACH (i) {
|
|
dst.s6_addrX[i] = a->s6_addrX[i] ^ b->s6_addrX[i];
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
bool
|
|
ipv6_is_zero(const struct in6_addr *a)
|
|
{
|
|
IPV6_FOR_EACH (i) {
|
|
if (a->s6_addrX[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Returns an in6_addr consisting of 'mask' high-order 1-bits and 128-N
|
|
* low-order 0-bits. */
|
|
struct in6_addr
|
|
ipv6_create_mask(int mask)
|
|
{
|
|
struct in6_addr netmask;
|
|
uint8_t *netmaskp = &netmask.s6_addr[0];
|
|
|
|
memset(&netmask, 0, sizeof netmask);
|
|
while (mask > 8) {
|
|
*netmaskp = 0xff;
|
|
netmaskp++;
|
|
mask -= 8;
|
|
}
|
|
|
|
if (mask) {
|
|
*netmaskp = 0xff << (8 - mask);
|
|
}
|
|
|
|
return netmask;
|
|
}
|
|
|
|
/* Given the IPv6 netmask 'netmask', returns the number of bits of the IPv6
|
|
* address that it specifies, that is, the number of 1-bits in 'netmask'.
|
|
* 'netmask' must be a CIDR netmask (see ipv6_is_cidr()).
|
|
*
|
|
* If 'netmask' is not a CIDR netmask (see ipv6_is_cidr()), the return value
|
|
* will still be in the valid range but isn't otherwise meaningful. */
|
|
int
|
|
ipv6_count_cidr_bits(const struct in6_addr *netmask)
|
|
{
|
|
int i;
|
|
int count = 0;
|
|
const uint8_t *netmaskp = &netmask->s6_addr[0];
|
|
|
|
for (i=0; i<16; i++) {
|
|
if (netmaskp[i] == 0xff) {
|
|
count += 8;
|
|
} else {
|
|
uint8_t nm;
|
|
|
|
for(nm = netmaskp[i]; nm; nm <<= 1) {
|
|
count++;
|
|
}
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Returns true if 'netmask' is a CIDR netmask, that is, if it consists of N
|
|
* high-order 1-bits and 128-N low-order 0-bits. */
|
|
bool
|
|
ipv6_is_cidr(const struct in6_addr *netmask)
|
|
{
|
|
const uint8_t *netmaskp = &netmask->s6_addr[0];
|
|
int i;
|
|
|
|
for (i=0; i<16; i++) {
|
|
if (netmaskp[i] != 0xff) {
|
|
uint8_t x = ~netmaskp[i];
|
|
if (x & (x + 1)) {
|
|
return false;
|
|
}
|
|
while (++i < 16) {
|
|
if (netmaskp[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Populates 'b' with an Ethernet II packet headed with the given 'eth_dst',
|
|
* 'eth_src' and 'eth_type' parameters. A payload of 'size' bytes is allocated
|
|
* in 'b' and returned. This payload may be populated with appropriate
|
|
* information by the caller. Sets 'b''s 'frame' pointer and 'l3' offset to
|
|
* the Ethernet header and payload respectively. Aligns b->l3 on a 32-bit
|
|
* boundary.
|
|
*
|
|
* The returned packet has enough headroom to insert an 802.1Q VLAN header if
|
|
* desired. */
|
|
void *
|
|
eth_compose(struct dp_packet *b, const struct eth_addr eth_dst,
|
|
const struct eth_addr eth_src, uint16_t eth_type,
|
|
size_t size)
|
|
{
|
|
void *data;
|
|
struct eth_header *eth;
|
|
|
|
|
|
dp_packet_clear(b);
|
|
|
|
/* The magic 2 here ensures that the L3 header (when it is added later)
|
|
* will be 32-bit aligned. */
|
|
dp_packet_prealloc_tailroom(b, 2 + ETH_HEADER_LEN + VLAN_HEADER_LEN + size);
|
|
dp_packet_reserve(b, 2 + VLAN_HEADER_LEN);
|
|
eth = dp_packet_put_uninit(b, ETH_HEADER_LEN);
|
|
data = dp_packet_put_zeros(b, size);
|
|
|
|
eth->eth_dst = eth_dst;
|
|
eth->eth_src = eth_src;
|
|
eth->eth_type = htons(eth_type);
|
|
|
|
b->packet_type = htonl(PT_ETH);
|
|
dp_packet_set_l3(b, data);
|
|
|
|
return data;
|
|
}
|
|
|
|
void
|
|
packet_set_ipv4_addr(struct dp_packet *packet,
|
|
ovs_16aligned_be32 *addr, ovs_be32 new_addr)
|
|
{
|
|
struct ip_header *nh = dp_packet_l3(packet);
|
|
ovs_be32 old_addr = get_16aligned_be32(addr);
|
|
size_t l4_size = dp_packet_l4_size(packet);
|
|
|
|
pkt_metadata_init_conn(&packet->md);
|
|
|
|
if (nh->ip_proto == IPPROTO_TCP && l4_size >= TCP_HEADER_LEN) {
|
|
if (dp_packet_hwol_l4_is_tcp(packet)) {
|
|
dp_packet_ol_reset_l4_csum_good(packet);
|
|
} else {
|
|
struct tcp_header *th = dp_packet_l4(packet);
|
|
th->tcp_csum = recalc_csum32(th->tcp_csum, old_addr, new_addr);
|
|
}
|
|
} else if (nh->ip_proto == IPPROTO_UDP && l4_size >= UDP_HEADER_LEN ) {
|
|
if (dp_packet_hwol_l4_is_udp(packet)) {
|
|
dp_packet_ol_reset_l4_csum_good(packet);
|
|
} else {
|
|
struct udp_header *uh = dp_packet_l4(packet);
|
|
if (uh->udp_csum) {
|
|
uh->udp_csum = recalc_csum32(uh->udp_csum, old_addr, new_addr);
|
|
if (!uh->udp_csum) {
|
|
uh->udp_csum = htons(0xffff);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dp_packet_hwol_l3_ipv4(packet)) {
|
|
dp_packet_ol_reset_ip_csum_good(packet);
|
|
} else {
|
|
nh->ip_csum = recalc_csum32(nh->ip_csum, old_addr, new_addr);
|
|
}
|
|
put_16aligned_be32(addr, new_addr);
|
|
}
|
|
|
|
/* Returns true, if packet contains at least one routing header where
|
|
* segements_left > 0.
|
|
*
|
|
* This function assumes that L3 and L4 offsets are set in the packet. */
|
|
bool
|
|
packet_rh_present(struct dp_packet *packet, uint8_t *nexthdr, bool *first_frag)
|
|
{
|
|
const struct ovs_16aligned_ip6_hdr *nh;
|
|
size_t len;
|
|
size_t remaining;
|
|
uint8_t *data = dp_packet_l3(packet);
|
|
|
|
remaining = packet->l4_ofs - packet->l3_ofs;
|
|
if (remaining < sizeof *nh) {
|
|
return false;
|
|
}
|
|
nh = ALIGNED_CAST(struct ovs_16aligned_ip6_hdr *, data);
|
|
data += sizeof *nh;
|
|
remaining -= sizeof *nh;
|
|
*nexthdr = nh->ip6_nxt;
|
|
|
|
while (1) {
|
|
if ((*nexthdr != IPPROTO_HOPOPTS)
|
|
&& (*nexthdr != IPPROTO_ROUTING)
|
|
&& (*nexthdr != IPPROTO_DSTOPTS)
|
|
&& (*nexthdr != IPPROTO_AH)
|
|
&& (*nexthdr != IPPROTO_FRAGMENT)) {
|
|
/* It's either a terminal header (e.g., TCP, UDP) or one we
|
|
* don't understand. In either case, we're done with the
|
|
* packet, so use it to fill in 'nw_proto'. */
|
|
break;
|
|
}
|
|
|
|
/* We only verify that at least 8 bytes of the next header are
|
|
* available, but many of these headers are longer. Ensure that
|
|
* accesses within the extension header are within those first 8
|
|
* bytes. All extension headers are required to be at least 8
|
|
* bytes. */
|
|
if (remaining < 8) {
|
|
return false;
|
|
}
|
|
|
|
if (*nexthdr == IPPROTO_AH) {
|
|
/* A standard AH definition isn't available, but the fields
|
|
* we care about are in the same location as the generic
|
|
* option header--only the header length is calculated
|
|
* differently. */
|
|
const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
|
|
|
|
*nexthdr = ext_hdr->ip6e_nxt;
|
|
len = (ext_hdr->ip6e_len + 2) * 4;
|
|
} else if (*nexthdr == IPPROTO_FRAGMENT) {
|
|
const struct ovs_16aligned_ip6_frag *frag_hdr
|
|
= ALIGNED_CAST(struct ovs_16aligned_ip6_frag *, data);
|
|
|
|
*first_frag = !(frag_hdr->ip6f_offlg & IP6F_OFF_MASK) &&
|
|
(frag_hdr->ip6f_offlg & IP6F_MORE_FRAG);
|
|
*nexthdr = frag_hdr->ip6f_nxt;
|
|
len = sizeof *frag_hdr;
|
|
} else if (*nexthdr == IPPROTO_ROUTING) {
|
|
const struct ip6_rthdr *rh = (struct ip6_rthdr *)data;
|
|
|
|
if (rh->ip6r_segleft > 0) {
|
|
return true;
|
|
}
|
|
|
|
*nexthdr = rh->ip6r_nxt;
|
|
len = (rh->ip6r_len + 1) * 8;
|
|
} else {
|
|
const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
|
|
|
|
*nexthdr = ext_hdr->ip6e_nxt;
|
|
len = (ext_hdr->ip6e_len + 1) * 8;
|
|
}
|
|
|
|
if (remaining < len) {
|
|
return false;
|
|
}
|
|
remaining -= len;
|
|
data += len;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
packet_update_csum128(struct dp_packet *packet, uint8_t proto,
|
|
ovs_16aligned_be32 addr[4],
|
|
const struct in6_addr *new_addr)
|
|
{
|
|
size_t l4_size = dp_packet_l4_size(packet);
|
|
|
|
if (proto == IPPROTO_TCP && l4_size >= TCP_HEADER_LEN) {
|
|
if (dp_packet_hwol_l4_is_tcp(packet)) {
|
|
dp_packet_ol_reset_l4_csum_good(packet);
|
|
} else {
|
|
struct tcp_header *th = dp_packet_l4(packet);
|
|
|
|
th->tcp_csum = recalc_csum128(th->tcp_csum, addr, new_addr);
|
|
}
|
|
} else if (proto == IPPROTO_UDP && l4_size >= UDP_HEADER_LEN) {
|
|
if (dp_packet_hwol_l4_is_udp(packet)) {
|
|
dp_packet_ol_reset_l4_csum_good(packet);
|
|
} else {
|
|
struct udp_header *uh = dp_packet_l4(packet);
|
|
|
|
if (uh->udp_csum) {
|
|
uh->udp_csum = recalc_csum128(uh->udp_csum, addr, new_addr);
|
|
if (!uh->udp_csum) {
|
|
uh->udp_csum = htons(0xffff);
|
|
}
|
|
}
|
|
}
|
|
} else if (proto == IPPROTO_ICMPV6 &&
|
|
l4_size >= sizeof(struct icmp6_header)) {
|
|
struct icmp6_header *icmp = dp_packet_l4(packet);
|
|
|
|
icmp->icmp6_cksum = recalc_csum128(icmp->icmp6_cksum, addr, new_addr);
|
|
}
|
|
}
|
|
|
|
void
|
|
packet_set_ipv6_addr(struct dp_packet *packet, uint8_t proto,
|
|
ovs_16aligned_be32 addr[4],
|
|
const struct in6_addr *new_addr,
|
|
bool recalculate_csum)
|
|
{
|
|
if (recalculate_csum) {
|
|
packet_update_csum128(packet, proto, addr, new_addr);
|
|
}
|
|
memcpy(addr, new_addr, sizeof(ovs_be32[4]));
|
|
pkt_metadata_init_conn(&packet->md);
|
|
}
|
|
|
|
void
|
|
packet_set_ipv6_flow_label(ovs_16aligned_be32 *flow_label, ovs_be32 flow_key)
|
|
{
|
|
ovs_be32 old_label = get_16aligned_be32(flow_label);
|
|
ovs_be32 new_label = (old_label & htonl(~IPV6_LABEL_MASK)) | flow_key;
|
|
put_16aligned_be32(flow_label, new_label);
|
|
}
|
|
|
|
void
|
|
packet_set_ipv6_tc(ovs_16aligned_be32 *flow_label, uint8_t tc)
|
|
{
|
|
ovs_be32 old_label = get_16aligned_be32(flow_label);
|
|
ovs_be32 new_label = (old_label & htonl(0xF00FFFFF)) | htonl(tc << 20);
|
|
put_16aligned_be32(flow_label, new_label);
|
|
}
|
|
|
|
/* Modifies the IPv4 header fields of 'packet' to be consistent with 'src',
|
|
* 'dst', 'tos', and 'ttl'. Updates 'packet''s L4 checksums as appropriate.
|
|
* 'packet' must contain a valid IPv4 packet with correctly populated l[347]
|
|
* markers. */
|
|
void
|
|
packet_set_ipv4(struct dp_packet *packet, ovs_be32 src, ovs_be32 dst,
|
|
uint8_t tos, uint8_t ttl)
|
|
{
|
|
struct ip_header *nh = dp_packet_l3(packet);
|
|
|
|
if (get_16aligned_be32(&nh->ip_src) != src) {
|
|
packet_set_ipv4_addr(packet, &nh->ip_src, src);
|
|
}
|
|
|
|
if (get_16aligned_be32(&nh->ip_dst) != dst) {
|
|
packet_set_ipv4_addr(packet, &nh->ip_dst, dst);
|
|
}
|
|
|
|
if (nh->ip_tos != tos) {
|
|
uint8_t *field = &nh->ip_tos;
|
|
|
|
if (dp_packet_hwol_l3_ipv4(packet)) {
|
|
dp_packet_ol_reset_ip_csum_good(packet);
|
|
} else {
|
|
nh->ip_csum = recalc_csum16(nh->ip_csum, htons((uint16_t) *field),
|
|
htons((uint16_t) tos));
|
|
}
|
|
|
|
*field = tos;
|
|
}
|
|
|
|
if (nh->ip_ttl != ttl) {
|
|
uint8_t *field = &nh->ip_ttl;
|
|
|
|
if (dp_packet_hwol_l3_ipv4(packet)) {
|
|
dp_packet_ol_reset_ip_csum_good(packet);
|
|
} else {
|
|
nh->ip_csum = recalc_csum16(nh->ip_csum, htons(*field << 8),
|
|
htons(ttl << 8));
|
|
}
|
|
|
|
*field = ttl;
|
|
}
|
|
}
|
|
|
|
/* Modifies the IPv6 header fields of 'packet' to be consistent with 'src',
|
|
* 'dst', 'traffic class', and 'next hop'. Updates 'packet''s L4 checksums as
|
|
* appropriate. 'packet' must contain a valid IPv6 packet with correctly
|
|
* populated l[34] offsets. */
|
|
void
|
|
packet_set_ipv6(struct dp_packet *packet, const struct in6_addr *src,
|
|
const struct in6_addr *dst, uint8_t key_tc, ovs_be32 key_fl,
|
|
uint8_t key_hl)
|
|
{
|
|
struct ovs_16aligned_ip6_hdr *nh = dp_packet_l3(packet);
|
|
bool recalc_csum = true;
|
|
uint8_t proto = 0;
|
|
bool rh_present;
|
|
|
|
rh_present = packet_rh_present(packet, &proto, &recalc_csum);
|
|
|
|
if (memcmp(&nh->ip6_src, src, sizeof(ovs_be32[4]))) {
|
|
packet_set_ipv6_addr(packet, proto, nh->ip6_src.be32,
|
|
src, recalc_csum);
|
|
}
|
|
|
|
if (memcmp(&nh->ip6_dst, dst, sizeof(ovs_be32[4]))) {
|
|
packet_set_ipv6_addr(packet, proto, nh->ip6_dst.be32, dst,
|
|
!rh_present && recalc_csum);
|
|
}
|
|
|
|
packet_set_ipv6_tc(&nh->ip6_flow, key_tc);
|
|
packet_set_ipv6_flow_label(&nh->ip6_flow, key_fl);
|
|
nh->ip6_hlim = key_hl;
|
|
}
|
|
|
|
static void
|
|
packet_set_port(ovs_be16 *port, ovs_be16 new_port, ovs_be16 *csum)
|
|
{
|
|
if (*port != new_port) {
|
|
if (csum) {
|
|
*csum = recalc_csum16(*csum, *port, new_port);
|
|
}
|
|
*port = new_port;
|
|
}
|
|
}
|
|
|
|
/* Sets the TCP source and destination port ('src' and 'dst' respectively) of
|
|
* the TCP header contained in 'packet'. 'packet' must be a valid TCP packet
|
|
* with its l4 offset properly populated. */
|
|
void
|
|
packet_set_tcp_port(struct dp_packet *packet, ovs_be16 src, ovs_be16 dst)
|
|
{
|
|
struct tcp_header *th = dp_packet_l4(packet);
|
|
ovs_be16 *csum = NULL;
|
|
|
|
if (dp_packet_hwol_l4_is_tcp(packet)) {
|
|
dp_packet_ol_reset_l4_csum_good(packet);
|
|
} else {
|
|
csum = &th->tcp_csum;
|
|
}
|
|
|
|
packet_set_port(&th->tcp_src, src, csum);
|
|
packet_set_port(&th->tcp_dst, dst, csum);
|
|
pkt_metadata_init_conn(&packet->md);
|
|
}
|
|
|
|
/* Sets the UDP source and destination port ('src' and 'dst' respectively) of
|
|
* the UDP header contained in 'packet'. 'packet' must be a valid UDP packet
|
|
* with its l4 offset properly populated. */
|
|
void
|
|
packet_set_udp_port(struct dp_packet *packet, ovs_be16 src, ovs_be16 dst)
|
|
{
|
|
struct udp_header *uh = dp_packet_l4(packet);
|
|
|
|
if (dp_packet_hwol_l4_is_udp(packet)) {
|
|
dp_packet_ol_reset_l4_csum_good(packet);
|
|
packet_set_port(&uh->udp_src, src, NULL);
|
|
packet_set_port(&uh->udp_dst, dst, NULL);
|
|
} else {
|
|
ovs_be16 *csum = uh->udp_csum ? &uh->udp_csum : NULL;
|
|
|
|
packet_set_port(&uh->udp_src, src, csum);
|
|
packet_set_port(&uh->udp_dst, dst, csum);
|
|
|
|
if (csum && !uh->udp_csum) {
|
|
uh->udp_csum = htons(0xffff);
|
|
}
|
|
}
|
|
|
|
pkt_metadata_init_conn(&packet->md);
|
|
}
|
|
|
|
/* Sets the SCTP source and destination port ('src' and 'dst' respectively) of
|
|
* the SCTP header contained in 'packet'. 'packet' must be a valid SCTP packet
|
|
* with its l4 offset properly populated. */
|
|
void
|
|
packet_set_sctp_port(struct dp_packet *packet, ovs_be16 src, ovs_be16 dst)
|
|
{
|
|
struct sctp_header *sh = dp_packet_l4(packet);
|
|
|
|
if (dp_packet_hwol_l4_is_sctp(packet)) {
|
|
dp_packet_ol_reset_l4_csum_good(packet);
|
|
sh->sctp_src = src;
|
|
sh->sctp_dst = dst;
|
|
} else {
|
|
ovs_be32 old_csum, old_correct_csum, new_csum;
|
|
uint16_t tp_len = dp_packet_l4_size(packet);
|
|
|
|
old_csum = get_16aligned_be32(&sh->sctp_csum);
|
|
put_16aligned_be32(&sh->sctp_csum, 0);
|
|
old_correct_csum = crc32c((void *) sh, tp_len);
|
|
|
|
sh->sctp_src = src;
|
|
sh->sctp_dst = dst;
|
|
|
|
new_csum = crc32c((void *) sh, tp_len);
|
|
put_16aligned_be32(&sh->sctp_csum, old_csum ^ old_correct_csum
|
|
^ new_csum);
|
|
}
|
|
|
|
pkt_metadata_init_conn(&packet->md);
|
|
}
|
|
|
|
/* Sets the ICMP type and code of the ICMP header contained in 'packet'.
|
|
* 'packet' must be a valid ICMP packet with its l4 offset properly
|
|
* populated. */
|
|
void
|
|
packet_set_icmp(struct dp_packet *packet, uint8_t type, uint8_t code)
|
|
{
|
|
struct icmp_header *ih = dp_packet_l4(packet);
|
|
ovs_be16 orig_tc = htons(ih->icmp_type << 8 | ih->icmp_code);
|
|
ovs_be16 new_tc = htons(type << 8 | code);
|
|
|
|
if (orig_tc != new_tc) {
|
|
ih->icmp_type = type;
|
|
ih->icmp_code = code;
|
|
|
|
ih->icmp_csum = recalc_csum16(ih->icmp_csum, orig_tc, new_tc);
|
|
}
|
|
pkt_metadata_init_conn(&packet->md);
|
|
}
|
|
|
|
/* Sets the IGMP type to IGMP_HOST_MEMBERSHIP_QUERY and populates the
|
|
* v3 query header fields in 'packet'. 'packet' must be a valid IGMPv3
|
|
* query packet with its l4 offset properly populated.
|
|
*/
|
|
void
|
|
packet_set_igmp3_query(struct dp_packet *packet, uint8_t max_resp,
|
|
ovs_be32 group, bool srs, uint8_t qrv, uint8_t qqic)
|
|
{
|
|
struct igmpv3_query_header *igh = dp_packet_l4(packet);
|
|
ovs_be16 orig_type_max_resp =
|
|
htons(igh->type << 8 | igh->max_resp);
|
|
ovs_be16 new_type_max_resp =
|
|
htons(IGMP_HOST_MEMBERSHIP_QUERY << 8 | max_resp);
|
|
|
|
if (orig_type_max_resp != new_type_max_resp) {
|
|
igh->type = IGMP_HOST_MEMBERSHIP_QUERY;
|
|
igh->max_resp = max_resp;
|
|
igh->csum = recalc_csum16(igh->csum, orig_type_max_resp,
|
|
new_type_max_resp);
|
|
}
|
|
|
|
ovs_be32 old_group = get_16aligned_be32(&igh->group);
|
|
|
|
if (old_group != group) {
|
|
put_16aligned_be32(&igh->group, group);
|
|
igh->csum = recalc_csum32(igh->csum, old_group, group);
|
|
}
|
|
|
|
/* See RFC 3376 4.1.6. */
|
|
if (qrv > 7) {
|
|
qrv = 0;
|
|
}
|
|
|
|
ovs_be16 orig_srs_qrv_qqic = htons(igh->srs_qrv << 8 | igh->qqic);
|
|
ovs_be16 new_srs_qrv_qqic = htons(srs << 11 | qrv << 8 | qqic);
|
|
|
|
if (orig_srs_qrv_qqic != new_srs_qrv_qqic) {
|
|
igh->srs_qrv = (srs << 3 | qrv);
|
|
igh->qqic = qqic;
|
|
igh->csum = recalc_csum16(igh->csum, orig_srs_qrv_qqic,
|
|
new_srs_qrv_qqic);
|
|
}
|
|
}
|
|
|
|
void
|
|
packet_set_nd_ext(struct dp_packet *packet, const ovs_16aligned_be32 rso_flags,
|
|
const uint8_t opt_type)
|
|
{
|
|
struct ovs_nd_msg *ns;
|
|
struct ovs_nd_lla_opt *opt;
|
|
int bytes_remain = dp_packet_l4_size(packet);
|
|
struct ovs_16aligned_ip6_hdr * nh = dp_packet_l3(packet);
|
|
uint32_t pseudo_hdr_csum = 0;
|
|
|
|
if (OVS_UNLIKELY(bytes_remain < sizeof(*ns))) {
|
|
return;
|
|
}
|
|
|
|
if (nh) {
|
|
pseudo_hdr_csum = packet_csum_pseudoheader6(nh);
|
|
}
|
|
|
|
ns = dp_packet_l4(packet);
|
|
opt = &ns->options[0];
|
|
|
|
/* set RSO flags and option type */
|
|
ns->rso_flags = rso_flags;
|
|
opt->type = opt_type;
|
|
|
|
/* recalculate checksum */
|
|
ovs_be16 *csum_value = &(ns->icmph.icmp6_cksum);
|
|
*csum_value = 0;
|
|
*csum_value = csum_finish(csum_continue(pseudo_hdr_csum,
|
|
&(ns->icmph), bytes_remain));
|
|
|
|
}
|
|
|
|
void
|
|
packet_set_nd(struct dp_packet *packet, const struct in6_addr *target,
|
|
const struct eth_addr sll, const struct eth_addr tll)
|
|
{
|
|
struct ovs_nd_msg *ns;
|
|
struct ovs_nd_lla_opt *opt;
|
|
int bytes_remain = dp_packet_l4_size(packet);
|
|
|
|
if (OVS_UNLIKELY(bytes_remain < sizeof(*ns))) {
|
|
return;
|
|
}
|
|
|
|
ns = dp_packet_l4(packet);
|
|
opt = &ns->options[0];
|
|
bytes_remain -= sizeof(*ns);
|
|
|
|
if (memcmp(&ns->target, target, sizeof(ovs_be32[4]))) {
|
|
packet_set_ipv6_addr(packet, IPPROTO_ICMPV6, ns->target.be32, target,
|
|
true);
|
|
}
|
|
|
|
while (bytes_remain >= ND_LLA_OPT_LEN && opt->len != 0) {
|
|
if (opt->type == ND_OPT_SOURCE_LINKADDR && opt->len == 1) {
|
|
if (!eth_addr_equals(opt->mac, sll)) {
|
|
ovs_be16 *csum = &(ns->icmph.icmp6_cksum);
|
|
|
|
*csum = recalc_csum48(*csum, opt->mac, sll);
|
|
opt->mac = sll;
|
|
}
|
|
|
|
/* A packet can only contain one SLL or TLL option */
|
|
break;
|
|
} else if (opt->type == ND_OPT_TARGET_LINKADDR && opt->len == 1) {
|
|
if (!eth_addr_equals(opt->mac, tll)) {
|
|
ovs_be16 *csum = &(ns->icmph.icmp6_cksum);
|
|
|
|
*csum = recalc_csum48(*csum, opt->mac, tll);
|
|
opt->mac = tll;
|
|
}
|
|
|
|
/* A packet can only contain one SLL or TLL option */
|
|
break;
|
|
}
|
|
|
|
opt += opt->len;
|
|
bytes_remain -= opt->len * ND_LLA_OPT_LEN;
|
|
}
|
|
}
|
|
|
|
const char *
|
|
packet_tcp_flag_to_string(uint32_t flag)
|
|
{
|
|
switch (flag) {
|
|
case TCP_FIN:
|
|
return "fin";
|
|
case TCP_SYN:
|
|
return "syn";
|
|
case TCP_RST:
|
|
return "rst";
|
|
case TCP_PSH:
|
|
return "psh";
|
|
case TCP_ACK:
|
|
return "ack";
|
|
case TCP_URG:
|
|
return "urg";
|
|
case TCP_ECE:
|
|
return "ece";
|
|
case TCP_CWR:
|
|
return "cwr";
|
|
case TCP_NS:
|
|
return "ns";
|
|
case 0x200:
|
|
return "[200]";
|
|
case 0x400:
|
|
return "[400]";
|
|
case 0x800:
|
|
return "[800]";
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* Appends a string representation of the TCP flags value 'tcp_flags'
|
|
* (e.g. from struct flow.tcp_flags or obtained via TCP_FLAGS) to 's', in the
|
|
* format used by tcpdump. */
|
|
void
|
|
packet_format_tcp_flags(struct ds *s, uint16_t tcp_flags)
|
|
{
|
|
if (!tcp_flags) {
|
|
ds_put_cstr(s, "none");
|
|
return;
|
|
}
|
|
|
|
if (tcp_flags & TCP_SYN) {
|
|
ds_put_char(s, 'S');
|
|
}
|
|
if (tcp_flags & TCP_FIN) {
|
|
ds_put_char(s, 'F');
|
|
}
|
|
if (tcp_flags & TCP_PSH) {
|
|
ds_put_char(s, 'P');
|
|
}
|
|
if (tcp_flags & TCP_RST) {
|
|
ds_put_char(s, 'R');
|
|
}
|
|
if (tcp_flags & TCP_URG) {
|
|
ds_put_char(s, 'U');
|
|
}
|
|
if (tcp_flags & TCP_ACK) {
|
|
ds_put_char(s, '.');
|
|
}
|
|
if (tcp_flags & TCP_ECE) {
|
|
ds_put_cstr(s, "E");
|
|
}
|
|
if (tcp_flags & TCP_CWR) {
|
|
ds_put_cstr(s, "C");
|
|
}
|
|
if (tcp_flags & TCP_NS) {
|
|
ds_put_cstr(s, "N");
|
|
}
|
|
if (tcp_flags & 0x200) {
|
|
ds_put_cstr(s, "[200]");
|
|
}
|
|
if (tcp_flags & 0x400) {
|
|
ds_put_cstr(s, "[400]");
|
|
}
|
|
if (tcp_flags & 0x800) {
|
|
ds_put_cstr(s, "[800]");
|
|
}
|
|
}
|
|
|
|
#define ARP_PACKET_SIZE (2 + ETH_HEADER_LEN + VLAN_HEADER_LEN + \
|
|
ARP_ETH_HEADER_LEN)
|
|
|
|
/* Clears 'b' and replaces its contents by an ARP frame with the specified
|
|
* 'arp_op', 'arp_sha', 'arp_tha', 'arp_spa', and 'arp_tpa'. The outer
|
|
* Ethernet frame is initialized with Ethernet source 'arp_sha' and destination
|
|
* 'arp_tha', except that destination ff:ff:ff:ff:ff:ff is used instead if
|
|
* 'broadcast' is true. Points the L3 header to the ARP header. */
|
|
void
|
|
compose_arp(struct dp_packet *b, uint16_t arp_op,
|
|
const struct eth_addr arp_sha, const struct eth_addr arp_tha,
|
|
bool broadcast, ovs_be32 arp_spa, ovs_be32 arp_tpa)
|
|
{
|
|
compose_arp__(b);
|
|
|
|
struct eth_header *eth = dp_packet_eth(b);
|
|
eth->eth_dst = broadcast ? eth_addr_broadcast : arp_tha;
|
|
eth->eth_src = arp_sha;
|
|
|
|
struct arp_eth_header *arp = dp_packet_l3(b);
|
|
arp->ar_op = htons(arp_op);
|
|
arp->ar_sha = arp_sha;
|
|
arp->ar_tha = arp_tha;
|
|
put_16aligned_be32(&arp->ar_spa, arp_spa);
|
|
put_16aligned_be32(&arp->ar_tpa, arp_tpa);
|
|
}
|
|
|
|
/* Clears 'b' and replaces its contents by an ARP frame. Sets the fields in
|
|
* the Ethernet and ARP headers that are fixed for ARP frames to those fixed
|
|
* values, and zeroes the other fields. Points the L3 header to the ARP
|
|
* header. */
|
|
void
|
|
compose_arp__(struct dp_packet *b)
|
|
{
|
|
dp_packet_clear(b);
|
|
dp_packet_prealloc_tailroom(b, ARP_PACKET_SIZE);
|
|
dp_packet_reserve(b, 2 + VLAN_HEADER_LEN);
|
|
|
|
struct eth_header *eth = dp_packet_put_zeros(b, sizeof *eth);
|
|
eth->eth_type = htons(ETH_TYPE_ARP);
|
|
|
|
struct arp_eth_header *arp = dp_packet_put_zeros(b, sizeof *arp);
|
|
arp->ar_hrd = htons(ARP_HRD_ETHERNET);
|
|
arp->ar_pro = htons(ARP_PRO_IP);
|
|
arp->ar_hln = sizeof arp->ar_sha;
|
|
arp->ar_pln = sizeof arp->ar_spa;
|
|
|
|
dp_packet_set_l3(b, arp);
|
|
|
|
b->packet_type = htonl(PT_ETH);
|
|
}
|
|
|
|
/* This function expects packet with ethernet header with correct
|
|
* l3 pointer set. */
|
|
void *
|
|
compose_ipv6(struct dp_packet *packet, uint8_t proto,
|
|
const struct in6_addr *src, const struct in6_addr *dst,
|
|
uint8_t key_tc, ovs_be32 key_fl, uint8_t key_hl, int size)
|
|
{
|
|
struct ovs_16aligned_ip6_hdr *nh;
|
|
void *data;
|
|
|
|
nh = dp_packet_l3(packet);
|
|
nh->ip6_vfc = 0x60;
|
|
nh->ip6_nxt = proto;
|
|
nh->ip6_plen = htons(size);
|
|
data = dp_packet_put_zeros(packet, size);
|
|
dp_packet_set_l4(packet, data);
|
|
packet_set_ipv6(packet, src, dst, key_tc, key_fl, key_hl);
|
|
return data;
|
|
}
|
|
|
|
/* Compose an IPv6 Neighbor Discovery Neighbor Solicitation message. */
|
|
void
|
|
compose_nd_ns(struct dp_packet *b, const struct eth_addr eth_src,
|
|
const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst)
|
|
{
|
|
struct in6_addr sn_addr;
|
|
struct eth_addr eth_dst;
|
|
struct ovs_nd_msg *ns;
|
|
struct ovs_nd_lla_opt *lla_opt;
|
|
uint32_t icmp_csum;
|
|
|
|
in6_addr_solicited_node(&sn_addr, ipv6_dst);
|
|
ipv6_multicast_to_ethernet(ð_dst, &sn_addr);
|
|
|
|
eth_compose(b, eth_dst, eth_src, ETH_TYPE_IPV6, IPV6_HEADER_LEN);
|
|
ns = compose_ipv6(b, IPPROTO_ICMPV6, ipv6_src, &sn_addr,
|
|
0, 0, 255, ND_MSG_LEN + ND_LLA_OPT_LEN);
|
|
|
|
ns->icmph.icmp6_type = ND_NEIGHBOR_SOLICIT;
|
|
ns->icmph.icmp6_code = 0;
|
|
put_16aligned_be32(&ns->rso_flags, htonl(0));
|
|
|
|
lla_opt = &ns->options[0];
|
|
lla_opt->type = ND_OPT_SOURCE_LINKADDR;
|
|
lla_opt->len = 1;
|
|
|
|
packet_set_nd(b, ipv6_dst, eth_src, eth_addr_zero);
|
|
|
|
ns->icmph.icmp6_cksum = 0;
|
|
icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
|
|
ns->icmph.icmp6_cksum = csum_finish(
|
|
csum_continue(icmp_csum, ns, ND_MSG_LEN + ND_LLA_OPT_LEN));
|
|
}
|
|
|
|
/* Compose an IPv6 Neighbor Discovery Neighbor Advertisement message. */
|
|
void
|
|
compose_nd_na(struct dp_packet *b,
|
|
const struct eth_addr eth_src, const struct eth_addr eth_dst,
|
|
const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst,
|
|
ovs_be32 rso_flags)
|
|
{
|
|
struct ovs_nd_msg *na;
|
|
struct ovs_nd_lla_opt *lla_opt;
|
|
uint32_t icmp_csum;
|
|
|
|
eth_compose(b, eth_dst, eth_src, ETH_TYPE_IPV6, IPV6_HEADER_LEN);
|
|
na = compose_ipv6(b, IPPROTO_ICMPV6, ipv6_src, ipv6_dst,
|
|
0, 0, 255, ND_MSG_LEN + ND_LLA_OPT_LEN);
|
|
|
|
na->icmph.icmp6_type = ND_NEIGHBOR_ADVERT;
|
|
na->icmph.icmp6_code = 0;
|
|
put_16aligned_be32(&na->rso_flags, rso_flags);
|
|
|
|
lla_opt = &na->options[0];
|
|
lla_opt->type = ND_OPT_TARGET_LINKADDR;
|
|
lla_opt->len = 1;
|
|
|
|
packet_set_nd(b, ipv6_src, eth_addr_zero, eth_src);
|
|
|
|
na->icmph.icmp6_cksum = 0;
|
|
icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
|
|
na->icmph.icmp6_cksum = csum_finish(csum_continue(
|
|
icmp_csum, na, ND_MSG_LEN + ND_LLA_OPT_LEN));
|
|
}
|
|
|
|
/* Compose an IPv6 Neighbor Discovery Router Advertisement message with
|
|
* Source Link-layer Address Option and MTU Option.
|
|
* Caller can call packet_put_ra_prefix_opt to append Prefix Information
|
|
* Options to composed messags in 'b'. */
|
|
void
|
|
compose_nd_ra(struct dp_packet *b,
|
|
const struct eth_addr eth_src, const struct eth_addr eth_dst,
|
|
const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst,
|
|
uint8_t cur_hop_limit, uint8_t mo_flags,
|
|
ovs_be16 router_lt, ovs_be32 reachable_time,
|
|
ovs_be32 retrans_timer, uint32_t mtu)
|
|
{
|
|
/* Don't compose Router Advertisement packet with MTU Option if mtu
|
|
* value is 0. */
|
|
bool with_mtu = mtu != 0;
|
|
size_t mtu_opt_len = with_mtu ? ND_MTU_OPT_LEN : 0;
|
|
|
|
eth_compose(b, eth_dst, eth_src, ETH_TYPE_IPV6, IPV6_HEADER_LEN);
|
|
|
|
struct ovs_ra_msg *ra = compose_ipv6(
|
|
b, IPPROTO_ICMPV6, ipv6_src, ipv6_dst, 0, 0, 255,
|
|
RA_MSG_LEN + ND_LLA_OPT_LEN + mtu_opt_len);
|
|
ra->icmph.icmp6_type = ND_ROUTER_ADVERT;
|
|
ra->icmph.icmp6_code = 0;
|
|
ra->cur_hop_limit = cur_hop_limit;
|
|
ra->mo_flags = mo_flags;
|
|
ra->router_lifetime = router_lt;
|
|
ra->reachable_time = reachable_time;
|
|
ra->retrans_timer = retrans_timer;
|
|
|
|
struct ovs_nd_lla_opt *lla_opt = ra->options;
|
|
lla_opt->type = ND_OPT_SOURCE_LINKADDR;
|
|
lla_opt->len = 1;
|
|
lla_opt->mac = eth_src;
|
|
|
|
if (with_mtu) {
|
|
/* ovs_nd_mtu_opt has the same size with ovs_nd_lla_opt. */
|
|
struct ovs_nd_mtu_opt *mtu_opt
|
|
= (struct ovs_nd_mtu_opt *)(lla_opt + 1);
|
|
mtu_opt->type = ND_OPT_MTU;
|
|
mtu_opt->len = 1;
|
|
mtu_opt->reserved = 0;
|
|
put_16aligned_be32(&mtu_opt->mtu, htonl(mtu));
|
|
}
|
|
|
|
ra->icmph.icmp6_cksum = 0;
|
|
uint32_t icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
|
|
ra->icmph.icmp6_cksum = csum_finish(csum_continue(
|
|
icmp_csum, ra, RA_MSG_LEN + ND_LLA_OPT_LEN + mtu_opt_len));
|
|
}
|
|
|
|
/* Append an IPv6 Neighbor Discovery Prefix Information option to a
|
|
* Router Advertisement message. */
|
|
void
|
|
packet_put_ra_prefix_opt(struct dp_packet *b,
|
|
uint8_t plen, uint8_t la_flags,
|
|
ovs_be32 valid_lifetime, ovs_be32 preferred_lifetime,
|
|
const ovs_be128 prefix)
|
|
{
|
|
size_t prev_l4_size = dp_packet_l4_size(b);
|
|
struct ovs_16aligned_ip6_hdr *nh = dp_packet_l3(b);
|
|
nh->ip6_plen = htons(prev_l4_size + ND_PREFIX_OPT_LEN);
|
|
|
|
struct ovs_nd_prefix_opt *prefix_opt =
|
|
dp_packet_put_uninit(b, sizeof *prefix_opt);
|
|
prefix_opt->type = ND_OPT_PREFIX_INFORMATION;
|
|
prefix_opt->len = 4;
|
|
prefix_opt->prefix_len = plen;
|
|
prefix_opt->la_flags = la_flags;
|
|
put_16aligned_be32(&prefix_opt->valid_lifetime, valid_lifetime);
|
|
put_16aligned_be32(&prefix_opt->preferred_lifetime, preferred_lifetime);
|
|
put_16aligned_be32(&prefix_opt->reserved, 0);
|
|
memcpy(prefix_opt->prefix.be32, prefix.be32, sizeof(ovs_be32[4]));
|
|
|
|
struct ovs_ra_msg *ra = dp_packet_l4(b);
|
|
ra->icmph.icmp6_cksum = 0;
|
|
uint32_t icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
|
|
ra->icmph.icmp6_cksum = csum_finish(csum_continue(
|
|
icmp_csum, ra, prev_l4_size + ND_PREFIX_OPT_LEN));
|
|
}
|
|
|
|
uint32_t
|
|
packet_csum_pseudoheader(const struct ip_header *ip)
|
|
{
|
|
uint32_t partial = 0;
|
|
|
|
partial = csum_add32(partial, get_16aligned_be32(&ip->ip_src));
|
|
partial = csum_add32(partial, get_16aligned_be32(&ip->ip_dst));
|
|
partial = csum_add16(partial, htons(ip->ip_proto));
|
|
partial = csum_add16(partial, htons(ntohs(ip->ip_tot_len) -
|
|
IP_IHL(ip->ip_ihl_ver) * 4));
|
|
|
|
return partial;
|
|
}
|
|
|
|
#ifndef __CHECKER__
|
|
uint32_t
|
|
packet_csum_pseudoheader6(const struct ovs_16aligned_ip6_hdr *ip6)
|
|
{
|
|
uint32_t partial = 0;
|
|
|
|
partial = csum_continue(partial, &ip6->ip6_src, sizeof ip6->ip6_src);
|
|
partial = csum_continue(partial, &ip6->ip6_dst, sizeof ip6->ip6_dst);
|
|
partial = csum_add16(partial, htons(ip6->ip6_nxt));
|
|
partial = csum_add16(partial, ip6->ip6_plen);
|
|
|
|
return partial;
|
|
}
|
|
|
|
/* Calculate the IPv6 upper layer checksum according to RFC2460. We pass the
|
|
ip6_nxt and ip6_plen values, so it will also work if extension headers
|
|
are present. */
|
|
ovs_be16
|
|
packet_csum_upperlayer6(const struct ovs_16aligned_ip6_hdr *ip6,
|
|
const void *data, uint8_t l4_protocol,
|
|
uint16_t l4_size)
|
|
{
|
|
uint32_t partial = 0;
|
|
|
|
partial = csum_continue(partial, &ip6->ip6_src, sizeof ip6->ip6_src);
|
|
partial = csum_continue(partial, &ip6->ip6_dst, sizeof ip6->ip6_dst);
|
|
partial = csum_add16(partial, htons(l4_protocol));
|
|
partial = csum_add16(partial, htons(l4_size));
|
|
|
|
partial = csum_continue(partial, data, l4_size);
|
|
|
|
return csum_finish(partial);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
IP_ECN_set_ce(struct dp_packet *pkt, bool is_ipv6)
|
|
{
|
|
if (is_ipv6) {
|
|
ovs_16aligned_be32 *ip6 = dp_packet_l3(pkt);
|
|
|
|
put_16aligned_be32(ip6, get_16aligned_be32(ip6) |
|
|
htonl(IP_ECN_CE << 20));
|
|
} else {
|
|
struct ip_header *nh = dp_packet_l3(pkt);
|
|
uint8_t tos = nh->ip_tos;
|
|
|
|
tos |= IP_ECN_CE;
|
|
if (nh->ip_tos != tos) {
|
|
if (dp_packet_hwol_l3_ipv4(pkt)) {
|
|
dp_packet_ol_reset_ip_csum_good(pkt);
|
|
} else {
|
|
nh->ip_csum = recalc_csum16(nh->ip_csum, htons(nh->ip_tos),
|
|
htons((uint16_t) tos));
|
|
}
|
|
|
|
nh->ip_tos = tos;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set TCP checksum field in packet 'p' with complete checksum.
|
|
* The packet must have the L3 and L4 offsets. */
|
|
void
|
|
packet_tcp_complete_csum(struct dp_packet *p, bool inner)
|
|
{
|
|
struct tcp_header *tcp;
|
|
size_t tcp_sz;
|
|
void *ip_hdr;
|
|
|
|
if (inner) {
|
|
tcp = dp_packet_inner_l4(p);
|
|
ip_hdr = dp_packet_inner_l3(p);
|
|
tcp_sz = dp_packet_inner_l4_size(p);
|
|
} else {
|
|
tcp = dp_packet_l4(p);
|
|
ip_hdr = dp_packet_l3(p);
|
|
tcp_sz = dp_packet_l4_size(p);
|
|
}
|
|
|
|
ovs_assert(tcp);
|
|
ovs_assert(ip_hdr);
|
|
|
|
tcp->tcp_csum = 0;
|
|
if (IP_VER(((const struct ip_header *) ip_hdr)->ip_ihl_ver) == 4) {
|
|
struct ip_header *ip = ip_hdr;
|
|
|
|
tcp->tcp_csum = csum_finish(csum_continue(packet_csum_pseudoheader(ip),
|
|
tcp, tcp_sz));
|
|
} else {
|
|
struct ovs_16aligned_ip6_hdr *ip6 = ip_hdr;
|
|
|
|
tcp->tcp_csum = packet_csum_upperlayer6(ip6, tcp, ip6->ip6_nxt,
|
|
tcp_sz);
|
|
}
|
|
}
|
|
|
|
/* Set UDP checksum field in packet 'p' with complete checksum.
|
|
* The packet must have the L3 and L4 offsets. */
|
|
void
|
|
packet_udp_complete_csum(struct dp_packet *p, bool inner)
|
|
{
|
|
struct udp_header *udp;
|
|
size_t udp_sz;
|
|
void *ip_hdr;
|
|
|
|
if (inner) {
|
|
udp = dp_packet_inner_l4(p);
|
|
ip_hdr = dp_packet_inner_l3(p);
|
|
udp_sz = dp_packet_inner_l4_size(p);
|
|
} else {
|
|
udp = dp_packet_l4(p);
|
|
ip_hdr = dp_packet_l3(p);
|
|
udp_sz = dp_packet_l4_size(p);
|
|
}
|
|
|
|
ovs_assert(udp);
|
|
ovs_assert(ip_hdr);
|
|
|
|
/* Skip csum calculation if the udp_csum is zero. */
|
|
if (!udp->udp_csum) {
|
|
return;
|
|
}
|
|
|
|
udp->udp_csum = 0;
|
|
if (IP_VER(((const struct ip_header *) ip_hdr)->ip_ihl_ver) == 4) {
|
|
struct ip_header *ip = ip_hdr;
|
|
|
|
udp->udp_csum = csum_finish(csum_continue(packet_csum_pseudoheader(ip),
|
|
udp, udp_sz));
|
|
} else {
|
|
struct ovs_16aligned_ip6_hdr *ip6 = ip_hdr;
|
|
|
|
udp->udp_csum = packet_csum_upperlayer6(ip6, udp, ip6->ip6_nxt,
|
|
udp_sz);
|
|
}
|
|
|
|
if (!udp->udp_csum) {
|
|
udp->udp_csum = htons(0xffff);
|
|
}
|
|
}
|
|
|
|
/* Set SCTP checksum field in packet 'p' with complete checksum.
|
|
* The packet must have the L3 and L4 offsets. */
|
|
void
|
|
packet_sctp_complete_csum(struct dp_packet *p, bool inner)
|
|
{
|
|
struct sctp_header *sh;
|
|
uint16_t tp_len;
|
|
ovs_be32 csum;
|
|
|
|
if (inner) {
|
|
sh = dp_packet_inner_l4(p);
|
|
tp_len = dp_packet_inner_l4_size(p);
|
|
} else {
|
|
sh = dp_packet_l4(p);
|
|
tp_len = dp_packet_l4_size(p);
|
|
}
|
|
|
|
ovs_assert(sh);
|
|
|
|
put_16aligned_be32(&sh->sctp_csum, 0);
|
|
csum = crc32c((void *) sh, tp_len);
|
|
put_16aligned_be32(&sh->sctp_csum, csum);
|
|
}
|