2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/lib/async-append-aio.c
Ben Pfaff 888e0cf441 async-append: Refactor to avoid requiring enabling while single threaded.
Until now, the async append interface has required async_append_enable()
to be called while the process was still single-threaded, with the
rationale being that async_append_enable() could race with
async_append_write() on some existing async_append object.  This was a
difficult problem when the async append interface was introduced, because
at the time Open vSwitch did not have any infrastructure for inter-thread
synchronization.

Now it is easy to solve, by introducing synchronization into the
async append module.  However, that's more or less wasted, because the
client is already required to serialize access to async append objects.
Moreover, vlog, the only existing client, needs to serialize access for
other reasons, so it wouldn't even be possible to just drop the client's
synchronization.

This commit therefore takes another approach.  It drops the
async_append_enable() interface entirely.  Now any existing async_append
object is always enabled.  The responsibility for "enabling", then, now
rests in whether the client creates and uses an async_append object, and
so vlog now takes care of that by itself.  Also, since vlog now has to
deal with sometimes having an async_append and sometimes not having one,
we might as well allow creating an async_append to fail, thereby slightly
simplifying the "no async I/O" implementation from "write synchronously"
to "always fail creating an async_append".

Reported-by: Shih-Hao Li <shihli@nicira.com>
Signed-off-by: Ben Pfaff <blp@nicira.com>
2013-08-02 20:03:52 -07:00

164 lines
4.0 KiB
C

/* Copyright (c) 2013 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
/* This implementation of the async-append.h interface uses the POSIX
* asynchronous I/O interface. */
#include "async-append.h"
#include <aio.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include "byteq.h"
#include "ovs-thread.h"
#include "util.h"
/* Maximum number of bytes of buffered data. */
enum { BUFFER_SIZE = 65536 };
/* Maximum number of aiocbs to use.
*
* aiocbs are big (144 bytes with glibc 2.11 on i386) so we try to allow for a
* reasonable number by basing the number we allocate on the amount of buffer
* space. */
enum { MAX_CBS = ROUND_DOWN_POW2(BUFFER_SIZE / sizeof(struct aiocb)) };
BUILD_ASSERT_DECL(IS_POW2(MAX_CBS));
struct async_append {
int fd;
struct aiocb *aiocbs;
unsigned int aiocb_head, aiocb_tail;
uint8_t *buffer;
struct byteq byteq;
};
struct async_append *
async_append_create(int fd)
{
struct async_append *ap;
ap = xmalloc(sizeof *ap);
ap->fd = fd;
ap->aiocbs = xmalloc(MAX_CBS * sizeof *ap->aiocbs);
ap->aiocb_head = ap->aiocb_tail = 0;
ap->buffer = xmalloc(BUFFER_SIZE);
byteq_init(&ap->byteq, ap->buffer, BUFFER_SIZE);
return ap;
}
void
async_append_destroy(struct async_append *ap)
{
if (ap) {
async_append_flush(ap);
free(ap->aiocbs);
free(ap->buffer);
free(ap);
}
}
static bool
async_append_is_full(const struct async_append *ap)
{
return (ap->aiocb_head - ap->aiocb_tail >= MAX_CBS
|| byteq_is_full(&ap->byteq));
}
static bool
async_append_is_empty(const struct async_append *ap)
{
return byteq_is_empty(&ap->byteq);
}
static void
async_append_wait(struct async_append *ap)
{
int n = 0;
while (!async_append_is_empty(ap)) {
struct aiocb *aiocb = &ap->aiocbs[ap->aiocb_tail & (MAX_CBS - 1)];
int error = aio_error(aiocb);
if (error == EINPROGRESS) {
const struct aiocb *p = aiocb;
if (n > 0) {
return;
}
aio_suspend(&p, 1, NULL);
} else {
ignore(aio_return(aiocb));
ap->aiocb_tail++;
byteq_advance_tail(&ap->byteq, aiocb->aio_nbytes);
n++;
}
}
}
void
async_append_write(struct async_append *ap, const void *data_, size_t size)
{
const uint8_t *data = data_;
while (size > 0) {
struct aiocb *aiocb;
size_t chunk_size;
void *chunk;
while (async_append_is_full(ap)) {
async_append_wait(ap);
}
chunk = byteq_head(&ap->byteq);
chunk_size = byteq_headroom(&ap->byteq);
if (chunk_size > size) {
chunk_size = size;
}
memcpy(chunk, data, chunk_size);
aiocb = &ap->aiocbs[ap->aiocb_head & (MAX_CBS - 1)];
memset(aiocb, 0, sizeof *aiocb);
aiocb->aio_fildes = ap->fd;
aiocb->aio_offset = 0;
aiocb->aio_buf = chunk;
aiocb->aio_nbytes = chunk_size;
aiocb->aio_sigevent.sigev_notify = SIGEV_NONE;
if (aio_write(aiocb) == -1) {
async_append_flush(ap);
ignore(write(ap->fd, data, size));
return;
}
data += chunk_size;
size -= chunk_size;
byteq_advance_head(&ap->byteq, chunk_size);
ap->aiocb_head++;
}
}
void
async_append_flush(struct async_append *ap)
{
while (!async_append_is_empty(ap)) {
async_append_wait(ap);
}
}