2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/lib/ofp-actions.c
Changliang Wu aea4734299 lldp: Fix out of bound write in chassisid_to_string.
snprintf will automatically write \0 at the end of the string,
and the last one byte will be out of bound.

create a new function ds_put_hex_with_delimiter,
instead of chassisid_to string and format_hex_arg.

Found in sanitize test.

Signed-off-by: Changliang Wu <changliang.wu@smartx.com>
Signed-off-by: Aaron Conole <aconole@redhat.com>
2025-06-13 14:06:55 -04:00

10029 lines
329 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2008-2017, 2019-2020 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include <sys/types.h>
#include <netinet/in.h>
#include "bundle.h"
#include "byte-order.h"
#include "colors.h"
#include "compiler.h"
#include "dummy.h"
#include "openvswitch/hmap.h"
#include "learn.h"
#include "multipath.h"
#include "nx-match.h"
#include "odp-netlink.h"
#include "openvswitch/dynamic-string.h"
#include "openvswitch/meta-flow.h"
#include "openvswitch/ofp-actions.h"
#include "openvswitch/ofp-packet.h"
#include "openvswitch/ofp-parse.h"
#include "openvswitch/ofp-port.h"
#include "openvswitch/ofp-prop.h"
#include "openvswitch/ofp-table.h"
#include "openvswitch/ofpbuf.h"
#include "openvswitch/vlog.h"
#include "unaligned.h"
#include "util.h"
#include "vl-mff-map.h"
VLOG_DEFINE_THIS_MODULE(ofp_actions);
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
struct ofp_action_header;
/* Header for Open vSwitch and ONF vendor extension actions.
*
* This is the entire header for a few Open vSwitch vendor extension actions,
* the ones that either have no arguments or for which variable-length
* arguments follow the header.
*
* This cannot be used as an entirely generic vendor extension action header,
* because OpenFlow does not specify the location or size of the action
* subtype; it just happens that ONF extensions and Nicira extensions share
* this format. */
struct ext_action_header {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* At least 16. */
ovs_be32 vendor; /* NX_VENDOR_ID or ONF_VENDOR_ID. */
ovs_be16 subtype; /* See enum ofp_raw_action_type. */
uint8_t pad[6];
};
OFP_ASSERT(sizeof(struct ext_action_header) == 16);
/* Raw identifiers for OpenFlow actions.
*
* Decoding and encoding OpenFlow actions across multiple versions is difficult
* to do in a clean, consistent way. This enumeration lays out all of the
* forms of actions that Open vSwitch supports.
*
* The comments here must follow a stylized form because the
* "extract-ofp-actions" program parses them at build time to generate data
* tables.
*
* - The first part of each comment specifies the vendor, OpenFlow versions,
* and type for each protocol that supports the action:
*
* # The vendor is OF for standard OpenFlow actions, NX for Nicira
* extension actions. (Support for other vendors can be added, but
* it can't be done just based on a vendor ID definition alone
* because OpenFlow doesn't define a standard way to specify a
* subtype for vendor actions, so other vendors might do it different
* from Nicira.)
*
* # The version can specify a specific OpenFlow version, a version
* range delimited by "-", or an open-ended range with "+".
*
* # The type, in parentheses, is the action type number (for standard
* OpenFlow actions) or subtype (for vendor extension actions).
*
* # Optionally one may add "is deprecated" followed by a
* human-readable reason in parentheses (which will be used in log
* messages), if a particular action should no longer be used.
*
* Multiple such specifications may be separated by commas.
*
* - The second part describes the action's wire format. It may be:
*
* # "struct <name>": The struct fully specifies the wire format. The
* action is exactly the size of the struct. (Thus, the struct must
* be an exact multiple of 8 bytes in size.)
*
* # "struct <name>, ...": The struct specifies the beginning of the
* wire format. An instance of the action is either the struct's
* exact size, or a multiple of 8 bytes longer.
*
* # "uint<N>_t" or "ovs_be<N>": The action consists of a (standard or
* vendor extension) header, followed by 0 or more pad bytes to align
* to a multiple of <N> bits, followed by an argument of the given
* type, followed by 0 or more pad bytes to bring the total action up
* to a multiple of 8 bytes.
*
* # "void": The action is just a (standard or vendor extension)
* header.
*
* # Optionally, one may add "VLMFF" in the end of the second part if
* the Openflow action may use a variable length meta-flow field
* (i.e. tun_metadata). Adding "VLMFF" will pass the per-switch based
* variable length meta-flow field mapping map (struct vl_mff_map) to
* the corresponding action decoding function.
*
* - Optional additional text enclosed in square brackets is commentary for
* the human reader.
*/
enum ofp_raw_action_type {
/* ## ----------------- ## */
/* ## Standard actions. ## */
/* ## ----------------- ## */
/* OF1.0(0): struct ofp10_action_output. */
OFPAT_RAW10_OUTPUT,
/* OF1.1+(0): struct ofp11_action_output. */
OFPAT_RAW11_OUTPUT,
/* OF1.0(1): uint16_t. */
OFPAT_RAW10_SET_VLAN_VID,
/* OF1.0(2): uint8_t. */
OFPAT_RAW10_SET_VLAN_PCP,
/* OF1.1(1), OF1.2+(1) is deprecated (use Set-Field): uint16_t.
*
* [Semantics differ slightly between the 1.0 and 1.1 versions of the VLAN
* modification actions: the 1.0 versions push a VLAN header if none is
* present, but the 1.1 versions do not. That is the only reason that we
* distinguish their raw action types.] */
OFPAT_RAW11_SET_VLAN_VID,
/* OF1.1(2), OF1.2+(2) is deprecated (use Set-Field): uint8_t. */
OFPAT_RAW11_SET_VLAN_PCP,
/* OF1.1+(17): ovs_be16.
*
* [The argument is the Ethertype, e.g. ETH_TYPE_VLAN_8021Q, not the VID or
* TCI.] */
OFPAT_RAW11_PUSH_VLAN,
/* OF1.0(3): void. */
OFPAT_RAW10_STRIP_VLAN,
/* OF1.1+(18): void. */
OFPAT_RAW11_POP_VLAN,
/* OF1.0(4), OF1.1(3), OF1.2+(3) is deprecated (use Set-Field): struct
* ofp_action_dl_addr. */
OFPAT_RAW_SET_DL_SRC,
/* OF1.0(5), OF1.1(4), OF1.2+(4) is deprecated (use Set-Field): struct
* ofp_action_dl_addr. */
OFPAT_RAW_SET_DL_DST,
/* OF1.0(6), OF1.1(5), OF1.2+(5) is deprecated (use Set-Field):
* ovs_be32. */
OFPAT_RAW_SET_NW_SRC,
/* OF1.0(7), OF1.1(6), OF1.2+(6) is deprecated (use Set-Field):
* ovs_be32. */
OFPAT_RAW_SET_NW_DST,
/* OF1.0(8), OF1.1(7), OF1.2+(7) is deprecated (use Set-Field): uint8_t. */
OFPAT_RAW_SET_NW_TOS,
/* OF1.1(8), OF1.2+(8) is deprecated (use Set-Field): uint8_t. */
OFPAT_RAW11_SET_NW_ECN,
/* OF1.0(9), OF1.1(9), OF1.2+(9) is deprecated (use Set-Field):
* ovs_be16. */
OFPAT_RAW_SET_TP_SRC,
/* OF1.0(10), OF1.1(10), OF1.2+(10) is deprecated (use Set-Field):
* ovs_be16. */
OFPAT_RAW_SET_TP_DST,
/* OF1.0(11): struct ofp10_action_enqueue. */
OFPAT_RAW10_ENQUEUE,
/* NX1.0(30), OF1.1(13), OF1.2+(13) is deprecated (use Set-Field):
* ovs_be32. */
OFPAT_RAW_SET_MPLS_LABEL,
/* NX1.0(31), OF1.1(14), OF1.2+(14) is deprecated (use Set-Field):
* uint8_t. */
OFPAT_RAW_SET_MPLS_TC,
/* NX1.0(25), OF1.1(15), OF1.2+(15) is deprecated (use Set-Field):
* uint8_t. */
OFPAT_RAW_SET_MPLS_TTL,
/* NX1.0(26), OF1.1+(16): void. */
OFPAT_RAW_DEC_MPLS_TTL,
/* NX1.0(23), OF1.1+(19): ovs_be16.
*
* [The argument is the Ethertype, e.g. ETH_TYPE_MPLS, not the label.] */
OFPAT_RAW_PUSH_MPLS,
/* NX1.0(24), OF1.1+(20): ovs_be16.
*
* [The argument is the Ethertype, e.g. ETH_TYPE_IPV4 if at BoS or
* ETH_TYPE_MPLS otherwise, not the label.] */
OFPAT_RAW_POP_MPLS,
/* NX1.0(4), OF1.1+(21): uint32_t. */
OFPAT_RAW_SET_QUEUE,
/* NX1.0(40), OF1.1+(22): uint32_t. */
OFPAT_RAW_GROUP,
/* OF1.1+(23): uint8_t. */
OFPAT_RAW11_SET_NW_TTL,
/* NX1.0(18), OF1.1+(24): void. */
OFPAT_RAW_DEC_NW_TTL,
/* NX1.0+(21): struct nx_action_cnt_ids, ... */
NXAST_RAW_DEC_TTL_CNT_IDS,
/* OF1.2-1.4(25): struct ofp12_action_set_field, ... VLMFF */
OFPAT_RAW12_SET_FIELD,
/* OF1.5+(25): struct ofp12_action_set_field, ... VLMFF */
OFPAT_RAW15_SET_FIELD,
/* NX1.0-1.4(7): struct nx_action_reg_load. VLMFF
*
* [In OpenFlow 1.5, set_field is a superset of reg_load functionality, so
* we drop reg_load.] */
NXAST_RAW_REG_LOAD,
/* NX1.0-1.4(33): struct ext_action_header, ... VLMFF
*
* [In OpenFlow 1.5, set_field is a superset of reg_load2 functionality, so
* we drop reg_load2.] */
NXAST_RAW_REG_LOAD2,
/* OF1.5+(28): struct ofp15_action_copy_field, ... VLMFF */
OFPAT_RAW15_COPY_FIELD,
/* ONF1.3-1.4(3200): struct onf_action_copy_field, ... VLMFF */
ONFACT_RAW13_COPY_FIELD,
/* NX1.0-1.4(6): struct nx_action_reg_move, ... VLMFF */
NXAST_RAW_REG_MOVE,
/* OF1.5+(29): uint32_t. */
OFPAT_RAW15_METER,
/* ## ------------------------- ## */
/* ## Nicira extension actions. ## */
/* ## ------------------------- ## */
/* Actions similar to standard actions are listed with the standard actions. */
/* NX1.0+(1): uint16_t. */
NXAST_RAW_RESUBMIT,
/* NX1.0+(14): struct nx_action_resubmit. */
NXAST_RAW_RESUBMIT_TABLE,
/* NX1.0+(44): struct nx_action_resubmit. */
NXAST_RAW_RESUBMIT_TABLE_CT,
/* NX1.0+(2): uint32_t. */
NXAST_RAW_SET_TUNNEL,
/* NX1.0+(9): uint64_t. */
NXAST_RAW_SET_TUNNEL64,
/* NX1.0+(5): void. */
NXAST_RAW_POP_QUEUE,
/* NX1.0+(8): struct nx_action_note, ... */
NXAST_RAW_NOTE,
/* NX1.0+(10): struct nx_action_multipath. VLMFF */
NXAST_RAW_MULTIPATH,
/* NX1.0+(12): struct nx_action_bundle, ... */
NXAST_RAW_BUNDLE,
/* NX1.0+(13): struct nx_action_bundle, ... VLMFF */
NXAST_RAW_BUNDLE_LOAD,
/* NX1.0+(15): struct nx_action_output_reg. VLMFF */
NXAST_RAW_OUTPUT_REG,
/* NX1.0+(32): struct nx_action_output_reg2. VLMFF */
NXAST_RAW_OUTPUT_REG2,
/* NX1.0+(16): struct nx_action_learn, ... VLMFF */
NXAST_RAW_LEARN,
/* NX1.0+(45): struct nx_action_learn2, ... VLMFF */
NXAST_RAW_LEARN2,
/* NX1.0+(17): void. */
NXAST_RAW_EXIT,
/* NX1.0+(19): struct nx_action_fin_timeout. */
NXAST_RAW_FIN_TIMEOUT,
/* NX1.0+(20): struct nx_action_controller. */
NXAST_RAW_CONTROLLER,
/* NX1.0+(37): struct ext_action_header, ... */
NXAST_RAW_CONTROLLER2,
/* NX1.0+(22): struct nx_action_write_metadata. */
NXAST_RAW_WRITE_METADATA,
/* NX1.0+(27): struct nx_action_stack. VLMFF */
NXAST_RAW_STACK_PUSH,
/* NX1.0+(28): struct nx_action_stack. VLMFF */
NXAST_RAW_STACK_POP,
/* NX1.0+(29): struct nx_action_sample. */
NXAST_RAW_SAMPLE,
/* NX1.0+(38): struct nx_action_sample2. */
NXAST_RAW_SAMPLE2,
/* NX1.0+(41): struct nx_action_sample2. */
NXAST_RAW_SAMPLE3,
/* NX1.0+(51): struct nx_action_sample4. VLMFF */
NXAST_RAW_SAMPLE4,
/* NX1.0+(34): struct nx_action_conjunction. */
NXAST_RAW_CONJUNCTION,
/* NX1.0+(35): struct nx_action_conntrack, ... VLMFF */
NXAST_RAW_CT,
/* NX1.0+(36): struct nx_action_nat, ... */
NXAST_RAW_NAT,
/* NX1.0+(39): struct nx_action_output_trunc. */
NXAST_RAW_OUTPUT_TRUNC,
/* NX1.0+(42): struct ext_action_header, ... VLMFF */
NXAST_RAW_CLONE,
/* NX1.0+(43): void. */
NXAST_RAW_CT_CLEAR,
/* NX1.3+(46): struct nx_action_encap, ... */
NXAST_RAW_ENCAP,
/* NX1.3+(47): struct nx_action_decap, ... */
NXAST_RAW_DECAP,
/* NX1.3+(48): void. */
NXAST_RAW_DEC_NSH_TTL,
/* NX1.0+(49): struct nx_action_check_pkt_larger, ... VLMFF */
NXAST_RAW_CHECK_PKT_LARGER,
/* NX1.0+(50): struct nx_action_delete_field. VLMFF */
NXAST_RAW_DELETE_FIELD,
/* ## ------------------ ## */
/* ## Debugging actions. ## */
/* ## ------------------ ## */
/* These are intentionally undocumented, subject to change, and ovs-vswitchd */
/* accepts them only if started with --enable-dummy. */
/* NX1.0+(254): void. */
NXAST_RAW_DEBUG_SLOW,
/* NX1.0+(255): void. */
NXAST_RAW_DEBUG_RECIRC,
};
/* OpenFlow actions are always a multiple of 8 bytes in length. */
#define OFP_ACTION_ALIGN 8
/* Define a few functions for working with instructions. */
#define DEFINE_INST(ENUM, STRUCT, EXTENSIBLE, NAME) \
static inline const struct STRUCT * OVS_UNUSED \
instruction_get_##ENUM(const struct ofp11_instruction *inst)\
{ \
ovs_assert(inst->type == htons(ENUM)); \
return ALIGNED_CAST(struct STRUCT *, inst); \
} \
\
static inline void OVS_UNUSED \
instruction_init_##ENUM(struct STRUCT *s) \
{ \
memset(s, 0, sizeof *s); \
s->type = htons(ENUM); \
s->len = htons(sizeof *s); \
} \
\
static inline struct STRUCT * OVS_UNUSED \
instruction_put_##ENUM(struct ofpbuf *buf) \
{ \
struct STRUCT *s = ofpbuf_put_uninit(buf, sizeof *s); \
instruction_init_##ENUM(s); \
return s; \
}
OVS_INSTRUCTIONS
#undef DEFINE_INST
static void ofpacts_update_instruction_actions(struct ofpbuf *openflow,
size_t ofs);
static void pad_ofpat(struct ofpbuf *openflow, size_t start_ofs);
static enum ofperr ofpacts_verify(const struct ofpact[], size_t ofpacts_len,
enum ofp_version, uint32_t allowed_ovsinsts,
enum ofpact_type outer_action,
char **errorp);
static void put_set_field(struct ofpbuf *openflow, enum ofp_version,
enum mf_field_id, uint64_t value);
static void put_reg_load(struct ofpbuf *openflow,
const struct mf_subfield *, uint64_t value);
static enum ofperr ofpact_pull_raw(struct ofpbuf *, enum ofp_version,
enum ofp_raw_action_type *, uint64_t *arg,
size_t *raw_len);
static void *ofpact_put_raw(struct ofpbuf *, enum ofp_version,
enum ofp_raw_action_type, uint64_t arg);
static char *OVS_WARN_UNUSED_RESULT ofpacts_parse(
char *str, const struct ofpact_parse_params *pp,
bool allow_instructions, enum ofpact_type outer_action);
static enum ofperr ofpacts_pull_openflow_actions__(
struct ofpbuf *openflow, unsigned int actions_len,
enum ofp_version version, uint32_t allowed_ovsinsts,
struct ofpbuf *ofpacts, enum ofpact_type outer_action,
const struct vl_mff_map *vl_mff_map, uint64_t *ofpacts_tlv_bitmap);
static char * OVS_WARN_UNUSED_RESULT ofpacts_parse_copy(
const char *s_, const struct ofpact_parse_params *pp,
bool allow_instructions, enum ofpact_type outer_action);
static void inconsistent_match(enum ofputil_protocol *usable_protocols);
/* Returns the ofpact following 'ofpact', except that if 'ofpact' contains
* nested ofpacts it returns the first one. */
struct ofpact *
ofpact_next_flattened(const struct ofpact *ofpact)
{
switch (ofpact->type) {
case OFPACT_OUTPUT:
case OFPACT_GROUP:
case OFPACT_CONTROLLER:
case OFPACT_ENQUEUE:
case OFPACT_OUTPUT_REG:
case OFPACT_OUTPUT_TRUNC:
case OFPACT_BUNDLE:
case OFPACT_SET_FIELD:
case OFPACT_SET_VLAN_VID:
case OFPACT_SET_VLAN_PCP:
case OFPACT_STRIP_VLAN:
case OFPACT_PUSH_VLAN:
case OFPACT_SET_ETH_SRC:
case OFPACT_SET_ETH_DST:
case OFPACT_SET_IPV4_SRC:
case OFPACT_SET_IPV4_DST:
case OFPACT_SET_IP_DSCP:
case OFPACT_SET_IP_ECN:
case OFPACT_SET_IP_TTL:
case OFPACT_SET_L4_SRC_PORT:
case OFPACT_SET_L4_DST_PORT:
case OFPACT_REG_MOVE:
case OFPACT_STACK_PUSH:
case OFPACT_STACK_POP:
case OFPACT_DEC_TTL:
case OFPACT_SET_MPLS_LABEL:
case OFPACT_SET_MPLS_TC:
case OFPACT_SET_MPLS_TTL:
case OFPACT_DEC_MPLS_TTL:
case OFPACT_PUSH_MPLS:
case OFPACT_POP_MPLS:
case OFPACT_SET_TUNNEL:
case OFPACT_SET_QUEUE:
case OFPACT_POP_QUEUE:
case OFPACT_FIN_TIMEOUT:
case OFPACT_RESUBMIT:
case OFPACT_LEARN:
case OFPACT_CONJUNCTION:
case OFPACT_MULTIPATH:
case OFPACT_NOTE:
case OFPACT_EXIT:
case OFPACT_SAMPLE:
case OFPACT_UNROLL_XLATE:
case OFPACT_CT_CLEAR:
case OFPACT_DEBUG_RECIRC:
case OFPACT_DEBUG_SLOW:
case OFPACT_METER:
case OFPACT_CLEAR_ACTIONS:
case OFPACT_WRITE_METADATA:
case OFPACT_GOTO_TABLE:
case OFPACT_NAT:
case OFPACT_ENCAP:
case OFPACT_DECAP:
case OFPACT_DEC_NSH_TTL:
case OFPACT_CHECK_PKT_LARGER:
case OFPACT_DELETE_FIELD:
return ofpact_next(ofpact);
case OFPACT_CLONE:
return ofpact_get_CLONE(ofpact)->actions;
case OFPACT_CT:
return ofpact_get_CT(ofpact)->actions;
case OFPACT_WRITE_ACTIONS:
return ofpact_get_WRITE_ACTIONS(ofpact)->actions;
}
OVS_NOT_REACHED();
}
/* Pull off existing actions or instructions. Used by nesting actions to keep
* ofpacts_parse() oblivious of actions nesting.
*
* Push the actions back on after nested parsing, e.g.:
*
* size_t ofs = ofpacts_pull(ofpacts);
* ...nested parsing...
* ofpbuf_push_uninit(ofpacts, ofs);
*/
static size_t
ofpacts_pull(struct ofpbuf *ofpacts)
{
size_t ofs;
ofs = ofpacts->size;
ofpbuf_pull(ofpacts, ofs);
return ofs;
}
#include "ofp-actions.inc1"
/* Output actions. */
/* Action structure for OFPAT10_OUTPUT, which sends packets out 'port'.
* When the 'port' is the OFPP_CONTROLLER, 'max_len' indicates the max
* number of bytes to send. A 'max_len' of zero means no bytes of the
* packet should be sent. */
struct ofp10_action_output {
ovs_be16 type; /* OFPAT10_OUTPUT. */
ovs_be16 len; /* Length is 8. */
ovs_be16 port; /* Output port. */
ovs_be16 max_len; /* Max length to send to controller. */
};
OFP_ASSERT(sizeof(struct ofp10_action_output) == 8);
/* Action structure for OFPAT_OUTPUT, which sends packets out 'port'.
* When the 'port' is the OFPP_CONTROLLER, 'max_len' indicates the max
* number of bytes to send. A 'max_len' of zero means no bytes of the
* packet should be sent.*/
struct ofp11_action_output {
ovs_be16 type; /* OFPAT11_OUTPUT. */
ovs_be16 len; /* Length is 16. */
ovs_be32 port; /* Output port. */
ovs_be16 max_len; /* Max length to send to controller. */
uint8_t pad[6]; /* Pad to 64 bits. */
};
OFP_ASSERT(sizeof(struct ofp11_action_output) == 16);
static enum ofperr
decode_OFPAT_RAW10_OUTPUT(const struct ofp10_action_output *oao,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct ofpact_output *output;
output = ofpact_put_OUTPUT(out);
output->port = u16_to_ofp(ntohs(oao->port));
output->max_len = ntohs(oao->max_len);
return ofpact_check_output_port(output->port, OFPP_MAX);
}
static enum ofperr
decode_OFPAT_RAW11_OUTPUT(const struct ofp11_action_output *oao,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct ofpact_output *output;
enum ofperr error;
output = ofpact_put_OUTPUT(out);
output->max_len = ntohs(oao->max_len);
error = ofputil_port_from_ofp11(oao->port, &output->port);
if (error) {
return error;
}
return ofpact_check_output_port(output->port, OFPP_MAX);
}
static void
encode_OUTPUT(const struct ofpact_output *output,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version == OFP10_VERSION) {
struct ofp10_action_output *oao;
oao = put_OFPAT10_OUTPUT(out);
oao->port = htons(ofp_to_u16(output->port));
oao->max_len = htons(output->max_len);
} else {
struct ofp11_action_output *oao;
oao = put_OFPAT11_OUTPUT(out);
oao->port = ofputil_port_to_ofp11(output->port);
oao->max_len = htons(output->max_len);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_truncate_subfield(const char *arg_,
const struct ofpact_parse_params *pp,
struct ofpact_output_trunc *output_trunc)
{
char *key, *value;
char *arg = CONST_CAST(char *, arg_);
while (ofputil_parse_key_value(&arg, &key, &value)) {
if (!strcmp(key, "port")) {
if (!ofputil_port_from_string(value, pp->port_map,
&output_trunc->port)) {
return xasprintf("output to unknown truncate port: %s",
value);
}
if (ofp_to_u16(output_trunc->port) > ofp_to_u16(OFPP_MAX)) {
if (output_trunc->port != OFPP_LOCAL &&
output_trunc->port != OFPP_IN_PORT)
return xasprintf("output to unsupported truncate port: %s",
value);
}
} else if (!strcmp(key, "max_len")) {
char *err;
err = str_to_u32(value, &output_trunc->max_len);
if (err) {
return err;
}
if (output_trunc->max_len < ETH_HEADER_LEN) {
return xasprintf("max_len %"PRIu32" is less than the minimum "
"value %d",
output_trunc->max_len, ETH_HEADER_LEN);
}
} else {
return xasprintf("invalid key '%s' in output_trunc argument",
key);
}
}
return NULL;
}
static char * OVS_WARN_UNUSED_RESULT
parse_OUTPUT(const char *arg, const struct ofpact_parse_params *pp)
{
if (strstr(arg, "port") && strstr(arg, "max_len")) {
struct ofpact_output_trunc *output_trunc;
output_trunc = ofpact_put_OUTPUT_TRUNC(pp->ofpacts);
return parse_truncate_subfield(arg, pp, output_trunc);
}
ofp_port_t port;
if (ofputil_port_from_string(arg, pp->port_map, &port)) {
struct ofpact_output *output = ofpact_put_OUTPUT(pp->ofpacts);
output->port = port;
output->max_len = output->port == OFPP_CONTROLLER ? UINT16_MAX : 0;
return NULL;
}
struct mf_subfield src;
char *error = mf_parse_subfield(&src, arg);
if (!error) {
struct ofpact_output_reg *output_reg;
output_reg = ofpact_put_OUTPUT_REG(pp->ofpacts);
output_reg->max_len = UINT16_MAX;
output_reg->src = src;
return NULL;
}
free(error);
return xasprintf("%s: output to unknown port", arg);
}
static void
format_OUTPUT(const struct ofpact_output *a,
const struct ofpact_format_params *fp)
{
if (ofp_to_u16(a->port) < ofp_to_u16(OFPP_MAX)) {
ds_put_format(fp->s, "%soutput:%s", colors.special, colors.end);
}
ofputil_format_port(a->port, fp->port_map, fp->s);
if (a->port == OFPP_CONTROLLER) {
ds_put_format(fp->s, ":%"PRIu16, a->max_len);
}
}
static enum ofperr
check_OUTPUT(const struct ofpact_output *a,
const struct ofpact_check_params *cp)
{
return ofpact_check_output_port(a->port, cp->max_ports);
}
/* Group actions. */
static enum ofperr
decode_OFPAT_RAW_GROUP(uint32_t group_id,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
ofpact_put_GROUP(out)->group_id = group_id;
return 0;
}
static void
encode_GROUP(const struct ofpact_group *group,
enum ofp_version ofp_version, struct ofpbuf *out)
{
put_OFPAT_GROUP(out, ofp_version, group->group_id);
}
static char * OVS_WARN_UNUSED_RESULT
parse_GROUP(char *arg, const struct ofpact_parse_params *pp)
{
return str_to_u32(arg, &ofpact_put_GROUP(pp->ofpacts)->group_id);
}
static void
format_GROUP(const struct ofpact_group *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sgroup:%s%"PRIu32,
colors.special, colors.end, a->group_id);
}
static enum ofperr
check_GROUP(const struct ofpact_group *a OVS_UNUSED,
const struct ofpact_check_params *cp OVS_UNUSED)
{
return 0;
}
/* Action structure for NXAST_CONTROLLER.
*
* This generalizes using OFPAT_OUTPUT to send a packet to OFPP_CONTROLLER. In
* addition to the 'max_len' that OFPAT_OUTPUT supports, it also allows
* specifying:
*
* - 'reason': The reason code to use in the ofp_packet_in or nx_packet_in.
*
* - 'controller_id': The ID of the controller connection to which the
* ofp_packet_in should be sent. The ofp_packet_in or nx_packet_in is
* sent only to controllers that have the specified controller connection
* ID. See "struct nx_controller_id" for more information. */
struct nx_action_controller {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length is 16. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_CONTROLLER. */
ovs_be16 max_len; /* Maximum length to send to controller. */
ovs_be16 controller_id; /* Controller ID to send packet-in. */
uint8_t reason; /* enum ofp_packet_in_reason (OFPR_*). */
uint8_t zero; /* Must be zero. */
};
OFP_ASSERT(sizeof(struct nx_action_controller) == 16);
/* Properties for NXAST_CONTROLLER2.
*
* For more information on the effect of NXAC2PT_PAUSE, see the large comment
* on NXT_PACKET_IN2 in nicira-ext.h */
enum nx_action_controller2_prop_type {
NXAC2PT_MAX_LEN, /* ovs_be16 max bytes to send (default all). */
NXAC2PT_CONTROLLER_ID, /* ovs_be16 dest controller ID (default 0). */
NXAC2PT_REASON, /* uint8_t reason (OFPR_*), default 0. */
NXAC2PT_USERDATA, /* Data to copy into NXPINT_USERDATA. */
NXAC2PT_PAUSE, /* Flag to pause pipeline to resume later. */
NXAC2PT_METER_ID, /* ovs_b32 meter (default NX_CTLR_NO_METER). */
};
/* The action structure for NXAST_CONTROLLER2 is "struct ext_action_header",
* followed by NXAC2PT_* properties. */
static enum ofperr
decode_NXAST_RAW_CONTROLLER(const struct nx_action_controller *nac,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct ofpact_controller *oc;
oc = ofpact_put_CONTROLLER(out);
oc->ofpact.raw = NXAST_RAW_CONTROLLER;
oc->max_len = ntohs(nac->max_len);
oc->controller_id = ntohs(nac->controller_id);
oc->reason = nac->reason;
oc->meter_id = NX_CTLR_NO_METER;
ofpact_finish_CONTROLLER(out, &oc);
return 0;
}
static enum ofperr
decode_NXAST_RAW_CONTROLLER2(const struct ext_action_header *eah,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
if (!is_all_zeros(eah->pad, sizeof eah->pad)) {
return OFPERR_NXBRC_MUST_BE_ZERO;
}
size_t start_ofs = out->size;
struct ofpact_controller *oc = ofpact_put_CONTROLLER(out);
oc->ofpact.raw = NXAST_RAW_CONTROLLER2;
oc->max_len = UINT16_MAX;
oc->reason = OFPR_ACTION;
oc->meter_id = NX_CTLR_NO_METER;
struct ofpbuf properties;
ofpbuf_use_const(&properties, eah, ntohs(eah->len));
ofpbuf_pull(&properties, sizeof *eah);
while (properties.size > 0) {
struct ofpbuf payload;
uint64_t type;
enum ofperr error = ofpprop_pull(&properties, &payload, &type);
if (error) {
return error;
}
switch (type) {
case NXAC2PT_MAX_LEN:
error = ofpprop_parse_u16(&payload, &oc->max_len);
break;
case NXAC2PT_CONTROLLER_ID:
error = ofpprop_parse_u16(&payload, &oc->controller_id);
break;
case NXAC2PT_REASON: {
uint8_t u8;
error = ofpprop_parse_u8(&payload, &u8);
if (!error) {
oc->reason = u8;
}
break;
}
case NXAC2PT_USERDATA:
out->size = start_ofs + sizeof(struct ofpact_controller);
ofpbuf_put(out, payload.msg, ofpbuf_msgsize(&payload));
oc = ofpbuf_at_assert(out, start_ofs, sizeof *oc);
oc->userdata_len = ofpbuf_msgsize(&payload);
break;
case NXAC2PT_PAUSE:
oc->pause = true;
break;
case NXAC2PT_METER_ID:
error = ofpprop_parse_u32(&payload, &oc->meter_id);
break;
default:
error = OFPPROP_UNKNOWN(false, "NXAST_RAW_CONTROLLER2", type);
break;
}
if (error) {
return error;
}
}
ofpact_finish_CONTROLLER(out, &oc);
return 0;
}
static void
encode_CONTROLLER(const struct ofpact_controller *controller,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
if (controller->userdata_len
|| controller->pause
|| controller->meter_id != NX_CTLR_NO_METER
|| controller->ofpact.raw == NXAST_RAW_CONTROLLER2) {
size_t start_ofs = out->size;
put_NXAST_CONTROLLER2(out);
if (controller->max_len != UINT16_MAX) {
ofpprop_put_u16(out, NXAC2PT_MAX_LEN, controller->max_len);
}
if (controller->controller_id != 0) {
ofpprop_put_u16(out, NXAC2PT_CONTROLLER_ID,
controller->controller_id);
}
if (controller->reason != OFPR_ACTION) {
ofpprop_put_u8(out, NXAC2PT_REASON, controller->reason);
}
if (controller->userdata_len != 0) {
ofpprop_put(out, NXAC2PT_USERDATA, controller->userdata,
controller->userdata_len);
}
if (controller->pause) {
ofpprop_put_flag(out, NXAC2PT_PAUSE);
}
if (controller->meter_id != NX_CTLR_NO_METER) {
ofpprop_put_u32(out, NXAC2PT_METER_ID, controller->meter_id);
}
pad_ofpat(out, start_ofs);
} else {
struct nx_action_controller *nac;
nac = put_NXAST_CONTROLLER(out);
nac->max_len = htons(controller->max_len);
nac->controller_id = htons(controller->controller_id);
nac->reason = controller->reason;
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_CONTROLLER(char *arg, const struct ofpact_parse_params *pp)
{
enum ofp_packet_in_reason reason = OFPR_ACTION;
uint16_t controller_id = 0;
uint16_t max_len = UINT16_MAX;
uint32_t meter_id = NX_CTLR_NO_METER;
const char *userdata = NULL;
bool pause = false;
if (!arg[0]) {
/* Use defaults. */
} else if (strspn(arg, "0123456789") == strlen(arg)) {
char *error = str_to_u16(arg, "max_len", &max_len);
if (error) {
return error;
}
} else {
char *name, *value;
while (ofputil_parse_key_value(&arg, &name, &value)) {
if (!strcmp(name, "reason")) {
if (!ofputil_packet_in_reason_from_string(value, &reason)) {
return xasprintf("unknown reason \"%s\"", value);
}
} else if (!strcmp(name, "max_len")) {
char *error = str_to_u16(value, "max_len", &max_len);
if (error) {
return error;
}
} else if (!strcmp(name, "id")) {
char *error = str_to_u16(value, "id", &controller_id);
if (error) {
return error;
}
} else if (!strcmp(name, "userdata")) {
userdata = value;
} else if (!strcmp(name, "pause")) {
pause = true;
} else if (!strcmp(name, "meter_id")) {
char *error = str_to_u32(value, &meter_id);
if (error) {
return error;
}
} else {
return xasprintf("unknown key \"%s\" parsing controller "
"action", name);
}
}
}
if (reason == OFPR_ACTION && controller_id == 0 && !userdata && !pause
&& meter_id == NX_CTLR_NO_METER) {
struct ofpact_output *output;
output = ofpact_put_OUTPUT(pp->ofpacts);
output->port = OFPP_CONTROLLER;
output->max_len = max_len;
} else {
struct ofpact_controller *controller;
controller = ofpact_put_CONTROLLER(pp->ofpacts);
controller->max_len = max_len;
controller->reason = reason;
controller->controller_id = controller_id;
controller->pause = pause;
controller->meter_id = meter_id;
if (userdata) {
size_t start_ofs = pp->ofpacts->size;
const char *end = ofpbuf_put_hex(pp->ofpacts, userdata, NULL);
if (*end) {
return xstrdup("bad hex digit in `controller' "
"action `userdata'");
}
size_t userdata_len = pp->ofpacts->size - start_ofs;
controller = pp->ofpacts->header;
controller->userdata_len = userdata_len;
}
if (ofpbuf_oversized(pp->ofpacts)) {
return xasprintf("input too big");
}
ofpact_finish_CONTROLLER(pp->ofpacts, &controller);
}
return NULL;
}
static void
format_CONTROLLER(const struct ofpact_controller *a,
const struct ofpact_format_params *fp)
{
if (a->reason == OFPR_ACTION && !a->controller_id && !a->userdata_len
&& !a->pause && a->meter_id == NX_CTLR_NO_METER) {
ds_put_format(fp->s, "%sCONTROLLER:%s%"PRIu16,
colors.special, colors.end, a->max_len);
} else {
enum ofp_packet_in_reason reason = a->reason;
ds_put_format(fp->s, "%scontroller(%s", colors.paren, colors.end);
if (reason != OFPR_ACTION) {
char reasonbuf[OFPUTIL_PACKET_IN_REASON_BUFSIZE];
ds_put_format(fp->s, "%sreason=%s%s,", colors.param, colors.end,
ofputil_packet_in_reason_to_string(
reason, reasonbuf, sizeof reasonbuf));
}
if (a->max_len != UINT16_MAX) {
ds_put_format(fp->s, "%smax_len=%s%"PRIu16",",
colors.param, colors.end, a->max_len);
}
if (a->controller_id != 0) {
ds_put_format(fp->s, "%sid=%s%"PRIu16",",
colors.param, colors.end, a->controller_id);
}
if (a->userdata_len) {
ds_put_format(fp->s, "%suserdata=%s", colors.param, colors.end);
ds_put_hex_with_delimiter(fp->s, a->userdata, a->userdata_len,
".");
ds_put_char(fp->s, ',');
}
if (a->pause) {
ds_put_format(fp->s, "%spause%s,", colors.value, colors.end);
}
if (a->meter_id != NX_CTLR_NO_METER) {
ds_put_format(fp->s, "%smeter_id=%s%"PRIu32",",
colors.param, colors.end, a->meter_id);
}
ds_chomp(fp->s, ',');
ds_put_format(fp->s, "%s)%s", colors.paren, colors.end);
}
}
static enum ofperr
check_CONTROLLER(const struct ofpact_controller *a OVS_UNUSED,
const struct ofpact_check_params *cp OVS_UNUSED)
{
return 0;
}
/* Enqueue action. */
struct ofp10_action_enqueue {
ovs_be16 type; /* OFPAT10_ENQUEUE. */
ovs_be16 len; /* Len is 16. */
ovs_be16 port; /* Port that queue belongs. Should
refer to a valid physical port
(i.e. < OFPP_MAX) or OFPP_IN_PORT. */
uint8_t pad[6]; /* Pad for 64-bit alignment. */
ovs_be32 queue_id; /* Where to enqueue the packets. */
};
OFP_ASSERT(sizeof(struct ofp10_action_enqueue) == 16);
static enum ofperr
decode_OFPAT_RAW10_ENQUEUE(const struct ofp10_action_enqueue *oae,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct ofpact_enqueue *enqueue;
enqueue = ofpact_put_ENQUEUE(out);
enqueue->port = u16_to_ofp(ntohs(oae->port));
enqueue->queue = ntohl(oae->queue_id);
if (ofp_to_u16(enqueue->port) >= ofp_to_u16(OFPP_MAX)
&& enqueue->port != OFPP_IN_PORT
&& enqueue->port != OFPP_LOCAL) {
return OFPERR_OFPBAC_BAD_OUT_PORT;
}
return 0;
}
static void
encode_ENQUEUE(const struct ofpact_enqueue *enqueue,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version == OFP10_VERSION) {
struct ofp10_action_enqueue *oae;
oae = put_OFPAT10_ENQUEUE(out);
oae->port = htons(ofp_to_u16(enqueue->port));
oae->queue_id = htonl(enqueue->queue);
} else {
put_OFPAT_SET_QUEUE(out, ofp_version, enqueue->queue);
struct ofp11_action_output *oao = put_OFPAT11_OUTPUT(out);
oao->port = ofputil_port_to_ofp11(enqueue->port);
oao->max_len = OVS_BE16_MAX;
put_NXAST_POP_QUEUE(out);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_ENQUEUE(char *arg, const struct ofpact_parse_params *pp)
{
char *sp = NULL;
char *port = strtok_r(arg, ":q,", &sp);
char *queue = strtok_r(NULL, "", &sp);
struct ofpact_enqueue *enqueue;
if (port == NULL || queue == NULL) {
return xstrdup("\"enqueue\" syntax is \"enqueue:PORT:QUEUE\" or "
"\"enqueue(PORT,QUEUE)\"");
}
enqueue = ofpact_put_ENQUEUE(pp->ofpacts);
if (!ofputil_port_from_string(port, pp->port_map, &enqueue->port)) {
return xasprintf("%s: enqueue to unknown port", port);
}
return str_to_u32(queue, &enqueue->queue);
}
static void
format_ENQUEUE(const struct ofpact_enqueue *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%senqueue:%s", colors.param, colors.end);
ofputil_format_port(a->port, fp->port_map, fp->s);
ds_put_format(fp->s, ":%"PRIu32, a->queue);
}
static enum ofperr
check_ENQUEUE(const struct ofpact_enqueue *a,
const struct ofpact_check_params *cp)
{
if (ofp_to_u16(a->port) >= ofp_to_u16(cp->max_ports)
&& a->port != OFPP_IN_PORT
&& a->port != OFPP_LOCAL) {
return OFPERR_OFPBAC_BAD_OUT_PORT;
}
return 0;
}
/* Action structure for NXAST_OUTPUT_REG.
*
* Outputs to the OpenFlow port number written to src[ofs:ofs+nbits].
*
* The format and semantics of 'src' and 'ofs_nbits' are similar to those for
* the NXAST_REG_LOAD action.
*
* The acceptable nxm_header values for 'src' are the same as the acceptable
* nxm_header values for the 'src' field of NXAST_REG_MOVE.
*
* The 'max_len' field indicates the number of bytes to send when the chosen
* port is OFPP_CONTROLLER. Its semantics are equivalent to the 'max_len'
* field of OFPAT_OUTPUT.
*
* The 'zero' field is required to be zeroed for forward compatibility. */
struct nx_action_output_reg {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* 24. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_OUTPUT_REG. */
ovs_be16 ofs_nbits; /* (ofs << 6) | (n_bits - 1). */
ovs_be32 src; /* Source. */
ovs_be16 max_len; /* Max length to send to controller. */
uint8_t zero[6]; /* Reserved, must be zero. */
};
OFP_ASSERT(sizeof(struct nx_action_output_reg) == 24);
/* Action structure for NXAST_OUTPUT_REG2.
*
* Like the NXAST_OUTPUT_REG but organized so that there is room for a 64-bit
* experimenter OXM as 'src'.
*/
struct nx_action_output_reg2 {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* 24. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_OUTPUT_REG2. */
ovs_be16 ofs_nbits; /* (ofs << 6) | (n_bits - 1). */
ovs_be16 max_len; /* Max length to send to controller. */
/* Followed by:
* - 'src', as an OXM/NXM header (either 4 or 8 bytes).
* - Enough 0-bytes to pad the action out to 24 bytes. */
uint8_t pad[10];
};
OFP_ASSERT(sizeof(struct nx_action_output_reg2) == 24);
static enum ofperr
decode_NXAST_RAW_OUTPUT_REG(const struct nx_action_output_reg *naor,
enum ofp_version ofp_version OVS_UNUSED,
const struct vl_mff_map *vl_mff_map,
uint64_t *tlv_bitmap, struct ofpbuf *out)
{
struct ofpact_output_reg *output_reg;
enum ofperr error;
if (!is_all_zeros(naor->zero, sizeof naor->zero)) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
output_reg = ofpact_put_OUTPUT_REG(out);
output_reg->ofpact.raw = NXAST_RAW_OUTPUT_REG;
output_reg->src.ofs = nxm_decode_ofs(naor->ofs_nbits);
output_reg->src.n_bits = nxm_decode_n_bits(naor->ofs_nbits);
output_reg->max_len = ntohs(naor->max_len);
error = mf_vl_mff_mf_from_nxm_header(ntohl(naor->src), vl_mff_map,
&output_reg->src.field, tlv_bitmap);
if (error) {
return error;
}
return mf_check_src(&output_reg->src, NULL);
}
static enum ofperr
decode_NXAST_RAW_OUTPUT_REG2(const struct nx_action_output_reg2 *naor,
enum ofp_version ofp_version OVS_UNUSED,
const struct vl_mff_map *vl_mff_map,
uint64_t *tlv_bitmap, struct ofpbuf *out)
{
struct ofpact_output_reg *output_reg;
enum ofperr error;
output_reg = ofpact_put_OUTPUT_REG(out);
output_reg->ofpact.raw = NXAST_RAW_OUTPUT_REG2;
output_reg->src.ofs = nxm_decode_ofs(naor->ofs_nbits);
output_reg->src.n_bits = nxm_decode_n_bits(naor->ofs_nbits);
output_reg->max_len = ntohs(naor->max_len);
struct ofpbuf b = ofpbuf_const_initializer(naor, ntohs(naor->len));
ofpbuf_pull(&b, OBJECT_OFFSETOF(naor, pad));
error = mf_vl_mff_nx_pull_header(&b, vl_mff_map, &output_reg->src.field,
NULL, tlv_bitmap);
if (error) {
return error;
}
if (!is_all_zeros(b.data, b.size)) {
return OFPERR_NXBRC_MUST_BE_ZERO;
}
return mf_check_src(&output_reg->src, NULL);
}
static void
encode_OUTPUT_REG(const struct ofpact_output_reg *output_reg,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
/* If 'output_reg' came in as an NXAST_RAW_OUTPUT_REG2 action, or if it
* cannot be encoded in the older form, encode it as
* NXAST_RAW_OUTPUT_REG2. */
if (output_reg->ofpact.raw == NXAST_RAW_OUTPUT_REG2
|| !mf_nxm_header(output_reg->src.field->id)) {
struct nx_action_output_reg2 *naor = put_NXAST_OUTPUT_REG2(out);
size_t size = out->size;
naor->ofs_nbits = nxm_encode_ofs_nbits(output_reg->src.ofs,
output_reg->src.n_bits);
naor->max_len = htons(output_reg->max_len);
out->size = size - sizeof naor->pad;
nx_put_mff_header(out, output_reg->src.field, 0, false);
out->size = size;
} else {
struct nx_action_output_reg *naor = put_NXAST_OUTPUT_REG(out);
naor->ofs_nbits = nxm_encode_ofs_nbits(output_reg->src.ofs,
output_reg->src.n_bits);
naor->src = htonl(nxm_header_from_mff(output_reg->src.field));
naor->max_len = htons(output_reg->max_len);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_OUTPUT_REG(const char *arg, const struct ofpact_parse_params *pp)
{
return parse_OUTPUT(arg, pp);
}
static void
format_OUTPUT_REG(const struct ofpact_output_reg *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%soutput:%s", colors.special, colors.end);
mf_format_subfield(&a->src, fp->s);
}
static enum ofperr
check_OUTPUT_REG(const struct ofpact_output_reg *a,
const struct ofpact_check_params *cp)
{
return mf_check_src(&a->src, cp->match);
}
/* Action structure for NXAST_BUNDLE and NXAST_BUNDLE_LOAD.
*
* The bundle actions choose a member from a supplied list of options.
* NXAST_BUNDLE outputs to its selection. NXAST_BUNDLE_LOAD writes its
* selection to a register.
*
* The list of possible members follows the nx_action_bundle structure. The
* size of each member is governed by its type as indicated by the
* 'member_type' parameter. The list of members should be padded at its end
* with zeros to make the total length of the action a multiple of 8.
*
* Switches infer from the 'member_type' parameter the size of each member.
* All implementations must support the NXM_OF_IN_PORT 'member_type' which
* indicates that the members are OpenFlow port numbers with
* NXM_LENGTH(NXM_OF_IN_PORT) == 2 byte width. Switches should reject actions
* which indicate unknown or unsupported member types.
*
* Switches use a strategy dictated by the 'algorithm' parameter to choose a
* member. If the switch does not support the specified 'algorithm' parameter,
* it should reject the action.
*
* Several algorithms take into account liveness when selecting members. The
* liveness of a member is implementation defined (with one exception), but
* will generally take into account things like its carrier status and the
* results of any link monitoring protocols which happen to be running on it.
* In order to give controllers a place-holder value, the OFPP_NONE port is
* always considered live, that is, NXAST_BUNDLE_LOAD stores OFPP_NONE in the
* output register if no member is live.
*
* Some member selection strategies require the use of a hash function, in
* which case the 'fields' and 'basis' parameters should be populated. The
* 'fields' parameter (one of NX_HASH_FIELDS_*) designates which parts of the
* flow to hash. Refer to the definition of "enum nx_hash_fields" for details.
* The 'basis' parameter is used as a universal hash parameter. Different
* values of 'basis' yield different hash results.
*
* The 'zero' parameter at the end of the action structure is reserved for
* future use. Switches are required to reject actions which have nonzero
* bytes in the 'zero' field.
*
* NXAST_BUNDLE actions should have 'ofs_nbits' and 'dst' zeroed. Switches
* should reject actions which have nonzero bytes in either of these fields.
*
* NXAST_BUNDLE_LOAD stores the OpenFlow port number of the selected member in
* dst[ofs:ofs+n_bits]. The format and semantics of 'dst' and 'ofs_nbits' are
* similar to those for the NXAST_REG_LOAD action. */
struct nx_action_bundle {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length including members. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_BUNDLE or NXAST_BUNDLE_LOAD. */
/* Member choice algorithm to apply to hash value. */
ovs_be16 algorithm; /* One of NX_BD_ALG_*. */
/* What fields to hash and how. */
ovs_be16 fields; /* One of NX_HASH_FIELDS_*. */
ovs_be16 basis; /* Universal hash parameter. */
ovs_be32 member_type; /* NXM_OF_IN_PORT. */
ovs_be16 n_members; /* Number of members. */
ovs_be16 ofs_nbits; /* (ofs << 6) | (n_bits - 1). */
ovs_be32 dst; /* Destination. */
uint8_t zero[4]; /* Reserved. Must be zero. */
};
OFP_ASSERT(sizeof(struct nx_action_bundle) == 32);
static enum ofperr
decode_bundle(bool load, const struct nx_action_bundle *nab,
const struct vl_mff_map *vl_mff_map, uint64_t *tlv_bitmap,
struct ofpbuf *ofpacts)
{
static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(1, 5);
struct ofpact_bundle *bundle;
uint32_t member_type;
size_t members_size, i;
enum ofperr error;
bundle = ofpact_put_BUNDLE(ofpacts);
bundle->n_members = ntohs(nab->n_members);
bundle->basis = ntohs(nab->basis);
bundle->fields = ntohs(nab->fields);
bundle->algorithm = ntohs(nab->algorithm);
member_type = ntohl(nab->member_type);
members_size = ntohs(nab->len) - sizeof *nab;
error = OFPERR_OFPBAC_BAD_ARGUMENT;
if (!flow_hash_fields_valid(bundle->fields)) {
VLOG_WARN_RL(&rll, "unsupported fields %d", (int) bundle->fields);
} else if (bundle->n_members > BUNDLE_MAX_MEMBERS) {
VLOG_WARN_RL(&rll, "too many members");
} else if (bundle->algorithm != NX_BD_ALG_HRW
&& bundle->algorithm != NX_BD_ALG_ACTIVE_BACKUP) {
VLOG_WARN_RL(&rll, "unsupported algorithm %d", (int) bundle->algorithm);
} else if (member_type != mf_nxm_header(MFF_IN_PORT)) {
VLOG_WARN_RL(&rll, "unsupported member type %"PRIu32, member_type);
} else {
error = 0;
}
if (!is_all_zeros(nab->zero, sizeof nab->zero)) {
VLOG_WARN_RL(&rll, "reserved field is nonzero");
error = OFPERR_OFPBAC_BAD_ARGUMENT;
}
if (load) {
bundle->dst.ofs = nxm_decode_ofs(nab->ofs_nbits);
bundle->dst.n_bits = nxm_decode_n_bits(nab->ofs_nbits);
error = mf_vl_mff_mf_from_nxm_header(ntohl(nab->dst), vl_mff_map,
&bundle->dst.field, tlv_bitmap);
if (error) {
return error;
}
if (bundle->dst.n_bits < 16) {
VLOG_WARN_RL(&rll, "bundle_load action requires at least 16 bit "
"destination.");
error = OFPERR_OFPBAC_BAD_ARGUMENT;
}
} else {
if (nab->ofs_nbits || nab->dst) {
VLOG_WARN_RL(&rll, "bundle action has nonzero reserved fields");
error = OFPERR_OFPBAC_BAD_ARGUMENT;
}
}
if (members_size < bundle->n_members * sizeof(ovs_be16)) {
VLOG_WARN_RL(&rll, "Nicira action %s only has %"PRIuSIZE" bytes "
"allocated for members. %"PRIuSIZE" bytes are "
"required for %u members.",
load ? "bundle_load" : "bundle", members_size,
bundle->n_members * sizeof(ovs_be16), bundle->n_members);
error = OFPERR_OFPBAC_BAD_LEN;
} else {
for (i = 0; i < bundle->n_members; i++) {
ofp_port_t ofp_port
= u16_to_ofp(ntohs(((ovs_be16 *)(nab + 1))[i]));
ofpbuf_put(ofpacts, &ofp_port, sizeof ofp_port);
bundle = ofpacts->header;
}
}
ofpact_finish_BUNDLE(ofpacts, &bundle);
if (!error) {
error = bundle_check(bundle, OFPP_MAX, NULL);
}
return error;
}
static enum ofperr
decode_NXAST_RAW_BUNDLE(const struct nx_action_bundle *nab,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
return decode_bundle(false, nab, NULL, NULL, out);
}
static enum ofperr
decode_NXAST_RAW_BUNDLE_LOAD(const struct nx_action_bundle *nab,
enum ofp_version ofp_version OVS_UNUSED,
const struct vl_mff_map *vl_mff_map,
uint64_t *tlv_bitmap, struct ofpbuf *out)
{
return decode_bundle(true, nab, vl_mff_map, tlv_bitmap, out);
}
static void
encode_BUNDLE(const struct ofpact_bundle *bundle,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
int members_len = ROUND_UP(2 * bundle->n_members, OFP_ACTION_ALIGN);
struct nx_action_bundle *nab;
ovs_be16 *members;
size_t i;
nab = (bundle->dst.field
? put_NXAST_BUNDLE_LOAD(out)
: put_NXAST_BUNDLE(out));
nab->len = htons(ntohs(nab->len) + members_len);
nab->algorithm = htons(bundle->algorithm);
nab->fields = htons(bundle->fields);
nab->basis = htons(bundle->basis);
nab->member_type = htonl(mf_nxm_header(MFF_IN_PORT));
nab->n_members = htons(bundle->n_members);
if (bundle->dst.field) {
nab->ofs_nbits = nxm_encode_ofs_nbits(bundle->dst.ofs,
bundle->dst.n_bits);
nab->dst = htonl(nxm_header_from_mff(bundle->dst.field));
}
members = ofpbuf_put_zeros(out, members_len);
for (i = 0; i < bundle->n_members; i++) {
members[i] = htons(ofp_to_u16(bundle->members[i]));
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_BUNDLE(const char *arg, const struct ofpact_parse_params *pp)
{
return bundle_parse(arg, pp->port_map, pp->ofpacts);
}
static char * OVS_WARN_UNUSED_RESULT
parse_bundle_load(const char *arg, const struct ofpact_parse_params *pp)
{
return bundle_parse_load(arg, pp->port_map, pp->ofpacts);
}
static void
format_BUNDLE(const struct ofpact_bundle *a,
const struct ofpact_format_params *fp)
{
bundle_format(a, fp->port_map, fp->s);
}
static enum ofperr
check_BUNDLE(const struct ofpact_bundle *a,
const struct ofpact_check_params *cp)
{
return bundle_check(a, cp->max_ports, cp->match);
}
/* Set VLAN actions. */
static enum ofperr
decode_set_vlan_vid(uint16_t vid, bool push_vlan_if_needed, struct ofpbuf *out)
{
if (vid & ~0xfff) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
} else {
struct ofpact_vlan_vid *vlan_vid = ofpact_put_SET_VLAN_VID(out);
vlan_vid->vlan_vid = vid;
vlan_vid->push_vlan_if_needed = push_vlan_if_needed;
return 0;
}
}
static enum ofperr
decode_OFPAT_RAW10_SET_VLAN_VID(uint16_t vid,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
return decode_set_vlan_vid(vid, true, out);
}
static enum ofperr
decode_OFPAT_RAW11_SET_VLAN_VID(uint16_t vid,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
return decode_set_vlan_vid(vid, false, out);
}
static void
encode_SET_VLAN_VID(const struct ofpact_vlan_vid *vlan_vid,
enum ofp_version ofp_version, struct ofpbuf *out)
{
uint16_t vid = vlan_vid->vlan_vid;
/* Push a VLAN tag, if none is present and this form of the action calls
* for such a feature. */
if (ofp_version > OFP10_VERSION
&& vlan_vid->push_vlan_if_needed
&& !vlan_vid->flow_has_vlan) {
put_OFPAT11_PUSH_VLAN(out, htons(ETH_TYPE_VLAN_8021Q));
}
if (ofp_version == OFP10_VERSION) {
put_OFPAT10_SET_VLAN_VID(out, vid);
} else if (ofp_version == OFP11_VERSION) {
put_OFPAT11_SET_VLAN_VID(out, vid);
} else {
put_set_field(out, ofp_version, MFF_VLAN_VID, vid | OFPVID12_PRESENT);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_set_vlan_vid(char *arg, bool push_vlan_if_needed,
const struct ofpact_parse_params *pp)
{
struct ofpact_vlan_vid *vlan_vid;
uint16_t vid;
char *error;
error = str_to_u16(arg, "VLAN VID", &vid);
if (error) {
return error;
}
if (vid & ~VLAN_VID_MASK) {
return xasprintf("%s: not a valid VLAN VID", arg);
}
vlan_vid = ofpact_put_SET_VLAN_VID(pp->ofpacts);
vlan_vid->vlan_vid = vid;
vlan_vid->push_vlan_if_needed = push_vlan_if_needed;
return NULL;
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_VLAN_VID(char *arg, const struct ofpact_parse_params *pp)
{
return parse_set_vlan_vid(arg, false, pp);
}
static void
format_SET_VLAN_VID(const struct ofpact_vlan_vid *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%s%s:%s%"PRIu16, colors.param,
a->push_vlan_if_needed ? "mod_vlan_vid" : "set_vlan_vid",
colors.end, a->vlan_vid);
}
static enum ofperr
check_SET_VLAN_VID(struct ofpact_vlan_vid *a, struct ofpact_check_params *cp)
{
/* Remember if we saw a vlan tag in the flow to aid translating to OpenFlow
* 1.1+ if need be. */
ovs_be16 *tci = &cp->match->flow.vlans[0].tci;
a->flow_has_vlan = (*tci & htons(VLAN_CFI)) != 0;
if (!a->flow_has_vlan && !a->push_vlan_if_needed) {
inconsistent_match(&cp->usable_protocols);
}
/* Temporarily mark that we have a vlan tag. */
*tci |= htons(VLAN_CFI);
return 0;
}
/* Set PCP actions. */
static enum ofperr
decode_set_vlan_pcp(uint8_t pcp, bool push_vlan_if_needed, struct ofpbuf *out)
{
if (pcp & ~7) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
} else {
struct ofpact_vlan_pcp *vlan_pcp = ofpact_put_SET_VLAN_PCP(out);
vlan_pcp->vlan_pcp = pcp;
vlan_pcp->push_vlan_if_needed = push_vlan_if_needed;
return 0;
}
}
static enum ofperr
decode_OFPAT_RAW10_SET_VLAN_PCP(uint8_t pcp,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
return decode_set_vlan_pcp(pcp, true, out);
}
static enum ofperr
decode_OFPAT_RAW11_SET_VLAN_PCP(uint8_t pcp,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
return decode_set_vlan_pcp(pcp, false, out);
}
static void
encode_SET_VLAN_PCP(const struct ofpact_vlan_pcp *vlan_pcp,
enum ofp_version ofp_version, struct ofpbuf *out)
{
uint8_t pcp = vlan_pcp->vlan_pcp;
/* Push a VLAN tag, if none is present and this form of the action calls
* for such a feature. */
if (ofp_version > OFP10_VERSION
&& vlan_pcp->push_vlan_if_needed
&& !vlan_pcp->flow_has_vlan) {
put_OFPAT11_PUSH_VLAN(out, htons(ETH_TYPE_VLAN_8021Q));
}
if (ofp_version == OFP10_VERSION) {
put_OFPAT10_SET_VLAN_PCP(out, pcp);
} else if (ofp_version == OFP11_VERSION) {
put_OFPAT11_SET_VLAN_PCP(out, pcp);
} else {
put_set_field(out, ofp_version, MFF_VLAN_PCP, pcp);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_set_vlan_pcp(char *arg, bool push_vlan_if_needed,
const struct ofpact_parse_params *pp)
{
struct ofpact_vlan_pcp *vlan_pcp;
uint8_t pcp;
char *error;
error = str_to_u8(arg, "VLAN PCP", &pcp);
if (error) {
return error;
}
if (pcp & ~7) {
return xasprintf("%s: not a valid VLAN PCP", arg);
}
vlan_pcp = ofpact_put_SET_VLAN_PCP(pp->ofpacts);
vlan_pcp->vlan_pcp = pcp;
vlan_pcp->push_vlan_if_needed = push_vlan_if_needed;
return NULL;
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_VLAN_PCP(char *arg, const struct ofpact_parse_params *pp)
{
return parse_set_vlan_pcp(arg, false, pp);
}
static void
format_SET_VLAN_PCP(const struct ofpact_vlan_pcp *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%s%s:%s%"PRIu8, colors.param,
a->push_vlan_if_needed ? "mod_vlan_pcp" : "set_vlan_pcp",
colors.end, a->vlan_pcp);
}
static enum ofperr
check_SET_VLAN_PCP(struct ofpact_vlan_pcp *a, struct ofpact_check_params *cp)
{
/* Remember if we saw a vlan tag in the flow to aid translating to OpenFlow
* 1.1+ if need be. */
ovs_be16 *tci = &cp->match->flow.vlans[0].tci;
a->flow_has_vlan = (*tci & htons(VLAN_CFI)) != 0;
if (!a->flow_has_vlan && !a->push_vlan_if_needed) {
inconsistent_match(&cp->usable_protocols);
}
/* Temporarily mark that we have a vlan tag. */
*tci |= htons(VLAN_CFI);
return 0;
}
/* Strip VLAN actions. */
static enum ofperr
decode_OFPAT_RAW10_STRIP_VLAN(struct ofpbuf *out)
{
ofpact_put_STRIP_VLAN(out)->ofpact.raw = OFPAT_RAW10_STRIP_VLAN;
return 0;
}
static enum ofperr
decode_OFPAT_RAW11_POP_VLAN(struct ofpbuf *out)
{
ofpact_put_STRIP_VLAN(out)->ofpact.raw = OFPAT_RAW11_POP_VLAN;
return 0;
}
static void
encode_STRIP_VLAN(const struct ofpact_null *null OVS_UNUSED,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version == OFP10_VERSION) {
put_OFPAT10_STRIP_VLAN(out);
} else {
put_OFPAT11_POP_VLAN(out);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_STRIP_VLAN(char *arg OVS_UNUSED, const struct ofpact_parse_params *pp)
{
ofpact_put_STRIP_VLAN(pp->ofpacts)->ofpact.raw = OFPAT_RAW10_STRIP_VLAN;
return NULL;
}
static char * OVS_WARN_UNUSED_RESULT
parse_pop_vlan(const struct ofpact_parse_params *pp)
{
ofpact_put_STRIP_VLAN(pp->ofpacts)->ofpact.raw = OFPAT_RAW11_POP_VLAN;
return NULL;
}
static void
format_STRIP_VLAN(const struct ofpact_null *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, (a->ofpact.raw == OFPAT_RAW11_POP_VLAN
? "%spop_vlan%s"
: "%sstrip_vlan%s"),
colors.value, colors.end);
}
static enum ofperr
check_STRIP_VLAN(const struct ofpact_null *a OVS_UNUSED,
struct ofpact_check_params *cp)
{
if (!(cp->match->flow.vlans[0].tci & htons(VLAN_CFI))) {
inconsistent_match(&cp->usable_protocols);
}
flow_pop_vlan(&cp->match->flow, NULL);
return 0;
}
/* Push VLAN action. */
static enum ofperr
decode_OFPAT_RAW11_PUSH_VLAN(ovs_be16 eth_type,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct ofpact_push_vlan *push_vlan;
if (!eth_type_vlan(eth_type)) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
push_vlan = ofpact_put_PUSH_VLAN(out);
push_vlan->ethertype = eth_type;
return 0;
}
static void
encode_PUSH_VLAN(const struct ofpact_push_vlan *push_vlan,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version == OFP10_VERSION) {
/* PUSH is a side effect of a SET_VLAN_VID/PCP, which should
* follow this action. */
} else {
put_OFPAT11_PUSH_VLAN(out, push_vlan->ethertype);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_PUSH_VLAN(char *arg, const struct ofpact_parse_params *pp)
{
struct ofpact_push_vlan *push_vlan;
uint16_t ethertype;
char *error;
*pp->usable_protocols &= OFPUTIL_P_OF11_UP;
error = str_to_u16(arg, "ethertype", &ethertype);
if (error) {
return error;
}
if (!eth_type_vlan(htons(ethertype))) {
return xasprintf("%s: not a valid VLAN ethertype", arg);
}
push_vlan = ofpact_put_PUSH_VLAN(pp->ofpacts);
push_vlan->ethertype = htons(ethertype);
return NULL;
}
static void
format_PUSH_VLAN(const struct ofpact_push_vlan *push_vlan,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%spush_vlan:%s%#"PRIx16,
colors.param, colors.end, ntohs(push_vlan->ethertype));
}
static enum ofperr
check_PUSH_VLAN(const struct ofpact_push_vlan *a OVS_UNUSED,
struct ofpact_check_params *cp)
{
struct flow *flow = &cp->match->flow;
if (flow->vlans[FLOW_MAX_VLAN_HEADERS - 1].tci & htons(VLAN_CFI)) {
/* Support maximum (FLOW_MAX_VLAN_HEADERS) VLAN headers. */
return OFPERR_OFPBAC_BAD_TAG;
}
/* Temporary mark that we have a vlan tag. */
flow_push_vlan_uninit(flow, NULL);
flow->vlans[0].tci |= htons(VLAN_CFI);
return 0;
}
/* Action structure for OFPAT10_SET_DL_SRC/DST and OFPAT11_SET_DL_SRC/DST. */
struct ofp_action_dl_addr {
ovs_be16 type; /* Type. */
ovs_be16 len; /* Length is 16. */
struct eth_addr dl_addr; /* Ethernet address. */
uint8_t pad[6];
};
OFP_ASSERT(sizeof(struct ofp_action_dl_addr) == 16);
static enum ofperr
decode_OFPAT_RAW_SET_DL_SRC(const struct ofp_action_dl_addr *a,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
ofpact_put_SET_ETH_SRC(out)->mac = a->dl_addr;
return 0;
}
static enum ofperr
decode_OFPAT_RAW_SET_DL_DST(const struct ofp_action_dl_addr *a,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
ofpact_put_SET_ETH_DST(out)->mac = a->dl_addr;
return 0;
}
static void
encode_SET_ETH_addr(const struct ofpact_mac *mac, enum ofp_version ofp_version,
enum ofp_raw_action_type raw, enum mf_field_id field,
struct ofpbuf *out)
{
if (ofp_version < OFP12_VERSION) {
struct ofp_action_dl_addr *oada;
oada = ofpact_put_raw(out, ofp_version, raw, 0);
oada->dl_addr = mac->mac;
} else {
put_set_field(out, ofp_version, field, eth_addr_to_uint64(mac->mac));
}
}
static void
encode_SET_ETH_SRC(const struct ofpact_mac *mac, enum ofp_version ofp_version,
struct ofpbuf *out)
{
encode_SET_ETH_addr(mac, ofp_version, OFPAT_RAW_SET_DL_SRC, MFF_ETH_SRC,
out);
}
static void
encode_SET_ETH_DST(const struct ofpact_mac *mac,
enum ofp_version ofp_version,
struct ofpbuf *out)
{
encode_SET_ETH_addr(mac, ofp_version, OFPAT_RAW_SET_DL_DST, MFF_ETH_DST,
out);
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_ETH_SRC(char *arg, const struct ofpact_parse_params *pp)
{
return str_to_mac(arg, &ofpact_put_SET_ETH_SRC(pp->ofpacts)->mac);
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_ETH_DST(char *arg, const struct ofpact_parse_params *pp)
{
return str_to_mac(arg, &ofpact_put_SET_ETH_DST(pp->ofpacts)->mac);
}
static void
format_SET_ETH_SRC(const struct ofpact_mac *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%smod_dl_src:%s"ETH_ADDR_FMT,
colors.param, colors.end, ETH_ADDR_ARGS(a->mac));
}
static void
format_SET_ETH_DST(const struct ofpact_mac *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%smod_dl_dst:%s"ETH_ADDR_FMT,
colors.param, colors.end, ETH_ADDR_ARGS(a->mac));
}
static enum ofperr
check_SET_ETH_SRC(const struct ofpact_mac *a OVS_UNUSED,
const struct ofpact_check_params *cp OVS_UNUSED)
{
return 0;
}
static enum ofperr
check_SET_ETH_DST(const struct ofpact_mac *a OVS_UNUSED,
const struct ofpact_check_params *cp OVS_UNUSED)
{
return 0;
}
/* Set IPv4 address actions. */
static enum ofperr
decode_OFPAT_RAW_SET_NW_SRC(ovs_be32 ipv4,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
ofpact_put_SET_IPV4_SRC(out)->ipv4 = ipv4;
return 0;
}
static enum ofperr
decode_OFPAT_RAW_SET_NW_DST(ovs_be32 ipv4,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
ofpact_put_SET_IPV4_DST(out)->ipv4 = ipv4;
return 0;
}
static void
encode_SET_IPV4_addr(const struct ofpact_ipv4 *ipv4,
enum ofp_version ofp_version,
enum ofp_raw_action_type raw, enum mf_field_id field,
struct ofpbuf *out)
{
ovs_be32 addr = ipv4->ipv4;
if (ofp_version < OFP12_VERSION) {
ofpact_put_raw(out, ofp_version, raw, ntohl(addr));
} else {
put_set_field(out, ofp_version, field, ntohl(addr));
}
}
static void
encode_SET_IPV4_SRC(const struct ofpact_ipv4 *ipv4,
enum ofp_version ofp_version, struct ofpbuf *out)
{
encode_SET_IPV4_addr(ipv4, ofp_version, OFPAT_RAW_SET_NW_SRC, MFF_IPV4_SRC,
out);
}
static void
encode_SET_IPV4_DST(const struct ofpact_ipv4 *ipv4,
enum ofp_version ofp_version, struct ofpbuf *out)
{
encode_SET_IPV4_addr(ipv4, ofp_version, OFPAT_RAW_SET_NW_DST, MFF_IPV4_DST,
out);
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_IPV4_SRC(char *arg, const struct ofpact_parse_params *pp)
{
return str_to_ip(arg, &ofpact_put_SET_IPV4_SRC(pp->ofpacts)->ipv4);
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_IPV4_DST(char *arg, const struct ofpact_parse_params *pp)
{
return str_to_ip(arg, &ofpact_put_SET_IPV4_DST(pp->ofpacts)->ipv4);
}
static void
format_SET_IPV4_SRC(const struct ofpact_ipv4 *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%smod_nw_src:%s"IP_FMT,
colors.param, colors.end, IP_ARGS(a->ipv4));
}
static void
format_SET_IPV4_DST(const struct ofpact_ipv4 *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%smod_nw_dst:%s"IP_FMT,
colors.param, colors.end, IP_ARGS(a->ipv4));
}
static enum ofperr
check_set_ipv4(struct ofpact_check_params *cp)
{
ovs_be16 dl_type = get_dl_type(&cp->match->flow);
if (dl_type != htons(ETH_TYPE_IP)) {
inconsistent_match(&cp->usable_protocols);
}
return 0;
}
static enum ofperr
check_SET_IPV4_SRC(const struct ofpact_ipv4 *a OVS_UNUSED,
struct ofpact_check_params *cp)
{
return check_set_ipv4(cp);
}
static enum ofperr
check_SET_IPV4_DST(const struct ofpact_ipv4 *a OVS_UNUSED,
struct ofpact_check_params *cp)
{
return check_set_ipv4(cp);
}
/* Set IPv4/v6 TOS actions. */
static enum ofperr
decode_OFPAT_RAW_SET_NW_TOS(uint8_t dscp,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
if (dscp & ~IP_DSCP_MASK) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
} else {
ofpact_put_SET_IP_DSCP(out)->dscp = dscp;
return 0;
}
}
static void
encode_SET_IP_DSCP(const struct ofpact_dscp *dscp,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version < OFP12_VERSION) {
put_OFPAT_SET_NW_TOS(out, ofp_version, dscp->dscp);
} else {
put_set_field(out, ofp_version, MFF_IP_DSCP_SHIFTED, dscp->dscp >> 2);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_IP_DSCP(char *arg, const struct ofpact_parse_params *pp)
{
uint8_t tos;
char *error;
error = str_to_u8(arg, "TOS", &tos);
if (error) {
return error;
}
if (tos & ~IP_DSCP_MASK) {
return xasprintf("%s: not a valid TOS", arg);
}
ofpact_put_SET_IP_DSCP(pp->ofpacts)->dscp = tos;
return NULL;
}
static void
format_SET_IP_DSCP(const struct ofpact_dscp *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%smod_nw_tos:%s%d",
colors.param, colors.end, a->dscp);
}
static enum ofperr
check_set_ip(struct ofpact_check_params *cp)
{
if (!is_ip_any(&cp->match->flow)) {
inconsistent_match(&cp->usable_protocols);
}
return 0;
}
static enum ofperr
check_SET_IP_DSCP(const struct ofpact_dscp *a OVS_UNUSED,
struct ofpact_check_params *cp)
{
return check_set_ip(cp);
}
/* Set IPv4/v6 ECN actions. */
static enum ofperr
decode_OFPAT_RAW11_SET_NW_ECN(uint8_t ecn,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
if (ecn & ~IP_ECN_MASK) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
} else {
ofpact_put_SET_IP_ECN(out)->ecn = ecn;
return 0;
}
}
static void
encode_SET_IP_ECN(const struct ofpact_ecn *ip_ecn,
enum ofp_version ofp_version, struct ofpbuf *out)
{
uint8_t ecn = ip_ecn->ecn;
if (ofp_version == OFP10_VERSION) {
struct mf_subfield dst = { .field = mf_from_id(MFF_IP_ECN),
.ofs = 0, .n_bits = 2 };
put_reg_load(out, &dst, ecn);
} else if (ofp_version == OFP11_VERSION) {
put_OFPAT11_SET_NW_ECN(out, ecn);
} else {
put_set_field(out, ofp_version, MFF_IP_ECN, ecn);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_IP_ECN(char *arg, const struct ofpact_parse_params *pp)
{
uint8_t ecn;
char *error;
error = str_to_u8(arg, "ECN", &ecn);
if (error) {
return error;
}
if (ecn & ~IP_ECN_MASK) {
return xasprintf("%s: not a valid ECN", arg);
}
ofpact_put_SET_IP_ECN(pp->ofpacts)->ecn = ecn;
return NULL;
}
static void
format_SET_IP_ECN(const struct ofpact_ecn *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%smod_nw_ecn:%s%d",
colors.param, colors.end, a->ecn);
}
static enum ofperr
check_SET_IP_ECN(const struct ofpact_ecn *a OVS_UNUSED,
struct ofpact_check_params *cp)
{
return check_set_ip(cp);
}
/* Set IPv4/v6 TTL actions. */
static enum ofperr
decode_OFPAT_RAW11_SET_NW_TTL(uint8_t ttl,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
ofpact_put_SET_IP_TTL(out)->ttl = ttl;
return 0;
}
static void
encode_SET_IP_TTL(const struct ofpact_ip_ttl *ttl,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version >= OFP11_VERSION) {
put_OFPAT11_SET_NW_TTL(out, ttl->ttl);
} else {
struct mf_subfield dst = { .field = mf_from_id(MFF_IP_TTL),
.ofs = 0, .n_bits = 8 };
put_reg_load(out, &dst, ttl->ttl);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_IP_TTL(char *arg, const struct ofpact_parse_params *pp)
{
uint8_t ttl;
char *error;
error = str_to_u8(arg, "TTL", &ttl);
if (error) {
return error;
}
ofpact_put_SET_IP_TTL(pp->ofpacts)->ttl = ttl;
return NULL;
}
static void
format_SET_IP_TTL(const struct ofpact_ip_ttl *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%smod_nw_ttl:%s%d",
colors.param, colors.end, a->ttl);
}
static enum ofperr
check_SET_IP_TTL(const struct ofpact_ip_ttl *a OVS_UNUSED,
struct ofpact_check_params *cp)
{
return check_set_ip(cp);
}
/* Set TCP/UDP/SCTP port actions. */
static enum ofperr
decode_OFPAT_RAW_SET_TP_SRC(ovs_be16 port,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
ofpact_put_SET_L4_SRC_PORT(out)->port = ntohs(port);
return 0;
}
static enum ofperr
decode_OFPAT_RAW_SET_TP_DST(ovs_be16 port,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
ofpact_put_SET_L4_DST_PORT(out)->port = ntohs(port);
return 0;
}
static void
encode_SET_L4_port(const struct ofpact_l4_port *l4_port,
enum ofp_version ofp_version, enum ofp_raw_action_type raw,
enum mf_field_id field, struct ofpbuf *out)
{
uint16_t port = l4_port->port;
if (ofp_version >= OFP12_VERSION && field != MFF_N_IDS) {
put_set_field(out, ofp_version, field, port);
} else {
ofpact_put_raw(out, ofp_version, raw, port);
}
}
static void
encode_SET_L4_SRC_PORT(const struct ofpact_l4_port *l4_port,
enum ofp_version ofp_version, struct ofpbuf *out)
{
uint8_t proto = l4_port->flow_ip_proto;
enum mf_field_id field = (proto == IPPROTO_TCP ? MFF_TCP_SRC
: proto == IPPROTO_UDP ? MFF_UDP_SRC
: proto == IPPROTO_SCTP ? MFF_SCTP_SRC
: MFF_N_IDS);
encode_SET_L4_port(l4_port, ofp_version, OFPAT_RAW_SET_TP_SRC, field, out);
}
static void
encode_SET_L4_DST_PORT(const struct ofpact_l4_port *l4_port,
enum ofp_version ofp_version,
struct ofpbuf *out)
{
uint8_t proto = l4_port->flow_ip_proto;
enum mf_field_id field = (proto == IPPROTO_TCP ? MFF_TCP_DST
: proto == IPPROTO_UDP ? MFF_UDP_DST
: proto == IPPROTO_SCTP ? MFF_SCTP_DST
: MFF_N_IDS);
encode_SET_L4_port(l4_port, ofp_version, OFPAT_RAW_SET_TP_DST, field, out);
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_L4_SRC_PORT(char *arg, const struct ofpact_parse_params *pp)
{
return str_to_u16(arg, "source port",
&ofpact_put_SET_L4_SRC_PORT(pp->ofpacts)->port);
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_L4_DST_PORT(char *arg, const struct ofpact_parse_params *pp)
{
return str_to_u16(arg, "destination port",
&ofpact_put_SET_L4_DST_PORT(pp->ofpacts)->port);
}
static void
format_SET_L4_SRC_PORT(const struct ofpact_l4_port *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%smod_tp_src:%s%d",
colors.param, colors.end, a->port);
}
static void
format_SET_L4_DST_PORT(const struct ofpact_l4_port *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%smod_tp_dst:%s%d",
colors.param, colors.end, a->port);
}
static enum ofperr
check_set_l4_port(struct ofpact_l4_port *a, struct ofpact_check_params *cp)
{
const struct flow *flow = &cp->match->flow;
if (!is_ip_any(flow)
|| flow->nw_frag & FLOW_NW_FRAG_LATER
|| (flow->nw_proto != IPPROTO_TCP &&
flow->nw_proto != IPPROTO_UDP &&
flow->nw_proto != IPPROTO_SCTP)) {
inconsistent_match(&cp->usable_protocols);
}
/* Note the transport protocol in use, to allow this action to be converted
* to an OF1.2 set_field action later if necessary. */
a->flow_ip_proto = flow->nw_proto;
return 0;
}
static enum ofperr
check_SET_L4_SRC_PORT(struct ofpact_l4_port *a, struct ofpact_check_params *cp)
{
return check_set_l4_port(a, cp);
}
static enum ofperr
check_SET_L4_DST_PORT(struct ofpact_l4_port *a, struct ofpact_check_params *cp)
{
return check_set_l4_port(a, cp);
}
/* Action structure for OFPAT_COPY_FIELD. */
struct ofp15_action_copy_field {
ovs_be16 type; /* OFPAT_COPY_FIELD. */
ovs_be16 len; /* Length is padded to 64 bits. */
ovs_be16 n_bits; /* Number of bits to copy. */
ovs_be16 src_offset; /* Starting bit offset in source. */
ovs_be16 dst_offset; /* Starting bit offset in destination. */
uint8_t pad[2];
/* Followed by:
* - OXM header for source field.
* - OXM header for destination field.
* - Padding with 0-bytes to a multiple of 8 bytes.
* The "pad2" member is the beginning of the above. */
uint8_t pad2[4];
};
OFP_ASSERT(sizeof(struct ofp15_action_copy_field) == 16);
/* Action structure for OpenFlow 1.3 extension copy-field action.. */
struct onf_action_copy_field {
ovs_be16 type; /* OFPAT_EXPERIMENTER. */
ovs_be16 len; /* Length is padded to 64 bits. */
ovs_be32 experimenter; /* ONF_VENDOR_ID. */
ovs_be16 exp_type; /* 3200. */
uint8_t pad[2]; /* Not used. */
ovs_be16 n_bits; /* Number of bits to copy. */
ovs_be16 src_offset; /* Starting bit offset in source. */
ovs_be16 dst_offset; /* Starting bit offset in destination. */
uint8_t pad2[2]; /* Not used. */
/* Followed by:
* - OXM header for source field.
* - OXM header for destination field.
* - Padding with 0-bytes (either 0 or 4 of them) to a multiple of 8 bytes.
* The "pad3" member is the beginning of the above. */
uint8_t pad3[4]; /* Not used. */
};
OFP_ASSERT(sizeof(struct onf_action_copy_field) == 24);
/* Action structure for NXAST_REG_MOVE.
*
* Copies src[src_ofs:src_ofs+n_bits] to dst[dst_ofs:dst_ofs+n_bits], where
* a[b:c] denotes the bits within 'a' numbered 'b' through 'c' (not including
* bit 'c'). Bit numbering starts at 0 for the least-significant bit, 1 for
* the next most significant bit, and so on.
*
* 'src' and 'dst' are nxm_header values with nxm_hasmask=0. (It doesn't make
* sense to use nxm_hasmask=1 because the action does not do any kind of
* matching; it uses the actual value of a field.)
*
* The following nxm_header values are potentially acceptable as 'src':
*
* - NXM_OF_IN_PORT
* - NXM_OF_ETH_DST
* - NXM_OF_ETH_SRC
* - NXM_OF_ETH_TYPE
* - NXM_OF_VLAN_TCI
* - NXM_OF_IP_TOS
* - NXM_OF_IP_PROTO
* - NXM_OF_IP_SRC
* - NXM_OF_IP_DST
* - NXM_OF_TCP_SRC
* - NXM_OF_TCP_DST
* - NXM_OF_UDP_SRC
* - NXM_OF_UDP_DST
* - NXM_OF_ICMP_TYPE
* - NXM_OF_ICMP_CODE
* - NXM_OF_ARP_OP
* - NXM_OF_ARP_SPA
* - NXM_OF_ARP_TPA
* - NXM_NX_TUN_ID
* - NXM_NX_ARP_SHA
* - NXM_NX_ARP_THA
* - NXM_NX_ICMPV6_TYPE
* - NXM_NX_ICMPV6_CODE
* - NXM_NX_ND_SLL
* - NXM_NX_ND_TLL
* - NXM_NX_REG(idx) for idx in the switch's accepted range.
* - NXM_NX_PKT_MARK
* - NXM_NX_TUN_IPV4_SRC
* - NXM_NX_TUN_IPV4_DST
*
* The following nxm_header values are potentially acceptable as 'dst':
*
* - NXM_OF_ETH_DST
* - NXM_OF_ETH_SRC
* - NXM_OF_IP_TOS
* - NXM_OF_IP_SRC
* - NXM_OF_IP_DST
* - NXM_OF_TCP_SRC
* - NXM_OF_TCP_DST
* - NXM_OF_UDP_SRC
* - NXM_OF_UDP_DST
* - NXM_OF_ICMP_TYPE
* - NXM_OF_ICMP_CODE
* - NXM_NX_ICMPV6_TYPE
* - NXM_NX_ICMPV6_CODE
* - NXM_NX_ARP_SHA
* - NXM_NX_ARP_THA
* - NXM_OF_ARP_OP
* - NXM_OF_ARP_SPA
* - NXM_OF_ARP_TPA
* Modifying any of the above fields changes the corresponding packet
* header.
*
* - NXM_OF_IN_PORT
*
* - NXM_NX_REG(idx) for idx in the switch's accepted range.
*
* - NXM_NX_PKT_MARK
*
* - NXM_OF_VLAN_TCI. Modifying this field's value has side effects on the
* packet's 802.1Q header. Setting a value with CFI=0 removes the 802.1Q
* header (if any), ignoring the other bits. Setting a value with CFI=1
* adds or modifies the 802.1Q header appropriately, setting the TCI field
* to the field's new value (with the CFI bit masked out).
*
* - NXM_NX_TUN_ID, NXM_NX_TUN_IPV4_SRC, NXM_NX_TUN_IPV4_DST. Modifying
* any of these values modifies the corresponding tunnel header field used
* for the packet's next tunnel encapsulation, if allowed by the
* configuration of the output tunnel port.
*
* A given nxm_header value may be used as 'src' or 'dst' only on a flow whose
* nx_match satisfies its prerequisites. For example, NXM_OF_IP_TOS may be
* used only if the flow's nx_match includes an nxm_entry that specifies
* nxm_type=NXM_OF_ETH_TYPE, nxm_hasmask=0, and nxm_value=0x0800.
*
* The switch will reject actions for which src_ofs+n_bits is greater than the
* width of 'src' or dst_ofs+n_bits is greater than the width of 'dst' with
* error type OFPET_BAD_ACTION, code OFPBAC_BAD_ARGUMENT.
*
* This action behaves properly when 'src' overlaps with 'dst', that is, it
* behaves as if 'src' were copied out to a temporary buffer, then the
* temporary buffer copied to 'dst'.
*/
struct nx_action_reg_move {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length is 24. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_REG_MOVE. */
ovs_be16 n_bits; /* Number of bits. */
ovs_be16 src_ofs; /* Starting bit offset in source. */
ovs_be16 dst_ofs; /* Starting bit offset in destination. */
/* Followed by:
* - OXM/NXM header for source field (4 or 8 bytes).
* - OXM/NXM header for destination field (4 or 8 bytes).
* - Padding with 0-bytes to a multiple of 8 bytes, if necessary. */
};
OFP_ASSERT(sizeof(struct nx_action_reg_move) == 16);
static enum ofperr
decode_copy_field__(ovs_be16 src_offset, ovs_be16 dst_offset, ovs_be16 n_bits,
const void *action, ovs_be16 action_len, size_t oxm_offset,
const struct vl_mff_map *vl_mff_map,
uint64_t *tlv_bitmap, struct ofpbuf *ofpacts)
{
struct ofpact_reg_move *move = ofpact_put_REG_MOVE(ofpacts);
enum ofperr error;
move->ofpact.raw = ONFACT_RAW13_COPY_FIELD;
move->src.ofs = ntohs(src_offset);
move->src.n_bits = ntohs(n_bits);
move->dst.ofs = ntohs(dst_offset);
move->dst.n_bits = ntohs(n_bits);
struct ofpbuf b = ofpbuf_const_initializer(action, ntohs(action_len));
ofpbuf_pull(&b, oxm_offset);
error = mf_vl_mff_nx_pull_header(&b, vl_mff_map, &move->src.field, NULL,
tlv_bitmap);
if (error) {
return error;
}
error = mf_vl_mff_nx_pull_header(&b, vl_mff_map, &move->dst.field, NULL,
tlv_bitmap);
if (error) {
return error;
}
if (!is_all_zeros(b.data, b.size)) {
return OFPERR_NXBRC_MUST_BE_ZERO;
}
return nxm_reg_move_check(move, NULL);
}
static enum ofperr
decode_OFPAT_RAW15_COPY_FIELD(const struct ofp15_action_copy_field *oacf,
enum ofp_version ofp_version OVS_UNUSED,
const struct vl_mff_map *vl_mff_map,
uint64_t *tlv_bitmap, struct ofpbuf *ofpacts)
{
return decode_copy_field__(oacf->src_offset, oacf->dst_offset,
oacf->n_bits, oacf, oacf->len,
OBJECT_OFFSETOF(oacf, pad2), vl_mff_map,
tlv_bitmap, ofpacts);
}
static enum ofperr
decode_ONFACT_RAW13_COPY_FIELD(const struct onf_action_copy_field *oacf,
enum ofp_version ofp_version OVS_UNUSED,
const struct vl_mff_map *vl_mff_map,
uint64_t *tlv_bitmap, struct ofpbuf *ofpacts)
{
return decode_copy_field__(oacf->src_offset, oacf->dst_offset,
oacf->n_bits, oacf, oacf->len,
OBJECT_OFFSETOF(oacf, pad3), vl_mff_map,
tlv_bitmap, ofpacts);
}
static enum ofperr
decode_NXAST_RAW_REG_MOVE(const struct nx_action_reg_move *narm,
enum ofp_version ofp_version OVS_UNUSED,
const struct vl_mff_map *vl_mff_map,
uint64_t *tlv_bitmap, struct ofpbuf *ofpacts)
{
struct ofpact_reg_move *move = ofpact_put_REG_MOVE(ofpacts);
enum ofperr error;
move->ofpact.raw = NXAST_RAW_REG_MOVE;
move->src.ofs = ntohs(narm->src_ofs);
move->src.n_bits = ntohs(narm->n_bits);
move->dst.ofs = ntohs(narm->dst_ofs);
move->dst.n_bits = ntohs(narm->n_bits);
struct ofpbuf b = ofpbuf_const_initializer(narm, ntohs(narm->len));
ofpbuf_pull(&b, sizeof *narm);
error = mf_vl_mff_nx_pull_header(&b, vl_mff_map, &move->src.field, NULL,
tlv_bitmap);
if (error) {
return error;
}
error = mf_vl_mff_nx_pull_header(&b, vl_mff_map, &move->dst.field, NULL,
tlv_bitmap);
if (error) {
return error;
}
if (!is_all_zeros(b.data, b.size)) {
return OFPERR_NXBRC_MUST_BE_ZERO;
}
return nxm_reg_move_check(move, NULL);
}
static void
encode_REG_MOVE(const struct ofpact_reg_move *move,
enum ofp_version ofp_version, struct ofpbuf *out)
{
/* For OpenFlow 1.3, the choice of ONFACT_RAW13_COPY_FIELD versus
* NXAST_RAW_REG_MOVE is somewhat difficult. Neither one is guaranteed to
* be supported by every OpenFlow 1.3 implementation. It would be ideal to
* probe for support. Until we have that ability, we currently prefer
* NXAST_RAW_REG_MOVE for backward compatibility with older Open vSwitch
* versions. */
size_t start_ofs = out->size;
if (ofp_version >= OFP15_VERSION) {
struct ofp15_action_copy_field *copy = put_OFPAT15_COPY_FIELD(out);
copy->n_bits = htons(move->dst.n_bits);
copy->src_offset = htons(move->src.ofs);
copy->dst_offset = htons(move->dst.ofs);
out->size = out->size - sizeof copy->pad2;
nx_put_mff_header(out, move->src.field, ofp_version, false);
nx_put_mff_header(out, move->dst.field, ofp_version, false);
} else if (ofp_version == OFP13_VERSION
&& move->ofpact.raw == ONFACT_RAW13_COPY_FIELD) {
struct onf_action_copy_field *copy = put_ONFACT13_COPY_FIELD(out);
copy->n_bits = htons(move->dst.n_bits);
copy->src_offset = htons(move->src.ofs);
copy->dst_offset = htons(move->dst.ofs);
out->size = out->size - sizeof copy->pad3;
nx_put_mff_header(out, move->src.field, ofp_version, false);
nx_put_mff_header(out, move->dst.field, ofp_version, false);
} else {
struct nx_action_reg_move *narm = put_NXAST_REG_MOVE(out);
narm->n_bits = htons(move->dst.n_bits);
narm->src_ofs = htons(move->src.ofs);
narm->dst_ofs = htons(move->dst.ofs);
nx_put_mff_header(out, move->src.field, 0, false);
nx_put_mff_header(out, move->dst.field, 0, false);
}
pad_ofpat(out, start_ofs);
}
static char * OVS_WARN_UNUSED_RESULT
parse_REG_MOVE(const char *arg, const struct ofpact_parse_params *pp)
{
struct ofpact_reg_move *move = ofpact_put_REG_MOVE(pp->ofpacts);
return nxm_parse_reg_move(move, arg);
}
static void
format_REG_MOVE(const struct ofpact_reg_move *a,
const struct ofpact_format_params *fp)
{
nxm_format_reg_move(a, fp->s);
}
static enum ofperr
check_REG_MOVE(const struct ofpact_reg_move *a,
const struct ofpact_check_params *cp)
{
return nxm_reg_move_check(a, cp->match);
}
/* Action structure for OFPAT12_SET_FIELD. */
struct ofp12_action_set_field {
ovs_be16 type; /* OFPAT12_SET_FIELD. */
ovs_be16 len; /* Length is padded to 64 bits. */
/* Followed by:
* - An OXM header, value, and (in OpenFlow 1.5+) optionally a mask.
* - Enough 0-bytes to pad out to a multiple of 64 bits.
*
* The "pad" member is the beginning of the above. */
uint8_t pad[4];
};
OFP_ASSERT(sizeof(struct ofp12_action_set_field) == 8);
/* Action structure for NXAST_REG_LOAD.
*
* Copies value[0:n_bits] to dst[ofs:ofs+n_bits], where a[b:c] denotes the bits
* within 'a' numbered 'b' through 'c' (not including bit 'c'). Bit numbering
* starts at 0 for the least-significant bit, 1 for the next most significant
* bit, and so on.
*
* 'dst' is an nxm_header with nxm_hasmask=0. See the documentation for
* NXAST_REG_MOVE, above, for the permitted fields and for the side effects of
* loading them.
*
* The 'ofs' and 'n_bits' fields are combined into a single 'ofs_nbits' field
* to avoid enlarging the structure by another 8 bytes. To allow 'n_bits' to
* take a value between 1 and 64 (inclusive) while taking up only 6 bits, it is
* also stored as one less than its true value:
*
* 15 6 5 0
* +------------------------------+------------------+
* | ofs | n_bits - 1 |
* +------------------------------+------------------+
*
* The switch will reject actions for which ofs+n_bits is greater than the
* width of 'dst', or in which any bits in 'value' with value 2**n_bits or
* greater are set to 1, with error type OFPET_BAD_ACTION, code
* OFPBAC_BAD_ARGUMENT.
*/
struct nx_action_reg_load {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length is 24. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_REG_LOAD. */
ovs_be16 ofs_nbits; /* (ofs << 6) | (n_bits - 1). */
ovs_be32 dst; /* Destination register. */
ovs_be64 value; /* Immediate value. */
};
OFP_ASSERT(sizeof(struct nx_action_reg_load) == 24);
/* The NXAST_REG_LOAD2 action structure is "struct ext_action_header",
* followed by:
*
* - An NXM/OXM header, value, and optionally a mask.
* - Enough 0-bytes to pad out to a multiple of 64 bits.
*
* The "pad" member is the beginning of the above. */
static enum ofperr
decode_ofpat_set_field(const struct ofp12_action_set_field *oasf,
bool may_mask, const struct vl_mff_map *vl_mff_map,
uint64_t *tlv_bitmap, struct ofpbuf *ofpacts)
{
struct ofpbuf b = ofpbuf_const_initializer(oasf, ntohs(oasf->len));
ofpbuf_pull(&b, OBJECT_OFFSETOF(oasf, pad));
union mf_value value, mask;
const struct mf_field *field;
enum ofperr error;
error = mf_vl_mff_nx_pull_entry(&b, vl_mff_map, &field, &value,
may_mask ? &mask : NULL, tlv_bitmap);
if (error) {
return (error == OFPERR_OFPBMC_BAD_MASK
? OFPERR_OFPBAC_BAD_SET_MASK
: error);
}
if (!may_mask) {
memset(&mask, 0xff, field->n_bytes);
}
if (!is_all_zeros(b.data, b.size)) {
return OFPERR_OFPBAC_BAD_SET_ARGUMENT;
}
/* OpenFlow says specifically that one may not set OXM_OF_IN_PORT via
* Set-Field. */
if (field->id == MFF_IN_PORT_OXM) {
return OFPERR_OFPBAC_BAD_SET_ARGUMENT;
}
/* oxm_length is now validated to be compatible with mf_value. */
if (!field->writable) {
VLOG_WARN_RL(&rl, "destination field %s is not writable",
field->name);
return OFPERR_OFPBAC_BAD_SET_ARGUMENT;
}
/* The value must be valid for match. OpenFlow 1.5 also says,
* "In an OXM_OF_VLAN_VID set-field action, the OFPVID_PRESENT bit must be
* a 1-bit in oxm_value and in oxm_mask." */
if (!mf_is_value_valid(field, &value)
|| (field->id == MFF_VLAN_VID
&& (!(mask.be16 & htons(OFPVID12_PRESENT))
|| !(value.be16 & htons(OFPVID12_PRESENT))))) {
struct ds ds = DS_EMPTY_INITIALIZER;
mf_format(field, &value, NULL, NULL, &ds);
VLOG_WARN_RL(&rl, "Invalid value for set field %s: %s",
field->name, ds_cstr(&ds));
ds_destroy(&ds);
return OFPERR_OFPBAC_BAD_SET_ARGUMENT;
}
ofpact_put_set_field(ofpacts, field, &value, &mask);
return 0;
}
static enum ofperr
decode_OFPAT_RAW12_SET_FIELD(const struct ofp12_action_set_field *oasf,
enum ofp_version ofp_version OVS_UNUSED,
const struct vl_mff_map *vl_mff_map,
uint64_t *tlv_bitmap, struct ofpbuf *ofpacts)
{
return decode_ofpat_set_field(oasf, false, vl_mff_map, tlv_bitmap,
ofpacts);
}
static enum ofperr
decode_OFPAT_RAW15_SET_FIELD(const struct ofp12_action_set_field *oasf,
enum ofp_version ofp_version OVS_UNUSED,
const struct vl_mff_map *vl_mff_map,
uint64_t *tlv_bitmap, struct ofpbuf *ofpacts)
{
return decode_ofpat_set_field(oasf, true, vl_mff_map, tlv_bitmap, ofpacts);
}
static enum ofperr
decode_NXAST_RAW_REG_LOAD(const struct nx_action_reg_load *narl,
enum ofp_version ofp_version OVS_UNUSED,
const struct vl_mff_map *vl_mff_map,
uint64_t *tlv_bitmap, struct ofpbuf *out)
{
struct mf_subfield dst;
enum ofperr error;
dst.ofs = nxm_decode_ofs(narl->ofs_nbits);
dst.n_bits = nxm_decode_n_bits(narl->ofs_nbits);
error = mf_vl_mff_mf_from_nxm_header(ntohl(narl->dst), vl_mff_map,
&dst.field, tlv_bitmap);
if (error) {
return error;
}
error = mf_check_dst(&dst, NULL);
if (error) {
return error;
}
/* Reject 'narl' if a bit numbered 'n_bits' or higher is set to 1 in
* narl->value. */
if (dst.n_bits < 64 && ntohll(narl->value) >> dst.n_bits) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
struct ofpact_set_field *sf = ofpact_put_reg_load(out, dst.field, NULL,
NULL);
bitwise_put(ntohll(narl->value),
sf->value, dst.field->n_bytes, dst.ofs,
dst.n_bits);
bitwise_put(UINT64_MAX,
ofpact_set_field_mask(sf), dst.field->n_bytes, dst.ofs,
dst.n_bits);
return 0;
}
static enum ofperr
decode_NXAST_RAW_REG_LOAD2(const struct ext_action_header *eah,
enum ofp_version ofp_version OVS_UNUSED,
const struct vl_mff_map *vl_mff_map,
uint64_t *tlv_bitmap, struct ofpbuf *out)
{
struct ofpbuf b = ofpbuf_const_initializer(eah, ntohs(eah->len));
ofpbuf_pull(&b, OBJECT_OFFSETOF(eah, pad));
union mf_value value, mask;
const struct mf_field *field;
enum ofperr error;
error = mf_vl_mff_nx_pull_entry(&b, vl_mff_map, &field, &value, &mask,
tlv_bitmap);
if (error) {
return error;
}
if (!is_all_zeros(b.data, b.size)) {
return OFPERR_OFPBAC_BAD_SET_ARGUMENT;
}
if (!field->writable) {
VLOG_WARN_RL(&rl, "destination field %s is not writable", field->name);
return OFPERR_OFPBAC_BAD_SET_ARGUMENT;
}
/* Put value and mask. */
ofpact_put_reg_load2(out, field, &value, &mask);
return 0;
}
static void
put_set_field(struct ofpbuf *openflow, enum ofp_version ofp_version,
enum mf_field_id field, uint64_t value_)
{
struct ofp12_action_set_field *oasf OVS_UNUSED;
int n_bytes = mf_from_id(field)->n_bytes;
size_t start_ofs = openflow->size;
union mf_value value;
value.be64 = htonll(value_ << (8 * (8 - n_bytes)));
oasf = put_OFPAT12_SET_FIELD(openflow);
openflow->size = openflow->size - sizeof oasf->pad;
nx_put_entry(openflow, mf_from_id(field), ofp_version, &value, NULL);
pad_ofpat(openflow, start_ofs);
}
static void
put_reg_load(struct ofpbuf *openflow,
const struct mf_subfield *dst, uint64_t value)
{
ovs_assert(dst->n_bits <= 64);
struct nx_action_reg_load *narl = put_NXAST_REG_LOAD(openflow);
narl->ofs_nbits = nxm_encode_ofs_nbits(dst->ofs, dst->n_bits);
narl->dst = htonl(nxm_header_from_mff(dst->field));
narl->value = htonll(value);
}
static bool
next_load_segment(const struct ofpact_set_field *sf,
struct mf_subfield *dst, uint64_t *value)
{
int n_bits = sf->field->n_bits;
int n_bytes = sf->field->n_bytes;
int start = dst->ofs + dst->n_bits;
if (start < n_bits) {
dst->field = sf->field;
dst->ofs = bitwise_scan(ofpact_set_field_mask(sf), n_bytes, 1, start,
n_bits);
if (dst->ofs < n_bits) {
dst->n_bits = bitwise_scan(ofpact_set_field_mask(sf), n_bytes, 0,
dst->ofs + 1,
MIN(dst->ofs + 64, n_bits)) - dst->ofs;
*value = bitwise_get(sf->value, n_bytes, dst->ofs, dst->n_bits);
return true;
}
}
return false;
}
/* Convert 'sf' to a series of REG_LOADs. */
static void
set_field_to_nxast(const struct ofpact_set_field *sf, struct ofpbuf *openflow)
{
/* If 'sf' cannot be encoded as NXAST_REG_LOAD because it requires an
* experimenter OXM or is variable length (or if it came in as
* NXAST_REG_LOAD2), encode as NXAST_REG_LOAD2. Otherwise use
* NXAST_REG_LOAD, which is backward compatible. */
if (sf->ofpact.raw == NXAST_RAW_REG_LOAD2
|| !mf_nxm_header(sf->field->id) || sf->field->variable_len) {
struct ext_action_header *eah OVS_UNUSED;
size_t start_ofs = openflow->size;
eah = put_NXAST_REG_LOAD2(openflow);
openflow->size = openflow->size - sizeof eah->pad;
nx_put_entry(openflow, sf->field, 0, sf->value,
ofpact_set_field_mask(sf));
pad_ofpat(openflow, start_ofs);
} else {
struct mf_subfield dst;
uint64_t value;
dst.ofs = dst.n_bits = 0;
while (next_load_segment(sf, &dst, &value)) {
put_reg_load(openflow, &dst, value);
}
}
}
/* Convert 'sf', which must set an entire field, to standard OpenFlow 1.0/1.1
* actions, if we can, falling back to Nicira extensions if we must.
*
* We check only meta-flow types that can appear within set field actions and
* that have a mapping to compatible action types. These struct mf_field
* definitions have a defined OXM or NXM header value and specify the field as
* writable. */
static void
set_field_to_legacy_openflow(const struct ofpact_set_field *sf,
enum ofp_version ofp_version,
struct ofpbuf *out)
{
switch ((int) sf->field->id) {
case MFF_VLAN_TCI: {
ovs_be16 tci = sf->value->be16;
bool cfi = (tci & htons(VLAN_CFI)) != 0;
uint16_t vid = vlan_tci_to_vid(tci);
uint8_t pcp = vlan_tci_to_pcp(tci);
if (ofp_version < OFP11_VERSION) {
/* NXM_OF_VLAN_TCI to OpenFlow 1.0 mapping:
*
* If CFI=1, Add or modify VLAN VID & PCP.
* If CFI=0, strip VLAN header, if any.
*/
if (cfi) {
put_OFPAT10_SET_VLAN_VID(out, vid);
put_OFPAT10_SET_VLAN_PCP(out, pcp);
} else {
put_OFPAT10_STRIP_VLAN(out);
}
} else {
/* NXM_OF_VLAN_TCI to OpenFlow 1.1 mapping:
*
* If CFI=1, Add or modify VLAN VID & PCP.
* OpenFlow 1.1 set actions only apply if the packet
* already has VLAN tags. To be sure that is the case
* we have to push a VLAN header. As we do not support
* multiple layers of VLANs, this is a no-op, if a VLAN
* header already exists. This may backfire, however,
* when we start supporting multiple layers of VLANs.
* If CFI=0, strip VLAN header, if any.
*/
if (cfi) {
/* Push a VLAN tag, if one was not seen at action validation
* time. */
if (!sf->flow_has_vlan) {
put_OFPAT11_PUSH_VLAN(out, htons(ETH_TYPE_VLAN_8021Q));
}
put_OFPAT11_SET_VLAN_VID(out, vid);
put_OFPAT11_SET_VLAN_PCP(out, pcp);
} else {
/* If the flow did not match on vlan, we have no way of
* knowing if the vlan tag exists, so we must POP just to be
* sure. */
put_OFPAT11_POP_VLAN(out);
}
}
break;
}
case MFF_VLAN_VID: {
uint16_t vid = ntohs(sf->value->be16) & VLAN_VID_MASK;
if (ofp_version == OFP10_VERSION) {
put_OFPAT10_SET_VLAN_VID(out, vid);
} else {
put_OFPAT11_SET_VLAN_VID(out, vid);
}
break;
}
case MFF_VLAN_PCP:
if (ofp_version == OFP10_VERSION) {
put_OFPAT10_SET_VLAN_PCP(out, sf->value->u8);
} else {
put_OFPAT11_SET_VLAN_PCP(out, sf->value->u8);
}
break;
case MFF_ETH_SRC:
put_OFPAT_SET_DL_SRC(out, ofp_version)->dl_addr = sf->value->mac;
break;
case MFF_ETH_DST:
put_OFPAT_SET_DL_DST(out, ofp_version)->dl_addr = sf->value->mac;
break;
case MFF_IPV4_SRC:
put_OFPAT_SET_NW_SRC(out, ofp_version, sf->value->be32);
break;
case MFF_IPV4_DST:
put_OFPAT_SET_NW_DST(out, ofp_version, sf->value->be32);
break;
case MFF_IP_DSCP:
put_OFPAT_SET_NW_TOS(out, ofp_version, sf->value->u8);
break;
case MFF_IP_DSCP_SHIFTED:
put_OFPAT_SET_NW_TOS(out, ofp_version, sf->value->u8 << 2);
break;
case MFF_IP_ECN: {
struct ofpact_ecn ip_ecn = { .ecn = sf->value->u8 };
encode_SET_IP_ECN(&ip_ecn, ofp_version, out);
break;
}
case MFF_TCP_SRC:
case MFF_UDP_SRC:
put_OFPAT_SET_TP_SRC(out, sf->value->be16);
break;
case MFF_TCP_DST:
case MFF_UDP_DST:
put_OFPAT_SET_TP_DST(out, sf->value->be16);
break;
default:
set_field_to_nxast(sf, out);
break;
}
}
static void
set_field_to_set_field(const struct ofpact_set_field *sf,
enum ofp_version ofp_version, struct ofpbuf *out)
{
struct ofp12_action_set_field *oasf OVS_UNUSED;
size_t start_ofs = out->size;
oasf = put_OFPAT12_SET_FIELD(out);
out->size = out->size - sizeof oasf->pad;
nx_put_entry(out, sf->field, ofp_version, sf->value,
ofpact_set_field_mask(sf));
pad_ofpat(out, start_ofs);
}
static void
encode_SET_FIELD(const struct ofpact_set_field *sf,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version >= OFP15_VERSION) {
/* OF1.5+ only has Set-Field (reg_load is redundant so we drop it
* entirely). */
set_field_to_set_field(sf, ofp_version, out);
} else if (sf->ofpact.raw == NXAST_RAW_REG_LOAD ||
sf->ofpact.raw == NXAST_RAW_REG_LOAD2) {
/* It came in as reg_load, send it out the same way. */
set_field_to_nxast(sf, out);
} else if (ofp_version < OFP12_VERSION) {
/* OpenFlow 1.0 and 1.1 don't have Set-Field. */
set_field_to_legacy_openflow(sf, ofp_version, out);
} else if (is_all_ones(ofpact_set_field_mask(sf), sf->field->n_bytes)) {
/* We're encoding to OpenFlow 1.2, 1.3, or 1.4. The action sets an
* entire field, so encode it as OFPAT_SET_FIELD. */
set_field_to_set_field(sf, ofp_version, out);
} else {
/* We're encoding to OpenFlow 1.2, 1.3, or 1.4. The action cannot be
* encoded as OFPAT_SET_FIELD because it does not set an entire field,
* so encode it as reg_load. */
set_field_to_nxast(sf, out);
}
}
/* Parses the input argument 'arg' into the key, value, and delimiter
* components that are common across the reg_load and set_field action format.
*
* With an argument like "1->metadata", sets the following pointers to
* point within 'arg':
* key: "metadata"
* value: "1"
* delim: "->"
*
* Returns NULL if successful, otherwise a malloc()'d string describing the
* error. The caller is responsible for freeing the returned string. */
static char * OVS_WARN_UNUSED_RESULT
set_field_split_str(char *arg, char **key, char **value, char **delim)
{
char *value_end;
*key = NULL;
*value = arg;
if (delim) {
*delim = NULL;
}
value_end = strstr(arg, "->");
if (!value_end) {
return xasprintf("%s: missing `->'", arg);
}
*key = value_end + strlen("->");
if (delim) {
*delim = value_end;
}
if (strlen(value_end) <= strlen("->")) {
return xasprintf("%s: missing field name following `->'", arg);
}
return NULL;
}
/* Parses a "set_field" action with argument 'arg', appending the parsed
* action to 'pp->ofpacts'.
*
* Returns NULL if successful, otherwise a malloc()'d string describing the
* error. The caller is responsible for freeing the returned string. */
static char * OVS_WARN_UNUSED_RESULT
set_field_parse__(char *arg, const struct ofpact_parse_params *pp)
{
char *value;
char *delim;
char *key;
const struct mf_field *mf;
union mf_value sf_value, sf_mask;
char *error;
error = set_field_split_str(arg, &key, &value, &delim);
if (error) {
return error;
}
mf = mf_from_name(key);
if (!mf) {
return xasprintf("%s is not a valid OXM field name", key);
}
if (!mf->writable) {
return xasprintf("%s is read-only", key);
}
delim[0] = '\0';
error = mf_parse(mf, value, pp->port_map, &sf_value, &sf_mask);
if (error) {
return error;
}
if (!mf_is_value_valid(mf, &sf_value)) {
return xasprintf("%s is not a valid value for field %s", value, key);
}
*pp->usable_protocols &= mf->usable_protocols_exact;
ofpact_put_set_field(pp->ofpacts, mf, &sf_value, &sf_mask);
return NULL;
}
/* Parses 'arg' as the argument to a "set_field" action, and appends such an
* action to 'pp->ofpacts'.
*
* Returns NULL if successful, otherwise a malloc()'d string describing the
* error. The caller is responsible for freeing the returned string. */
static char * OVS_WARN_UNUSED_RESULT
parse_SET_FIELD(const char *arg, const struct ofpact_parse_params *pp)
{
char *copy = xstrdup(arg);
char *error = set_field_parse__(copy, pp);
free(copy);
return error;
}
static char * OVS_WARN_UNUSED_RESULT
parse_reg_load(char *arg, const struct ofpact_parse_params *pp)
{
struct mf_subfield dst;
char *key, *value_str;
union mf_value value;
char *error;
error = set_field_split_str(arg, &key, &value_str, NULL);
if (error) {
return error;
}
error = mf_parse_subfield(&dst, key);
if (error) {
return error;
}
if (parse_int_string(value_str, (uint8_t *)&value, dst.field->n_bytes,
&key)) {
return xasprintf("%s: cannot parse integer value", arg);
}
if (!bitwise_is_all_zeros(&value, dst.field->n_bytes, dst.n_bits,
dst.field->n_bytes * 8 - dst.n_bits)) {
struct ds ds;
ds_init(&ds);
mf_format(dst.field, &value, NULL, NULL, &ds);
error = xasprintf("%s: value %s does not fit into %d bits",
arg, ds_cstr(&ds), dst.n_bits);
ds_destroy(&ds);
return error;
}
struct ofpact_set_field *sf = ofpact_put_reg_load(pp->ofpacts, dst.field,
NULL, NULL);
bitwise_copy(&value, dst.field->n_bytes, 0, sf->value,
dst.field->n_bytes, dst.ofs, dst.n_bits);
bitwise_one(ofpact_set_field_mask(sf), dst.field->n_bytes, dst.ofs,
dst.n_bits);
return NULL;
}
static void
format_SET_FIELD(const struct ofpact_set_field *a,
const struct ofpact_format_params *fp)
{
if (a->ofpact.raw == NXAST_RAW_REG_LOAD) {
struct mf_subfield dst;
uint64_t value;
dst.ofs = dst.n_bits = 0;
while (next_load_segment(a, &dst, &value)) {
ds_put_format(fp->s, "%sload:%s%#"PRIx64"%s->%s",
colors.special, colors.end, value,
colors.special, colors.end);
mf_format_subfield(&dst, fp->s);
ds_put_char(fp->s, ',');
}
ds_chomp(fp->s, ',');
} else {
ds_put_format(fp->s, "%sset_field:%s", colors.special, colors.end);
mf_format(a->field, a->value, ofpact_set_field_mask(a),
fp->port_map, fp->s);
ds_put_format(fp->s, "%s->%s%s",
colors.special, colors.end, a->field->name);
}
}
static enum ofperr
check_SET_FIELD(struct ofpact_set_field *a,
const struct ofpact_check_params *cp)
{
const struct mf_field *mf = a->field;
struct flow *flow = &cp->match->flow;
ovs_be16 *tci = &flow->vlans[0].tci;
/* Require OXM_OF_VLAN_VID to have an existing VLAN header. */
if (!mf_are_prereqs_ok(mf, flow, NULL)
|| (mf->id == MFF_VLAN_VID && !(*tci & htons(VLAN_CFI)))) {
VLOG_WARN_RL(&rl, "set_field %s lacks correct prerequisites",
mf->name);
return OFPERR_OFPBAC_MATCH_INCONSISTENT;
}
/* Remember if we saw a VLAN tag in the flow, to aid translating to
* OpenFlow 1.1 if need be. */
a->flow_has_vlan = (*tci & htons(VLAN_CFI)) != 0;
if (mf->id == MFF_VLAN_TCI) {
/* The set field may add or remove the VLAN tag,
* Mark the status temporarily. */
*tci = a->value->be16;
}
return 0;
}
/* Appends an OFPACT_SET_FIELD ofpact with enough space for the value and a
* properly aligned mask for the 'field' to 'ofpacts' and returns it. Fills
* in the value from 'value', if non-NULL, and mask from 'mask' if non-NULL.
* If 'value' is non-NULL and 'mask' is NULL, an all-ones mask will be
* filled in. */
struct ofpact_set_field *
ofpact_put_set_field(struct ofpbuf *ofpacts, const struct mf_field *field,
const void *value, const void *mask)
{
/* Ensure there's enough space for:
* - value (8-byte aligned)
* - mask (8-byte aligned)
* - padding (to make the whole ofpact_set_field 8-byte aligned)
*/
size_t total_size = 2 * ROUND_UP(field->n_bytes, OFPACT_ALIGNTO);
struct ofpact_set_field *sf = ofpact_put_SET_FIELD(ofpacts);
sf->field = field;
/* Fill with all zeroes to make sure the padding is initialized. */
ofpbuf_put_zeros(ofpacts, total_size);
sf = ofpacts->header;
/* Fill in the value and mask if given, otherwise keep the zeroes
* so that the caller may fill in the value and mask itself. */
if (value) {
memcpy(sf->value, value, field->n_bytes);
if (mask) {
memcpy(ofpact_set_field_mask(sf), mask, field->n_bytes);
} else {
memset(ofpact_set_field_mask(sf), 0xff, field->n_bytes);
}
}
/* Update length. */
ofpact_finish_SET_FIELD(ofpacts, &sf);
return sf;
}
/* Appends an OFPACT_SET_FIELD ofpact to 'ofpacts' and returns it. The ofpact
* is marked such that, if possible, it will be translated to OpenFlow as
* NXAST_REG_LOAD extension actions rather than OFPAT_SET_FIELD, either because
* that was the way that the action was expressed when it came into OVS or for
* backward compatibility. */
struct ofpact_set_field *
ofpact_put_reg_load(struct ofpbuf *ofpacts, const struct mf_field *field,
const void *value, const void *mask)
{
struct ofpact_set_field *sf = ofpact_put_set_field(ofpacts, field, value,
mask);
sf->ofpact.raw = NXAST_RAW_REG_LOAD;
return sf;
}
struct ofpact_set_field *
ofpact_put_reg_load2(struct ofpbuf *ofpacts, const struct mf_field *field,
const void *value, const void *mask)
{
struct ofpact_set_field *sf = ofpact_put_set_field(ofpacts, field, value,
mask);
sf->ofpact.raw = NXAST_RAW_REG_LOAD2;
return sf;
}
/* Action structure for NXAST_STACK_PUSH and NXAST_STACK_POP.
*
* Pushes (or pops) field[offset: offset + n_bits] to (or from)
* top of the stack.
*/
struct nx_action_stack {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length is 16. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_STACK_PUSH or NXAST_STACK_POP. */
ovs_be16 offset; /* Bit offset into the field. */
/* Followed by:
* - OXM/NXM header for field to push or pop (4 or 8 bytes).
* - ovs_be16 'n_bits', the number of bits to extract from the field.
* - Enough 0-bytes to pad out the action to 24 bytes. */
uint8_t pad[12]; /* See above. */
};
OFP_ASSERT(sizeof(struct nx_action_stack) == 24);
static enum ofperr
decode_stack_action(const struct nx_action_stack *nasp,
const struct vl_mff_map *vl_mff_map, uint64_t *tlv_bitmap,
struct ofpact_stack *stack_action)
{
enum ofperr error;
stack_action->subfield.ofs = ntohs(nasp->offset);
struct ofpbuf b = ofpbuf_const_initializer(nasp, sizeof *nasp);
ofpbuf_pull(&b, OBJECT_OFFSETOF(nasp, pad));
error = mf_vl_mff_nx_pull_header(&b, vl_mff_map,
&stack_action->subfield.field, NULL,
tlv_bitmap);
if (error) {
return error;
}
stack_action->subfield.n_bits = ntohs(*(const ovs_be16 *) b.data);
ofpbuf_pull(&b, 2);
if (!is_all_zeros(b.data, b.size)) {
return OFPERR_NXBRC_MUST_BE_ZERO;
}
return 0;
}
static enum ofperr
decode_NXAST_RAW_STACK_PUSH(const struct nx_action_stack *nasp,
enum ofp_version ofp_version OVS_UNUSED,
const struct vl_mff_map *vl_mff_map,
uint64_t *tlv_bitmap, struct ofpbuf *ofpacts)
{
struct ofpact_stack *push = ofpact_put_STACK_PUSH(ofpacts);
enum ofperr error = decode_stack_action(nasp, vl_mff_map, tlv_bitmap,
push);
return error ? error : nxm_stack_push_check(push, NULL);
}
static enum ofperr
decode_NXAST_RAW_STACK_POP(const struct nx_action_stack *nasp,
enum ofp_version ofp_version OVS_UNUSED,
const struct vl_mff_map *vl_mff_map,
uint64_t *tlv_bitmap, struct ofpbuf *ofpacts)
{
struct ofpact_stack *pop = ofpact_put_STACK_POP(ofpacts);
enum ofperr error = decode_stack_action(nasp, vl_mff_map, tlv_bitmap,
pop);
return error ? error : nxm_stack_pop_check(pop, NULL);
}
static void
encode_STACK_op(const struct ofpact_stack *stack_action,
struct nx_action_stack *nasp)
{
struct ofpbuf b;
ovs_be16 n_bits;
nasp->offset = htons(stack_action->subfield.ofs);
ofpbuf_use_stack(&b, nasp, ntohs(nasp->len));
ofpbuf_put_uninit(&b, OBJECT_OFFSETOF(nasp, pad));
nx_put_mff_header(&b, stack_action->subfield.field, 0, false);
n_bits = htons(stack_action->subfield.n_bits);
ofpbuf_put(&b, &n_bits, sizeof n_bits);
}
static void
encode_STACK_PUSH(const struct ofpact_stack *stack,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
encode_STACK_op(stack, put_NXAST_STACK_PUSH(out));
}
static void
encode_STACK_POP(const struct ofpact_stack *stack,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
encode_STACK_op(stack, put_NXAST_STACK_POP(out));
}
static char * OVS_WARN_UNUSED_RESULT
parse_STACK_PUSH(char *arg, const struct ofpact_parse_params *pp)
{
return nxm_parse_stack_action(ofpact_put_STACK_PUSH(pp->ofpacts), arg);
}
static char * OVS_WARN_UNUSED_RESULT
parse_STACK_POP(char *arg, const struct ofpact_parse_params *pp)
{
return nxm_parse_stack_action(ofpact_put_STACK_POP(pp->ofpacts), arg);
}
static void
format_STACK_PUSH(const struct ofpact_stack *a,
const struct ofpact_format_params *fp)
{
nxm_format_stack_push(a, fp->s);
}
static void
format_STACK_POP(const struct ofpact_stack *a,
const struct ofpact_format_params *fp)
{
nxm_format_stack_pop(a, fp->s);
}
static enum ofperr
check_STACK_PUSH(const struct ofpact_stack *a,
const struct ofpact_check_params *cp)
{
return nxm_stack_push_check(a, cp->match);
}
static enum ofperr
check_STACK_POP(const struct ofpact_stack *a,
const struct ofpact_check_params *cp)
{
return nxm_stack_pop_check(a, cp->match);
}
/* Action structure for NXAST_DEC_TTL_CNT_IDS.
*
* If the packet is not IPv4 or IPv6, does nothing. For IPv4 or IPv6, if the
* TTL or hop limit is at least 2, decrements it by 1. Otherwise, if TTL or
* hop limit is 0 or 1, sends a packet-in to the controllers with each of the
* 'n_controllers' controller IDs specified in 'cnt_ids'.
*
* (This differs from NXAST_DEC_TTL in that for NXAST_DEC_TTL the packet-in is
* sent only to controllers with id 0.)
*/
struct nx_action_cnt_ids {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length including cnt_ids. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_DEC_TTL_CNT_IDS. */
ovs_be16 n_controllers; /* Number of controllers. */
uint8_t zeros[4]; /* Must be zero. */
/* Followed by 1 or more controller ids:
*
* uint16_t cnt_ids[]; -- Controller ids.
* uint8_t pad[]; -- Must be 0 to 8-byte align cnt_ids[].
*/
};
OFP_ASSERT(sizeof(struct nx_action_cnt_ids) == 16);
static enum ofperr
decode_OFPAT_RAW_DEC_NW_TTL(struct ofpbuf *out)
{
uint16_t id = 0;
struct ofpact_cnt_ids *ids;
enum ofperr error = 0;
ids = ofpact_put_DEC_TTL(out);
ids->n_controllers = 1;
ofpbuf_put(out, &id, sizeof id);
ids = out->header;
ofpact_finish_DEC_TTL(out, &ids);
return error;
}
static enum ofperr
decode_NXAST_RAW_DEC_TTL_CNT_IDS(const struct nx_action_cnt_ids *nac_ids,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct ofpact_cnt_ids *ids;
size_t ids_size;
int i;
ids = ofpact_put_DEC_TTL(out);
ids->ofpact.raw = NXAST_RAW_DEC_TTL_CNT_IDS;
ids->n_controllers = ntohs(nac_ids->n_controllers);
ids_size = ntohs(nac_ids->len) - sizeof *nac_ids;
if (!is_all_zeros(nac_ids->zeros, sizeof nac_ids->zeros)) {
return OFPERR_NXBRC_MUST_BE_ZERO;
}
if (ids_size < ids->n_controllers * sizeof(ovs_be16)) {
VLOG_WARN_RL(&rl, "Nicira action dec_ttl_cnt_ids only has %"PRIuSIZE" "
"bytes allocated for controller ids. %"PRIuSIZE" bytes "
"are required for %u controllers.",
ids_size, ids->n_controllers * sizeof(ovs_be16),
ids->n_controllers);
return OFPERR_OFPBAC_BAD_LEN;
}
for (i = 0; i < ids->n_controllers; i++) {
uint16_t id = ntohs(((ovs_be16 *)(nac_ids + 1))[i]);
ofpbuf_put(out, &id, sizeof id);
ids = out->header;
}
ofpact_finish_DEC_TTL(out, &ids);
return 0;
}
static void
encode_DEC_TTL(const struct ofpact_cnt_ids *dec_ttl,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (dec_ttl->ofpact.raw == NXAST_RAW_DEC_TTL_CNT_IDS
|| dec_ttl->n_controllers != 1
|| dec_ttl->cnt_ids[0] != 0) {
struct nx_action_cnt_ids *nac_ids = put_NXAST_DEC_TTL_CNT_IDS(out);
int ids_len = ROUND_UP(2 * dec_ttl->n_controllers, OFP_ACTION_ALIGN);
ovs_be16 *ids;
size_t i;
nac_ids->len = htons(ntohs(nac_ids->len) + ids_len);
nac_ids->n_controllers = htons(dec_ttl->n_controllers);
ids = ofpbuf_put_zeros(out, ids_len);
for (i = 0; i < dec_ttl->n_controllers; i++) {
ids[i] = htons(dec_ttl->cnt_ids[i]);
}
} else {
put_OFPAT_DEC_NW_TTL(out, ofp_version);
}
}
static void
parse_noargs_dec_ttl(const struct ofpact_parse_params *pp)
{
struct ofpact_cnt_ids *ids;
uint16_t id = 0;
ofpact_put_DEC_TTL(pp->ofpacts);
ofpbuf_put(pp->ofpacts, &id, sizeof id);
ids = pp->ofpacts->header;
ids->n_controllers++;
ofpact_finish_DEC_TTL(pp->ofpacts, &ids);
}
static char * OVS_WARN_UNUSED_RESULT
parse_DEC_TTL(char *arg, const struct ofpact_parse_params *pp)
{
if (*arg == '\0') {
parse_noargs_dec_ttl(pp);
} else {
struct ofpact_cnt_ids *ids;
char *cntr;
ids = ofpact_put_DEC_TTL(pp->ofpacts);
ids->ofpact.raw = NXAST_RAW_DEC_TTL_CNT_IDS;
for (cntr = strtok_r(arg, ", ", &arg); cntr != NULL;
cntr = strtok_r(NULL, ", ", &arg)) {
uint16_t id = atoi(cntr);
ofpbuf_put(pp->ofpacts, &id, sizeof id);
ids = pp->ofpacts->header;
ids->n_controllers++;
}
if (!ids->n_controllers) {
return xstrdup("dec_ttl_cnt_ids: expected at least one controller "
"id.");
}
if (ofpbuf_oversized(pp->ofpacts)) {
return xasprintf("input too big");
}
ofpact_finish_DEC_TTL(pp->ofpacts, &ids);
}
return NULL;
}
static void
format_DEC_TTL(const struct ofpact_cnt_ids *a,
const struct ofpact_format_params *fp)
{
size_t i;
ds_put_format(fp->s, "%sdec_ttl%s", colors.paren, colors.end);
if (a->ofpact.raw == NXAST_RAW_DEC_TTL_CNT_IDS) {
ds_put_format(fp->s, "%s(%s", colors.paren, colors.end);
for (i = 0; i < a->n_controllers; i++) {
if (i) {
ds_put_cstr(fp->s, ",");
}
ds_put_format(fp->s, "%"PRIu16, a->cnt_ids[i]);
}
ds_put_format(fp->s, "%s)%s", colors.paren, colors.end);
}
}
static enum ofperr
check_DEC_TTL(const struct ofpact_cnt_ids *a OVS_UNUSED,
struct ofpact_check_params *cp)
{
return check_set_ip(cp);
}
/* Set MPLS label actions. */
static enum ofperr
decode_OFPAT_RAW_SET_MPLS_LABEL(ovs_be32 label,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
ofpact_put_SET_MPLS_LABEL(out)->label = label;
return 0;
}
static void
encode_SET_MPLS_LABEL(const struct ofpact_mpls_label *label,
enum ofp_version ofp_version,
struct ofpbuf *out)
{
if (ofp_version < OFP12_VERSION) {
put_OFPAT_SET_MPLS_LABEL(out, ofp_version, label->label);
} else {
put_set_field(out, ofp_version, MFF_MPLS_LABEL, ntohl(label->label));
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_MPLS_LABEL(char *arg, const struct ofpact_parse_params *pp)
{
struct ofpact_mpls_label *mpls_label
= ofpact_put_SET_MPLS_LABEL(pp->ofpacts);
uint32_t label;
char *error;
if (*arg == '\0') {
return xstrdup("set_mpls_label: expected label.");
}
error = str_to_u32(arg, &label);
if (error) {
return error;
}
if (label & ~0xfffff) {
return xasprintf("%s: not a valid MPLS label", arg);
}
mpls_label->label = htonl(label);
return NULL;
}
static void
format_SET_MPLS_LABEL(const struct ofpact_mpls_label *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sset_mpls_label(%s%"PRIu32"%s)%s",
colors.paren, colors.end, ntohl(a->label),
colors.paren, colors.end);
}
static enum ofperr
check_set_mpls(struct ofpact_check_params *cp)
{
ovs_be16 dl_type = get_dl_type(&cp->match->flow);
if (!eth_type_mpls(dl_type)) {
inconsistent_match(&cp->usable_protocols);
}
return 0;
}
static enum ofperr
check_SET_MPLS_LABEL(const struct ofpact_mpls_label *a OVS_UNUSED,
struct ofpact_check_params *cp)
{
return check_set_mpls(cp);
}
/* Set MPLS TC actions. */
static enum ofperr
decode_OFPAT_RAW_SET_MPLS_TC(uint8_t tc,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
ofpact_put_SET_MPLS_TC(out)->tc = tc;
return 0;
}
static void
encode_SET_MPLS_TC(const struct ofpact_mpls_tc *tc,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version < OFP12_VERSION) {
put_OFPAT_SET_MPLS_TC(out, ofp_version, tc->tc);
} else {
put_set_field(out, ofp_version, MFF_MPLS_TC, tc->tc);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_MPLS_TC(char *arg, const struct ofpact_parse_params *pp)
{
struct ofpact_mpls_tc *mpls_tc = ofpact_put_SET_MPLS_TC(pp->ofpacts);
uint8_t tc;
char *error;
if (*arg == '\0') {
return xstrdup("set_mpls_tc: expected tc.");
}
error = str_to_u8(arg, "MPLS TC", &tc);
if (error) {
return error;
}
if (tc & ~7) {
return xasprintf("%s: not a valid MPLS TC", arg);
}
mpls_tc->tc = tc;
return NULL;
}
static void
format_SET_MPLS_TC(const struct ofpact_mpls_tc *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sset_mpls_tc(%s%"PRIu8"%s)%s",
colors.paren, colors.end, a->tc,
colors.paren, colors.end);
}
static enum ofperr
check_SET_MPLS_TC(const struct ofpact_mpls_tc *a OVS_UNUSED,
struct ofpact_check_params *cp)
{
return check_set_mpls(cp);
}
/* Set MPLS TTL actions. */
static enum ofperr
decode_OFPAT_RAW_SET_MPLS_TTL(uint8_t ttl,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
ofpact_put_SET_MPLS_TTL(out)->ttl = ttl;
return 0;
}
static void
encode_SET_MPLS_TTL(const struct ofpact_mpls_ttl *ttl,
enum ofp_version ofp_version, struct ofpbuf *out)
{
put_OFPAT_SET_MPLS_TTL(out, ofp_version, ttl->ttl);
}
/* Parses 'arg' as the argument to a "set_mpls_ttl" action, and appends such an
* action to 'pp->ofpacts'.
*
* Returns NULL if successful, otherwise a malloc()'d string describing the
* error. The caller is responsible for freeing the returned string. */
static char * OVS_WARN_UNUSED_RESULT
parse_SET_MPLS_TTL(char *arg, const struct ofpact_parse_params *pp)
{
struct ofpact_mpls_ttl *mpls_ttl = ofpact_put_SET_MPLS_TTL(pp->ofpacts);
uint8_t ttl;
char *error;
if (*arg == '\0') {
return xstrdup("set_mpls_ttl: expected ttl.");
}
error = str_to_u8(arg, "MPLS TTL", &ttl);
if (error) {
return error;
}
mpls_ttl->ttl = ttl;
return NULL;
}
static void
format_SET_MPLS_TTL(const struct ofpact_mpls_ttl *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sset_mpls_ttl(%s%"PRIu8"%s)%s",
colors.paren, colors.end, a->ttl,
colors.paren, colors.end);
}
static enum ofperr
check_SET_MPLS_TTL(const struct ofpact_mpls_ttl *a OVS_UNUSED,
struct ofpact_check_params *cp)
{
return check_set_mpls(cp);
}
/* Decrement MPLS TTL actions. */
static enum ofperr
decode_OFPAT_RAW_DEC_MPLS_TTL(struct ofpbuf *out)
{
ofpact_put_DEC_MPLS_TTL(out);
return 0;
}
static void
encode_DEC_MPLS_TTL(const struct ofpact_null *null OVS_UNUSED,
enum ofp_version ofp_version, struct ofpbuf *out)
{
put_OFPAT_DEC_MPLS_TTL(out, ofp_version);
}
static char * OVS_WARN_UNUSED_RESULT
parse_DEC_MPLS_TTL(char *arg OVS_UNUSED, const struct ofpact_parse_params *pp)
{
ofpact_put_DEC_MPLS_TTL(pp->ofpacts);
return NULL;
}
static void
format_DEC_MPLS_TTL(const struct ofpact_null *a OVS_UNUSED,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sdec_mpls_ttl%s", colors.value, colors.end);
}
static enum ofperr
check_DEC_MPLS_TTL(const struct ofpact_null *a OVS_UNUSED,
struct ofpact_check_params *cp)
{
return check_set_mpls(cp);
}
/* Push MPLS label action. */
static enum ofperr
decode_OFPAT_RAW_PUSH_MPLS(ovs_be16 ethertype,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct ofpact_push_mpls *oam;
if (!eth_type_mpls(ethertype)) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
oam = ofpact_put_PUSH_MPLS(out);
oam->ethertype = ethertype;
return 0;
}
static void
encode_PUSH_MPLS(const struct ofpact_push_mpls *push_mpls,
enum ofp_version ofp_version, struct ofpbuf *out)
{
put_OFPAT_PUSH_MPLS(out, ofp_version, push_mpls->ethertype);
}
static char * OVS_WARN_UNUSED_RESULT
parse_PUSH_MPLS(char *arg, const struct ofpact_parse_params *pp)
{
uint16_t ethertype;
char *error;
error = str_to_u16(arg, "push_mpls", &ethertype);
if (!error) {
ofpact_put_PUSH_MPLS(pp->ofpacts)->ethertype = htons(ethertype);
}
return error;
}
static void
format_PUSH_MPLS(const struct ofpact_push_mpls *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%spush_mpls:%s0x%04"PRIx16,
colors.param, colors.end, ntohs(a->ethertype));
}
static enum ofperr
check_PUSH_MPLS(const struct ofpact_push_mpls *a,
struct ofpact_check_params *cp)
{
struct flow *flow = &cp->match->flow;
if (flow->packet_type != htonl(PT_ETH)) {
inconsistent_match(&cp->usable_protocols);
}
flow->dl_type = a->ethertype;
/* The packet is now MPLS and the MPLS payload is opaque.
* Thus nothing can be assumed about the network protocol.
* Temporarily mark that we have no nw_proto. */
flow->nw_proto = 0;
return 0;
}
/* Pop MPLS label action. */
static enum ofperr
decode_OFPAT_RAW_POP_MPLS(ovs_be16 ethertype,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
ofpact_put_POP_MPLS(out)->ethertype = ethertype;
return 0;
}
static void
encode_POP_MPLS(const struct ofpact_pop_mpls *pop_mpls,
enum ofp_version ofp_version, struct ofpbuf *out)
{
put_OFPAT_POP_MPLS(out, ofp_version, pop_mpls->ethertype);
}
static char * OVS_WARN_UNUSED_RESULT
parse_POP_MPLS(char *arg, const struct ofpact_parse_params *pp)
{
uint16_t ethertype;
char *error;
error = str_to_u16(arg, "pop_mpls", &ethertype);
if (!error) {
ofpact_put_POP_MPLS(pp->ofpacts)->ethertype = htons(ethertype);
}
return error;
}
static void
format_POP_MPLS(const struct ofpact_pop_mpls *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%spop_mpls:%s0x%04"PRIx16,
colors.param, colors.end, ntohs(a->ethertype));
}
static enum ofperr
check_POP_MPLS(const struct ofpact_pop_mpls *a, struct ofpact_check_params *cp)
{
struct flow *flow = &cp->match->flow;
ovs_be16 dl_type = get_dl_type(flow);
if (flow->packet_type != htonl(PT_ETH) || !eth_type_mpls(dl_type)) {
inconsistent_match(&cp->usable_protocols);
}
flow->dl_type = a->ethertype;
return 0;
}
/* Set tunnel ID actions. */
static enum ofperr
decode_NXAST_RAW_SET_TUNNEL(uint32_t tun_id,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct ofpact_tunnel *tunnel = ofpact_put_SET_TUNNEL(out);
tunnel->ofpact.raw = NXAST_RAW_SET_TUNNEL;
tunnel->tun_id = tun_id;
return 0;
}
static enum ofperr
decode_NXAST_RAW_SET_TUNNEL64(uint64_t tun_id,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct ofpact_tunnel *tunnel = ofpact_put_SET_TUNNEL(out);
tunnel->ofpact.raw = NXAST_RAW_SET_TUNNEL64;
tunnel->tun_id = tun_id;
return 0;
}
static void
encode_SET_TUNNEL(const struct ofpact_tunnel *tunnel,
enum ofp_version ofp_version, struct ofpbuf *out)
{
uint64_t tun_id = tunnel->tun_id;
if (ofp_version < OFP12_VERSION) {
if (tun_id <= UINT32_MAX
&& tunnel->ofpact.raw != NXAST_RAW_SET_TUNNEL64) {
put_NXAST_SET_TUNNEL(out, tun_id);
} else {
put_NXAST_SET_TUNNEL64(out, tun_id);
}
} else {
put_set_field(out, ofp_version, MFF_TUN_ID, tun_id);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_set_tunnel(char *arg, enum ofp_raw_action_type raw,
const struct ofpact_parse_params *pp)
{
struct ofpact_tunnel *tunnel;
tunnel = ofpact_put_SET_TUNNEL(pp->ofpacts);
tunnel->ofpact.raw = raw;
return str_to_u64(arg, &tunnel->tun_id);
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_TUNNEL(char *arg, const struct ofpact_parse_params *pp)
{
return parse_set_tunnel(arg, NXAST_RAW_SET_TUNNEL, pp);
}
static void
format_SET_TUNNEL(const struct ofpact_tunnel *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sset_tunnel%s:%s%#"PRIx64, colors.param,
(a->tun_id > UINT32_MAX
|| a->ofpact.raw == NXAST_RAW_SET_TUNNEL64 ? "64" : ""),
colors.end, a->tun_id);
}
static enum ofperr
check_SET_TUNNEL(const struct ofpact_tunnel *a OVS_UNUSED,
const struct ofpact_check_params *cp OVS_UNUSED)
{
return 0;
}
/* Delete field action. */
/* Action structure for DELETE_FIELD */
struct nx_action_delete_field {
ovs_be16 type; /* OFPAT_VENDOR */
ovs_be16 len; /* Length is 24. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_DELETE_FIELD. */
/* Followed by:
* - OXM/NXM header for field to delete (4 or 8 bytes).
* - Enough 0-bytes to pad out the action to 24 bytes. */
uint8_t pad[14];
};
OFP_ASSERT(sizeof(struct nx_action_delete_field ) == 24);
static enum ofperr
decode_NXAST_RAW_DELETE_FIELD(const struct nx_action_delete_field *nadf,
enum ofp_version ofp_version OVS_UNUSED,
const struct vl_mff_map *vl_mff_map,
uint64_t *tlv_bitmap, struct ofpbuf *out)
{
struct ofpact_delete_field *delete_field;
enum ofperr err;
delete_field = ofpact_put_DELETE_FIELD(out);
delete_field->ofpact.raw = NXAST_RAW_DELETE_FIELD;
struct ofpbuf b = ofpbuf_const_initializer(nadf, ntohs(nadf->len));
ofpbuf_pull(&b, OBJECT_OFFSETOF(nadf, pad));
err = mf_vl_mff_nx_pull_header(&b, vl_mff_map, &delete_field->field,
NULL, tlv_bitmap);
if (err) {
return err;
}
return 0;
}
static void
encode_DELETE_FIELD(const struct ofpact_delete_field *delete_field,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
size_t size;
put_NXAST_DELETE_FIELD(out);
size = out->size;
out->size = size - MEMBER_SIZEOF(struct nx_action_delete_field, pad);
nx_put_mff_header(out, delete_field->field, 0, false);
out->size = size;
}
static char * OVS_WARN_UNUSED_RESULT
parse_DELETE_FIELD(char *arg, const struct ofpact_parse_params *pp)
{
struct ofpact_delete_field *delete_field;
delete_field = ofpact_put_DELETE_FIELD(pp->ofpacts);
return mf_parse_field(&delete_field->field, arg);
}
static void
format_DELETE_FIELD(const struct ofpact_delete_field *odf,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sdelete_field:%s", colors.param,
colors.end);
ds_put_format(fp->s, "%s", odf->field->name);
}
static enum ofperr
check_DELETE_FIELD(const struct ofpact_delete_field *odf,
struct ofpact_check_params *cp OVS_UNUSED)
{
if (odf->field->id < MFF_TUN_METADATA0 ||
odf->field->id > MFF_TUN_METADATA63) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
return 0;
}
/* Set queue action. */
static enum ofperr
decode_OFPAT_RAW_SET_QUEUE(uint32_t queue_id,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
ofpact_put_SET_QUEUE(out)->queue_id = queue_id;
return 0;
}
static void
encode_SET_QUEUE(const struct ofpact_queue *queue,
enum ofp_version ofp_version, struct ofpbuf *out)
{
put_OFPAT_SET_QUEUE(out, ofp_version, queue->queue_id);
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_QUEUE(char *arg, const struct ofpact_parse_params *pp)
{
return str_to_u32(arg, &ofpact_put_SET_QUEUE(pp->ofpacts)->queue_id);
}
static void
format_SET_QUEUE(const struct ofpact_queue *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sset_queue:%s%"PRIu32,
colors.param, colors.end, a->queue_id);
}
static enum ofperr
check_SET_QUEUE(const struct ofpact_queue *a OVS_UNUSED,
const struct ofpact_check_params *cp OVS_UNUSED)
{
return 0;
}
/* Pop queue action. */
static enum ofperr
decode_NXAST_RAW_POP_QUEUE(struct ofpbuf *out)
{
ofpact_put_POP_QUEUE(out);
return 0;
}
static void
encode_POP_QUEUE(const struct ofpact_null *null OVS_UNUSED,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
put_NXAST_POP_QUEUE(out);
}
static char * OVS_WARN_UNUSED_RESULT
parse_POP_QUEUE(const char *arg OVS_UNUSED,
const struct ofpact_parse_params *pp)
{
ofpact_put_POP_QUEUE(pp->ofpacts);
return NULL;
}
static void
format_POP_QUEUE(const struct ofpact_null *a OVS_UNUSED,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%spop_queue%s", colors.value, colors.end);
}
static enum ofperr
check_POP_QUEUE(const struct ofpact_null *a OVS_UNUSED,
const struct ofpact_check_params *cp OVS_UNUSED)
{
return 0;
}
/* Action structure for NXAST_FIN_TIMEOUT.
*
* This action changes the idle timeout or hard timeout, or both, of this
* OpenFlow rule when the rule matches a TCP packet with the FIN or RST flag.
* When such a packet is observed, the action reduces the rule's idle timeout
* to 'fin_idle_timeout' and its hard timeout to 'fin_hard_timeout'. This
* action has no effect on an existing timeout that is already shorter than the
* one that the action specifies. A 'fin_idle_timeout' or 'fin_hard_timeout'
* of zero has no effect on the respective timeout.
*
* 'fin_idle_timeout' and 'fin_hard_timeout' are measured in seconds.
* 'fin_hard_timeout' specifies time since the flow's creation, not since the
* receipt of the FIN or RST.
*
* This is useful for quickly discarding learned TCP flows that otherwise will
* take a long time to expire.
*
* This action is intended for use with an OpenFlow rule that matches only a
* single TCP flow. If the rule matches multiple TCP flows (e.g. it wildcards
* all TCP traffic, or all TCP traffic to a particular port), then any FIN or
* RST in any of those flows will cause the entire OpenFlow rule to expire
* early, which is not normally desirable.
*/
struct nx_action_fin_timeout {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* 16. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_FIN_TIMEOUT. */
ovs_be16 fin_idle_timeout; /* New idle timeout, if nonzero. */
ovs_be16 fin_hard_timeout; /* New hard timeout, if nonzero. */
ovs_be16 pad; /* Must be zero. */
};
OFP_ASSERT(sizeof(struct nx_action_fin_timeout) == 16);
static enum ofperr
decode_NXAST_RAW_FIN_TIMEOUT(const struct nx_action_fin_timeout *naft,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct ofpact_fin_timeout *oft;
oft = ofpact_put_FIN_TIMEOUT(out);
oft->fin_idle_timeout = ntohs(naft->fin_idle_timeout);
oft->fin_hard_timeout = ntohs(naft->fin_hard_timeout);
return 0;
}
static void
encode_FIN_TIMEOUT(const struct ofpact_fin_timeout *fin_timeout,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct nx_action_fin_timeout *naft = put_NXAST_FIN_TIMEOUT(out);
naft->fin_idle_timeout = htons(fin_timeout->fin_idle_timeout);
naft->fin_hard_timeout = htons(fin_timeout->fin_hard_timeout);
}
static char * OVS_WARN_UNUSED_RESULT
parse_FIN_TIMEOUT(char *arg, const struct ofpact_parse_params *pp)
{
struct ofpact_fin_timeout *oft = ofpact_put_FIN_TIMEOUT(pp->ofpacts);
char *key, *value;
while (ofputil_parse_key_value(&arg, &key, &value)) {
char *error;
if (!strcmp(key, "idle_timeout")) {
error = str_to_u16(value, key, &oft->fin_idle_timeout);
} else if (!strcmp(key, "hard_timeout")) {
error = str_to_u16(value, key, &oft->fin_hard_timeout);
} else {
error = xasprintf("invalid key '%s' in 'fin_timeout' argument",
key);
}
if (error) {
return error;
}
}
return NULL;
}
static void
format_FIN_TIMEOUT(const struct ofpact_fin_timeout *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sfin_timeout(%s", colors.paren, colors.end);
if (a->fin_idle_timeout) {
ds_put_format(fp->s, "%sidle_timeout=%s%"PRIu16",",
colors.param, colors.end, a->fin_idle_timeout);
}
if (a->fin_hard_timeout) {
ds_put_format(fp->s, "%shard_timeout=%s%"PRIu16",",
colors.param, colors.end, a->fin_hard_timeout);
}
ds_chomp(fp->s, ',');
ds_put_format(fp->s, "%s)%s", colors.paren, colors.end);
}
static enum ofperr
check_FIN_TIMEOUT(const struct ofpact_fin_timeout *a OVS_UNUSED,
struct ofpact_check_params *cp)
{
if (cp->match->flow.nw_proto != IPPROTO_TCP) {
inconsistent_match(&cp->usable_protocols);
}
return 0;
}
/* Action structure for NXAST_ENCAP */
struct nx_action_encap {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Total size including any property TLVs. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_ENCAP. */
ovs_be16 hdr_size; /* Header size in bytes, 0 = 'not specified'.*/
ovs_be32 new_pkt_type; /* Header type to add and PACKET_TYPE of result. */
struct ofp_ed_prop_header props[]; /* Encap TLV properties. */
};
OFP_ASSERT(sizeof(struct nx_action_encap) == 16);
static enum ofperr
decode_NXAST_RAW_ENCAP(const struct nx_action_encap *nae,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct ofpact_encap *encap;
const struct ofp_ed_prop_header *ofp_prop;
const size_t encap_ofs = out->size;
size_t props_len;
uint16_t n_props = 0;
int err;
encap = ofpact_put_ENCAP(out);
encap->ofpact.raw = NXAST_RAW_ENCAP;
switch (ntohl(nae->new_pkt_type)) {
case PT_ETH:
case PT_NSH:
case PT_MPLS:
case PT_MPLS_MC:
/* Add supported encap header types here. */
break;
default:
return OFPERR_NXBAC_BAD_HEADER_TYPE;
}
encap->new_pkt_type = nae->new_pkt_type;
encap->hdr_size = ntohs(nae->hdr_size);
ofp_prop = nae->props;
props_len = ntohs(nae->len) - offsetof(struct nx_action_encap, props);
n_props = 0;
while (props_len > 0) {
err = decode_ed_prop(&ofp_prop, out, &props_len);
if (err) {
return err;
}
n_props++;
}
encap = ofpbuf_at_assert(out, encap_ofs, sizeof *encap);
encap->n_props = n_props;
out->header = &encap->ofpact;
ofpact_finish_ENCAP(out, &encap);
return 0;
}
static void
encode_ENCAP(const struct ofpact_encap *encap,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
size_t start_ofs = out->size;
struct nx_action_encap *nae = put_NXAST_ENCAP(out);
int i;
nae->new_pkt_type = encap->new_pkt_type;
nae->hdr_size = htons(encap->hdr_size);
const struct ofpact_ed_prop *prop = encap->props;
for (i = 0; i < encap->n_props; i++) {
encode_ed_prop(&prop, out);
}
pad_ofpat(out, start_ofs);
}
static bool
parse_encap_header(const char *hdr, ovs_be32 *packet_type)
{
if (strcmp(hdr, "ethernet") == 0) {
*packet_type = htonl(PT_ETH);
} else if (strcmp(hdr, "nsh") == 0) {
*packet_type = htonl(PT_NSH);
} else if (strcmp(hdr, "mpls") == 0) {
*packet_type = htonl(PT_MPLS);
} else if (strcmp(hdr, "mpls_mc") == 0) {
*packet_type = htonl(PT_MPLS_MC);
} else {
return false;
}
return true;
}
static char *
parse_ed_props(const uint16_t prop_class, char **arg, int *n_props, struct ofpbuf *out)
{
char *key, *value, *err;
uint8_t prop_type;
while (ofputil_parse_key_value(arg, &key, &value)) {
if (!parse_ed_prop_type(prop_class, key, &prop_type)) {
return xasprintf("Invalid property: %s", key);
}
if (value == NULL) {
return xasprintf("Missing the value for property: %s", key);
}
err = parse_ed_prop_value(prop_class, prop_type, value, out);
if (err != NULL) {
return err;
}
(*n_props)++;
}
return NULL;
}
/* The string representation of the encap action is
* encap(header_type(prop=<value>,tlv(<class>,<type>,<value>),...))
*/
static char * OVS_WARN_UNUSED_RESULT
parse_ENCAP(char *arg, const struct ofpact_parse_params *pp)
{
*pp->usable_protocols &= OFPUTIL_P_OF13_UP;
struct ofpact_encap *encap;
char *key, *value, *str;
char *error = NULL;
uint16_t prop_class;
int n_props = 0;
encap = ofpact_put_ENCAP(pp->ofpacts);
encap->hdr_size = 0;
/* Parse encap header type. */
str = arg;
if (!ofputil_parse_key_value(&arg, &key, &value)) {
return xasprintf("Missing encap hdr: %s", str);
}
if (!parse_encap_header(key, &encap->new_pkt_type)) {
return xasprintf("Encap hdr not supported: %s", value);
}
if (!parse_ed_prop_class(key, &prop_class)) {
return xasprintf("Invalid encap prop class: %s", key);
}
/* Parse encap properties. */
error = parse_ed_props(prop_class, &value, &n_props, pp->ofpacts);
if (error != NULL) {
return error;
}
/* ofpbuf may have been re-allocated. */
encap = pp->ofpacts->header;
encap->n_props = n_props;
if (ofpbuf_oversized(pp->ofpacts)) {
return xasprintf("input too big");
}
ofpact_finish_ENCAP(pp->ofpacts, &encap);
return NULL;
}
static char *
format_encap_pkt_type(const ovs_be32 pkt_type)
{
switch (ntohl(pkt_type)) {
case PT_ETH:
return "ethernet";
case PT_NSH:
return "nsh";
case PT_MPLS:
return "mpls";
case PT_MPLS_MC:
return "mpls_mc";
default:
return "UNKNOWN";
}
}
static void
format_ed_props(struct ds *s, uint16_t n_props,
const struct ofpact_ed_prop *prop)
{
const uint8_t *p = (uint8_t *) prop;
int i;
if (n_props == 0) {
return;
}
for (i = 0; i < n_props; i++) {
format_ed_prop(s, prop);
ds_put_char(s, ',');
p += ROUND_UP(prop->len, 8);
prop = ALIGNED_CAST(const struct ofpact_ed_prop *, p);
}
if (n_props > 0) {
ds_chomp(s, ',');
}
}
static void
format_ENCAP(const struct ofpact_encap *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sencap(%s", colors.paren, colors.end);
ds_put_format(fp->s, "%s", format_encap_pkt_type(a->new_pkt_type));
if (a->n_props > 0) {
ds_put_format(fp->s, "%s(%s", colors.paren, colors.end);
format_ed_props(fp->s, a->n_props, a->props);
ds_put_format(fp->s, "%s)%s", colors.paren, colors.end);
}
ds_put_format(fp->s, "%s)%s", colors.paren, colors.end);
}
static enum ofperr
check_ENCAP(const struct ofpact_encap *a, struct ofpact_check_params *cp)
{
struct flow *flow = &cp->match->flow;
flow->packet_type = a->new_pkt_type;
if (pt_ns(flow->packet_type) == OFPHTN_ETHERTYPE) {
flow->dl_type = htons(pt_ns_type(flow->packet_type));
}
if (!is_ip_any(flow)) {
flow->nw_proto = 0;
}
return 0;
}
/* Action structure for NXAST_DECAP */
struct nx_action_decap {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Total size including any property TLVs. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_DECAP. */
uint8_t pad[2]; /* 2 bytes padding */
/* Packet type or result.
*
* The special value (0,0xFFFE) "Use next proto"
* is used to request OVS to automatically set the new packet type based
* on the decap'ed header's next protocol.
*/
ovs_be32 new_pkt_type;
};
OFP_ASSERT(sizeof(struct nx_action_decap) == 16);
static enum ofperr
decode_NXAST_RAW_DECAP(const struct nx_action_decap *nad,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *ofpacts)
{
struct ofpact_decap * decap;
if (ntohs(nad->len) > sizeof *nad) {
/* No properties supported yet. */
return OFPERR_NXBAC_UNKNOWN_ED_PROP;
}
decap = ofpact_put_DECAP(ofpacts);
decap->ofpact.raw = NXAST_RAW_DECAP;
decap->new_pkt_type = nad->new_pkt_type;
return 0;
}
static void
encode_DECAP(const struct ofpact_decap *decap,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
struct nx_action_decap *nad = put_NXAST_DECAP(out);
nad->len = htons(sizeof(struct nx_action_decap));
nad->new_pkt_type = decap->new_pkt_type;
}
static char * OVS_WARN_UNUSED_RESULT
parse_DECAP(char *arg, const struct ofpact_parse_params *pp)
{
struct ofpact_decap *decap;
char *key, *value, *pos;
char *error = NULL;
uint16_t ns, type;
decap = ofpact_put_DECAP(pp->ofpacts);
/* Default next packet_type is PT_USE_NEXT_PROTO. */
decap->new_pkt_type = htonl(PT_USE_NEXT_PROTO);
/* Parse decap packet_type if given. */
if (ofputil_parse_key_value(&arg, &key, &value)) {
if (strcmp(key, "packet_type") == 0) {
pos = value;
if (!ofputil_parse_key_value(&pos, &key, &value)
|| strcmp(key, "ns") != 0) {
return xstrdup("Missing packet_type attribute ns");
}
error = str_to_u16(value, "ns", &ns);
if (error) {
return error;
}
if (ns >= OFPHTN_N_TYPES) {
return xasprintf("Unsupported ns value: %"PRIu16, ns);
}
if (!ofputil_parse_key_value(&pos, &key, &value)
|| strcmp(key, "type") != 0) {
return xstrdup("Missing packet_type attribute type");
}
error = str_to_u16(value, "type", &type);
if (error) {
return error;
}
decap->new_pkt_type = htonl(PACKET_TYPE(ns, type));
} else {
return xasprintf("Invalid decap argument: %s", key);
}
}
return NULL;
}
static void
format_DECAP(const struct ofpact_decap *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sdecap(%s", colors.paren, colors.end);
if (a->new_pkt_type != htonl(PT_USE_NEXT_PROTO)) {
ds_put_format(fp->s, "packet_type(ns=%"PRIu16",type=%#"PRIx16")",
pt_ns(a->new_pkt_type),
pt_ns_type(a->new_pkt_type));
}
ds_put_format(fp->s, "%s)%s", colors.paren, colors.end);
}
static enum ofperr
check_DECAP(const struct ofpact_decap *a OVS_UNUSED,
struct ofpact_check_params *cp)
{
struct flow *flow = &cp->match->flow;
if (flow->packet_type == htonl(PT_ETH)) {
/* Adjust the packet_type to allow subsequent actions. */
flow->packet_type = PACKET_TYPE_BE(OFPHTN_ETHERTYPE,
ntohs(flow->dl_type));
} else {
/* The actual packet_type is only known after decapsulation.
* Do not allow subsequent actions that depend on packet headers. */
flow->packet_type = htonl(PT_UNKNOWN);
flow->dl_type = OVS_BE16_MAX;
}
return 0;
}
/* Action dec_nsh_ttl */
static enum ofperr
decode_NXAST_RAW_DEC_NSH_TTL(struct ofpbuf *out)
{
ofpact_put_DEC_NSH_TTL(out);
return 0;
}
static void
encode_DEC_NSH_TTL(const struct ofpact_null *null OVS_UNUSED,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
put_NXAST_DEC_NSH_TTL(out);
}
static char * OVS_WARN_UNUSED_RESULT
parse_DEC_NSH_TTL(char *arg OVS_UNUSED, const struct ofpact_parse_params *pp)
{
ofpact_put_DEC_NSH_TTL(pp->ofpacts);
return NULL;
}
static void
format_DEC_NSH_TTL(const struct ofpact_null *a OVS_UNUSED,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sdec_nsh_ttl%s", colors.special, colors.end);
}
static enum ofperr
check_DEC_NSH_TTL(const struct ofpact_null *a OVS_UNUSED,
struct ofpact_check_params *cp)
{
struct flow *flow = &cp->match->flow;
if (flow->packet_type != htonl(PT_NSH) &&
flow->dl_type != htons(ETH_TYPE_NSH)) {
inconsistent_match(&cp->usable_protocols);
}
return 0;
}
/* Action structures for NXAST_RESUBMIT, NXAST_RESUBMIT_TABLE, and
* NXAST_RESUBMIT_TABLE_CT.
*
* These actions search one of the switch's flow tables:
*
* - For NXAST_RESUBMIT_TABLE and NXAST_RESUBMIT_TABLE_CT, if the
* 'table' member is not 255, then it specifies the table to search.
*
* - Otherwise (for NXAST_RESUBMIT_TABLE or NXAST_RESUBMIT_TABLE_CT with a
* 'table' of 255, or for NXAST_RESUBMIT regardless of 'table'), it
* searches the current flow table, that is, the OpenFlow flow table that
* contains the flow from which this action was obtained. If this action
* did not come from a flow table (e.g. it came from an OFPT_PACKET_OUT
* message), then table 0 is the current table.
*
* The flow table lookup uses a flow that may be slightly modified from the
* original lookup:
*
* - For NXAST_RESUBMIT, the 'in_port' member of struct nx_action_resubmit
* is used as the flow's in_port.
*
* - For NXAST_RESUBMIT_TABLE and NXAST_RESUBMIT_TABLE_CT, if the 'in_port'
* member is not OFPP_IN_PORT, then its value is used as the flow's
* in_port. Otherwise, the original in_port is used.
*
* - For NXAST_RESUBMIT_TABLE_CT the Conntrack 5-tuple fields are used as
* the packets IP header fields during the lookup.
*
* - If actions that modify the flow (e.g. OFPAT_SET_VLAN_VID) precede the
* resubmit action, then the flow is updated with the new values.
*
* Following the lookup, the original in_port is restored.
*
* If the modified flow matched in the flow table, then the corresponding
* actions are executed. Afterward, actions following the resubmit in the
* original set of actions, if any, are executed; any changes made to the
* packet (e.g. changes to VLAN) by secondary actions persist when those
* actions are executed, although the original in_port is restored.
*
* Resubmit actions may be used any number of times within a set of actions.
*
* Resubmit actions may nest. To prevent infinite loops and excessive resource
* use, the implementation may limit nesting depth and the total number of
* resubmits:
*
* - Open vSwitch 1.0.1 and earlier did not support recursion.
*
* - Open vSwitch 1.0.2 and 1.0.3 limited recursion to 8 levels.
*
* - Open vSwitch 1.1 and 1.2 limited recursion to 16 levels.
*
* - Open vSwitch 1.2 through 1.8 limited recursion to 32 levels.
*
* - Open vSwitch 1.9 through 2.0 limited recursion to 64 levels.
*
* - Open vSwitch 2.1 through 2.5 limited recursion to 64 levels and impose
* a total limit of 4,096 resubmits per flow translation (earlier versions
* did not impose any total limit).
*
* NXAST_RESUBMIT ignores 'table' and 'pad'. NXAST_RESUBMIT_TABLE and
* NXAST_RESUBMIT_TABLE_CT require 'pad' to be all-bits-zero.
*
* Open vSwitch 1.0.1 and earlier did not support recursion. Open vSwitch
* before 1.2.90 did not support NXAST_RESUBMIT_TABLE. Open vSwitch before
* 2.8.0 did not support NXAST_RESUBMIT_TABLE_CT.
*/
struct nx_action_resubmit {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length is 16. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_RESUBMIT. */
ovs_be16 in_port; /* New in_port for checking flow table. */
uint8_t table; /* NXAST_RESUBMIT_TABLE: table to use. */
uint8_t pad[3];
};
OFP_ASSERT(sizeof(struct nx_action_resubmit) == 16);
static enum ofperr
decode_NXAST_RAW_RESUBMIT(uint16_t port,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct ofpact_resubmit *resubmit;
resubmit = ofpact_put_RESUBMIT(out);
resubmit->ofpact.raw = NXAST_RAW_RESUBMIT;
resubmit->in_port = u16_to_ofp(port);
resubmit->table_id = 0xff;
return 0;
}
static enum ofperr
decode_NXAST_RAW_RESUBMIT_TABLE(const struct nx_action_resubmit *nar,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct ofpact_resubmit *resubmit;
if (nar->pad[0] || nar->pad[1] || nar->pad[2]) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
resubmit = ofpact_put_RESUBMIT(out);
resubmit->ofpact.raw = NXAST_RAW_RESUBMIT_TABLE;
resubmit->in_port = u16_to_ofp(ntohs(nar->in_port));
resubmit->table_id = nar->table;
return 0;
}
static enum ofperr
decode_NXAST_RAW_RESUBMIT_TABLE_CT(const struct nx_action_resubmit *nar,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
enum ofperr error = decode_NXAST_RAW_RESUBMIT_TABLE(nar, ofp_version, out);
if (error) {
return error;
}
struct ofpact_resubmit *resubmit = out->header;
resubmit->ofpact.raw = NXAST_RAW_RESUBMIT_TABLE_CT;
resubmit->with_ct_orig = true;
return 0;
}
static void
encode_RESUBMIT(const struct ofpact_resubmit *resubmit,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
uint16_t in_port = ofp_to_u16(resubmit->in_port);
if (resubmit->table_id == 0xff
&& resubmit->ofpact.raw == NXAST_RAW_RESUBMIT) {
put_NXAST_RESUBMIT(out, in_port);
} else {
struct nx_action_resubmit *nar;
nar = resubmit->with_ct_orig
? put_NXAST_RESUBMIT_TABLE_CT(out) : put_NXAST_RESUBMIT_TABLE(out);
nar->table = resubmit->table_id;
nar->in_port = htons(in_port);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_RESUBMIT(char *arg, const struct ofpact_parse_params *pp)
{
struct ofpact_resubmit *resubmit;
char *in_port_s, *table_s, *ct_s;
resubmit = ofpact_put_RESUBMIT(pp->ofpacts);
in_port_s = strsep(&arg, ",");
if (in_port_s && in_port_s[0]) {
if (!ofputil_port_from_string(in_port_s, pp->port_map,
&resubmit->in_port)) {
return xasprintf("%s: resubmit to unknown port", in_port_s);
}
} else {
resubmit->in_port = OFPP_IN_PORT;
}
table_s = strsep(&arg, ",");
if (table_s && table_s[0]) {
if (!ofputil_table_from_string(table_s, pp->table_map,
&resubmit->table_id)) {
return xasprintf("%s: resubmit to unknown table", table_s);
}
} else {
resubmit->table_id = 255;
}
ct_s = strsep(&arg, ",");
if (ct_s && ct_s[0]) {
if (strcmp(ct_s, "ct")) {
return xasprintf("%s: unknown parameter", ct_s);
}
resubmit->with_ct_orig = true;
} else {
resubmit->with_ct_orig = false;
}
if (resubmit->in_port == OFPP_IN_PORT && resubmit->table_id == 255) {
return xstrdup("at least one \"in_port\" or \"table\" must be "
"specified on resubmit");
}
return NULL;
}
static void
format_RESUBMIT(const struct ofpact_resubmit *a,
const struct ofpact_format_params *fp)
{
if (a->in_port != OFPP_IN_PORT && a->table_id == 255) {
ds_put_format(fp->s, "%sresubmit:%s", colors.special, colors.end);
ofputil_format_port(a->in_port, fp->port_map, fp->s);
} else {
ds_put_format(fp->s, "%sresubmit(%s", colors.paren, colors.end);
if (a->in_port != OFPP_IN_PORT) {
ofputil_format_port(a->in_port, fp->port_map, fp->s);
}
ds_put_char(fp->s, ',');
if (a->table_id != 255) {
ofputil_format_table(a->table_id, fp->table_map, fp->s);
}
if (a->with_ct_orig) {
ds_put_cstr(fp->s, ",ct");
}
ds_put_format(fp->s, "%s)%s", colors.paren, colors.end);
}
}
static enum ofperr
check_RESUBMIT(const struct ofpact_resubmit *a,
const struct ofpact_check_params *cp)
{
if (a->with_ct_orig && !is_ct_valid(&cp->match->flow, &cp->match->wc,
NULL)) {
return OFPERR_OFPBAC_MATCH_INCONSISTENT;
}
return 0;
}
/* Action structure for NXAST_LEARN and NXAST_LEARN2.
*
* This action adds or modifies a flow in an OpenFlow table, similar to
* OFPT_FLOW_MOD with OFPFC_MODIFY_STRICT as 'command'. The new flow has the
* specified idle timeout, hard timeout, priority, cookie, and flags. The new
* flow's match criteria and actions are built by applying each of the series
* of flow_mod_spec elements included as part of the action.
*
* A flow_mod_spec starts with a 16-bit header. A header that is all-bits-0 is
* a no-op used for padding the action as a whole to a multiple of 8 bytes in
* length. Otherwise, the flow_mod_spec can be thought of as copying 'n_bits'
* bits from a source to a destination. In this case, the header contains
* multiple fields:
*
* 15 14 13 12 11 10 0
* +------+---+------+---------------------------------+
* | 0 |src| dst | n_bits |
* +------+---+------+---------------------------------+
*
* The meaning and format of a flow_mod_spec depends on 'src' and 'dst'. The
* following table summarizes the meaning of each possible combination.
* Details follow the table:
*
* src dst meaning
* --- --- ----------------------------------------------------------
* 0 0 Add match criteria based on value in a field.
* 1 0 Add match criteria based on an immediate value.
* 0 1 Add NXAST_REG_LOAD action to copy field into a different field.
* 1 1 Add NXAST_REG_LOAD action to load immediate value into a field.
* 0 2 Add OFPAT_OUTPUT action to output to port from specified field.
* All other combinations are undefined and not allowed.
*
* The flow_mod_spec header is followed by a source specification and a
* destination specification. The format and meaning of the source
* specification depends on 'src':
*
* - If 'src' is 0, the source bits are taken from a field in the flow to
* which this action is attached. (This should be a wildcarded field. If
* its value is fully specified then the source bits being copied have
* constant values.)
*
* The source specification is an ovs_be32 'field' and an ovs_be16 'ofs'.
* 'field' is an nxm_header with nxm_hasmask=0, and 'ofs' the starting bit
* offset within that field. The source bits are field[ofs:ofs+n_bits-1].
* 'field' and 'ofs' are subject to the same restrictions as the source
* field in NXAST_REG_MOVE.
*
* - If 'src' is 1, the source bits are a constant value. The source
* specification is (n_bits+15)/16*2 bytes long. Taking those bytes as a
* number in network order, the source bits are the 'n_bits'
* least-significant bits. The switch will report an error if other bits
* in the constant are nonzero.
*
* The flow_mod_spec destination specification, for 'dst' of 0 or 1, is an
* ovs_be32 'field' and an ovs_be16 'ofs'. 'field' is an nxm_header with
* nxm_hasmask=0 and 'ofs' is a starting bit offset within that field. The
* meaning of the flow_mod_spec depends on 'dst':
*
* - If 'dst' is 0, the flow_mod_spec specifies match criteria for the new
* flow. The new flow matches only if bits field[ofs:ofs+n_bits-1] in a
* packet equal the source bits. 'field' may be any nxm_header with
* nxm_hasmask=0 that is allowed in NXT_FLOW_MOD.
*
* Order is significant. Earlier flow_mod_specs must satisfy any
* prerequisites for matching fields specified later, by copying constant
* values into prerequisite fields.
*
* The switch will reject flow_mod_specs that do not satisfy NXM masking
* restrictions.
*
* - If 'dst' is 1, the flow_mod_spec specifies an NXAST_REG_LOAD action for
* the new flow. The new flow copies the source bits into
* field[ofs:ofs+n_bits-1]. Actions are executed in the same order as the
* flow_mod_specs.
*
* A single NXAST_REG_LOAD action writes no more than 64 bits, so n_bits
* greater than 64 yields multiple NXAST_REG_LOAD actions.
*
* The flow_mod_spec destination spec for 'dst' of 2 (when 'src' is 0) is
* empty. It has the following meaning:
*
* - The flow_mod_spec specifies an OFPAT_OUTPUT action for the new flow.
* The new flow outputs to the OpenFlow port specified by the source field.
* Of the special output ports with value OFPP_MAX or larger, OFPP_IN_PORT,
* OFPP_FLOOD, OFPP_LOCAL, and OFPP_ALL are supported. Other special ports
* may not be used.
*
* Resource Management
* -------------------
*
* A switch has a finite amount of flow table space available for learning.
* When this space is exhausted, no new learning table entries will be learned
* until some existing flow table entries expire. The controller should be
* prepared to handle this by flooding (which can be implemented as a
* low-priority flow).
*
* If a learned flow matches a single TCP stream with a relatively long
* timeout, one may make the best of resource constraints by setting
* 'fin_idle_timeout' or 'fin_hard_timeout' (both measured in seconds), or
* both, to shorter timeouts. When either of these is specified as a nonzero
* value, OVS adds a NXAST_FIN_TIMEOUT action, with the specified timeouts, to
* the learned flow.
*
* Examples
* --------
*
* The following examples give a prose description of the flow_mod_specs along
* with informal notation for how those would be represented and a hex dump of
* the bytes that would be required.
*
* These examples could work with various nx_action_learn parameters. Typical
* values would be idle_timeout=OFP_FLOW_PERMANENT, hard_timeout=60,
* priority=OFP_DEFAULT_PRIORITY, flags=0, table_id=10.
*
* 1. Learn input port based on the source MAC, with lookup into
* NXM_NX_REG1[16:31] by resubmit to in_port=99:
*
* Match on in_port=99:
* ovs_be16(src=1, dst=0, n_bits=16), 20 10
* ovs_be16(99), 00 63
* ovs_be32(NXM_OF_IN_PORT), ovs_be16(0) 00 00 00 02 00 00
*
* Match Ethernet destination on Ethernet source from packet:
* ovs_be16(src=0, dst=0, n_bits=48), 00 30
* ovs_be32(NXM_OF_ETH_SRC), ovs_be16(0) 00 00 04 06 00 00
* ovs_be32(NXM_OF_ETH_DST), ovs_be16(0) 00 00 02 06 00 00
*
* Set NXM_NX_REG1[16:31] to the packet's input port:
* ovs_be16(src=0, dst=1, n_bits=16), 08 10
* ovs_be32(NXM_OF_IN_PORT), ovs_be16(0) 00 00 00 02 00 00
* ovs_be32(NXM_NX_REG1), ovs_be16(16) 00 01 02 04 00 10
*
* Given a packet that arrived on port A with Ethernet source address B,
* this would set up the flow "in_port=99, dl_dst=B,
* actions=load:A->NXM_NX_REG1[16..31]".
*
* In syntax accepted by ovs-ofctl, this action is: learn(in_port=99,
* NXM_OF_ETH_DST[]=NXM_OF_ETH_SRC[],
* load:NXM_OF_IN_PORT[]->NXM_NX_REG1[16..31])
*
* 2. Output to input port based on the source MAC and VLAN VID, with lookup
* into NXM_NX_REG1[16:31]:
*
* Match on same VLAN ID as packet:
* ovs_be16(src=0, dst=0, n_bits=12), 00 0c
* ovs_be32(NXM_OF_VLAN_TCI), ovs_be16(0) 00 00 08 02 00 00
* ovs_be32(NXM_OF_VLAN_TCI), ovs_be16(0) 00 00 08 02 00 00
*
* Match Ethernet destination on Ethernet source from packet:
* ovs_be16(src=0, dst=0, n_bits=48), 00 30
* ovs_be32(NXM_OF_ETH_SRC), ovs_be16(0) 00 00 04 06 00 00
* ovs_be32(NXM_OF_ETH_DST), ovs_be16(0) 00 00 02 06 00 00
*
* Output to the packet's input port:
* ovs_be16(src=0, dst=2, n_bits=16), 10 10
* ovs_be32(NXM_OF_IN_PORT), ovs_be16(0) 00 00 00 02 00 00
*
* Given a packet that arrived on port A with Ethernet source address B in
* VLAN C, this would set up the flow "dl_dst=B, vlan_vid=C,
* actions=output:A".
*
* In syntax accepted by ovs-ofctl, this action is:
* learn(NXM_OF_VLAN_TCI[0..11], NXM_OF_ETH_DST[]=NXM_OF_ETH_SRC[],
* output:NXM_OF_IN_PORT[])
*
* 3. Here's a recipe for a very simple-minded MAC learning switch. It uses a
* 10-second MAC expiration time to make it easier to see what's going on
*
* ovs-vsctl del-controller br0
* ovs-ofctl del-flows br0
* ovs-ofctl add-flow br0 "table=0 actions=learn(table=1, \
hard_timeout=10, NXM_OF_VLAN_TCI[0..11], \
NXM_OF_ETH_DST[]=NXM_OF_ETH_SRC[], \
output:NXM_OF_IN_PORT[]), resubmit(,1)"
* ovs-ofctl add-flow br0 "table=1 priority=0 actions=flood"
*
* You can then dump the MAC learning table with:
*
* ovs-ofctl dump-flows br0 table=1
*
* Usage Advice
* ------------
*
* For best performance, segregate learned flows into a table that is not used
* for any other flows except possibly for a lowest-priority "catch-all" flow
* (a flow with no match criteria). If different learning actions specify
* different match criteria, use different tables for the learned flows.
*
* The meaning of 'hard_timeout' and 'idle_timeout' can be counterintuitive.
* These timeouts apply to the flow that is added, which means that a flow with
* an idle timeout will expire when no traffic has been sent *to* the learned
* address. This is not usually the intent in MAC learning; instead, we want
* the MAC learn entry to expire when no traffic has been sent *from* the
* learned address. Use a hard timeout for that.
*
*
* Visibility of Changes
* ---------------------
*
* Prior to Open vSwitch 2.4, any changes made by a "learn" action in a given
* flow translation are visible to flow table lookups made later in the flow
* translation. This means that, in the example above, a MAC learned by the
* learn action in table 0 would be found in table 1 (if the packet being
* processed had the same source and destination MAC address).
*
* In Open vSwitch 2.4 and later, changes to a flow table (whether to add or
* modify a flow) by a "learn" action are visible only for later flow
* translations, not for later lookups within the same flow translation. In
* the MAC learning example, a MAC learned by the learn action in table 0 would
* not be found in table 1 if the flow translation would resubmit to table 1
* after the processing of the learn action, meaning that if this MAC had not
* been learned before then the packet would be flooded. */
struct nx_action_learn {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* At least 24. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_LEARN. */
ovs_be16 idle_timeout; /* Idle time before discarding (seconds). */
ovs_be16 hard_timeout; /* Max time before discarding (seconds). */
ovs_be16 priority; /* Priority level of flow entry. */
ovs_be64 cookie; /* Cookie for new flow. */
ovs_be16 flags; /* NX_LEARN_F_*. */
uint8_t table_id; /* Table to insert flow entry. */
uint8_t pad; /* Must be zero. */
ovs_be16 fin_idle_timeout; /* Idle timeout after FIN, if nonzero. */
ovs_be16 fin_hard_timeout; /* Hard timeout after FIN, if nonzero. */
/* Followed by a sequence of flow_mod_spec elements, as described above,
* until the end of the action is reached. */
};
OFP_ASSERT(sizeof(struct nx_action_learn) == 32);
struct nx_action_learn2 {
struct nx_action_learn up; /* The wire format includes nx_action_learn. */
ovs_be32 limit; /* Maximum number of learned flows.
* 0 indicates unlimited. */
/* Where to store the result. */
ovs_be16 result_dst_ofs; /* Starting bit offset in destination. */
ovs_be16 pad2; /* Must be zero. */
/* Followed by:
* - OXM/NXM header for destination field (4 or 8 bytes),
* if NX_LEARN_F_WRITE_RESULT is set in 'flags'
* - a sequence of flow_mod_spec elements, as described above,
* until the end of the action is reached. */
};
OFP_ASSERT(sizeof(struct nx_action_learn2) == 40);
static ovs_be16
get_be16(const void **pp)
{
const ovs_be16 *p = *pp;
ovs_be16 value = *p;
*pp = p + 1;
return value;
}
static ovs_be32
get_be32(const void **pp)
{
const ovs_be32 *p = *pp;
ovs_be32 value = get_unaligned_be32(p);
*pp = p + 1;
return value;
}
static enum ofperr
get_subfield(int n_bits, const void **p, struct mf_subfield *sf,
const struct vl_mff_map *vl_mff_map, uint64_t *tlv_bitmap)
{
enum ofperr error;
error = mf_vl_mff_mf_from_nxm_header(ntohl(get_be32(p)), vl_mff_map,
&sf->field, tlv_bitmap);
sf->ofs = ntohs(get_be16(p));
sf->n_bits = n_bits;
return error;
}
static unsigned int
learn_min_len(uint16_t header)
{
int n_bits = header & NX_LEARN_N_BITS_MASK;
int src_type = header & NX_LEARN_SRC_MASK;
int dst_type = header & NX_LEARN_DST_MASK;
unsigned int min_len;
min_len = 0;
if (src_type == NX_LEARN_SRC_FIELD) {
min_len += sizeof(ovs_be32); /* src_field */
min_len += sizeof(ovs_be16); /* src_ofs */
} else {
min_len += 2 * DIV_ROUND_UP(n_bits, 16);
}
if (dst_type == NX_LEARN_DST_MATCH ||
dst_type == NX_LEARN_DST_LOAD) {
min_len += sizeof(ovs_be32); /* dst_field */
min_len += sizeof(ovs_be16); /* dst_ofs */
}
return min_len;
}
static enum ofperr
decode_LEARN_common(const struct nx_action_learn *nal,
enum ofp_raw_action_type raw,
struct ofpact_learn *learn)
{
if (nal->pad) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
learn->ofpact.raw = raw;
learn->idle_timeout = ntohs(nal->idle_timeout);
learn->hard_timeout = ntohs(nal->hard_timeout);
learn->priority = ntohs(nal->priority);
learn->cookie = nal->cookie;
learn->table_id = nal->table_id;
learn->fin_idle_timeout = ntohs(nal->fin_idle_timeout);
learn->fin_hard_timeout = ntohs(nal->fin_hard_timeout);
learn->flags = ntohs(nal->flags);
if (learn->table_id == 0xff) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
return 0;
}
static enum ofperr
decode_LEARN_specs(const void *p, const void *end,
const struct vl_mff_map *vl_mff_map, uint64_t *tlv_bitmap,
struct ofpbuf *ofpacts)
{
struct ofpact_learn *learn = ofpacts->header;
while (p != end) {
struct ofpact_learn_spec *spec;
uint16_t header = ntohs(get_be16(&p));
if (!header) {
break;
}
spec = ofpbuf_put_zeros(ofpacts, sizeof *spec);
learn = ofpacts->header;
spec->src_type = header & NX_LEARN_SRC_MASK;
spec->dst_type = header & NX_LEARN_DST_MASK;
spec->n_bits = header & NX_LEARN_N_BITS_MASK;
/* Check for valid src and dst type combination. */
if (spec->dst_type == NX_LEARN_DST_MATCH ||
spec->dst_type == NX_LEARN_DST_LOAD ||
(spec->dst_type == NX_LEARN_DST_OUTPUT &&
spec->src_type == NX_LEARN_SRC_FIELD)) {
/* OK. */
} else {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
/* Check that the arguments don't overrun the end of the action. */
if ((char *) end - (char *) p < learn_min_len(header)) {
return OFPERR_OFPBAC_BAD_LEN;
}
/* Get the source. */
const uint8_t *imm = NULL;
unsigned int imm_bytes = 0;
enum ofperr error;
if (spec->src_type == NX_LEARN_SRC_FIELD) {
error = get_subfield(spec->n_bits, &p, &spec->src, vl_mff_map,
tlv_bitmap);
if (error) {
return error;
}
} else {
int p_bytes = 2 * DIV_ROUND_UP(spec->n_bits, 16);
p = (const uint8_t *) p + p_bytes;
imm_bytes = DIV_ROUND_UP(spec->n_bits, 8);
imm = (const uint8_t *) p - imm_bytes;
}
/* Get the destination. */
if (spec->dst_type == NX_LEARN_DST_MATCH ||
spec->dst_type == NX_LEARN_DST_LOAD) {
error = get_subfield(spec->n_bits, &p, &spec->dst, vl_mff_map,
tlv_bitmap);
if (error) {
return error;
}
}
if (imm) {
uint8_t *src_imm = ofpbuf_put_zeros(ofpacts,
OFPACT_ALIGN(imm_bytes));
memcpy(src_imm, imm, imm_bytes);
learn = ofpacts->header;
}
}
ofpact_finish_LEARN(ofpacts, &learn);
if (!is_all_zeros(p, (char *) end - (char *) p)) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
return 0;
}
/* Converts 'nal' into a "struct ofpact_learn" and appends that struct to
* 'ofpacts'. Returns 0 if successful, otherwise an OFPERR_*. */
static enum ofperr
decode_NXAST_RAW_LEARN(const struct nx_action_learn *nal,
enum ofp_version ofp_version OVS_UNUSED,
const struct vl_mff_map *vl_mff_map,
uint64_t *tlv_bitmap, struct ofpbuf *ofpacts)
{
struct ofpact_learn *learn;
enum ofperr error;
learn = ofpact_put_LEARN(ofpacts);
error = decode_LEARN_common(nal, NXAST_RAW_LEARN, learn);
if (error) {
return error;
}
if (learn->flags & ~(NX_LEARN_F_SEND_FLOW_REM |
NX_LEARN_F_DELETE_LEARNED)) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
return decode_LEARN_specs(nal + 1, (char *) nal + ntohs(nal->len),
vl_mff_map, tlv_bitmap, ofpacts);
}
/* Converts 'nal' into a "struct ofpact_learn" and appends that struct to
* 'ofpacts'. Returns 0 if successful, otherwise an OFPERR_*. */
static enum ofperr
decode_NXAST_RAW_LEARN2(const struct nx_action_learn2 *nal,
enum ofp_version ofp_version OVS_UNUSED,
const struct vl_mff_map *vl_mff_map,
uint64_t *tlv_bitmap, struct ofpbuf *ofpacts)
{
struct ofpbuf b = ofpbuf_const_initializer(nal, ntohs(nal->up.len));
struct ofpact_learn *learn;
enum ofperr error;
if (nal->pad2) {
return OFPERR_NXBAC_MUST_BE_ZERO;
}
learn = ofpact_put_LEARN(ofpacts);
error = decode_LEARN_common(&nal->up, NXAST_RAW_LEARN2, learn);
if (error) {
return error;
}
learn->limit = ntohl(nal->limit);
if (learn->flags & ~(NX_LEARN_F_SEND_FLOW_REM |
NX_LEARN_F_DELETE_LEARNED |
NX_LEARN_F_WRITE_RESULT)) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
ofpbuf_pull(&b, sizeof *nal);
if (learn->flags & NX_LEARN_F_WRITE_RESULT) {
error = nx_pull_header(&b, vl_mff_map, &learn->result_dst.field, NULL);
if (error) {
return error;
}
if (!learn->result_dst.field->writable) {
return OFPERR_OFPBAC_BAD_SET_ARGUMENT;
}
learn->result_dst.ofs = ntohs(nal->result_dst_ofs);
learn->result_dst.n_bits = 1;
} else if (nal->result_dst_ofs) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
return decode_LEARN_specs(b.data, (char *) nal + ntohs(nal->up.len),
vl_mff_map, tlv_bitmap, ofpacts);
}
static void
put_be16(struct ofpbuf *b, ovs_be16 x)
{
ofpbuf_put(b, &x, sizeof x);
}
static void
put_be32(struct ofpbuf *b, ovs_be32 x)
{
ofpbuf_put(b, &x, sizeof x);
}
static void
put_u16(struct ofpbuf *b, uint16_t x)
{
put_be16(b, htons(x));
}
static void
put_u32(struct ofpbuf *b, uint32_t x)
{
put_be32(b, htonl(x));
}
static void
encode_LEARN(const struct ofpact_learn *learn,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
const struct ofpact_learn_spec *spec;
struct nx_action_learn *nal;
size_t start_ofs;
start_ofs = out->size;
if (learn->ofpact.raw == NXAST_RAW_LEARN2
|| learn->limit != 0
|| learn->flags & NX_LEARN_F_WRITE_RESULT) {
struct nx_action_learn2 *nal2;
nal2 = put_NXAST_LEARN2(out);
nal2->limit = htonl(learn->limit);
nal2->result_dst_ofs = htons(learn->result_dst.ofs);
nal = &nal2->up;
} else {
nal = put_NXAST_LEARN(out);
}
nal->idle_timeout = htons(learn->idle_timeout);
nal->hard_timeout = htons(learn->hard_timeout);
nal->fin_idle_timeout = htons(learn->fin_idle_timeout);
nal->fin_hard_timeout = htons(learn->fin_hard_timeout);
nal->priority = htons(learn->priority);
nal->cookie = learn->cookie;
nal->flags = htons(learn->flags);
nal->table_id = learn->table_id;
if (learn->flags & NX_LEARN_F_WRITE_RESULT) {
nx_put_header(out, learn->result_dst.field->id, 0, false);
}
OFPACT_LEARN_SPEC_FOR_EACH (spec, learn) {
put_u16(out, spec->n_bits | spec->dst_type | spec->src_type);
if (spec->src_type == NX_LEARN_SRC_FIELD) {
put_u32(out, nxm_header_from_mff(spec->src.field));
put_u16(out, spec->src.ofs);
} else {
size_t n_dst_bytes = 2 * DIV_ROUND_UP(spec->n_bits, 16);
uint8_t *bits = ofpbuf_put_zeros(out, n_dst_bytes);
unsigned int n_bytes = DIV_ROUND_UP(spec->n_bits, 8);
memcpy(bits + n_dst_bytes - n_bytes, ofpact_learn_spec_imm(spec),
n_bytes);
}
if (spec->dst_type == NX_LEARN_DST_MATCH ||
spec->dst_type == NX_LEARN_DST_LOAD) {
put_u32(out, nxm_header_from_mff(spec->dst.field));
put_u16(out, spec->dst.ofs);
}
}
pad_ofpat(out, start_ofs);
}
static char * OVS_WARN_UNUSED_RESULT
parse_LEARN(char *arg, const struct ofpact_parse_params *pp)
{
return learn_parse(arg, pp->port_map, pp->table_map, pp->ofpacts);
}
static void
format_LEARN(const struct ofpact_learn *a,
const struct ofpact_format_params *fp)
{
learn_format(a, fp->port_map, fp->table_map, fp->s);
}
static enum ofperr
check_LEARN(const struct ofpact_learn *a,
const struct ofpact_check_params *cp)
{
return learn_check(a, cp->match);
}
/* Action structure for NXAST_CONJUNCTION. */
struct nx_action_conjunction {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* At least 16. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* See enum ofp_raw_action_type. */
uint8_t clause;
uint8_t n_clauses;
ovs_be32 id;
};
OFP_ASSERT(sizeof(struct nx_action_conjunction) == 16);
static void
add_conjunction(struct ofpbuf *out,
uint32_t id, uint8_t clause, uint8_t n_clauses)
{
struct ofpact_conjunction *oc;
oc = ofpact_put_CONJUNCTION(out);
oc->id = id;
oc->clause = clause;
oc->n_clauses = n_clauses;
}
static enum ofperr
decode_NXAST_RAW_CONJUNCTION(const struct nx_action_conjunction *nac,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
if (nac->n_clauses < 2 || nac->n_clauses > 64
|| nac->clause >= nac->n_clauses) {
return OFPERR_NXBAC_BAD_CONJUNCTION;
} else {
add_conjunction(out, ntohl(nac->id), nac->clause, nac->n_clauses);
return 0;
}
}
static void
encode_CONJUNCTION(const struct ofpact_conjunction *oc,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
struct nx_action_conjunction *nac = put_NXAST_CONJUNCTION(out);
nac->clause = oc->clause;
nac->n_clauses = oc->n_clauses;
nac->id = htonl(oc->id);
}
static void
format_CONJUNCTION(const struct ofpact_conjunction *oc,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sconjunction(%s%"PRIu32",%d/%"PRIu8"%s)%s",
colors.paren, colors.end,
oc->id, oc->clause + 1, oc->n_clauses,
colors.paren, colors.end);
}
static char * OVS_WARN_UNUSED_RESULT
parse_CONJUNCTION(const char *arg, const struct ofpact_parse_params *pp)
{
uint8_t n_clauses;
uint8_t clause;
uint32_t id;
int n;
if (!ovs_scan(arg, "%"SCNi32" , %"SCNu8" / %"SCNu8" %n",
&id, &clause, &n_clauses, &n) || n != strlen(arg)) {
return xstrdup("\"conjunction\" syntax is \"conjunction(id,i/n)\"");
}
if (n_clauses < 2) {
return xstrdup("conjunction must have at least 2 clauses");
} else if (n_clauses > 64) {
return xstrdup("conjunction must have at most 64 clauses");
} else if (clause < 1) {
return xstrdup("clause index must be positive");
} else if (clause > n_clauses) {
return xstrdup("clause index must be less than or equal to "
"number of clauses");
}
add_conjunction(pp->ofpacts, id, clause - 1, n_clauses);
return NULL;
}
static enum ofperr
check_CONJUNCTION(const struct ofpact_conjunction *a OVS_UNUSED,
const struct ofpact_check_params *cp OVS_UNUSED)
{
return 0;
}
/* Action structure for NXAST_MULTIPATH.
*
* This action performs the following steps in sequence:
*
* 1. Hashes the fields designated by 'fields', one of NX_HASH_FIELDS_*.
* Refer to the definition of "enum nx_mp_fields" for details.
*
* The 'basis' value is used as a universal hash parameter, that is,
* different values of 'basis' yield different hash functions. The
* particular universal hash function used is implementation-defined.
*
* The hashed fields' values are drawn from the current state of the
* flow, including all modifications that have been made by actions up to
* this point.
*
* 2. Applies the multipath link choice algorithm specified by 'algorithm',
* one of NX_MP_ALG_*. Refer to the definition of "enum nx_mp_algorithm"
* for details.
*
* The output of the algorithm is 'link', an unsigned integer less than
* or equal to 'max_link'.
*
* Some algorithms use 'arg' as an additional argument.
*
* 3. Stores 'link' in dst[ofs:ofs+n_bits]. The format and semantics of
* 'dst' and 'ofs_nbits' are similar to those for the NXAST_REG_LOAD
* action.
*
* The switch will reject actions that have an unknown 'fields', or an unknown
* 'algorithm', or in which ofs+n_bits is greater than the width of 'dst', or
* in which 'max_link' is greater than or equal to 2**n_bits, with error type
* OFPET_BAD_ACTION, code OFPBAC_BAD_ARGUMENT.
*/
struct nx_action_multipath {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length is 32. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_MULTIPATH. */
/* What fields to hash and how. */
ovs_be16 fields; /* One of NX_HASH_FIELDS_*. */
ovs_be16 basis; /* Universal hash parameter. */
ovs_be16 pad0;
/* Multipath link choice algorithm to apply to hash value. */
ovs_be16 algorithm; /* One of NX_MP_ALG_*. */
ovs_be16 max_link; /* Number of output links, minus 1. */
ovs_be32 arg; /* Algorithm-specific argument. */
ovs_be16 pad1;
/* Where to store the result. */
ovs_be16 ofs_nbits; /* (ofs << 6) | (n_bits - 1). */
ovs_be32 dst; /* Destination. */
};
OFP_ASSERT(sizeof(struct nx_action_multipath) == 32);
static enum ofperr
decode_NXAST_RAW_MULTIPATH(const struct nx_action_multipath *nam,
enum ofp_version ofp_version OVS_UNUSED,
const struct vl_mff_map *vl_mff_map,
uint64_t *tlv_bitmap, struct ofpbuf *out)
{
uint32_t n_links = ntohs(nam->max_link) + 1;
size_t min_n_bits = log_2_ceil(n_links);
struct ofpact_multipath *mp;
enum ofperr error;
mp = ofpact_put_MULTIPATH(out);
mp->fields = ntohs(nam->fields);
mp->basis = ntohs(nam->basis);
mp->algorithm = ntohs(nam->algorithm);
mp->max_link = ntohs(nam->max_link);
mp->arg = ntohl(nam->arg);
mp->dst.ofs = nxm_decode_ofs(nam->ofs_nbits);
mp->dst.n_bits = nxm_decode_n_bits(nam->ofs_nbits);
error = mf_vl_mff_mf_from_nxm_header(ntohl(nam->dst), vl_mff_map,
&mp->dst.field, tlv_bitmap);
if (error) {
return error;
}
if (!flow_hash_fields_valid(mp->fields)) {
VLOG_WARN_RL(&rl, "unsupported fields %d", (int) mp->fields);
return OFPERR_OFPBAC_BAD_ARGUMENT;
} else if (mp->algorithm != NX_MP_ALG_MODULO_N
&& mp->algorithm != NX_MP_ALG_HASH_THRESHOLD
&& mp->algorithm != NX_MP_ALG_HRW
&& mp->algorithm != NX_MP_ALG_ITER_HASH) {
VLOG_WARN_RL(&rl, "unsupported algorithm %d", (int) mp->algorithm);
return OFPERR_OFPBAC_BAD_ARGUMENT;
} else if (mp->dst.n_bits < min_n_bits) {
VLOG_WARN_RL(&rl, "multipath action requires at least %"PRIuSIZE" bits for "
"%"PRIu32" links", min_n_bits, n_links);
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
return multipath_check(mp, NULL);
}
static void
encode_MULTIPATH(const struct ofpact_multipath *mp,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
struct nx_action_multipath *nam = put_NXAST_MULTIPATH(out);
nam->fields = htons(mp->fields);
nam->basis = htons(mp->basis);
nam->algorithm = htons(mp->algorithm);
nam->max_link = htons(mp->max_link);
nam->arg = htonl(mp->arg);
nam->ofs_nbits = nxm_encode_ofs_nbits(mp->dst.ofs, mp->dst.n_bits);
nam->dst = htonl(nxm_header_from_mff(mp->dst.field));
}
static char * OVS_WARN_UNUSED_RESULT
parse_MULTIPATH(const char *arg, const struct ofpact_parse_params *pp)
{
return multipath_parse(ofpact_put_MULTIPATH(pp->ofpacts), arg);
}
static void
format_MULTIPATH(const struct ofpact_multipath *a,
const struct ofpact_format_params *fp)
{
multipath_format(a, fp->s);
}
static enum ofperr
check_MULTIPATH(const struct ofpact_multipath *a,
const struct ofpact_check_params *cp)
{
return multipath_check(a, cp->match);
}
/* Action structure for NXAST_NOTE.
*
* This action has no effect. It is variable length. The switch does not
* attempt to interpret the user-defined 'note' data in any way. A controller
* can use this action to attach arbitrary metadata to a flow.
*
* This action might go away in the future.
*/
struct nx_action_note {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* A multiple of 8, but at least 16. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_NOTE. */
uint8_t note[6]; /* Start of user-defined data. */
/* Possibly followed by additional user-defined data. */
};
OFP_ASSERT(sizeof(struct nx_action_note) == 16);
static enum ofperr
decode_NXAST_RAW_NOTE(const struct nx_action_note *nan,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct ofpact_note *note;
unsigned int length;
length = ntohs(nan->len) - offsetof(struct nx_action_note, note);
note = ofpact_put_NOTE(out);
note->length = length;
ofpbuf_put(out, nan->note, length);
note = out->header;
ofpact_finish_NOTE(out, &note);
return 0;
}
static void
encode_NOTE(const struct ofpact_note *note,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
size_t start_ofs = out->size;
struct nx_action_note *nan;
put_NXAST_NOTE(out);
out->size = out->size - sizeof nan->note;
ofpbuf_put(out, note->data, note->length);
pad_ofpat(out, start_ofs);
}
static char * OVS_WARN_UNUSED_RESULT
parse_NOTE(const char *arg, const struct ofpact_parse_params *pp)
{
size_t start_ofs = pp->ofpacts->size;
ofpact_put_NOTE(pp->ofpacts);
arg = ofpbuf_put_hex(pp->ofpacts, arg, NULL);
if (arg[0]) {
return xstrdup("bad hex digit in `note' argument");
}
struct ofpact_note *note = ofpbuf_at_assert(pp->ofpacts, start_ofs,
sizeof *note);
note->length = pp->ofpacts->size - (start_ofs + sizeof *note);
if (ofpbuf_oversized(pp->ofpacts)) {
return xasprintf("input too big");
}
ofpact_finish_NOTE(pp->ofpacts, &note);
return NULL;
}
static void
format_NOTE(const struct ofpact_note *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%snote:%s", colors.param, colors.end);
ds_put_hex_with_delimiter(fp->s, a->data, a->length, ".");
}
static enum ofperr
check_NOTE(const struct ofpact_note *a OVS_UNUSED,
const struct ofpact_check_params *cp OVS_UNUSED)
{
return 0;
}
/* Exit action. */
static enum ofperr
decode_NXAST_RAW_EXIT(struct ofpbuf *out)
{
ofpact_put_EXIT(out);
return 0;
}
static void
encode_EXIT(const struct ofpact_null *null OVS_UNUSED,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
put_NXAST_EXIT(out);
}
static char * OVS_WARN_UNUSED_RESULT
parse_EXIT(char *arg OVS_UNUSED, const struct ofpact_parse_params *pp)
{
ofpact_put_EXIT(pp->ofpacts);
return NULL;
}
static void
format_EXIT(const struct ofpact_null *a OVS_UNUSED,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sexit%s", colors.special, colors.end);
}
static enum ofperr
check_EXIT(const struct ofpact_null *a OVS_UNUSED,
const struct ofpact_check_params *cp OVS_UNUSED)
{
return 0;
}
/* Unroll xlate action. */
static void
encode_UNROLL_XLATE(const struct ofpact_unroll_xlate *unroll OVS_UNUSED,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out OVS_UNUSED)
{
OVS_NOT_REACHED();
}
static char * OVS_WARN_UNUSED_RESULT
parse_UNROLL_XLATE(char *arg OVS_UNUSED,
const struct ofpact_parse_params *pp OVS_UNUSED)
{
return xasprintf("UNROLL is an internal action "
"that shouldn't be used via OpenFlow");
}
static void
format_UNROLL_XLATE(const struct ofpact_unroll_xlate *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sunroll_xlate(%s%stable=%s",
colors.paren, colors.end,
colors.special, colors.end);
ofputil_format_table(a->rule_table_id, fp->table_map, fp->s);
ds_put_format(fp->s, ", %scookie=%s%"PRIu64"%s)%s",
colors.param, colors.end, ntohll(a->rule_cookie),
colors.paren, colors.end);
}
static enum ofperr
check_UNROLL_XLATE(const struct ofpact_unroll_xlate *a OVS_UNUSED,
const struct ofpact_check_params *cp OVS_UNUSED)
{
/* UNROLL is an internal action that should never be seen via OpenFlow. */
return OFPERR_OFPBAC_BAD_TYPE;
}
/* The NXAST_CLONE action is "struct ext_action_header", followed by zero or
* more embedded OpenFlow actions. */
static enum ofperr
decode_NXAST_RAW_CLONE(const struct ext_action_header *eah,
enum ofp_version ofp_version,
const struct vl_mff_map *vl_mff_map,
uint64_t *tlv_bitmap, struct ofpbuf *out)
{
int error;
struct ofpbuf openflow;
const size_t clone_offset = ofpacts_pull(out);
struct ofpact_nest *clone = ofpact_put_CLONE(out);
/* decode action list */
ofpbuf_pull(out, sizeof(*clone));
openflow = ofpbuf_const_initializer(
eah + 1, ntohs(eah->len) - sizeof *eah);
error = ofpacts_pull_openflow_actions__(&openflow, openflow.size,
ofp_version,
1u << OVSINST_OFPIT11_APPLY_ACTIONS,
out, 0, vl_mff_map, tlv_bitmap);
if (error) {
return error;
}
clone = ofpbuf_push_uninit(out, sizeof *clone);
out->header = &clone->ofpact;
ofpact_finish_CLONE(out, &clone);
ofpbuf_push_uninit(out, clone_offset);
return error;
}
static void
encode_CLONE(const struct ofpact_nest *clone,
enum ofp_version ofp_version, struct ofpbuf *out)
{
size_t len;
const size_t ofs = out->size;
struct ext_action_header *eah;
put_NXAST_CLONE(out);
len = ofpacts_put_openflow_actions(clone->actions,
ofpact_nest_get_action_len(clone),
out, ofp_version);
len += sizeof *eah;
eah = ofpbuf_at(out, ofs, sizeof *eah);
eah->len = htons(len);
}
static char * OVS_WARN_UNUSED_RESULT
parse_CLONE(char *arg, const struct ofpact_parse_params *pp)
{
const size_t clone_offset = ofpacts_pull(pp->ofpacts);
struct ofpact_nest *clone = ofpact_put_CLONE(pp->ofpacts);
char *error;
ofpbuf_pull(pp->ofpacts, sizeof *clone);
error = ofpacts_parse_copy(arg, pp, false, OFPACT_CLONE);
/* header points to the action list */
pp->ofpacts->header = ofpbuf_push_uninit(pp->ofpacts, sizeof *clone);
clone = pp->ofpacts->header;
if (ofpbuf_oversized(pp->ofpacts)) {
free(error);
return xasprintf("input too big");
}
ofpact_finish_CLONE(pp->ofpacts, &clone);
ofpbuf_push_uninit(pp->ofpacts, clone_offset);
return error;
}
static void
format_CLONE(const struct ofpact_nest *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sclone(%s", colors.paren, colors.end);
ofpacts_format(a->actions, ofpact_nest_get_action_len(a), fp);
ds_put_format(fp->s, "%s)%s", colors.paren, colors.end);
}
static enum ofperr
check_subactions(struct ofpact *ofpacts, size_t ofpacts_len,
struct ofpact_check_params *cp)
{
struct ofpact_check_params sub = *cp;
enum ofperr error = ofpacts_check(ofpacts, ofpacts_len, &sub);
cp->usable_protocols &= sub.usable_protocols;
return error;
}
static enum ofperr
check_CLONE(struct ofpact_nest *a, struct ofpact_check_params *cp)
{
return check_subactions(a->actions, ofpact_nest_get_action_len(a), cp);
}
/* Action structure for NXAST_SAMPLE.
*
* Samples matching packets with the given probability and sends them
* each to the set of collectors identified with the given ID. The
* probability is expressed as a number of packets to be sampled out
* of USHRT_MAX packets, and must be >0.
*
* When sending packet samples to IPFIX collectors, the IPFIX flow
* record sent for each sampled packet is associated with the given
* observation domain ID and observation point ID. Each IPFIX flow
* record contain the sampled packet's headers when executing this
* rule. If a sampled packet's headers are modified by previous
* actions in the flow, those modified headers are sent. */
struct nx_action_sample {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length is 24. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_SAMPLE. */
ovs_be16 probability; /* Fraction of packets to sample. */
ovs_be32 collector_set_id; /* ID of collector set in OVSDB. */
ovs_be32 obs_domain_id; /* ID of sampling observation domain. */
ovs_be32 obs_point_id; /* ID of sampling observation point. */
};
OFP_ASSERT(sizeof(struct nx_action_sample) == 24);
/* Action structure for NXAST_SAMPLE2 and NXAST_SAMPLE3.
*
* NXAST_SAMPLE2 was added in Open vSwitch 2.5.90. Compared to NXAST_SAMPLE,
* it adds support for exporting egress tunnel information.
*
* NXAST_SAMPLE3 was added in Open vSwitch 2.6.90. Compared to NXAST_SAMPLE2,
* it adds support for the 'direction' field. */
struct nx_action_sample2 {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length is 32. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_SAMPLE. */
ovs_be16 probability; /* Fraction of packets to sample. */
ovs_be32 collector_set_id; /* ID of collector set in OVSDB. */
ovs_be32 obs_domain_id; /* ID of sampling observation domain. */
ovs_be32 obs_point_id; /* ID of sampling observation point. */
ovs_be16 sampling_port; /* Sampling port. */
uint8_t direction; /* NXAST_SAMPLE3 only. */
uint8_t zeros[5]; /* Pad to a multiple of 8 bytes */
};
OFP_ASSERT(sizeof(struct nx_action_sample2) == 32);
/* Action structure for NXAST_SAMPLE4
*
* NXAST_SAMPLE4 was added in Open vSwitch 3.4.0. Compared to NXAST_SAMPLE3,
* it adds support for using field specifiers for observation_domain_id and
* observation_point_id. */
struct nx_action_sample4 {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length is 40. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_SAMPLE4. */
ovs_be16 probability; /* Fraction of packets to sample. */
ovs_be32 collector_set_id; /* ID of collector set in OVSDB. */
ovs_be32 obs_domain_src; /* The observation_domain_id source. */
union {
ovs_be16 obs_domain_ofs_nbits; /* Range to use from source field. */
ovs_be32 obs_domain_imm; /* Immediate value for domain id. */
};
ovs_be32 obs_point_src; /* The observation_point_id source. */
union {
ovs_be16 obs_point_ofs_nbits; /* Range to use from source field. */
ovs_be32 obs_point_imm; /* Immediate value for point id. */
};
ovs_be16 sampling_port; /* Sampling port. */
uint8_t direction; /* Sampling direction. */
uint8_t zeros[5]; /* Pad to a multiple of 8 bytes */
};
OFP_ASSERT(sizeof(struct nx_action_sample4) == 40);
static enum ofperr
decode_NXAST_RAW_SAMPLE(const struct nx_action_sample *nas,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct ofpact_sample *sample;
sample = ofpact_put_SAMPLE(out);
sample->ofpact.raw = NXAST_RAW_SAMPLE;
sample->probability = ntohs(nas->probability);
sample->collector_set_id = ntohl(nas->collector_set_id);
sample->obs_domain_imm = ntohl(nas->obs_domain_id);
sample->obs_domain_src.field = NULL;
sample->obs_point_imm = ntohl(nas->obs_point_id);
sample->obs_point_src.field = NULL;
sample->sampling_port = OFPP_NONE;
sample->direction = NX_ACTION_SAMPLE_DEFAULT;
sample->obs_domain_src.field = NULL;
sample->obs_point_src.field = NULL;
if (sample->probability == 0) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
return 0;
}
static enum ofperr
decode_SAMPLE2(const struct nx_action_sample2 *nas,
enum ofp_raw_action_type raw,
enum nx_action_sample_direction direction,
struct ofpact_sample *sample)
{
sample->ofpact.raw = raw;
sample->probability = ntohs(nas->probability);
sample->collector_set_id = ntohl(nas->collector_set_id);
sample->obs_domain_imm = ntohl(nas->obs_domain_id);
sample->obs_domain_src.field = NULL;
sample->obs_point_imm = ntohl(nas->obs_point_id);
sample->obs_point_src.field = NULL;
sample->sampling_port = u16_to_ofp(ntohs(nas->sampling_port));
sample->direction = direction;
if (sample->probability == 0) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
return 0;
}
static enum ofperr
decode_NXAST_RAW_SAMPLE2(const struct nx_action_sample2 *nas,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
return decode_SAMPLE2(nas, NXAST_RAW_SAMPLE2, NX_ACTION_SAMPLE_DEFAULT,
ofpact_put_SAMPLE(out));
}
static int
check_sample_direction(enum nx_action_sample_direction direction)
{
if (direction != NX_ACTION_SAMPLE_DEFAULT &&
direction != NX_ACTION_SAMPLE_INGRESS &&
direction != NX_ACTION_SAMPLE_EGRESS) {
VLOG_WARN_RL(&rl, "invalid sample direction %"PRIu8, direction);
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
return 0;
}
static enum ofperr
decode_NXAST_RAW_SAMPLE3(const struct nx_action_sample2 *nas,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct ofpact_sample *sample = ofpact_put_SAMPLE(out);
int err;
if (!is_all_zeros(nas->zeros, sizeof nas->zeros)) {
return OFPERR_NXBRC_MUST_BE_ZERO;
}
err = check_sample_direction(nas->direction);
if (err) {
return err;
}
return decode_SAMPLE2(nas, NXAST_RAW_SAMPLE3, nas->direction, sample);
}
static int
decode_sample_obs_id(ovs_be32 src, ovs_be16 ofs_nbits, ovs_be32 imm,
const struct vl_mff_map *vl_mff_map, uint64_t *tlv_bitmap,
struct mf_subfield *src_out, uint32_t *imm_out)
{
if (src) {
enum ofperr error;
src_out->ofs = nxm_decode_ofs(ofs_nbits);
src_out->n_bits = nxm_decode_n_bits(ofs_nbits);
error = mf_vl_mff_mf_from_nxm_header(ntohl(src),
vl_mff_map, &src_out->field,
tlv_bitmap);
if (error) {
return error;
}
error = mf_check_src(src_out, NULL);
if (error) {
return error;
}
if (src_out->n_bits > 32) {
VLOG_WARN_RL(&rl, "size of field used in observation_id (%d) "
"exceeds maximum (32)", src_out->n_bits);
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
} else {
src_out->field = NULL;
*imm_out = ntohl(imm);
}
return 0;
}
static enum ofperr
decode_NXAST_RAW_SAMPLE4(const struct nx_action_sample4 *nas,
enum ofp_version ofp_version OVS_UNUSED,
const struct vl_mff_map *vl_mff_map,
uint64_t *tlv_bitmap,
struct ofpbuf *out)
{
struct ofpact_sample *sample = ofpact_put_SAMPLE(out);
int err;
if (!is_all_zeros(nas->zeros, sizeof nas->zeros)) {
return OFPERR_NXBRC_MUST_BE_ZERO;
}
err = check_sample_direction(nas->direction);
if (err) {
return err;
}
sample->ofpact.raw = NXAST_RAW_SAMPLE4;
sample->probability = ntohs(nas->probability);
sample->collector_set_id = ntohl(nas->collector_set_id);
sample->sampling_port = u16_to_ofp(ntohs(nas->sampling_port));
sample->direction = nas->direction;
if (sample->probability == 0) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
err = decode_sample_obs_id(nas->obs_domain_src,
nas->obs_domain_ofs_nbits,
nas->obs_domain_imm,
vl_mff_map, tlv_bitmap,
&sample->obs_domain_src,
&sample->obs_domain_imm);
if (err) {
return err;
}
return decode_sample_obs_id(nas->obs_point_src,
nas->obs_point_ofs_nbits,
nas->obs_point_imm,
vl_mff_map, tlv_bitmap,
&sample->obs_point_src,
&sample->obs_point_imm);
}
static void
encode_SAMPLE2(const struct ofpact_sample *sample,
struct nx_action_sample2 *nas)
{
nas->probability = htons(sample->probability);
nas->collector_set_id = htonl(sample->collector_set_id);
nas->obs_domain_id = htonl(sample->obs_domain_imm);
nas->obs_point_id = htonl(sample->obs_point_imm);
nas->sampling_port = htons(ofp_to_u16(sample->sampling_port));
nas->direction = sample->direction;
}
static void
encode_SAMPLE4(const struct ofpact_sample *sample,
struct nx_action_sample4 *nas)
{
nas->probability = htons(sample->probability);
nas->collector_set_id = htonl(sample->collector_set_id);
nas->sampling_port = htons(ofp_to_u16(sample->sampling_port));
nas->direction = sample->direction;
if (sample->obs_domain_src.field) {
nas->obs_domain_src =
htonl(nxm_header_from_mff(sample->obs_domain_src.field));
nas->obs_domain_ofs_nbits =
nxm_encode_ofs_nbits(sample->obs_domain_src.ofs,
sample->obs_domain_src.n_bits);
} else {
nas->obs_domain_src = htonl(0);
nas->obs_domain_imm = htonl(sample->obs_domain_imm);
}
if (sample->obs_point_src.field) {
nas->obs_point_src =
htonl(nxm_header_from_mff(sample->obs_point_src.field));
nas->obs_point_ofs_nbits =
nxm_encode_ofs_nbits(sample->obs_point_src.ofs,
sample->obs_point_src.n_bits);
} else {
nas->obs_point_src = htonl(0);
nas->obs_point_imm = htonl(sample->obs_point_imm);
}
}
static void
encode_SAMPLE(const struct ofpact_sample *sample,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
if (sample->ofpact.raw == NXAST_RAW_SAMPLE4 ||
sample->obs_domain_src.field ||
sample->obs_point_src.field) {
encode_SAMPLE4(sample, put_NXAST_SAMPLE4(out));
} else if (sample->ofpact.raw == NXAST_RAW_SAMPLE3
|| sample->direction != NX_ACTION_SAMPLE_DEFAULT) {
encode_SAMPLE2(sample, put_NXAST_SAMPLE3(out));
} else if (sample->ofpact.raw == NXAST_RAW_SAMPLE2
|| sample->sampling_port != OFPP_NONE) {
encode_SAMPLE2(sample, put_NXAST_SAMPLE2(out));
} else {
struct nx_action_sample *nas = put_NXAST_SAMPLE(out);
nas->probability = htons(sample->probability);
nas->collector_set_id = htonl(sample->collector_set_id);
nas->obs_domain_id = htonl(sample->obs_domain_imm);
nas->obs_point_id = htonl(sample->obs_point_imm);
}
}
/* Parses 'arg' as the argument to a "sample" action, and appends such an
* action to 'pp->ofpacts'.
*
* Returns NULL if successful, otherwise a malloc()'d string describing the
* error. The caller is responsible for freeing the returned string. */
static char * OVS_WARN_UNUSED_RESULT
parse_SAMPLE(char *arg, const struct ofpact_parse_params *pp)
{
struct ofpact_sample *os = ofpact_put_SAMPLE(pp->ofpacts);
os->sampling_port = OFPP_NONE;
os->direction = NX_ACTION_SAMPLE_DEFAULT;
char *key, *value;
while (ofputil_parse_key_value(&arg, &key, &value)) {
char *error = NULL;
if (!strcmp(key, "probability")) {
error = str_to_u16(value, "probability", &os->probability);
if (!error && os->probability == 0) {
error = xasprintf("invalid probability value \"%s\"", value);
}
} else if (!strcmp(key, "collector_set_id")) {
error = str_to_u32(value, &os->collector_set_id);
} else if (!strcmp(key, "obs_domain_id")) {
error = str_to_u32(value, &os->obs_domain_imm);
if (error) {
free(error);
error = mf_parse_subfield(&os->obs_domain_src, value);
if (error) {
return error;
}
if (os->obs_domain_src.n_bits > 32) {
return xasprintf("size of obs_domain_id field (%d) "
"exceeds maximum (32)",
os->obs_domain_src.n_bits);
}
}
} else if (!strcmp(key, "obs_point_id")) {
error = str_to_u32(value, &os->obs_point_imm);
if (error) {
free(error);
error = mf_parse_subfield(&os->obs_point_src, value);
if (error) {
return error;
}
if (os->obs_point_src.n_bits > 32) {
return xasprintf("size of obs_point_id field (%d) "
"exceeds maximum (32)",
os->obs_point_src.n_bits);
}
}
} else if (!strcmp(key, "sampling_port")) {
if (!ofputil_port_from_string(value, pp->port_map,
&os->sampling_port)) {
error = xasprintf("%s: unknown port", value);
}
} else if (!strcmp(key, "ingress")) {
os->direction = NX_ACTION_SAMPLE_INGRESS;
} else if (!strcmp(key, "egress")) {
os->direction = NX_ACTION_SAMPLE_EGRESS;
} else {
error = xasprintf("invalid key \"%s\" in \"sample\" argument",
key);
}
if (error) {
return error;
}
}
if (os->probability == 0) {
return xstrdup("non-zero \"probability\" must be specified on sample");
}
return NULL;
}
static void
format_SAMPLE(const struct ofpact_sample *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%ssample(%s%sprobability=%s%"PRIu16
",%scollector_set_id=%s%"PRIu32,
colors.paren, colors.end,
colors.param, colors.end, a->probability,
colors.param, colors.end, a->collector_set_id);
ds_put_format(fp->s, ",%sobs_domain_id=%s", colors.param, colors.end);
if (a->obs_domain_src.field) {
mf_format_subfield(&a->obs_domain_src, fp->s);
} else {
ds_put_format(fp->s, "%"PRIu32, a->obs_domain_imm);
}
ds_put_format(fp->s, ",%sobs_point_id=%s", colors.param, colors.end);
if (a->obs_point_src.field) {
mf_format_subfield(&a->obs_point_src, fp->s);
} else {
ds_put_format(fp->s, "%"PRIu32, a->obs_point_imm);
}
if (a->sampling_port != OFPP_NONE) {
ds_put_format(fp->s, ",%ssampling_port=%s", colors.param, colors.end);
ofputil_format_port(a->sampling_port, fp->port_map, fp->s);
}
if (a->direction == NX_ACTION_SAMPLE_INGRESS) {
ds_put_format(fp->s, ",%singress%s", colors.param, colors.end);
} else if (a->direction == NX_ACTION_SAMPLE_EGRESS) {
ds_put_format(fp->s, ",%segress%s", colors.param, colors.end);
}
ds_put_format(fp->s, "%s)%s", colors.paren, colors.end);
}
static enum ofperr
check_SAMPLE(const struct ofpact_sample *a OVS_UNUSED,
const struct ofpact_check_params *cp OVS_UNUSED)
{
return 0;
}
/* debug instructions. */
static bool enable_debug;
void
ofpact_dummy_enable(void)
{
enable_debug = true;
}
static enum ofperr
decode_NXAST_RAW_DEBUG_RECIRC(struct ofpbuf *out)
{
if (!enable_debug) {
return OFPERR_OFPBAC_BAD_VENDOR_TYPE;
}
ofpact_put_DEBUG_RECIRC(out);
return 0;
}
static void
encode_DEBUG_RECIRC(const struct ofpact_null *n OVS_UNUSED,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
put_NXAST_DEBUG_RECIRC(out);
}
static char * OVS_WARN_UNUSED_RESULT
parse_DEBUG_RECIRC(char *arg OVS_UNUSED, const struct ofpact_parse_params *pp)
{
ofpact_put_DEBUG_RECIRC(pp->ofpacts);
return NULL;
}
static void
format_DEBUG_RECIRC(const struct ofpact_null *a OVS_UNUSED,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sdebug_recirc%s", colors.value, colors.end);
}
static enum ofperr
check_DEBUG_RECIRC(const struct ofpact_null *a OVS_UNUSED,
const struct ofpact_check_params *cp OVS_UNUSED)
{
return 0;
}
static enum ofperr
decode_NXAST_RAW_DEBUG_SLOW(struct ofpbuf *out)
{
if (!enable_debug) {
return OFPERR_OFPBAC_BAD_VENDOR_TYPE;
}
ofpact_put_DEBUG_SLOW(out);
return 0;
}
static void
encode_DEBUG_SLOW(const struct ofpact_null *n OVS_UNUSED,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
put_NXAST_DEBUG_SLOW(out);
}
static char * OVS_WARN_UNUSED_RESULT
parse_DEBUG_SLOW(char *arg OVS_UNUSED, const struct ofpact_parse_params *pp)
{
ofpact_put_DEBUG_SLOW(pp->ofpacts);
return NULL;
}
static void
format_DEBUG_SLOW(const struct ofpact_null *a OVS_UNUSED,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sdebug_slow%s", colors.value, colors.end);
}
static enum ofperr
check_DEBUG_SLOW(const struct ofpact_null *a OVS_UNUSED,
const struct ofpact_check_params *cp OVS_UNUSED)
{
return 0;
}
/* Action structure for NXAST_CT.
*
* Pass traffic to the connection tracker.
*
* There are two important concepts to understanding the connection tracking
* interface: Packet state and Connection state. Packets may be "Untracked" or
* "Tracked". Connections may be "Uncommitted" or "Committed".
*
* - Packet State:
*
* Untracked packets have an unknown connection state. In most
* cases, packets entering the OpenFlow pipeline will initially be
* in the untracked state. Untracked packets may become tracked by
* executing NXAST_CT with a "recirc_table" specified. This makes
* various aspects about the connection available, in particular
* the connection state.
*
* An NXAST_CT action always puts the packet into an untracked
* state for the current processing path. If "recirc_table" is
* set, execution is forked and the packet passes through the
* connection tracker. The specified table's processing path is
* able to match on Connection state until the end of the OpenFlow
* pipeline or NXAST_CT is called again.
*
* - Connection State:
*
* Multiple packets may be associated with a single connection. Initially,
* all connections are uncommitted. The connection state corresponding to
* a packet is available in the NXM_NX_CT_STATE field for tracked packets.
*
* Uncommitted connections have no state stored about them. Uncommitted
* connections may transition into the committed state by executing
* NXAST_CT with the NX_CT_F_COMMIT flag.
*
* Once a connection becomes committed, information may be gathered about
* the connection by passing subsequent packets through the connection
* tracker, and the state of the connection will be stored beyond the
* lifetime of packet processing.
*
* A committed connection always has the directionality of the packet that
* caused the connection to be committed in the first place. This is the
* "original direction" of the connection, and the opposite direction is
* the "reply direction". If a connection is already committed, but it is
* then decided that the original direction should be the opposite of the
* existing connection, NX_CT_F_FORCE flag may be used in addition to
* NX_CT_F_COMMIT flag to in effect terminate the existing connection and
* start a new one in the current direction.
*
* Connections may transition back into the uncommitted state due to
* external timers, or due to the contents of packets that are sent to the
* connection tracker. This behaviour is outside of the scope of the
* OpenFlow interface.
*
* The "zone" specifies a context within which the tracking is done:
*
* The connection tracking zone is a 16-bit number. Each zone is an
* independent connection tracking context. The connection state for each
* connection is completely separate for each zone, so if a connection
* is committed to zone A, then it will remain uncommitted in zone B.
* If NXAST_CT is executed with the same zone multiple times, later
* executions have no effect.
*
* If 'zone_src' is nonzero, this specifies that the zone should be
* sourced from a field zone_src[ofs:ofs+nbits]. The format and semantics
* of 'zone_src' and 'zone_ofs_nbits' are similar to those for the
* NXAST_REG_LOAD action. The acceptable nxm_header values for 'zone_src'
* are the same as the acceptable nxm_header values for the 'src' field of
* NXAST_REG_MOVE.
*
* If 'zone_src' is zero, then the value of 'zone_imm' will be used as the
* connection tracking zone.
*
* The "recirc_table" allows NXM_NX_CT_* fields to become available:
*
* If "recirc_table" has a value other than NX_CT_RECIRC_NONE, then the
* packet will be logically cloned prior to executing this action. One
* copy will be sent to the connection tracker, then will be re-injected
* into the OpenFlow pipeline beginning at the OpenFlow table specified in
* this field. When the packet re-enters the pipeline, the NXM_NX_CT_*
* fields will be populated. The original instance of the packet will
* continue the current actions list. This can be thought of as similar to
* the effect of the "output" action: One copy is sent out (in this case,
* to the connection tracker), but the current copy continues processing.
*
* It is strongly recommended that this table is later than the current
* table, to prevent loops.
*
* The "alg" attaches protocol-specific behaviour to this action:
*
* The ALG is a 16-bit number which specifies that additional
* processing should be applied to this traffic.
*
* Protocol | Value | Meaning
* --------------------------------------------------------------------
* None | 0 | No protocol-specific behaviour.
* FTP | 21 | Parse FTP control connections and observe the
* | | negotiation of related data connections.
* Other | Other | Unsupported protocols.
*
* By way of example, if FTP control connections have this action applied
* with the ALG set to FTP (21), then the connection tracker will observe
* the negotiation of data connections. This allows the connection
* tracker to identify subsequent data connections as "related" to this
* existing connection. The "related" flag will be populated in the
* NXM_NX_CT_STATE field for such connections if the 'recirc_table' is
* specified.
*
* Zero or more actions may immediately follow this action. These actions will
* be executed within the context of the connection tracker, and they require
* NX_CT_F_COMMIT flag be set.
*/
struct nx_action_conntrack {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* At least 24. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_CT. */
ovs_be16 flags; /* Zero or more NX_CT_F_* flags.
* Unspecified flag bits must be zero. */
ovs_be32 zone_src; /* Connection tracking context. */
union {
ovs_be16 zone_ofs_nbits;/* Range to use from source field. */
ovs_be16 zone_imm; /* Immediate value for zone. */
};
uint8_t recirc_table; /* Recirculate to a specific table, or
NX_CT_RECIRC_NONE for no recirculation. */
uint8_t pad[3]; /* Zeroes */
ovs_be16 alg; /* Well-known port number for the protocol.
* 0 indicates no ALG is required. */
/* Followed by a sequence of zero or more OpenFlow actions. The length of
* these is included in 'len'. */
};
OFP_ASSERT(sizeof(struct nx_action_conntrack) == 24);
static enum ofperr
decode_ct_zone(const struct nx_action_conntrack *nac,
struct ofpact_conntrack *out,
const struct vl_mff_map *vl_mff_map, uint64_t *tlv_bitmap)
{
if (nac->zone_src) {
enum ofperr error;
out->zone_src.ofs = nxm_decode_ofs(nac->zone_ofs_nbits);
out->zone_src.n_bits = nxm_decode_n_bits(nac->zone_ofs_nbits);
error = mf_vl_mff_mf_from_nxm_header(ntohl(nac->zone_src),
vl_mff_map, &out->zone_src.field,
tlv_bitmap);
if (error) {
return error;
}
error = mf_check_src(&out->zone_src, NULL);
if (error) {
return error;
}
if (out->zone_src.n_bits != 16) {
VLOG_WARN_RL(&rl, "zone n_bits %d not within valid range [16..16]",
out->zone_src.n_bits);
return OFPERR_OFPBAC_BAD_SET_LEN;
}
} else {
out->zone_src.field = NULL;
out->zone_imm = ntohs(nac->zone_imm);
}
return 0;
}
static enum ofperr
decode_NXAST_RAW_CT(const struct nx_action_conntrack *nac,
enum ofp_version ofp_version,
const struct vl_mff_map *vl_mff_map, uint64_t *tlv_bitmap,
struct ofpbuf *out)
{
const size_t ct_offset = ofpacts_pull(out);
struct ofpact_conntrack *conntrack = ofpact_put_CT(out);
int error;
conntrack->flags = ntohs(nac->flags);
if (conntrack->flags & NX_CT_F_FORCE &&
!(conntrack->flags & NX_CT_F_COMMIT)) {
error = OFPERR_OFPBAC_BAD_ARGUMENT;
goto out;
}
error = decode_ct_zone(nac, conntrack, vl_mff_map, tlv_bitmap);
if (error) {
goto out;
}
conntrack->recirc_table = nac->recirc_table;
conntrack->alg = ntohs(nac->alg);
ofpbuf_pull(out, sizeof(*conntrack));
struct ofpbuf openflow = ofpbuf_const_initializer(
nac + 1, ntohs(nac->len) - sizeof(*nac));
error = ofpacts_pull_openflow_actions__(&openflow, openflow.size,
ofp_version,
1u << OVSINST_OFPIT11_APPLY_ACTIONS,
out, OFPACT_CT, vl_mff_map,
tlv_bitmap);
if (error) {
return error;
}
conntrack = ofpbuf_push_uninit(out, sizeof(*conntrack));
out->header = &conntrack->ofpact;
ofpact_finish_CT(out, &conntrack);
if (conntrack->ofpact.len > sizeof(*conntrack)
&& !(conntrack->flags & NX_CT_F_COMMIT)) {
const struct ofpact *a;
size_t ofpacts_len = conntrack->ofpact.len - sizeof(*conntrack);
OFPACT_FOR_EACH (a, conntrack->actions, ofpacts_len) {
if (a->type != OFPACT_NAT || ofpact_get_NAT(a)->flags
|| ofpact_get_NAT(a)->range_af != AF_UNSPEC) {
VLOG_WARN_RL(&rl, "CT action requires commit flag if actions "
"other than NAT without arguments are specified.");
error = OFPERR_OFPBAC_BAD_ARGUMENT;
goto out;
}
}
}
out:
ofpbuf_push_uninit(out, ct_offset);
return error;
}
static void
encode_CT(const struct ofpact_conntrack *conntrack,
enum ofp_version ofp_version, struct ofpbuf *out)
{
struct nx_action_conntrack *nac;
const size_t ofs = out->size;
size_t len;
nac = put_NXAST_CT(out);
nac->flags = htons(conntrack->flags);
if (conntrack->zone_src.field) {
nac->zone_src = htonl(nxm_header_from_mff(conntrack->zone_src.field));
nac->zone_ofs_nbits = nxm_encode_ofs_nbits(conntrack->zone_src.ofs,
conntrack->zone_src.n_bits);
} else {
nac->zone_src = htonl(0);
nac->zone_imm = htons(conntrack->zone_imm);
}
nac->recirc_table = conntrack->recirc_table;
nac->alg = htons(conntrack->alg);
len = ofpacts_put_openflow_actions(conntrack->actions,
ofpact_ct_get_action_len(conntrack),
out, ofp_version);
len += sizeof(*nac);
nac = ofpbuf_at(out, ofs, sizeof(*nac));
nac->len = htons(len);
}
static char *OVS_WARN_UNUSED_RESULT
parse_NAT(char *arg, const struct ofpact_parse_params *pp);
/* Parses 'arg' as the argument to a "ct" action, and appends such an
* action to 'pp->ofpacts'.
*
* Returns NULL if successful, otherwise a malloc()'d string describing the
* error. The caller is responsible for freeing the returned string. */
static char * OVS_WARN_UNUSED_RESULT
parse_CT(char *arg, const struct ofpact_parse_params *pp)
{
const size_t ct_offset = ofpacts_pull(pp->ofpacts);
struct ofpact_conntrack *oc;
char *error = NULL;
char *key, *value;
oc = ofpact_put_CT(pp->ofpacts);
oc->flags = 0;
oc->recirc_table = NX_CT_RECIRC_NONE;
while (ofputil_parse_key_value(&arg, &key, &value)) {
if (!strcmp(key, "commit")) {
oc->flags |= NX_CT_F_COMMIT;
} else if (!strcmp(key, "force")) {
oc->flags |= NX_CT_F_FORCE;
} else if (!strcmp(key, "table")) {
if (!ofputil_table_from_string(value, pp->table_map,
&oc->recirc_table)) {
error = xasprintf("unknown table %s", value);
} else if (oc->recirc_table == NX_CT_RECIRC_NONE) {
error = xasprintf("invalid table %#"PRIx8, oc->recirc_table);
}
} else if (!strcmp(key, "zone")) {
error = str_to_u16(value, "zone", &oc->zone_imm);
if (error) {
free(error);
error = mf_parse_subfield(&oc->zone_src, value);
if (error) {
return error;
}
}
} else if (!strcmp(key, "alg")) {
error = str_to_connhelper(value, &oc->alg);
} else if (!strcmp(key, "nat")) {
const size_t nat_offset = ofpacts_pull(pp->ofpacts);
error = parse_NAT(value, pp);
/* Update CT action pointer and length. */
pp->ofpacts->header = ofpbuf_push_uninit(pp->ofpacts, nat_offset);
oc = pp->ofpacts->header;
} else if (!strcmp(key, "exec")) {
/* Hide existing actions from ofpacts_parse_copy(), so the
* nesting can be handled transparently. */
enum ofputil_protocol usable_protocols2;
const size_t exec_offset = ofpacts_pull(pp->ofpacts);
/* Initializes 'usable_protocol2', fold it back to
* '*usable_protocols' afterwards, so that we do not lose
* restrictions already in there. */
struct ofpact_parse_params pp2 = *pp;
pp2.usable_protocols = &usable_protocols2;
error = ofpacts_parse_copy(value, &pp2, false, OFPACT_CT);
*pp->usable_protocols &= usable_protocols2;
pp->ofpacts->header = ofpbuf_push_uninit(pp->ofpacts, exec_offset);
oc = pp->ofpacts->header;
} else {
error = xasprintf("invalid argument to \"ct\" action: `%s'", key);
}
if (error) {
break;
}
}
if (!error && oc->flags & NX_CT_F_FORCE && !(oc->flags & NX_CT_F_COMMIT)) {
error = xasprintf("\"force\" flag requires \"commit\" flag.");
}
if (ofpbuf_oversized(pp->ofpacts)) {
free(error);
return xasprintf("input too big");
}
ofpact_finish_CT(pp->ofpacts, &oc);
ofpbuf_push_uninit(pp->ofpacts, ct_offset);
return error;
}
static void
format_alg(int port, struct ds *s)
{
switch(port) {
case IPPORT_FTP:
ds_put_format(s, "%salg=%sftp,", colors.param, colors.end);
break;
case IPPORT_TFTP:
ds_put_format(s, "%salg=%stftp,", colors.param, colors.end);
break;
case 0:
/* Don't print. */
break;
default:
ds_put_format(s, "%salg=%s%d,", colors.param, colors.end, port);
break;
}
}
static void format_NAT(const struct ofpact_nat *,
const struct ofpact_format_params *fp);
static void
format_CT(const struct ofpact_conntrack *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sct(%s", colors.paren, colors.end);
if (a->flags & NX_CT_F_COMMIT) {
ds_put_format(fp->s, "%scommit%s,", colors.value, colors.end);
}
if (a->flags & NX_CT_F_FORCE) {
ds_put_format(fp->s, "%sforce%s,", colors.value, colors.end);
}
if (a->recirc_table != NX_CT_RECIRC_NONE) {
ds_put_format(fp->s, "%stable=%s", colors.special, colors.end);
ofputil_format_table(a->recirc_table, fp->table_map, fp->s);
ds_put_char(fp->s, ',');
}
if (a->zone_src.field) {
ds_put_format(fp->s, "%szone=%s", colors.param, colors.end);
mf_format_subfield(&a->zone_src, fp->s);
ds_put_char(fp->s, ',');
} else if (a->zone_imm) {
ds_put_format(fp->s, "%szone=%s%"PRIu16",",
colors.param, colors.end, a->zone_imm);
}
/* If the first action is a NAT action, format it outside of the 'exec'
* envelope. */
const struct ofpact *action = a->actions;
size_t actions_len = ofpact_ct_get_action_len(a);
if (actions_len && action->type == OFPACT_NAT) {
format_NAT(ofpact_get_NAT(action), fp);
ds_put_char(fp->s, ',');
actions_len -= OFPACT_ALIGN(action->len);
action = ofpact_next(action);
}
if (actions_len) {
ds_put_format(fp->s, "%sexec(%s", colors.paren, colors.end);
ofpacts_format(action, actions_len, fp);
ds_put_format(fp->s, "%s),%s", colors.paren, colors.end);
}
format_alg(a->alg, fp->s);
ds_chomp(fp->s, ',');
ds_put_format(fp->s, "%s)%s", colors.paren, colors.end);
}
static enum ofperr
check_CT(struct ofpact_conntrack *a, struct ofpact_check_params *cp)
{
struct flow *flow = &cp->match->flow;
if (!dl_type_is_ip_any(get_dl_type(flow))
|| (flow->ct_state & CS_INVALID && a->flags & NX_CT_F_COMMIT)
|| (a->alg == IPPORT_FTP && flow->nw_proto != IPPROTO_TCP)
|| (a->alg == IPPORT_TFTP && flow->nw_proto != IPPROTO_UDP)) {
/* We can't downgrade to OF1.0 and expect inconsistent CT actions
* be silently discarded. Instead, datapath flow install fails, so
* it is better to flag inconsistent CT actions as hard errors. */
return OFPERR_OFPBAC_MATCH_INCONSISTENT;
}
if (a->zone_src.field) {
return mf_check_src(&a->zone_src, cp->match);
}
return check_subactions(a->actions, ofpact_ct_get_action_len(a), cp);
}
/* ct_clear action. */
static enum ofperr
decode_NXAST_RAW_CT_CLEAR(struct ofpbuf *out)
{
ofpact_put_CT_CLEAR(out);
return 0;
}
static void
encode_CT_CLEAR(const struct ofpact_null *null OVS_UNUSED,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
put_NXAST_CT_CLEAR(out);
}
static char * OVS_WARN_UNUSED_RESULT
parse_CT_CLEAR(char *arg OVS_UNUSED, const struct ofpact_parse_params *pp)
{
ofpact_put_CT_CLEAR(pp->ofpacts);
return NULL;
}
static void
format_CT_CLEAR(const struct ofpact_null *a OVS_UNUSED,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sct_clear%s", colors.value, colors.end);
}
static enum ofperr
check_CT_CLEAR(const struct ofpact_null *a OVS_UNUSED,
const struct ofpact_check_params *cp OVS_UNUSED)
{
return 0;
}
/* NAT action. */
/* Which optional fields are present? */
enum nx_nat_range {
NX_NAT_RANGE_IPV4_MIN = 1 << 0, /* ovs_be32 */
NX_NAT_RANGE_IPV4_MAX = 1 << 1, /* ovs_be32 */
NX_NAT_RANGE_IPV6_MIN = 1 << 2, /* struct in6_addr */
NX_NAT_RANGE_IPV6_MAX = 1 << 3, /* struct in6_addr */
NX_NAT_RANGE_PROTO_MIN = 1 << 4, /* ovs_be16 */
NX_NAT_RANGE_PROTO_MAX = 1 << 5, /* ovs_be16 */
};
/* Action structure for NXAST_NAT. */
struct nx_action_nat {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* At least 16. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_NAT. */
uint8_t pad[2]; /* Must be zero. */
ovs_be16 flags; /* Zero or more NX_NAT_F_* flags.
* Unspecified flag bits must be zero. */
ovs_be16 range_present; /* NX_NAT_RANGE_* */
/* Followed by optional parameters as specified by 'range_present' */
};
OFP_ASSERT(sizeof(struct nx_action_nat) == 16);
static void
encode_NAT(const struct ofpact_nat *nat,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct nx_action_nat *nan;
const size_t ofs = out->size;
uint16_t range_present = 0;
nan = put_NXAST_NAT(out);
nan->flags = htons(nat->flags);
if (nat->range_af == AF_INET) {
if (nat->range.addr.ipv4.min) {
ovs_be32 *min = ofpbuf_put_uninit(out, sizeof *min);
*min = nat->range.addr.ipv4.min;
range_present |= NX_NAT_RANGE_IPV4_MIN;
}
if (nat->range.addr.ipv4.max) {
ovs_be32 *max = ofpbuf_put_uninit(out, sizeof *max);
*max = nat->range.addr.ipv4.max;
range_present |= NX_NAT_RANGE_IPV4_MAX;
}
} else if (nat->range_af == AF_INET6) {
if (!ipv6_mask_is_any(&nat->range.addr.ipv6.min)) {
struct in6_addr *min = ofpbuf_put_uninit(out, sizeof *min);
*min = nat->range.addr.ipv6.min;
range_present |= NX_NAT_RANGE_IPV6_MIN;
}
if (!ipv6_mask_is_any(&nat->range.addr.ipv6.max)) {
struct in6_addr *max = ofpbuf_put_uninit(out, sizeof *max);
*max = nat->range.addr.ipv6.max;
range_present |= NX_NAT_RANGE_IPV6_MAX;
}
}
if (nat->range_af != AF_UNSPEC) {
if (nat->range.proto.min) {
ovs_be16 *min = ofpbuf_put_uninit(out, sizeof *min);
*min = htons(nat->range.proto.min);
range_present |= NX_NAT_RANGE_PROTO_MIN;
}
if (nat->range.proto.max) {
ovs_be16 *max = ofpbuf_put_uninit(out, sizeof *max);
*max = htons(nat->range.proto.max);
range_present |= NX_NAT_RANGE_PROTO_MAX;
}
}
pad_ofpat(out, ofs);
nan = ofpbuf_at(out, ofs, sizeof *nan);
nan->range_present = htons(range_present);
}
static enum ofperr
decode_NXAST_RAW_NAT(const struct nx_action_nat *nan,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct ofpact_nat *nat;
uint16_t range_present = ntohs(nan->range_present);
const char *opts = (char *)(nan + 1);
uint16_t len = ntohs(nan->len) - sizeof *nan;
nat = ofpact_put_NAT(out);
nat->flags = ntohs(nan->flags);
/* Check for unknown or mutually exclusive flags. */
if ((nat->flags & ~NX_NAT_F_MASK)
|| (nat->flags & NX_NAT_F_SRC && nat->flags & NX_NAT_F_DST)
|| (nat->flags & NX_NAT_F_PROTO_HASH
&& nat->flags & NX_NAT_F_PROTO_RANDOM)) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
#define NX_NAT_GET_OPT(DST, SRC, LEN, TYPE) \
(LEN >= sizeof(TYPE) \
? (memcpy(DST, SRC, sizeof(TYPE)), LEN -= sizeof(TYPE), \
SRC += sizeof(TYPE)) \
: NULL)
nat->range_af = AF_UNSPEC;
if (range_present & NX_NAT_RANGE_IPV4_MIN) {
if (range_present & (NX_NAT_RANGE_IPV6_MIN | NX_NAT_RANGE_IPV6_MAX)) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
if (!NX_NAT_GET_OPT(&nat->range.addr.ipv4.min, opts, len, ovs_be32)
|| !nat->range.addr.ipv4.min) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
nat->range_af = AF_INET;
if (range_present & NX_NAT_RANGE_IPV4_MAX) {
if (!NX_NAT_GET_OPT(&nat->range.addr.ipv4.max, opts, len,
ovs_be32)) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
if (ntohl(nat->range.addr.ipv4.max)
< ntohl(nat->range.addr.ipv4.min)) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
}
} else if (range_present & NX_NAT_RANGE_IPV4_MAX) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
} else if (range_present & NX_NAT_RANGE_IPV6_MIN) {
if (!NX_NAT_GET_OPT(&nat->range.addr.ipv6.min, opts, len,
struct in6_addr)
|| ipv6_mask_is_any(&nat->range.addr.ipv6.min)) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
nat->range_af = AF_INET6;
if (range_present & NX_NAT_RANGE_IPV6_MAX) {
if (!NX_NAT_GET_OPT(&nat->range.addr.ipv6.max, opts, len,
struct in6_addr)) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
if (memcmp(&nat->range.addr.ipv6.max, &nat->range.addr.ipv6.min,
sizeof(struct in6_addr)) < 0) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
}
} else if (range_present & NX_NAT_RANGE_IPV6_MAX) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
if (range_present & NX_NAT_RANGE_PROTO_MIN) {
ovs_be16 proto;
if (nat->range_af == AF_UNSPEC) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
if (!NX_NAT_GET_OPT(&proto, opts, len, ovs_be16) || proto == 0) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
nat->range.proto.min = ntohs(proto);
if (range_present & NX_NAT_RANGE_PROTO_MAX) {
if (!NX_NAT_GET_OPT(&proto, opts, len, ovs_be16)) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
nat->range.proto.max = ntohs(proto);
if (nat->range.proto.max < nat->range.proto.min) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
}
} else if (range_present & NX_NAT_RANGE_PROTO_MAX) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
return 0;
}
static void
format_NAT(const struct ofpact_nat *a, const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%snat%s", colors.paren, colors.end);
if (a->flags & (NX_NAT_F_SRC | NX_NAT_F_DST)) {
ds_put_format(fp->s, "%s(%s", colors.paren, colors.end);
ds_put_format(fp->s, a->flags & NX_NAT_F_SRC ? "%ssrc%s" : "%sdst%s",
colors.param, colors.end);
if (a->range_af != AF_UNSPEC) {
ds_put_format(fp->s, "%s=%s", colors.param, colors.end);
if (a->range_af == AF_INET) {
ds_put_format(fp->s, IP_FMT, IP_ARGS(a->range.addr.ipv4.min));
if (a->range.addr.ipv4.max
&& a->range.addr.ipv4.max != a->range.addr.ipv4.min) {
ds_put_format(fp->s, "-"IP_FMT,
IP_ARGS(a->range.addr.ipv4.max));
}
} else if (a->range_af == AF_INET6) {
ipv6_format_addr_bracket(&a->range.addr.ipv6.min, fp->s,
a->range.proto.min);
if (!ipv6_mask_is_any(&a->range.addr.ipv6.max)
&& memcmp(&a->range.addr.ipv6.max, &a->range.addr.ipv6.min,
sizeof(struct in6_addr)) != 0) {
ds_put_char(fp->s, '-');
ipv6_format_addr_bracket(&a->range.addr.ipv6.max, fp->s,
a->range.proto.min);
}
}
if (a->range.proto.min) {
ds_put_char(fp->s, ':');
ds_put_format(fp->s, "%"PRIu16, a->range.proto.min);
if (a->range.proto.max
&& a->range.proto.max != a->range.proto.min) {
ds_put_format(fp->s, "-%"PRIu16, a->range.proto.max);
}
}
ds_put_char(fp->s, ',');
if (a->flags & NX_NAT_F_PERSISTENT) {
ds_put_format(fp->s, "%spersistent%s,",
colors.value, colors.end);
}
if (a->flags & NX_NAT_F_PROTO_HASH) {
ds_put_format(fp->s, "%shash%s,", colors.value, colors.end);
}
if (a->flags & NX_NAT_F_PROTO_RANDOM) {
ds_put_format(fp->s, "%srandom%s,", colors.value, colors.end);
}
}
ds_chomp(fp->s, ',');
ds_put_format(fp->s, "%s)%s", colors.paren, colors.end);
}
}
static char * OVS_WARN_UNUSED_RESULT
str_to_nat_range(const char *s, struct ofpact_nat *on)
{
char ipv6_s[IPV6_SCAN_LEN + 1];
int n = 0;
on->range_af = AF_UNSPEC;
if (ovs_scan_len(s, &n, IP_SCAN_FMT,
IP_SCAN_ARGS(&on->range.addr.ipv4.min))) {
on->range_af = AF_INET;
if (s[n] == '-') {
n++;
if (!ovs_scan_len(s, &n, IP_SCAN_FMT,
IP_SCAN_ARGS(&on->range.addr.ipv4.max))
|| (ntohl(on->range.addr.ipv4.max)
< ntohl(on->range.addr.ipv4.min))) {
goto error;
}
}
} else if ((ovs_scan_len(s, &n, IPV6_SCAN_FMT, ipv6_s)
|| ovs_scan_len(s, &n, "["IPV6_SCAN_FMT"]", ipv6_s))
&& inet_pton(AF_INET6, ipv6_s, &on->range.addr.ipv6.min) == 1) {
on->range_af = AF_INET6;
if (s[n] == '-') {
n++;
if (!(ovs_scan_len(s, &n, IPV6_SCAN_FMT, ipv6_s)
|| ovs_scan_len(s, &n, "["IPV6_SCAN_FMT"]", ipv6_s))
|| inet_pton(AF_INET6, ipv6_s, &on->range.addr.ipv6.max) != 1
|| memcmp(&on->range.addr.ipv6.max, &on->range.addr.ipv6.min,
sizeof on->range.addr.ipv6.max) < 0) {
goto error;
}
}
}
if (on->range_af != AF_UNSPEC && s[n] == ':') {
n++;
if (!ovs_scan_len(s, &n, "%"SCNu16, &on->range.proto.min)) {
goto error;
}
if (s[n] == '-') {
n++;
if (!ovs_scan_len(s, &n, "%"SCNu16, &on->range.proto.max)
|| on->range.proto.max < on->range.proto.min) {
goto error;
}
}
}
if (strlen(s) != n) {
return xasprintf("garbage (%s) after nat range \"%s\" (pos: %d)",
&s[n], s, n);
}
return NULL;
error:
return xasprintf("invalid nat range \"%s\"", s);
}
/* Parses 'arg' as the argument to a "nat" action, and appends such an
* action to 'pp->ofpacts'.
*
* Returns NULL if successful, otherwise a malloc()'d string describing the
* error. The caller is responsible for freeing the returned string. */
static char * OVS_WARN_UNUSED_RESULT
parse_NAT(char *arg, const struct ofpact_parse_params *pp)
{
struct ofpact_nat *on = ofpact_put_NAT(pp->ofpacts);
char *key, *value;
on->flags = 0;
on->range_af = AF_UNSPEC;
while (ofputil_parse_key_value(&arg, &key, &value)) {
char *error = NULL;
if (!strcmp(key, "src")) {
on->flags |= NX_NAT_F_SRC;
error = str_to_nat_range(value, on);
} else if (!strcmp(key, "dst")) {
on->flags |= NX_NAT_F_DST;
error = str_to_nat_range(value, on);
} else if (!strcmp(key, "persistent")) {
on->flags |= NX_NAT_F_PERSISTENT;
} else if (!strcmp(key, "hash")) {
on->flags |= NX_NAT_F_PROTO_HASH;
} else if (!strcmp(key, "random")) {
on->flags |= NX_NAT_F_PROTO_RANDOM;
} else {
error = xasprintf("invalid key \"%s\" in \"nat\" argument",
key);
}
if (error) {
return error;
}
}
if (on->flags & NX_NAT_F_SRC && on->flags & NX_NAT_F_DST) {
return xasprintf("May only specify one of \"src\" or \"dst\".");
}
if (!(on->flags & NX_NAT_F_SRC || on->flags & NX_NAT_F_DST)) {
if (on->flags) {
return xasprintf("Flags allowed only with \"src\" or \"dst\".");
}
if (on->range_af != AF_UNSPEC) {
return xasprintf("Range allowed only with \"src\" or \"dst\".");
}
}
if (on->flags & NX_NAT_F_PROTO_HASH && on->flags & NX_NAT_F_PROTO_RANDOM) {
return xasprintf("Both \"hash\" and \"random\" are not allowed.");
}
return NULL;
}
static enum ofperr
check_NAT(const struct ofpact_nat *a, const struct ofpact_check_params *cp)
{
ovs_be16 dl_type = get_dl_type(&cp->match->flow);
if (!dl_type_is_ip_any(dl_type) ||
(a->range_af == AF_INET && dl_type != htons(ETH_TYPE_IP)) ||
(a->range_af == AF_INET6 && dl_type != htons(ETH_TYPE_IPV6))) {
return OFPERR_OFPBAC_MATCH_INCONSISTENT;
}
return 0;
}
/* Truncate output action. */
struct nx_action_output_trunc {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* At least 16. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_OUTPUT_TRUNC. */
ovs_be16 port; /* Output port */
ovs_be32 max_len; /* Truncate packet to size bytes */
};
OFP_ASSERT(sizeof(struct nx_action_output_trunc) == 16);
static enum ofperr
decode_NXAST_RAW_OUTPUT_TRUNC(const struct nx_action_output_trunc *natrc,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct ofpact_output_trunc *output_trunc;
output_trunc = ofpact_put_OUTPUT_TRUNC(out);
output_trunc->max_len = ntohl(natrc->max_len);
output_trunc->port = u16_to_ofp(ntohs(natrc->port));
if (output_trunc->max_len < ETH_HEADER_LEN) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
return 0;
}
static void
encode_OUTPUT_TRUNC(const struct ofpact_output_trunc *output_trunc,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct nx_action_output_trunc *natrc = put_NXAST_OUTPUT_TRUNC(out);
natrc->max_len = htonl(output_trunc->max_len);
natrc->port = htons(ofp_to_u16(output_trunc->port));
}
static char * OVS_WARN_UNUSED_RESULT
parse_OUTPUT_TRUNC(const char *arg,
const struct ofpact_parse_params *pp OVS_UNUSED)
{
/* Disable output_trunc parsing. Expose as output(port=N,max_len=M) and
* reuse parse_OUTPUT to parse output_trunc action. */
return xasprintf("unknown action %s", arg);
}
static void
format_OUTPUT_TRUNC(const struct ofpact_output_trunc *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%soutput%s(port=", colors.special, colors.end);
ofputil_format_port(a->port, fp->port_map, fp->s);
ds_put_format(fp->s, ",max_len=%"PRIu32")", a->max_len);
}
static enum ofperr
check_OUTPUT_TRUNC(const struct ofpact_output_trunc *a,
const struct ofpact_check_params *cp)
{
return ofpact_check_output_port(a->port, cp->max_ports);
}
/* Meter.
*
* In OpenFlow 1.3 and 1.4, "meter" is an instruction.
* In OpenFlow 1.5 and later, "meter" is an action.
*
* OpenFlow 1.5 */
static enum ofperr
decode_OFPAT_RAW15_METER(uint32_t meter_id,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct ofpact_meter *om = ofpact_put_METER(out);
om->meter_id = meter_id;
om->provider_meter_id = UINT32_MAX; /* No provider meter ID. */
return 0;
}
static void
encode_METER(const struct ofpact_meter *meter,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version == OFP13_VERSION || ofp_version == OFP14_VERSION) {
instruction_put_OFPIT13_METER(out)->meter_id = htonl(meter->meter_id);
} else if (ofp_version >= OFP15_VERSION) {
put_OFPAT15_METER(out, meter->meter_id);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_METER(char *arg, const struct ofpact_parse_params *pp)
{
*pp->usable_protocols &= OFPUTIL_P_OF13_UP;
return str_to_u32(arg, &ofpact_put_METER(pp->ofpacts)->meter_id);
}
static void
format_METER(const struct ofpact_meter *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%smeter:%s%"PRIu32,
colors.param, colors.end, a->meter_id);
}
static enum ofperr
check_METER(const struct ofpact_meter *a,
const struct ofpact_check_params *cp OVS_UNUSED)
{
uint32_t mid = a->meter_id;
return mid == 0 || mid > OFPM13_MAX ? OFPERR_OFPMMFC_INVALID_METER : 0;
}
/* Clear-Actions instruction. */
static void
encode_CLEAR_ACTIONS(const struct ofpact_null *null OVS_UNUSED,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out OVS_UNUSED)
{
if (ofp_version > OFP10_VERSION) {
instruction_put_OFPIT11_CLEAR_ACTIONS(out);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_CLEAR_ACTIONS(char *arg OVS_UNUSED, const struct ofpact_parse_params *pp)
{
ofpact_put_CLEAR_ACTIONS(pp->ofpacts);
return NULL;
}
static void
format_CLEAR_ACTIONS(const struct ofpact_null *a OVS_UNUSED,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sclear_actions%s", colors.value, colors.end);
}
static enum ofperr
check_CLEAR_ACTIONS(const struct ofpact_null *a OVS_UNUSED,
const struct ofpact_check_params *cp OVS_UNUSED)
{
return 0;
}
/* Write-Actions instruction. */
static void
encode_WRITE_ACTIONS(const struct ofpact_nest *actions,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version > OFP10_VERSION) {
const size_t ofs = out->size;
instruction_put_OFPIT11_WRITE_ACTIONS(out);
ofpacts_put_openflow_actions(actions->actions,
ofpact_nest_get_action_len(actions),
out, ofp_version);
ofpacts_update_instruction_actions(out, ofs);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_WRITE_ACTIONS(char *arg, const struct ofpact_parse_params *pp)
{
size_t ofs = ofpacts_pull(pp->ofpacts);
struct ofpact_nest *on;
char *error;
/* Add a Write-Actions instruction and then pull it off. */
ofpact_put(pp->ofpacts, OFPACT_WRITE_ACTIONS, sizeof *on);
ofpbuf_pull(pp->ofpacts, sizeof *on);
/* Parse nested actions.
*
* We pulled off "write-actions" and the previous actions because the
* OFPACT_WRITE_ACTIONS is only partially constructed: its length is such
* that it doesn't actually include the nested actions. That means that
* ofpacts_parse() would reject them as being part of an Apply-Actions that
* follows a Write-Actions, which is an invalid order. */
error = ofpacts_parse(arg, pp, false, OFPACT_WRITE_ACTIONS);
/* Put the Write-Actions back on and update its length. */
on = ofpbuf_push_uninit(pp->ofpacts, sizeof *on);
on->ofpact.len = pp->ofpacts->size;
/* Put any previous actions or instructions back on. */
ofpbuf_push_uninit(pp->ofpacts, ofs);
return error;
}
static void
format_WRITE_ACTIONS(const struct ofpact_nest *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%swrite_actions(%s", colors.paren, colors.end);
ofpacts_format(a->actions, ofpact_nest_get_action_len(a), fp);
ds_put_format(fp->s, "%s)%s", colors.paren, colors.end);
}
static enum ofperr
check_WRITE_ACTIONS(struct ofpact_nest *a,
const struct ofpact_check_params *cp)
{
/* Use a temporary copy of 'cp' to avoid updating 'cp->usable_protocols',
* since we can't check consistency of an action set. */
struct ofpact_check_params tmp = *cp;
return ofpacts_check(a->actions, ofpact_nest_get_action_len(a), &tmp);
}
/* Action structure for NXAST_WRITE_METADATA.
*
* Modifies the 'mask' bits of the metadata value. */
struct nx_action_write_metadata {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length is 32. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_WRITE_METADATA. */
uint8_t zeros[6]; /* Must be zero. */
ovs_be64 metadata; /* Metadata register. */
ovs_be64 mask; /* Metadata mask. */
};
OFP_ASSERT(sizeof(struct nx_action_write_metadata) == 32);
static enum ofperr
decode_NXAST_RAW_WRITE_METADATA(const struct nx_action_write_metadata *nawm,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct ofpact_metadata *om;
if (!is_all_zeros(nawm->zeros, sizeof nawm->zeros)) {
return OFPERR_NXBRC_MUST_BE_ZERO;
}
om = ofpact_put_WRITE_METADATA(out);
om->metadata = nawm->metadata;
om->mask = nawm->mask;
return 0;
}
static void
encode_WRITE_METADATA(const struct ofpact_metadata *metadata,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version == OFP10_VERSION) {
struct nx_action_write_metadata *nawm;
nawm = put_NXAST_WRITE_METADATA(out);
nawm->metadata = metadata->metadata;
nawm->mask = metadata->mask;
} else {
struct ofp11_instruction_write_metadata *oiwm;
oiwm = instruction_put_OFPIT11_WRITE_METADATA(out);
oiwm->metadata = metadata->metadata;
oiwm->metadata_mask = metadata->mask;
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_WRITE_METADATA(char *arg, const struct ofpact_parse_params *pp)
{
struct ofpact_metadata *om;
char *mask = strchr(arg, '/');
*pp->usable_protocols &= OFPUTIL_P_NXM_OF11_UP;
om = ofpact_put_WRITE_METADATA(pp->ofpacts);
if (mask) {
char *error;
*mask = '\0';
error = str_to_be64(mask + 1, &om->mask);
if (error) {
return error;
}
} else {
om->mask = OVS_BE64_MAX;
}
return str_to_be64(arg, &om->metadata);
}
static void
format_WRITE_METADATA(const struct ofpact_metadata *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%swrite_metadata:%s%#"PRIx64,
colors.param, colors.end, ntohll(a->metadata));
if (a->mask != OVS_BE64_MAX) {
ds_put_format(fp->s, "/%#"PRIx64, ntohll(a->mask));
}
}
static enum ofperr
check_WRITE_METADATA(const struct ofpact_metadata *a OVS_UNUSED,
const struct ofpact_check_params *cp OVS_UNUSED)
{
return 0;
}
/* Check packet length action. */
struct nx_action_check_pkt_larger {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* 24. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_OUTPUT_REG. */
ovs_be16 pkt_len; /* Length of the packet to check. */
ovs_be16 offset; /* Result bit offset in destination. */
/* Followed by:
* - 'dst', as an OXM/NXM header (either 4 or 8 bytes).
* - Enough 0-bytes to pad the action out to 24 bytes. */
uint8_t pad[10];
};
OFP_ASSERT(sizeof(struct nx_action_check_pkt_larger) == 24);
static enum ofperr
decode_NXAST_RAW_CHECK_PKT_LARGER(
const struct nx_action_check_pkt_larger *ncpl,
enum ofp_version ofp_version OVS_UNUSED,
const struct vl_mff_map *vl_mff_map, uint64_t *tlv_bitmap,
struct ofpbuf *out)
{
struct ofpact_check_pkt_larger *check_pkt_larger;
enum ofperr error;
check_pkt_larger = ofpact_put_CHECK_PKT_LARGER(out);
check_pkt_larger->pkt_len = ntohs(ncpl->pkt_len);
check_pkt_larger->dst.ofs = ntohs(ncpl->offset);
check_pkt_larger->dst.n_bits = 1;
struct ofpbuf b = ofpbuf_const_initializer(ncpl, ntohs(ncpl->len));
ofpbuf_pull(&b, OBJECT_OFFSETOF(ncpl, pad));
error = mf_vl_mff_nx_pull_header(&b, vl_mff_map,
&check_pkt_larger->dst.field,
NULL, tlv_bitmap);
if (error) {
return error;
}
if (!is_all_zeros(b.data, b.size)) {
return OFPERR_NXBRC_MUST_BE_ZERO;
}
return mf_check_dst(&check_pkt_larger->dst, NULL);
}
static void
encode_CHECK_PKT_LARGER(const struct ofpact_check_pkt_larger *check_pkt_larger,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct nx_action_check_pkt_larger *ncpl = put_NXAST_CHECK_PKT_LARGER(out);
ncpl->pkt_len = htons(check_pkt_larger->pkt_len);
ncpl->offset = htons(check_pkt_larger->dst.ofs);
if (check_pkt_larger->dst.field) {
size_t size = out->size;
out->size = size - sizeof ncpl->pad;
nx_put_mff_header(out, check_pkt_larger->dst.field, 0, false);
out->size = size;
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_CHECK_PKT_LARGER(char *arg, const struct ofpact_parse_params *pp)
{
char *value;
char *delim;
char *key;
char *error = set_field_split_str(arg, &key, &value, &delim);
if (error) {
return error;
}
delim[0] = '\0';
if (value[strlen(value) - 1] == ')') {
value[strlen(value) - 1] = '\0';
}
struct mf_subfield dst;
error = mf_parse_subfield(&dst, key);
if (error) {
return error;
}
if (dst.n_bits != 1) {
return xstrdup("Only 1-bit destination field is allowed");
}
struct ofpact_check_pkt_larger *check_pkt_larger =
ofpact_put_CHECK_PKT_LARGER(pp->ofpacts);
error = str_to_u16(value, NULL, &check_pkt_larger->pkt_len);
if (error) {
return error;
}
check_pkt_larger->dst = dst;
return NULL;
}
static void
format_CHECK_PKT_LARGER(const struct ofpact_check_pkt_larger *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%scheck_pkt_larger(%s%"PRIu32")->",
colors.param, colors.end, a->pkt_len);
mf_format_subfield(&a->dst, fp->s);
}
static enum ofperr
check_CHECK_PKT_LARGER(const struct ofpact_check_pkt_larger *a OVS_UNUSED,
const struct ofpact_check_params *cp OVS_UNUSED)
{
return 0;
}
/* Goto-Table instruction. */
static void
encode_GOTO_TABLE(const struct ofpact_goto_table *goto_table,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version == OFP10_VERSION) {
struct nx_action_resubmit *nar;
nar = put_NXAST_RESUBMIT_TABLE(out);
nar->table = goto_table->table_id;
nar->in_port = htons(ofp_to_u16(OFPP_IN_PORT));
} else {
struct ofp11_instruction_goto_table *oigt;
oigt = instruction_put_OFPIT11_GOTO_TABLE(out);
oigt->table_id = goto_table->table_id;
memset(oigt->pad, 0, sizeof oigt->pad);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_GOTO_TABLE(char *arg, const struct ofpact_parse_params *pp)
{
struct ofpact_goto_table *ogt = ofpact_put_GOTO_TABLE(pp->ofpacts);
if (!ofputil_table_from_string(arg, pp->table_map, &ogt->table_id)) {
return xasprintf("unknown table \"%s\"", arg);
}
return NULL;
}
static void
format_GOTO_TABLE(const struct ofpact_goto_table *a,
const struct ofpact_format_params *fp)
{
ds_put_format(fp->s, "%sgoto_table:%s", colors.param, colors.end);
ofputil_format_table(a->table_id, fp->table_map, fp->s);
}
static enum ofperr
check_GOTO_TABLE(const struct ofpact_goto_table *a,
const struct ofpact_check_params *cp)
{
if ((cp->table_id != 255 && a->table_id <= cp->table_id)
|| (cp->n_tables != 255 && a->table_id >= cp->n_tables)) {
return OFPERR_OFPBIC_BAD_TABLE_ID;
}
return 0;
}
static void
log_bad_action(const struct ofp_action_header *actions, size_t actions_len,
size_t action_offset, enum ofperr error)
{
if (!VLOG_DROP_WARN(&rl)) {
struct ds s;
ds_init(&s);
ds_put_hex_dump(&s, actions, actions_len, 0, false);
VLOG_WARN("bad action at offset %"PRIuSIZE" (%s):\n%s", action_offset,
ofperr_get_name(error), ds_cstr(&s));
ds_destroy(&s);
}
}
static enum ofperr
ofpacts_decode_aligned(struct ofpbuf *openflow, enum ofp_version ofp_version,
const struct vl_mff_map *vl_mff_map,
uint64_t *ofpacts_tlv_bitmap, struct ofpbuf *ofpacts,
size_t *bad_action_offset)
{
size_t decoded_len = 0;
enum ofperr error = 0;
ovs_assert(OFPACT_IS_ALIGNED(openflow->data));
while (openflow->size) {
/* Ensure the next action data is properly aligned before decoding it.
* Some times it's valid to have to decode actions that are not
* properly aligned (e.g., when processing OF 1.0 statistics reply
* messages which have a header of 12 bytes - struct ofp10_stats_msg).
* In other cases the encoder might be buggy.
*/
if (!OFPACT_IS_ALIGNED(openflow->data)) {
ofpbuf_align(openflow);
}
const struct ofp_action_header *action = openflow->data;
enum ofp_raw_action_type raw;
size_t act_len = 0;
uint64_t arg;
error = ofpact_pull_raw(openflow, ofp_version, &raw, &arg, &act_len);
if (!error) {
error = ofpact_decode(action, raw, ofp_version, arg, vl_mff_map,
ofpacts_tlv_bitmap, ofpacts);
}
if (error) {
*bad_action_offset = decoded_len;
goto done;
}
decoded_len += act_len;
}
done:
return error;
}
static enum ofperr
ofpacts_decode(const void *actions, size_t actions_len,
enum ofp_version ofp_version,
const struct vl_mff_map *vl_mff_map,
uint64_t *ofpacts_tlv_bitmap, struct ofpbuf *ofpacts)
{
size_t bad_action_offset = 0;
struct ofpbuf aligned_buf;
if (!OFPACT_IS_ALIGNED(actions)) {
ofpbuf_init(&aligned_buf, actions_len);
ofpbuf_put(&aligned_buf, actions, actions_len);
} else {
ofpbuf_use_data(&aligned_buf, actions, actions_len);
}
enum ofperr error
= ofpacts_decode_aligned(&aligned_buf, ofp_version, vl_mff_map,
ofpacts_tlv_bitmap, ofpacts,
&bad_action_offset);
if (error) {
log_bad_action(actions, actions_len, bad_action_offset, error);
}
ofpbuf_uninit(&aligned_buf);
return error;
}
static enum ofperr
ofpacts_pull_openflow_actions__(struct ofpbuf *openflow,
unsigned int actions_len,
enum ofp_version version,
uint32_t allowed_ovsinsts,
struct ofpbuf *ofpacts,
enum ofpact_type outer_action,
const struct vl_mff_map *vl_mff_map,
uint64_t *ofpacts_tlv_bitmap)
{
const struct ofp_action_header *actions;
enum ofperr error;
if (actions_len % OFP_ACTION_ALIGN != 0) {
VLOG_WARN_RL(&rl, "OpenFlow message actions length %u is not a "
"multiple of %d", actions_len, OFP_ACTION_ALIGN);
return OFPERR_OFPBRC_BAD_LEN;
}
actions = ofpbuf_try_pull(openflow, actions_len);
if (actions == NULL) {
VLOG_WARN_RL(&rl, "OpenFlow message actions length %u exceeds "
"remaining message length (%"PRIu32")",
actions_len, openflow->size);
return OFPERR_OFPBRC_BAD_LEN;
}
error = ofpacts_decode(actions, actions_len, version, vl_mff_map,
ofpacts_tlv_bitmap, ofpacts);
if (!error) {
error = ofpacts_verify(ofpacts->data, ofpacts->size, version,
allowed_ovsinsts, outer_action, NULL);
}
if (error) {
ofpbuf_clear(ofpacts);
}
return error;
}
/* Attempts to convert 'actions_len' bytes of OpenFlow actions from the front
* of 'openflow' into ofpacts. On success, appends the converted actions to
* 'ofpacts'; on failure, clears 'ofpacts'. Returns 0 if successful, otherwise
* an OpenFlow error.
*
* Actions are processed according to their OpenFlow version which
* is provided in the 'version' parameter.
*
* In most places in OpenFlow, actions appear encapsulated in instructions, so
* you should call ofpacts_pull_openflow_instructions() instead of this
* function.
*
* 'vl_mff_map' and 'ofpacts_tlv_bitmap' are optional. If 'vl_mff_map' is
* provided, it is used to get variable length mf_fields with configured
* length in the actions. If an action uses a variable length mf_field,
* 'ofpacts_tlv_bitmap' is updated accordingly for ref counting. If
* 'vl_mff_map' is not provided, the default mf_fields with maximum length
* will be used.
*
* The parsed actions are valid generically, but they may not be valid in a
* specific context. For example, port numbers up to OFPP_MAX are valid
* generically, but specific datapaths may only support port numbers in a
* smaller range. Use ofpacts_check() to additional check whether actions are
* valid in a specific context. */
enum ofperr
ofpacts_pull_openflow_actions(struct ofpbuf *openflow,
unsigned int actions_len,
enum ofp_version version,
const struct vl_mff_map *vl_mff_map,
uint64_t *ofpacts_tlv_bitmap,
struct ofpbuf *ofpacts)
{
return ofpacts_pull_openflow_actions__(
openflow, actions_len, version,
(1u << OVSINST_OFPIT11_APPLY_ACTIONS) | (1u << OVSINST_OFPIT13_METER),
ofpacts, 0, vl_mff_map, ofpacts_tlv_bitmap);
}
/* OpenFlow 1.1 action sets. */
/* Append ofpact 'a' onto the tail of 'out' */
static void
ofpact_copy(struct ofpbuf *out, const struct ofpact *a)
{
ofpbuf_put(out, a, OFPACT_ALIGN(a->len));
}
/* The order in which actions in an action set get executed. This is only for
* the actions where only the last instance added is used. */
#define ACTION_SET_ORDER \
SLOT(OFPACT_STRIP_VLAN) \
SLOT(OFPACT_POP_MPLS) \
SLOT(OFPACT_DECAP) \
SLOT(OFPACT_ENCAP) \
SLOT(OFPACT_PUSH_MPLS) \
SLOT(OFPACT_PUSH_VLAN) \
SLOT(OFPACT_DEC_TTL) \
SLOT(OFPACT_DEC_MPLS_TTL) \
SLOT(OFPACT_DEC_NSH_TTL)
/* Priority for "final actions" in an action set. An action set only gets
* executed at all if at least one of these actions is present. If more than
* one is present, then only the one later in this list is executed (and if
* more than one of a given type, the one later in the action set). */
#define ACTION_SET_FINAL_PRIORITY \
FINAL(OFPACT_CT) \
FINAL(OFPACT_CT_CLEAR) \
FINAL(OFPACT_RESUBMIT) \
FINAL(OFPACT_OUTPUT) \
FINAL(OFPACT_GROUP)
enum action_set_class {
/* Actions that individually can usefully appear only once in an action
* set. If they do appear more than once, then only the last instance is
* honored. */
#define SLOT(OFPACT) ACTION_SLOT_##OFPACT,
ACTION_SET_ORDER
#undef SLOT
/* Final actions. */
#define FINAL(OFPACT) ACTION_SLOT_##OFPACT,
ACTION_SET_FINAL_PRIORITY
#undef FINAL
/* Actions that can appear in an action set more than once and are executed
* in order. */
ACTION_SLOT_SET_OR_MOVE,
/* Actions that shouldn't appear in the action set at all. */
ACTION_SLOT_INVALID
};
/* Count the action set slots. */
#define SLOT(OFPACT) +1
enum { N_ACTION_SLOTS = ACTION_SET_ORDER };
#undef SLOT
static enum action_set_class
action_set_classify(const struct ofpact *a)
{
switch (a->type) {
#define SLOT(OFPACT) case OFPACT: return ACTION_SLOT_##OFPACT;
ACTION_SET_ORDER
#undef SLOT
#define FINAL(OFPACT) case OFPACT: return ACTION_SLOT_##OFPACT;
ACTION_SET_FINAL_PRIORITY
#undef FINAL
case OFPACT_SET_FIELD:
case OFPACT_REG_MOVE:
case OFPACT_SET_ETH_DST:
case OFPACT_SET_ETH_SRC:
case OFPACT_SET_IP_DSCP:
case OFPACT_SET_IP_ECN:
case OFPACT_SET_IP_TTL:
case OFPACT_SET_IPV4_DST:
case OFPACT_SET_IPV4_SRC:
case OFPACT_SET_L4_DST_PORT:
case OFPACT_SET_L4_SRC_PORT:
case OFPACT_SET_MPLS_LABEL:
case OFPACT_SET_MPLS_TC:
case OFPACT_SET_MPLS_TTL:
case OFPACT_SET_QUEUE:
case OFPACT_SET_TUNNEL:
case OFPACT_SET_VLAN_PCP:
case OFPACT_SET_VLAN_VID:
return ACTION_SLOT_SET_OR_MOVE;
case OFPACT_BUNDLE:
case OFPACT_CLEAR_ACTIONS:
case OFPACT_CLONE:
case OFPACT_NAT:
case OFPACT_CONTROLLER:
case OFPACT_ENQUEUE:
case OFPACT_EXIT:
case OFPACT_UNROLL_XLATE:
case OFPACT_FIN_TIMEOUT:
case OFPACT_GOTO_TABLE:
case OFPACT_LEARN:
case OFPACT_CONJUNCTION:
case OFPACT_METER:
case OFPACT_MULTIPATH:
case OFPACT_NOTE:
case OFPACT_OUTPUT_REG:
case OFPACT_OUTPUT_TRUNC:
case OFPACT_POP_QUEUE:
case OFPACT_SAMPLE:
case OFPACT_STACK_POP:
case OFPACT_STACK_PUSH:
case OFPACT_WRITE_ACTIONS:
case OFPACT_WRITE_METADATA:
case OFPACT_DEBUG_RECIRC:
case OFPACT_DEBUG_SLOW:
case OFPACT_CHECK_PKT_LARGER:
case OFPACT_DELETE_FIELD:
return ACTION_SLOT_INVALID;
default:
OVS_NOT_REACHED();
}
}
/* True if an action is allowed in the action set.
* False otherwise. */
static bool
ofpact_is_allowed_in_actions_set(const struct ofpact *a)
{
return action_set_classify(a) != ACTION_SLOT_INVALID;
}
/* Reads 'action_set', which contains ofpacts accumulated by
* OFPACT_WRITE_ACTIONS instructions, and writes equivalent actions to be
* executed directly into 'action_list'. (These names correspond to the
* "Action Set" and "Action List" terms used in OpenFlow 1.1+.)
*
* In general this involves appending the last instance of each action that is
* admissible in the action set in the order described in the OpenFlow
* specification.
*
* Exceptions:
* + output action is only appended if no group action was present in 'in'.
* + As a simplification all set actions are copied in the order the are
* provided in 'in' as many set actions applied to a field has the same
* affect as only applying the last action that sets a field and
* duplicates are removed by do_xlate_actions().
* This has an unwanted side-effect of compsoting multiple
* LOAD_REG actions that touch different regions of the same field. */
void
ofpacts_execute_action_set(struct ofpbuf *action_list,
const struct ofpbuf *action_set)
{
const struct ofpact *slots[N_ACTION_SLOTS] = {NULL, };
struct ofpbuf set_or_move;
ofpbuf_init(&set_or_move, 0);
const struct ofpact *final_action = NULL;
enum action_set_class final_class = 0;
const struct ofpact *cursor;
OFPACT_FOR_EACH (cursor, action_set->data, action_set->size) {
int class = action_set_classify(cursor);
if (class < N_ACTION_SLOTS) {
slots[class] = cursor;
} else if (class < ACTION_SLOT_SET_OR_MOVE) {
if (class >= final_class) {
final_action = cursor;
final_class = class;
}
} else if (class == ACTION_SLOT_SET_OR_MOVE) {
ofpact_copy(&set_or_move, cursor);
} else {
ovs_assert(class == ACTION_SLOT_INVALID);
}
}
if (final_action) {
for (int i = 0; i < N_ACTION_SLOTS; i++) {
if (slots[i]) {
ofpact_copy(action_list, slots[i]);
}
}
ofpbuf_put(action_list, set_or_move.data, set_or_move.size);
ofpact_copy(action_list, final_action);
}
ofpbuf_uninit(&set_or_move);
}
static enum ofperr
ofpacts_decode_for_action_set(const struct ofp_action_header *in,
size_t n_in, enum ofp_version version,
const struct vl_mff_map *vl_mff_map,
uint64_t *ofpacts_tlv_bitmap,
struct ofpbuf *out)
{
enum ofperr error;
struct ofpact *a;
size_t start = out->size;
error = ofpacts_decode(in, n_in, version, vl_mff_map, ofpacts_tlv_bitmap,
out);
if (error) {
return error;
}
OFPACT_FOR_EACH (a, ofpact_end(out->data, start), out->size - start) {
if (!ofpact_is_allowed_in_actions_set(a)) {
VLOG_WARN_RL(&rl, "disallowed action in action set");
return OFPERR_OFPBAC_BAD_TYPE;
}
}
return 0;
}
/* OpenFlow 1.1 instructions. */
struct instruction_type_info {
enum ovs_instruction_type type;
const char *name;
};
static const struct instruction_type_info inst_info[] = {
#define DEFINE_INST(ENUM, STRUCT, EXTENSIBLE, NAME) {OVSINST_##ENUM, NAME},
OVS_INSTRUCTIONS
#undef DEFINE_INST
};
const char *
ovs_instruction_name_from_type(enum ovs_instruction_type type)
{
return type < ARRAY_SIZE(inst_info) ? inst_info[type].name : NULL;
}
int
ovs_instruction_type_from_name(const char *name)
{
const struct instruction_type_info *p;
for (p = inst_info; p < &inst_info[ARRAY_SIZE(inst_info)]; p++) {
if (!strcasecmp(name, p->name)) {
return p->type;
}
}
return -1;
}
enum ovs_instruction_type
ovs_instruction_type_from_ofpact_type(enum ofpact_type type,
enum ofp_version version)
{
switch (type) {
case OFPACT_METER:
return (version >= OFP15_VERSION
? OVSINST_OFPIT11_APPLY_ACTIONS
: OVSINST_OFPIT13_METER);
case OFPACT_CLEAR_ACTIONS:
return OVSINST_OFPIT11_CLEAR_ACTIONS;
case OFPACT_WRITE_ACTIONS:
return OVSINST_OFPIT11_WRITE_ACTIONS;
case OFPACT_WRITE_METADATA:
return OVSINST_OFPIT11_WRITE_METADATA;
case OFPACT_GOTO_TABLE:
return OVSINST_OFPIT11_GOTO_TABLE;
case OFPACT_OUTPUT:
case OFPACT_GROUP:
case OFPACT_CLONE:
case OFPACT_CONTROLLER:
case OFPACT_ENQUEUE:
case OFPACT_OUTPUT_REG:
case OFPACT_OUTPUT_TRUNC:
case OFPACT_BUNDLE:
case OFPACT_SET_VLAN_VID:
case OFPACT_SET_VLAN_PCP:
case OFPACT_STRIP_VLAN:
case OFPACT_PUSH_VLAN:
case OFPACT_SET_ETH_SRC:
case OFPACT_SET_ETH_DST:
case OFPACT_SET_IPV4_SRC:
case OFPACT_SET_IPV4_DST:
case OFPACT_SET_IP_DSCP:
case OFPACT_SET_IP_ECN:
case OFPACT_SET_IP_TTL:
case OFPACT_SET_L4_SRC_PORT:
case OFPACT_SET_L4_DST_PORT:
case OFPACT_REG_MOVE:
case OFPACT_SET_FIELD:
case OFPACT_STACK_PUSH:
case OFPACT_STACK_POP:
case OFPACT_DEC_TTL:
case OFPACT_SET_MPLS_LABEL:
case OFPACT_SET_MPLS_TC:
case OFPACT_SET_MPLS_TTL:
case OFPACT_DEC_MPLS_TTL:
case OFPACT_PUSH_MPLS:
case OFPACT_POP_MPLS:
case OFPACT_SET_TUNNEL:
case OFPACT_SET_QUEUE:
case OFPACT_POP_QUEUE:
case OFPACT_FIN_TIMEOUT:
case OFPACT_RESUBMIT:
case OFPACT_LEARN:
case OFPACT_CONJUNCTION:
case OFPACT_MULTIPATH:
case OFPACT_NOTE:
case OFPACT_EXIT:
case OFPACT_UNROLL_XLATE:
case OFPACT_SAMPLE:
case OFPACT_DEBUG_RECIRC:
case OFPACT_DEBUG_SLOW:
case OFPACT_CT:
case OFPACT_CT_CLEAR:
case OFPACT_NAT:
case OFPACT_ENCAP:
case OFPACT_DECAP:
case OFPACT_DEC_NSH_TTL:
case OFPACT_CHECK_PKT_LARGER:
case OFPACT_DELETE_FIELD:
default:
return OVSINST_OFPIT11_APPLY_ACTIONS;
}
}
enum ofperr
ovs_instruction_type_from_inst_type(enum ovs_instruction_type *instruction_type,
const uint16_t inst_type)
{
switch (inst_type) {
#define DEFINE_INST(ENUM, STRUCT, EXTENSIBLE, NAME) \
case ENUM: \
*instruction_type = OVSINST_##ENUM; \
return 0;
OVS_INSTRUCTIONS
#undef DEFINE_INST
default:
return OFPERR_OFPBIC_UNKNOWN_INST;
}
}
/* Two-way translation between OVS's internal "OVSINST_*" representation of
* instructions and the "OFPIT_*" representation used in OpenFlow. */
struct ovsinst_map {
enum ovs_instruction_type ovsinst; /* Internal name for instruction. */
int ofpit; /* OFPIT_* number from OpenFlow spec. */
};
static const struct ovsinst_map *
get_ovsinst_map(enum ofp_version version)
{
/* OpenFlow 1.1, 1.2, and 1.5 instructions. */
static const struct ovsinst_map of11[] = {
{ OVSINST_OFPIT11_GOTO_TABLE, 1 },
{ OVSINST_OFPIT11_WRITE_METADATA, 2 },
{ OVSINST_OFPIT11_WRITE_ACTIONS, 3 },
{ OVSINST_OFPIT11_APPLY_ACTIONS, 4 },
{ OVSINST_OFPIT11_CLEAR_ACTIONS, 5 },
{ 0, -1 },
};
/* OpenFlow 1.3 and 1.4 instructions. */
static const struct ovsinst_map of13[] = {
{ OVSINST_OFPIT11_GOTO_TABLE, 1 },
{ OVSINST_OFPIT11_WRITE_METADATA, 2 },
{ OVSINST_OFPIT11_WRITE_ACTIONS, 3 },
{ OVSINST_OFPIT11_APPLY_ACTIONS, 4 },
{ OVSINST_OFPIT11_CLEAR_ACTIONS, 5 },
{ OVSINST_OFPIT13_METER, 6 },
{ 0, -1 },
};
return version == OFP13_VERSION || version == OFP14_VERSION ? of13 : of11;
}
/* Converts 'ovsinst_bitmap', a bitmap whose bits correspond to OVSINST_*
* values, into a bitmap of instructions suitable for OpenFlow 'version'
* (OFP11_VERSION or later), and returns the result. */
ovs_be32
ovsinst_bitmap_to_openflow(uint32_t ovsinst_bitmap, enum ofp_version version)
{
uint32_t ofpit_bitmap = 0;
const struct ovsinst_map *x;
for (x = get_ovsinst_map(version); x->ofpit >= 0; x++) {
if (ovsinst_bitmap & (1u << x->ovsinst)) {
ofpit_bitmap |= 1u << x->ofpit;
}
}
return htonl(ofpit_bitmap);
}
/* Converts 'ofpit_bitmap', a bitmap of instructions from an OpenFlow message
* with the given 'version' (OFP11_VERSION or later) into a bitmap whose bits
* correspond to OVSINST_* values, and returns the result. */
uint32_t
ovsinst_bitmap_from_openflow(ovs_be32 ofpit_bitmap, enum ofp_version version)
{
uint32_t ovsinst_bitmap = 0;
const struct ovsinst_map *x;
for (x = get_ovsinst_map(version); x->ofpit >= 0; x++) {
if (ofpit_bitmap & htonl(1u << x->ofpit)) {
ovsinst_bitmap |= 1u << x->ovsinst;
}
}
return ovsinst_bitmap;
}
static inline struct ofp11_instruction *
instruction_next(const struct ofp11_instruction *inst)
{
return ((struct ofp11_instruction *) (void *)
((uint8_t *) inst + ntohs(inst->len)));
}
static inline bool
instruction_is_valid(const struct ofp11_instruction *inst,
size_t n_instructions)
{
uint16_t len = ntohs(inst->len);
return (!(len % OFP11_INSTRUCTION_ALIGN)
&& len >= sizeof *inst
&& len / sizeof *inst <= n_instructions);
}
/* This macro is careful to check for instructions with bad lengths. */
#define INSTRUCTION_FOR_EACH(ITER, LEFT, INSTRUCTIONS, N_INSTRUCTIONS) \
for ((ITER) = (INSTRUCTIONS), (LEFT) = (N_INSTRUCTIONS); \
(LEFT) > 0 && instruction_is_valid(ITER, LEFT); \
((LEFT) -= (ntohs((ITER)->len) \
/ sizeof(struct ofp11_instruction)), \
(ITER) = instruction_next(ITER)))
static enum ofperr
decode_openflow11_instruction(const struct ofp11_instruction *inst,
enum ovs_instruction_type *type)
{
uint16_t len = ntohs(inst->len);
switch (inst->type) {
case CONSTANT_HTONS(OFPIT11_EXPERIMENTER):
return OFPERR_OFPBIC_BAD_EXPERIMENTER;
#define DEFINE_INST(ENUM, STRUCT, EXTENSIBLE, NAME) \
case CONSTANT_HTONS(ENUM): \
if (EXTENSIBLE \
? len >= sizeof(struct STRUCT) \
: len == sizeof(struct STRUCT)) { \
*type = OVSINST_##ENUM; \
return 0; \
} else { \
return OFPERR_OFPBIC_BAD_LEN; \
}
OVS_INSTRUCTIONS
#undef DEFINE_INST
default:
return OFPERR_OFPBIC_UNKNOWN_INST;
}
}
static enum ofperr
decode_openflow11_instructions(const struct ofp11_instruction insts[],
size_t n_insts, enum ofp_version version,
const struct ofp11_instruction *out[])
{
const struct ofp11_instruction *inst;
size_t left;
memset(out, 0, N_OVS_INSTRUCTIONS * sizeof *out);
INSTRUCTION_FOR_EACH (inst, left, insts, n_insts) {
enum ovs_instruction_type type;
enum ofperr error;
error = decode_openflow11_instruction(inst, &type);
if (error) {
return error;
}
if (type == OVSINST_OFPIT13_METER && version >= OFP15_VERSION) {
/* "meter" is an action, not an instruction, in OpenFlow 1.5. */
return OFPERR_OFPBIC_UNKNOWN_INST;
}
if (out[type]) {
return OFPERR_OFPBIC_DUP_INST;
}
out[type] = inst;
}
if (left) {
VLOG_WARN_RL(&rl, "bad instruction format at offset %"PRIuSIZE,
(n_insts - left) * sizeof *inst);
return OFPERR_OFPBIC_BAD_LEN;
}
return 0;
}
static void
get_actions_from_instruction(const struct ofp11_instruction *inst,
const struct ofp_action_header **actions,
size_t *actions_len)
{
*actions = ALIGNED_CAST(const struct ofp_action_header *, inst + 1);
*actions_len = ntohs(inst->len) - sizeof *inst;
}
enum ofperr
ofpacts_pull_openflow_instructions(struct ofpbuf *openflow,
unsigned int instructions_len,
enum ofp_version version,
const struct vl_mff_map *vl_mff_map,
uint64_t *ofpacts_tlv_bitmap,
struct ofpbuf *ofpacts)
{
const struct ofp11_instruction *instructions;
const struct ofp11_instruction *insts[N_OVS_INSTRUCTIONS];
enum ofperr error;
ofpbuf_clear(ofpacts);
if (version == OFP10_VERSION) {
return ofpacts_pull_openflow_actions__(openflow, instructions_len,
version,
(1u << N_OVS_INSTRUCTIONS) - 1,
ofpacts, 0, vl_mff_map,
ofpacts_tlv_bitmap);
}
if (instructions_len % OFP11_INSTRUCTION_ALIGN != 0) {
VLOG_WARN_RL(&rl, "OpenFlow message instructions length %u is not a "
"multiple of %d",
instructions_len, OFP11_INSTRUCTION_ALIGN);
error = OFPERR_OFPBIC_BAD_LEN;
goto exit;
}
instructions = ofpbuf_try_pull(openflow, instructions_len);
if (instructions == NULL) {
VLOG_WARN_RL(&rl, "OpenFlow message instructions length %u exceeds "
"remaining message length (%"PRIu32")",
instructions_len, openflow->size);
error = OFPERR_OFPBIC_BAD_LEN;
goto exit;
}
error = decode_openflow11_instructions(
instructions, instructions_len / OFP11_INSTRUCTION_ALIGN, version,
insts);
if (error) {
goto exit;
}
if (insts[OVSINST_OFPIT13_METER]) {
const struct ofp13_instruction_meter *oim;
struct ofpact_meter *om;
oim = ALIGNED_CAST(const struct ofp13_instruction_meter *,
insts[OVSINST_OFPIT13_METER]);
om = ofpact_put_METER(ofpacts);
om->meter_id = ntohl(oim->meter_id);
om->provider_meter_id = UINT32_MAX; /* No provider meter ID. */
}
if (insts[OVSINST_OFPIT11_APPLY_ACTIONS]) {
const struct ofp_action_header *actions;
size_t actions_len;
get_actions_from_instruction(insts[OVSINST_OFPIT11_APPLY_ACTIONS],
&actions, &actions_len);
error = ofpacts_decode(actions, actions_len, version, vl_mff_map,
ofpacts_tlv_bitmap, ofpacts);
if (error) {
goto exit;
}
}
if (insts[OVSINST_OFPIT11_CLEAR_ACTIONS]) {
instruction_get_OFPIT11_CLEAR_ACTIONS(
insts[OVSINST_OFPIT11_CLEAR_ACTIONS]);
ofpact_put_CLEAR_ACTIONS(ofpacts);
}
if (insts[OVSINST_OFPIT11_WRITE_ACTIONS]) {
struct ofpact_nest *on;
const struct ofp_action_header *actions;
size_t actions_len;
size_t start = ofpacts->size;
ofpact_put(ofpacts, OFPACT_WRITE_ACTIONS,
offsetof(struct ofpact_nest, actions));
get_actions_from_instruction(insts[OVSINST_OFPIT11_WRITE_ACTIONS],
&actions, &actions_len);
error = ofpacts_decode_for_action_set(actions, actions_len,
version, vl_mff_map,
ofpacts_tlv_bitmap, ofpacts);
if (error) {
goto exit;
}
on = ofpbuf_at_assert(ofpacts, start, sizeof *on);
on->ofpact.len = ofpacts->size - start;
}
if (insts[OVSINST_OFPIT11_WRITE_METADATA]) {
const struct ofp11_instruction_write_metadata *oiwm;
struct ofpact_metadata *om;
oiwm = ALIGNED_CAST(const struct ofp11_instruction_write_metadata *,
insts[OVSINST_OFPIT11_WRITE_METADATA]);
om = ofpact_put_WRITE_METADATA(ofpacts);
om->metadata = oiwm->metadata;
om->mask = oiwm->metadata_mask;
}
if (insts[OVSINST_OFPIT11_GOTO_TABLE]) {
const struct ofp11_instruction_goto_table *oigt;
struct ofpact_goto_table *ogt;
oigt = instruction_get_OFPIT11_GOTO_TABLE(
insts[OVSINST_OFPIT11_GOTO_TABLE]);
ogt = ofpact_put_GOTO_TABLE(ofpacts);
ogt->table_id = oigt->table_id;
}
error = ofpacts_verify(ofpacts->data, ofpacts->size, version,
(1u << N_OVS_INSTRUCTIONS) - 1, 0, NULL);
exit:
if (error) {
ofpbuf_clear(ofpacts);
}
return error;
}
/* Update the length of the instruction that begins at offset 'ofs' within
* 'openflow' and contains nested actions that extend to the end of 'openflow'.
* If the instruction contains no nested actions, deletes it entirely. */
static void
ofpacts_update_instruction_actions(struct ofpbuf *openflow, size_t ofs)
{
struct ofp11_instruction_actions *oia;
oia = ofpbuf_at_assert(openflow, ofs, sizeof *oia);
if (openflow->size > ofs + sizeof *oia) {
oia->len = htons(openflow->size - ofs);
} else {
openflow->size = ofs;
}
}
/* Checks that 'port' is a valid output port for OFPACT_OUTPUT, given that the
* switch will never have more than 'max_ports' ports. Returns 0 if 'port' is
* valid, otherwise an OpenFlow error code. */
enum ofperr
ofpact_check_output_port(ofp_port_t port, ofp_port_t max_ports)
{
switch (port) {
case OFPP_IN_PORT:
case OFPP_TABLE:
case OFPP_NORMAL:
case OFPP_FLOOD:
case OFPP_ALL:
case OFPP_CONTROLLER:
case OFPP_LOCAL:
return 0;
case OFPP_NONE:
return OFPERR_OFPBAC_BAD_OUT_PORT;
default:
if (ofp_to_u16(port) < ofp_to_u16(max_ports)) {
return 0;
}
return OFPERR_OFPBAC_BAD_OUT_PORT;
}
}
/* Removes the protocols that require consistency between match and actions
* (that's everything but OpenFlow 1.0) from '*usable_protocols'.
*
* (An example of an inconsistency between match and actions is a flow that
* does not match on an MPLS Ethertype but has an action that pops an MPLS
* label.) */
static void
inconsistent_match(enum ofputil_protocol *usable_protocols)
{
*usable_protocols &= OFPUTIL_P_OF10_ANY;
}
/* May modify flow->packet_type, flow->dl_type, flow->nw_proto and
* flow->vlan_tci, caller must restore them.
*
* Modifies some actions, filling in fields that could not be properly set
* without context. */
static enum ofperr
ofpact_check__(struct ofpact *a, struct ofpact_check_params *cp)
{
switch (a->type) {
#define OFPACT(ENUM, STRUCT, MEMBER, NAME) \
case OFPACT_##ENUM: \
return check_##ENUM(ofpact_get_##ENUM(a), cp);
OFPACTS
#undef OFPACT
default:
OVS_NOT_REACHED();
}
}
/* Checks that the 'ofpacts_len' bytes of actions in 'ofpacts' are
* appropriate for a packet with the prerequisites satisfied by 'flow' in a
* switch with no more than 'max_ports' ports.
*
* If 'ofpacts' and 'flow' are inconsistent with one another, un-sets in
* '*usable_protocols' the protocols that forbid the inconsistency. (An
* example of an inconsistency between match and actions is a flow that does
* not match on an MPLS Ethertype but has an action that pops an MPLS label.)
*
* May annotate ofpacts with information gathered from the 'match'.
*
* May temporarily modify 'match', but restores the changes before
* returning. */
enum ofperr
ofpacts_check(struct ofpact ofpacts[], size_t ofpacts_len,
struct ofpact_check_params *cp)
{
/* Save fields that might temporarily be modified. */
struct flow *flow = &cp->match->flow;
ovs_be32 packet_type = flow->packet_type;
ovs_be16 dl_type = flow->dl_type;
uint8_t nw_proto = flow->nw_proto;
union flow_vlan_hdr vlans[FLOW_MAX_VLAN_HEADERS];
memcpy(vlans, flow->vlans, sizeof vlans);
/* Check all the actions. */
cp->usable_protocols = OFPUTIL_P_ANY;
enum ofperr error = 0;
struct ofpact *a;
OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
error = ofpact_check__(a, cp);
if (error) {
break;
}
}
/* Restore fields that may have been modified. */
flow->packet_type = packet_type;
flow->dl_type = dl_type;
memcpy(flow->vlans, vlans, sizeof vlans);
flow->nw_proto = nw_proto;
return error;
}
/* Like ofpacts_check(), but reports inconsistencies as
* OFPERR_OFPBAC_MATCH_INCONSISTENT rather than clearing bits. */
enum ofperr
ofpacts_check_consistency(struct ofpact ofpacts[], size_t ofpacts_len,
enum ofputil_protocol needed_protocols,
struct ofpact_check_params *cp)
{
enum ofperr error = ofpacts_check(ofpacts, ofpacts_len, cp);
if (!error && needed_protocols & ~cp->usable_protocols) {
return OFPERR_OFPBAC_MATCH_INCONSISTENT;
}
return error;
}
/* Returns the destination field that 'ofpact' would write to, or NULL
* if the action would not write to an mf_field. */
const struct mf_field *
ofpact_get_mf_dst(const struct ofpact *ofpact)
{
if (ofpact->type == OFPACT_SET_FIELD) {
const struct ofpact_set_field *orl;
orl = CONTAINER_OF(ofpact, struct ofpact_set_field, ofpact);
return orl->field;
} else if (ofpact->type == OFPACT_REG_MOVE) {
const struct ofpact_reg_move *orm;
orm = CONTAINER_OF(ofpact, struct ofpact_reg_move, ofpact);
return orm->dst.field;
}
return NULL;
}
static void OVS_PRINTF_FORMAT(2, 3)
verify_error(char **errorp, const char *format, ...)
{
va_list args;
va_start(args, format);
char *error = xvasprintf(format, args);
va_end(args);
if (errorp) {
*errorp = error;
} else {
VLOG_WARN("%s", error);
free(error);
}
}
static enum ofperr
unsupported_nesting(enum ofpact_type action, enum ofpact_type outer_action,
char **errorp)
{
verify_error(errorp, "%s action doesn't support nested action %s",
ofpact_name(outer_action), ofpact_name(action));
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
static bool
field_requires_ct(enum mf_field_id field)
{
return field == MFF_CT_MARK || field == MFF_CT_LABEL;
}
/* Apply nesting constraints for actions */
static enum ofperr
ofpacts_verify_nested(const struct ofpact *a, enum ofpact_type outer_action,
char **errorp)
{
const struct mf_field *field = ofpact_get_mf_dst(a);
if (field && field_requires_ct(field->id) && outer_action != OFPACT_CT) {
verify_error(errorp, "cannot set CT fields outside of ct action");
return OFPERR_OFPBAC_BAD_SET_ARGUMENT;
}
if (a->type == OFPACT_NAT) {
if (outer_action != OFPACT_CT) {
verify_error(errorp,
"Cannot have NAT action outside of \"ct\" action");
return OFPERR_OFPBAC_BAD_SET_ARGUMENT;
}
return 0;
}
if (outer_action) {
ovs_assert(outer_action == OFPACT_WRITE_ACTIONS
|| outer_action == OFPACT_CT
|| outer_action == OFPACT_CLONE);
if (outer_action == OFPACT_CT) {
if (!field) {
return unsupported_nesting(a->type, outer_action, errorp);
} else if (!field_requires_ct(field->id)) {
verify_error(errorp,
"%s action doesn't support nested modification "
"of %s", ofpact_name(outer_action), field->name);
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
}
if (a->type == OFPACT_METER) {
return unsupported_nesting(a->type, outer_action, errorp);
}
}
return 0;
}
/* Verifies that the 'ofpacts_len' bytes of actions in 'ofpacts' are in the
* appropriate order as defined by the OpenFlow spec and as required by Open
* vSwitch.
*
* The 'version' is relevant only for error reporting: Open vSwitch enforces
* the same rules for every version of OpenFlow, but different versions require
* different error codes.
*
* 'allowed_ovsinsts' is a bitmap of OVSINST_* values, in which 1-bits indicate
* instructions that are allowed within 'ofpacts[]'.
*
* If 'outer_action' is not zero, it specifies that the actions are nested
* within another action of type 'outer_action'. */
static enum ofperr
ofpacts_verify(const struct ofpact ofpacts[], size_t ofpacts_len,
enum ofp_version version, uint32_t allowed_ovsinsts,
enum ofpact_type outer_action, char **errorp)
{
const struct ofpact *a;
enum ovs_instruction_type inst;
inst = OVSINST_OFPIT13_METER;
OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
enum ovs_instruction_type next;
enum ofperr error;
if (a->type == OFPACT_CONJUNCTION) {
OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
if (a->type != OFPACT_CONJUNCTION && a->type != OFPACT_NOTE) {
verify_error(errorp, "\"conjunction\" actions may be used "
"along with \"note\" but not any other kind "
"of action (such as the \"%s\" action used "
"here)", ofpact_name(a->type));
return OFPERR_NXBAC_BAD_CONJUNCTION;
}
}
return 0;
}
error = ofpacts_verify_nested(a, outer_action, errorp);
if (error) {
return error;
}
next = ovs_instruction_type_from_ofpact_type(a->type, version);
if (a > ofpacts
&& (inst == OVSINST_OFPIT11_APPLY_ACTIONS
? next < inst
: next <= inst)) {
const char *name = ovs_instruction_name_from_type(inst);
const char *next_name = ovs_instruction_name_from_type(next);
if (next == inst) {
verify_error(errorp, "duplicate %s instruction not allowed, "
"for OpenFlow 1.1+ compatibility", name);
} else {
verify_error(errorp, "invalid instruction ordering: "
"%s must appear before %s, "
"for OpenFlow 1.1+ compatibility",
next_name, name);
}
return OFPERR_OFPBAC_UNSUPPORTED_ORDER;
}
if (!((1u << next) & allowed_ovsinsts)) {
const char *name = ovs_instruction_name_from_type(next);
if (next == OVSINST_OFPIT13_METER && version >= OFP15_VERSION) {
verify_error(errorp, "%s action not allowed here", name);
return OFPERR_OFPBAC_BAD_TYPE;
} else {
verify_error(errorp, "%s instruction not allowed here", name);
return OFPERR_OFPBIC_UNSUP_INST;
}
}
inst = next;
}
return 0;
}
/* Converting ofpacts to OpenFlow. */
static void
encode_ofpact(const struct ofpact *a, enum ofp_version ofp_version,
struct ofpbuf *out)
{
switch (a->type) {
#define OFPACT(ENUM, STRUCT, MEMBER, NAME) \
case OFPACT_##ENUM: \
encode_##ENUM(ofpact_get_##ENUM(a), ofp_version, out); \
return;
OFPACTS
#undef OFPACT
default:
OVS_NOT_REACHED();
}
}
/* Converts the 'ofpacts_len' bytes of ofpacts in 'ofpacts' into OpenFlow
* actions in 'openflow', appending the actions to any existing data in
* 'openflow'. */
size_t
ofpacts_put_openflow_actions(const struct ofpact ofpacts[], size_t ofpacts_len,
struct ofpbuf *openflow,
enum ofp_version ofp_version)
{
const struct ofpact *a;
size_t start_size = openflow->size;
OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
encode_ofpact(a, ofp_version, openflow);
}
return openflow->size - start_size;
}
static enum ovs_instruction_type
ofpact_is_apply_actions(const struct ofpact *a, enum ofp_version version)
{
return (ovs_instruction_type_from_ofpact_type(a->type, version)
== OVSINST_OFPIT11_APPLY_ACTIONS);
}
void
ofpacts_put_openflow_instructions(const struct ofpact ofpacts[],
size_t ofpacts_len,
struct ofpbuf *openflow,
enum ofp_version ofp_version)
{
const struct ofpact *end = ofpact_end(ofpacts, ofpacts_len);
const struct ofpact *a;
if (ofp_version == OFP10_VERSION) {
ofpacts_put_openflow_actions(ofpacts, ofpacts_len, openflow,
ofp_version);
return;
}
a = ofpacts;
while (a < end) {
if (ofpact_is_apply_actions(a, ofp_version)) {
size_t ofs = openflow->size;
instruction_put_OFPIT11_APPLY_ACTIONS(openflow);
do {
encode_ofpact(a, ofp_version, openflow);
a = ofpact_next(a);
} while (a < end && ofpact_is_apply_actions(a, ofp_version));
ofpacts_update_instruction_actions(openflow, ofs);
} else {
encode_ofpact(a, ofp_version, openflow);
a = ofpact_next(a);
}
}
}
/* Sets of supported actions. */
/* Two-way translation between OVS's internal "OFPACT_*" representation of
* actions and the "OFPAT_*" representation used in some OpenFlow version.
* (OFPAT_* numbering varies from one OpenFlow version to another, so a given
* instance is specific to one OpenFlow version.) */
struct ofpact_map {
enum ofpact_type ofpact; /* Internal name for action type. */
int ofpat; /* OFPAT_* number from OpenFlow spec. */
};
static const struct ofpact_map *
get_ofpact_map(enum ofp_version version)
{
/* OpenFlow 1.0 actions. */
static const struct ofpact_map of10[] = {
{ OFPACT_OUTPUT, 0 },
{ OFPACT_SET_VLAN_VID, 1 },
{ OFPACT_SET_VLAN_PCP, 2 },
{ OFPACT_STRIP_VLAN, 3 },
{ OFPACT_SET_ETH_SRC, 4 },
{ OFPACT_SET_ETH_DST, 5 },
{ OFPACT_SET_IPV4_SRC, 6 },
{ OFPACT_SET_IPV4_DST, 7 },
{ OFPACT_SET_IP_DSCP, 8 },
{ OFPACT_SET_L4_SRC_PORT, 9 },
{ OFPACT_SET_L4_DST_PORT, 10 },
{ OFPACT_ENQUEUE, 11 },
{ 0, -1 },
};
/* OpenFlow 1.1 actions. */
static const struct ofpact_map of11[] = {
{ OFPACT_OUTPUT, 0 },
{ OFPACT_SET_VLAN_VID, 1 },
{ OFPACT_SET_VLAN_PCP, 2 },
{ OFPACT_SET_ETH_SRC, 3 },
{ OFPACT_SET_ETH_DST, 4 },
{ OFPACT_SET_IPV4_SRC, 5 },
{ OFPACT_SET_IPV4_DST, 6 },
{ OFPACT_SET_IP_DSCP, 7 },
{ OFPACT_SET_IP_ECN, 8 },
{ OFPACT_SET_L4_SRC_PORT, 9 },
{ OFPACT_SET_L4_DST_PORT, 10 },
/* OFPAT_COPY_TTL_OUT (11) not supported. */
/* OFPAT_COPY_TTL_IN (12) not supported. */
{ OFPACT_SET_MPLS_LABEL, 13 },
{ OFPACT_SET_MPLS_TC, 14 },
{ OFPACT_SET_MPLS_TTL, 15 },
{ OFPACT_DEC_MPLS_TTL, 16 },
{ OFPACT_PUSH_VLAN, 17 },
{ OFPACT_STRIP_VLAN, 18 },
{ OFPACT_PUSH_MPLS, 19 },
{ OFPACT_POP_MPLS, 20 },
{ OFPACT_SET_QUEUE, 21 },
{ OFPACT_GROUP, 22 },
{ OFPACT_SET_IP_TTL, 23 },
{ OFPACT_DEC_TTL, 24 },
{ 0, -1 },
};
/* OpenFlow 1.2, 1.3, and 1.4 actions. */
static const struct ofpact_map of12[] = {
{ OFPACT_OUTPUT, 0 },
/* OFPAT_COPY_TTL_OUT (11) not supported. */
/* OFPAT_COPY_TTL_IN (12) not supported. */
{ OFPACT_SET_MPLS_TTL, 15 },
{ OFPACT_DEC_MPLS_TTL, 16 },
{ OFPACT_PUSH_VLAN, 17 },
{ OFPACT_STRIP_VLAN, 18 },
{ OFPACT_PUSH_MPLS, 19 },
{ OFPACT_POP_MPLS, 20 },
{ OFPACT_SET_QUEUE, 21 },
{ OFPACT_GROUP, 22 },
{ OFPACT_SET_IP_TTL, 23 },
{ OFPACT_DEC_TTL, 24 },
{ OFPACT_SET_FIELD, 25 },
/* OF1.3+ OFPAT_PUSH_PBB (26) not supported. */
/* OF1.3+ OFPAT_POP_PBB (27) not supported. */
{ 0, -1 },
};
switch (version) {
case OFP10_VERSION:
return of10;
case OFP11_VERSION:
return of11;
case OFP12_VERSION:
case OFP13_VERSION:
case OFP14_VERSION:
case OFP15_VERSION:
default:
return of12;
}
}
/* Converts 'ofpacts_bitmap', a bitmap whose bits correspond to OFPACT_*
* values, into a bitmap of actions suitable for OpenFlow 'version', and
* returns the result. */
ovs_be32
ofpact_bitmap_to_openflow(uint64_t ofpacts_bitmap, enum ofp_version version)
{
uint32_t openflow_bitmap = 0;
const struct ofpact_map *x;
for (x = get_ofpact_map(version); x->ofpat >= 0; x++) {
if (ofpacts_bitmap & (UINT64_C(1) << x->ofpact)) {
openflow_bitmap |= 1u << x->ofpat;
}
}
return htonl(openflow_bitmap);
}
/* Converts 'ofpat_bitmap', a bitmap of actions from an OpenFlow message with
* the given 'version' into a bitmap whose bits correspond to OFPACT_* values,
* and returns the result. */
uint64_t
ofpact_bitmap_from_openflow(ovs_be32 ofpat_bitmap, enum ofp_version version)
{
uint64_t ofpact_bitmap = 0;
const struct ofpact_map *x;
for (x = get_ofpact_map(version); x->ofpat >= 0; x++) {
if (ofpat_bitmap & htonl(1u << x->ofpat)) {
ofpact_bitmap |= UINT64_C(1) << x->ofpact;
}
}
return ofpact_bitmap;
}
/* Appends to 's' a string representation of the set of OFPACT_* represented
* by 'ofpacts_bitmap'. */
void
ofpact_bitmap_format(uint64_t ofpacts_bitmap, struct ds *s)
{
if (!ofpacts_bitmap) {
ds_put_cstr(s, "<none>");
} else {
while (ofpacts_bitmap) {
ds_put_format(s, "%s ",
ofpact_name(rightmost_1bit_idx(ofpacts_bitmap)));
ofpacts_bitmap = zero_rightmost_1bit(ofpacts_bitmap);
}
ds_chomp(s, ' ');
}
}
/* Returns true if 'action' outputs to 'port', false otherwise. */
static bool
ofpact_outputs_to_port(const struct ofpact *ofpact, ofp_port_t port)
{
switch (ofpact->type) {
case OFPACT_OUTPUT:
return ofpact_get_OUTPUT(ofpact)->port == port;
case OFPACT_ENQUEUE:
return ofpact_get_ENQUEUE(ofpact)->port == port;
case OFPACT_CONTROLLER:
return port == OFPP_CONTROLLER;
case OFPACT_OUTPUT_REG:
case OFPACT_OUTPUT_TRUNC:
case OFPACT_BUNDLE:
case OFPACT_SET_VLAN_VID:
case OFPACT_SET_VLAN_PCP:
case OFPACT_STRIP_VLAN:
case OFPACT_PUSH_VLAN:
case OFPACT_SET_ETH_SRC:
case OFPACT_SET_ETH_DST:
case OFPACT_SET_IPV4_SRC:
case OFPACT_SET_IPV4_DST:
case OFPACT_SET_IP_DSCP:
case OFPACT_SET_IP_ECN:
case OFPACT_SET_IP_TTL:
case OFPACT_SET_L4_SRC_PORT:
case OFPACT_SET_L4_DST_PORT:
case OFPACT_REG_MOVE:
case OFPACT_SET_FIELD:
case OFPACT_STACK_PUSH:
case OFPACT_STACK_POP:
case OFPACT_DEC_TTL:
case OFPACT_SET_MPLS_LABEL:
case OFPACT_SET_MPLS_TC:
case OFPACT_SET_MPLS_TTL:
case OFPACT_DEC_MPLS_TTL:
case OFPACT_SET_TUNNEL:
case OFPACT_WRITE_METADATA:
case OFPACT_SET_QUEUE:
case OFPACT_POP_QUEUE:
case OFPACT_FIN_TIMEOUT:
case OFPACT_RESUBMIT:
case OFPACT_LEARN:
case OFPACT_CONJUNCTION:
case OFPACT_MULTIPATH:
case OFPACT_NOTE:
case OFPACT_EXIT:
case OFPACT_UNROLL_XLATE:
case OFPACT_PUSH_MPLS:
case OFPACT_POP_MPLS:
case OFPACT_SAMPLE:
case OFPACT_CLEAR_ACTIONS:
case OFPACT_CLONE:
case OFPACT_WRITE_ACTIONS:
case OFPACT_GOTO_TABLE:
case OFPACT_METER:
case OFPACT_GROUP:
case OFPACT_DEBUG_RECIRC:
case OFPACT_DEBUG_SLOW:
case OFPACT_CT:
case OFPACT_CT_CLEAR:
case OFPACT_NAT:
case OFPACT_ENCAP:
case OFPACT_DECAP:
case OFPACT_DEC_NSH_TTL:
case OFPACT_CHECK_PKT_LARGER:
case OFPACT_DELETE_FIELD:
default:
return false;
}
}
/* Returns true if any action in the 'ofpacts_len' bytes of 'ofpacts' outputs
* to 'port', false otherwise. */
bool
ofpacts_output_to_port(const struct ofpact *ofpacts, size_t ofpacts_len,
ofp_port_t port)
{
const struct ofpact *a;
OFPACT_FOR_EACH_FLATTENED (a, ofpacts, ofpacts_len) {
if (ofpact_outputs_to_port(a, port)) {
return true;
}
}
return false;
}
/* Returns true if any action in the 'ofpacts_len' bytes of 'ofpacts' outputs
* to 'group', false otherwise. */
bool
ofpacts_output_to_group(const struct ofpact *ofpacts, size_t ofpacts_len,
uint32_t group_id)
{
const struct ofpact *a;
OFPACT_FOR_EACH_FLATTENED (a, ofpacts, ofpacts_len) {
if (a->type == OFPACT_GROUP
&& ofpact_get_GROUP(a)->group_id == group_id) {
return true;
}
}
return false;
}
/* Returns true if the 'a_len' bytes of actions in 'a' and the 'b_len' bytes of
* actions in 'b' are bytewise identical. */
bool
ofpacts_equal(const struct ofpact *a, size_t a_len,
const struct ofpact *b, size_t b_len)
{
return a_len == b_len && (!a_len || !memcmp(a, b, a_len));
}
/* Returns true if the 'a_len' bytes of actions in 'a' and the 'b_len' bytes of
* actions in 'b' are identical when formatted as strings. (Converting actions
* to string form suppresses some rarely meaningful differences, such as the
* 'compat' member of actions.) */
bool
ofpacts_equal_stringwise(const struct ofpact *a, size_t a_len,
const struct ofpact *b, size_t b_len)
{
struct ds a_s = DS_EMPTY_INITIALIZER;
struct ofpact_format_params a_fp = { .s = &a_s };
ofpacts_format(a, a_len, &a_fp);
struct ds b_s = DS_EMPTY_INITIALIZER;
struct ofpact_format_params b_fp = { .s = &b_s };
ofpacts_format(b, b_len, &b_fp);
bool equal = !strcmp(ds_cstr(&a_s), ds_cstr(&b_s));
ds_destroy(&a_s);
ds_destroy(&b_s);
return equal;
}
/* Finds the OFPACT_METER action, if any, in the 'ofpacts_len' bytes of
* 'ofpacts'. If found, returns its meter ID; if not, returns 0.
*
* This function relies on the order of 'ofpacts' being correct (as checked by
* ofpacts_verify()). */
uint32_t
ofpacts_get_meter(const struct ofpact ofpacts[], size_t ofpacts_len)
{
const struct ofpact *a;
OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
if (a->type == OFPACT_METER) {
return ofpact_get_METER(a)->meter_id;
}
enum ovs_instruction_type inst
= ovs_instruction_type_from_ofpact_type(a->type, 0);
if (inst > OVSINST_OFPIT13_METER) {
break;
}
}
return 0;
}
/* Formatting ofpacts. */
static void
ofpact_format(const struct ofpact *a,
const struct ofpact_format_params *fp)
{
switch (a->type) {
#define OFPACT(ENUM, STRUCT, MEMBER, NAME) \
case OFPACT_##ENUM: \
format_##ENUM(ALIGNED_CAST(const struct STRUCT *, a), fp); \
break;
OFPACTS
#undef OFPACT
default:
OVS_NOT_REACHED();
}
}
/* Appends a string representing the 'ofpacts_len' bytes of ofpacts in
* 'ofpacts' to 'fp->s'. If 'port_map' is nonnull, uses it to translate port
* numbers to names in output. */
void
ofpacts_format(const struct ofpact *ofpacts, size_t ofpacts_len,
const struct ofpact_format_params *fp)
{
if (!ofpacts_len) {
ds_put_format(fp->s, "%sdrop%s", colors.drop, colors.end);
} else {
const struct ofpact *a;
OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
if (a != ofpacts) {
ds_put_char(fp->s, ',');
}
ofpact_format(a, fp);
}
}
}
/* Internal use by helpers. */
/* Implementation of ofpact_put_<ENUM>(). */
void *
ofpact_put(struct ofpbuf *ofpacts, enum ofpact_type type, size_t len)
{
struct ofpact *ofpact;
ofpacts->header = ofpbuf_put_uninit(ofpacts, len);
ofpact = ofpacts->header;
ofpact_init(ofpact, type, len);
return ofpact;
}
/* Implementation of ofpact_init_<ENUM>(). */
void
ofpact_init(struct ofpact *ofpact, enum ofpact_type type, size_t len)
{
memset(ofpact, 0, len);
ofpact->type = type;
ofpact->raw = -1;
ofpact->len = len;
}
/* Implementation of ofpact_finish_<ENUM>().
*
* Finishes composing a variable-length action (begun using
* ofpact_put_<NAME>()), by padding the action to a multiple of OFPACT_ALIGNTO
* bytes and updating its embedded length field. See the large comment near
* the end of ofp-actions.h for more information.
*
* May reallocate 'ofpacts'. Callers should consider updating their 'ofpact'
* pointer to the return value of this function. */
void *
ofpact_finish(struct ofpbuf *ofpacts, struct ofpact *ofpact)
{
ptrdiff_t len;
ovs_assert(ofpact == ofpacts->header);
len = (char *) ofpbuf_tail(ofpacts) - (char *) ofpact;
ovs_assert(len > 0 && len <= UINT16_MAX);
ofpact->len = len;
ofpbuf_padto(ofpacts, OFPACT_ALIGN(ofpacts->size));
return ofpacts->header;
}
static char * OVS_WARN_UNUSED_RESULT
ofpact_parse(enum ofpact_type type, char *value,
const struct ofpact_parse_params *pp)
{
switch (type) {
#define OFPACT(ENUM, STRUCT, MEMBER, NAME) \
case OFPACT_##ENUM: \
return parse_##ENUM(value, pp);
OFPACTS
#undef OFPACT
default:
OVS_NOT_REACHED();
}
}
static bool
ofpact_type_from_name(const char *name, enum ofpact_type *type)
{
#define OFPACT(ENUM, STRUCT, MEMBER, NAME) \
if (!strcasecmp(name, NAME)) { \
*type = OFPACT_##ENUM; \
return true; \
}
OFPACTS
#undef OFPACT
return false;
}
/* Parses 'str' as a series of instructions, and appends them to 'ofpacts'.
*
* Returns NULL if successful, otherwise a malloc()'d string describing the
* error. The caller is responsible for freeing the returned string.
*
* If 'outer_action' is specified, indicates that the actions being parsed
* are nested within another action of the type specified in 'outer_action'. */
static char * OVS_WARN_UNUSED_RESULT
ofpacts_parse__(char *str, const struct ofpact_parse_params *pp,
bool allow_instructions, enum ofpact_type outer_action)
{
uint32_t orig_size = pp->ofpacts->size;
char *key, *value;
bool drop = false;
char *pos;
pos = str;
while (ofputil_parse_key_value(&pos, &key, &value)) {
enum ofpact_type type;
char *error = NULL;
ofp_port_t port;
if (ofpact_type_from_name(key, &type)) {
error = ofpact_parse(type, value, pp);
if (type == OFPACT_METER && !allow_instructions) {
/* Meter is an action in OF1.5 and it's being used in a
* context where instructions aren't allowed. Therefore,
* this must be OF1.5+. */
*pp->usable_protocols &= OFPUTIL_P_OF15_UP;
}
} else if (!strcasecmp(key, "mod_vlan_vid")) {
error = parse_set_vlan_vid(value, true, pp);
} else if (!strcasecmp(key, "mod_vlan_pcp")) {
error = parse_set_vlan_pcp(value, true, pp);
} else if (!strcasecmp(key, "set_nw_ttl")) {
error = parse_SET_IP_TTL(value, pp);
} else if (!strcasecmp(key, "pop_vlan")) {
error = parse_pop_vlan(pp);
} else if (!strcasecmp(key, "set_tunnel64")) {
error = parse_set_tunnel(value, NXAST_RAW_SET_TUNNEL64, pp);
} else if (!strcasecmp(key, "load")) {
error = parse_reg_load(value, pp);
} else if (!strcasecmp(key, "bundle_load")) {
error = parse_bundle_load(value, pp);
} else if (!strcasecmp(key, "drop")) {
drop = true;
} else if (!strcasecmp(key, "apply_actions")) {
return xstrdup("apply_actions is the default instruction");
} else if (ofputil_port_from_string(key, pp->port_map, &port)) {
ofpact_put_OUTPUT(pp->ofpacts)->port = port;
} else {
return xasprintf("unknown action %s", key);
}
if (error) {
return error;
}
if (pp->ofpacts->size - orig_size > UINT16_MAX) {
return xasprintf("input too big");
}
}
if (drop && pp->ofpacts->size) {
return xstrdup("\"drop\" must not be accompanied by any other action "
"or instruction");
}
char *error = NULL;
ofpacts_verify(pp->ofpacts->data, pp->ofpacts->size, OFP11_VERSION,
(allow_instructions
? (1u << N_OVS_INSTRUCTIONS) - 1
: ((1u << OVSINST_OFPIT11_APPLY_ACTIONS)
| (1u << OVSINST_OFPIT13_METER))),
outer_action, &error);
if (error) {
return error;
}
return NULL;
}
static char * OVS_WARN_UNUSED_RESULT
ofpacts_parse(char *str, const struct ofpact_parse_params *pp,
bool allow_instructions, enum ofpact_type outer_action)
{
if (pp->depth >= MAX_OFPACT_PARSE_DEPTH) {
return xstrdup("Action nested too deeply");
}
CONST_CAST(struct ofpact_parse_params *, pp)->depth++;
uint32_t orig_size = pp->ofpacts->size;
char *error = ofpacts_parse__(str, pp, allow_instructions, outer_action);
if (error) {
ofpbuf_truncate(pp->ofpacts, orig_size);
}
CONST_CAST(struct ofpact_parse_params *, pp)->depth--;
return error;
}
static char * OVS_WARN_UNUSED_RESULT
ofpacts_parse_copy(const char *s_, const struct ofpact_parse_params *pp,
bool allow_instructions, enum ofpact_type outer_action)
{
char *error, *s;
*pp->usable_protocols = OFPUTIL_P_ANY;
s = xstrdup(s_);
error = ofpacts_parse(s, pp, allow_instructions, outer_action);
free(s);
return error;
}
/* Parses 's' as a set of OpenFlow actions and appends the actions to
* 'ofpacts'. 'outer_action', if nonzero, specifies that 's' contains actions
* that are nested within the action of type 'outer_action'.
*
* Returns NULL if successful, otherwise a malloc()'d string describing the
* error. The caller is responsible for freeing the returned string. */
char * OVS_WARN_UNUSED_RESULT
ofpacts_parse_actions(const char *s, const struct ofpact_parse_params *pp)
{
return ofpacts_parse_copy(s, pp, false, 0);
}
/* Parses 's' as a set of OpenFlow instructions and appends the instructions to
* 'ofpacts'.
*
* Returns NULL if successful, otherwise a malloc()'d string describing the
* error. The caller is responsible for freeing the returned string. */
char * OVS_WARN_UNUSED_RESULT
ofpacts_parse_instructions(const char *s, const struct ofpact_parse_params *pp)
{
return ofpacts_parse_copy(s, pp, true, 0);
}
const char *
ofpact_name(enum ofpact_type type)
{
switch (type) {
#define OFPACT(ENUM, STRUCT, MEMBER, NAME) case OFPACT_##ENUM: return NAME;
OFPACTS
#undef OFPACT
}
return "<unknown>";
}
/* Low-level action decoding and encoding functions. */
/* Everything needed to identify a particular OpenFlow action. */
struct ofpact_hdrs {
uint32_t vendor; /* 0 if standard, otherwise a vendor code. */
uint16_t type; /* Type if standard, otherwise subtype. */
uint8_t ofp_version; /* From ofp_header. */
};
/* Information about a particular OpenFlow action. */
struct ofpact_raw_instance {
/* The action's identity. */
struct ofpact_hdrs hdrs;
enum ofp_raw_action_type raw;
/* Looking up the action. */
struct hmap_node decode_node; /* Based on 'hdrs'. */
struct hmap_node encode_node; /* Based on 'raw' + 'hdrs.ofp_version'. */
/* The action's encoded size.
*
* If this action is fixed-length, 'min_length' == 'max_length'.
* If it is variable length, then 'max_length' is ROUND_DOWN(UINT16_MAX,
* OFP_ACTION_ALIGN) == 65528. */
unsigned short int min_length;
unsigned short int max_length;
/* For actions with a simple integer numeric argument, 'arg_ofs' is the
* offset of that argument from the beginning of the action and 'arg_len'
* its length, both in bytes.
*
* For actions that take other forms, these are both zero. */
unsigned short int arg_ofs;
unsigned short int arg_len;
/* The name of the action, e.g. "OFPAT_OUTPUT" or "NXAST_RESUBMIT". */
const char *name;
/* If this action is deprecated, a human-readable string with a brief
* explanation. */
const char *deprecation;
};
/* Action header. */
struct ofp_action_header {
/* The meaning of other values of 'type' generally depends on the OpenFlow
* version (see enum ofp_raw_action_type).
*
* Across all OpenFlow versions, OFPAT_VENDOR indicates that 'vendor'
* designates an OpenFlow vendor ID and that the remainder of the action
* structure has a vendor-defined meaning.
*/
#define OFPAT_VENDOR 0xffff
ovs_be16 type;
/* Always a multiple of 8. */
ovs_be16 len;
/* For type == OFPAT_VENDOR only, this is a vendor ID, e.g. NX_VENDOR_ID or
* ONF_VENDOR_ID. Other 'type's use this space for some other purpose. */
ovs_be32 vendor;
};
OFP_ASSERT(sizeof(struct ofp_action_header) == 8);
static bool
ofpact_hdrs_equal(const struct ofpact_hdrs *a,
const struct ofpact_hdrs *b)
{
return (a->vendor == b->vendor
&& a->type == b->type
&& a->ofp_version == b->ofp_version);
}
static uint32_t
ofpact_hdrs_hash(const struct ofpact_hdrs *hdrs)
{
return hash_2words(hdrs->vendor,
((uint32_t) hdrs->type << 16) | hdrs->ofp_version);
}
#include "ofp-actions.inc2"
static struct hmap *
ofpact_decode_hmap(void)
{
static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
static struct hmap hmap;
if (ovsthread_once_start(&once)) {
struct ofpact_raw_instance *inst;
hmap_init(&hmap);
for (inst = all_raw_instances;
inst < &all_raw_instances[ARRAY_SIZE(all_raw_instances)];
inst++) {
hmap_insert(&hmap, &inst->decode_node,
ofpact_hdrs_hash(&inst->hdrs));
}
ovsthread_once_done(&once);
}
return &hmap;
}
static struct hmap *
ofpact_encode_hmap(void)
{
static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
static struct hmap hmap;
if (ovsthread_once_start(&once)) {
struct ofpact_raw_instance *inst;
hmap_init(&hmap);
for (inst = all_raw_instances;
inst < &all_raw_instances[ARRAY_SIZE(all_raw_instances)];
inst++) {
hmap_insert(&hmap, &inst->encode_node,
hash_2words(inst->raw, inst->hdrs.ofp_version));
}
ovsthread_once_done(&once);
}
return &hmap;
}
static enum ofperr
ofpact_decode_raw(enum ofp_version ofp_version,
const struct ofp_action_header *oah, size_t length,
const struct ofpact_raw_instance **instp)
{
const struct ofpact_raw_instance *inst;
struct ofpact_hdrs hdrs;
*instp = NULL;
if (length < sizeof *oah) {
return OFPERR_OFPBAC_BAD_LEN;
}
/* Get base action type. */
if (oah->type == htons(OFPAT_VENDOR)) {
/* Get vendor. */
hdrs.vendor = ntohl(oah->vendor);
if (hdrs.vendor == NX_VENDOR_ID || hdrs.vendor == ONF_VENDOR_ID) {
/* Get extension subtype. */
const struct ext_action_header *nah;
nah = ALIGNED_CAST(const struct ext_action_header *, oah);
if (length < sizeof *nah) {
return OFPERR_OFPBAC_BAD_LEN;
}
hdrs.type = ntohs(nah->subtype);
} else {
VLOG_WARN_RL(&rl, "OpenFlow action has unknown vendor %#"PRIx32,
hdrs.vendor);
return OFPERR_OFPBAC_BAD_VENDOR;
}
} else {
hdrs.vendor = 0;
hdrs.type = ntohs(oah->type);
}
hdrs.ofp_version = ofp_version;
HMAP_FOR_EACH_WITH_HASH (inst, decode_node, ofpact_hdrs_hash(&hdrs),
ofpact_decode_hmap()) {
if (ofpact_hdrs_equal(&hdrs, &inst->hdrs)) {
*instp = inst;
return 0;
}
}
VLOG_WARN_RL(&rl, "unknown %s action for vendor %#"PRIx32" and "
"type %"PRIu16, ofputil_version_to_string(ofp_version),
hdrs.vendor, hdrs.type);
return (hdrs.vendor
? OFPERR_OFPBAC_BAD_VENDOR_TYPE
: OFPERR_OFPBAC_BAD_TYPE);
}
static enum ofperr
ofpact_pull_raw(struct ofpbuf *buf, enum ofp_version ofp_version,
enum ofp_raw_action_type *raw, uint64_t *arg,
size_t *raw_len)
{
const struct ofp_action_header *oah = buf->data;
const struct ofpact_raw_instance *action;
unsigned int length;
enum ofperr error;
*raw = *arg = *raw_len = 0;
error = ofpact_decode_raw(ofp_version, oah, buf->size, &action);
if (error) {
return error;
}
if (action->deprecation) {
VLOG_INFO_RL(&rl, "%s is deprecated in %s (%s)",
action->name, ofputil_version_to_string(ofp_version),
action->deprecation);
}
length = ntohs(oah->len);
if (length > buf->size) {
VLOG_WARN_RL(&rl, "OpenFlow action %s length %u exceeds action buffer "
"length %"PRIu32, action->name, length, buf->size);
return OFPERR_OFPBAC_BAD_LEN;
}
if (length < action->min_length || length > action->max_length) {
VLOG_WARN_RL(&rl, "OpenFlow action %s length %u not in valid range "
"[%hu,%hu]", action->name, length,
action->min_length, action->max_length);
return OFPERR_OFPBAC_BAD_LEN;
}
if (length % 8) {
VLOG_WARN_RL(&rl, "OpenFlow action %s length %u is not a multiple "
"of 8", action->name, length);
return OFPERR_OFPBAC_BAD_LEN;
}
*raw = action->raw;
*arg = 0;
if (action->arg_len) {
const uint8_t *p;
int i;
p = ofpbuf_at_assert(buf, action->arg_ofs, action->arg_len);
for (i = 0; i < action->arg_len; i++) {
*arg = (*arg << 8) | p[i];
}
}
ofpbuf_pull(buf, length);
*raw_len = length;
return 0;
}
static const struct ofpact_raw_instance *
ofpact_raw_lookup(enum ofp_version ofp_version, enum ofp_raw_action_type raw)
{
const struct ofpact_raw_instance *inst;
HMAP_FOR_EACH_WITH_HASH (inst, encode_node, hash_2words(raw, ofp_version),
ofpact_encode_hmap()) {
if (inst->raw == raw && inst->hdrs.ofp_version == ofp_version) {
return inst;
}
}
OVS_NOT_REACHED();
}
static void *
ofpact_put_raw(struct ofpbuf *buf, enum ofp_version ofp_version,
enum ofp_raw_action_type raw, uint64_t arg)
{
const struct ofpact_raw_instance *inst;
struct ofp_action_header *oah;
const struct ofpact_hdrs *hdrs;
inst = ofpact_raw_lookup(ofp_version, raw);
hdrs = &inst->hdrs;
oah = ofpbuf_put_zeros(buf, inst->min_length);
oah->type = htons(hdrs->vendor ? OFPAT_VENDOR : hdrs->type);
oah->len = htons(inst->min_length);
oah->vendor = htonl(hdrs->vendor);
switch (hdrs->vendor) {
case 0:
break;
case NX_VENDOR_ID:
case ONF_VENDOR_ID: {
struct ext_action_header *nah = (struct ext_action_header *) oah;
nah->subtype = htons(hdrs->type);
break;
}
default:
OVS_NOT_REACHED();
}
if (inst->arg_len) {
uint8_t *p = (uint8_t *) oah + inst->arg_ofs + inst->arg_len;
int i;
for (i = 0; i < inst->arg_len; i++) {
*--p = arg;
arg >>= 8;
}
} else {
ovs_assert(!arg);
}
return oah;
}
static void
pad_ofpat(struct ofpbuf *openflow, size_t start_ofs)
{
struct ofp_action_header *oah;
ofpbuf_put_zeros(openflow, PAD_SIZE(openflow->size - start_ofs,
OFP_ACTION_ALIGN));
oah = ofpbuf_at_assert(openflow, start_ofs, sizeof *oah);
oah->len = htons(openflow->size - start_ofs);
}