2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/lib/conntrack.c
David Marchand 2956a61265 dp-packet: Rework L4 checksum offloads.
The DPDK mbuf API specifies 4 status when it comes to L4 checksums:
- RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN: no information about the RX L4 checksum
- RTE_MBUF_F_RX_L4_CKSUM_BAD: the L4 checksum in the packet is wrong
- RTE_MBUF_F_RX_L4_CKSUM_GOOD: the L4 checksum in the packet is valid
- RTE_MBUF_F_RX_L4_CKSUM_NONE: the L4 checksum is not correct in the packet
  data, but the integrity of the L4 data is verified.

Similarly to the IP checksum offloads API, revise OVS L4 offloads API.

No information about the L4 protocol is provided by any netdev-*
implementation, so OVS needs to mark this L4 protocol during flow
extraction.

Rename current API for consistency with dp_packet_(inner_)?l4_checksum_.

Signed-off-by: David Marchand <david.marchand@redhat.com>
Signed-off-by: Ilya Maximets <i.maximets@ovn.org>
2025-06-19 21:02:56 +02:00

3734 lines
113 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2015-2019 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include <ctype.h>
#include <errno.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/icmp6.h>
#include <string.h>
#include "conntrack.h"
#include "conntrack-private.h"
#include "conntrack-tp.h"
#include "coverage.h"
#include "crc32c.h"
#include "csum.h"
#include "ct-dpif.h"
#include "dp-packet.h"
#include "flow.h"
#include "netdev.h"
#include "odp-netlink.h"
#include "odp-util.h"
#include "openvswitch/hmap.h"
#include "openvswitch/types.h"
#include "openvswitch/vlog.h"
#include "ovs-rcu.h"
#include "ovs-thread.h"
#include "openvswitch/poll-loop.h"
#include "random.h"
#include "rculist.h"
#include "timeval.h"
#include "unaligned.h"
VLOG_DEFINE_THIS_MODULE(conntrack);
COVERAGE_DEFINE(conntrack_full);
COVERAGE_DEFINE(conntrack_l3csum_checked);
COVERAGE_DEFINE(conntrack_l3csum_err);
COVERAGE_DEFINE(conntrack_l4csum_checked);
COVERAGE_DEFINE(conntrack_l4csum_err);
COVERAGE_DEFINE(conntrack_lookup_natted_miss);
COVERAGE_DEFINE(conntrack_zone_full);
struct conn_lookup_ctx {
struct conn_key key;
struct conn *conn;
uint32_t hash;
bool reply;
bool icmp_related;
};
enum ftp_ctl_pkt {
/* Control packets with address and/or port specifiers. */
CT_FTP_CTL_INTEREST,
/* Control packets without address and/or port specifiers. */
CT_FTP_CTL_OTHER,
CT_FTP_CTL_INVALID,
};
enum ct_alg_mode {
CT_FTP_MODE_ACTIVE,
CT_FTP_MODE_PASSIVE,
CT_TFTP_MODE,
};
enum ct_alg_ctl_type {
CT_ALG_CTL_NONE,
CT_ALG_CTL_FTP,
CT_ALG_CTL_TFTP,
/* SIP is not enabled through Openflow and presently only used as
* an example of an alg that allows a wildcard src ip. */
CT_ALG_CTL_SIP,
};
struct zone_limit {
struct cmap_node node;
struct conntrack_zone_limit czl;
};
static bool conn_key_extract(struct conntrack *, struct dp_packet *,
ovs_be16 dl_type, struct conn_lookup_ctx *,
uint16_t zone);
static uint32_t conn_key_hash(const struct conn_key *, uint32_t basis);
static void conn_key_reverse(struct conn_key *);
static bool valid_new(struct dp_packet *pkt, struct conn_key *);
static struct conn *new_conn(struct conntrack *ct, struct dp_packet *pkt,
struct conn_key *, long long now,
uint32_t tp_id);
static void delete_conn__(struct conn *);
static void delete_conn(struct conn *);
static enum ct_update_res conn_update(struct conntrack *ct, struct conn *conn,
struct dp_packet *pkt,
struct conn_lookup_ctx *ctx,
long long now);
static long long int conn_expiration(const struct conn *);
static bool conn_expired(const struct conn *, long long now);
static void conn_expire_push_front(struct conntrack *ct, struct conn *conn);
static void set_mark(struct dp_packet *, struct conn *,
uint32_t val, uint32_t mask);
static void set_label(struct dp_packet *, struct conn *,
const struct ovs_key_ct_labels *val,
const struct ovs_key_ct_labels *mask);
static void *clean_thread_main(void *f_);
static bool
nat_get_unique_tuple(struct conntrack *ct, struct conn *conn,
const struct nat_action_info_t *nat_info);
static uint8_t
reverse_icmp_type(uint8_t type);
static uint8_t
reverse_icmp6_type(uint8_t type);
static inline bool
extract_l3_ipv4(struct conn_key *key, const void *data, size_t size,
const char **new_data, bool validate_checksum);
static inline bool
extract_l3_ipv6(struct conn_key *key, const void *data, size_t size,
const char **new_data);
static struct alg_exp_node *
expectation_lookup(struct hmap *alg_expectations, const struct conn_key *key,
uint32_t basis, bool src_ip_wc);
static int
repl_ftp_v4_addr(struct dp_packet *pkt, ovs_be32 v4_addr_rep,
char *ftp_data_v4_start,
size_t addr_offset_from_ftp_data_start, size_t addr_size);
static enum ftp_ctl_pkt
process_ftp_ctl_v4(struct conntrack *ct,
struct dp_packet *pkt,
const struct conn *conn_for_expectation,
ovs_be32 *v4_addr_rep,
char **ftp_data_v4_start,
size_t *addr_offset_from_ftp_data_start,
size_t *addr_size);
static enum ftp_ctl_pkt
detect_ftp_ctl_type(const struct conn_lookup_ctx *ctx,
struct dp_packet *pkt);
static void
expectation_clean(struct conntrack *ct, const struct conn_key *parent_key);
static struct ct_l4_proto *l4_protos[UINT8_MAX + 1];
static void
handle_ftp_ctl(struct conntrack *ct, const struct conn_lookup_ctx *ctx,
struct dp_packet *pkt, struct conn *ec, long long now,
enum ftp_ctl_pkt ftp_ctl, bool nat);
static void
handle_tftp_ctl(struct conntrack *ct,
const struct conn_lookup_ctx *ctx OVS_UNUSED,
struct dp_packet *pkt, struct conn *conn_for_expectation,
long long now OVS_UNUSED, enum ftp_ctl_pkt ftp_ctl OVS_UNUSED,
bool nat OVS_UNUSED);
typedef void (*alg_helper)(struct conntrack *ct,
const struct conn_lookup_ctx *ctx,
struct dp_packet *pkt,
struct conn *conn_for_expectation,
long long now, enum ftp_ctl_pkt ftp_ctl,
bool nat);
static alg_helper alg_helpers[] = {
[CT_ALG_CTL_NONE] = NULL,
[CT_ALG_CTL_FTP] = handle_ftp_ctl,
[CT_ALG_CTL_TFTP] = handle_tftp_ctl,
};
/* The maximum TCP or UDP port number. */
#define CT_MAX_L4_PORT 65535
/* String buffer used for parsing FTP string messages.
* This is sized about twice what is needed to leave some
* margin of error. */
#define LARGEST_FTP_MSG_OF_INTEREST 128
/* FTP port string used in active mode. */
#define FTP_PORT_CMD "PORT"
/* FTP pasv string used in passive mode. */
#define FTP_PASV_REPLY_CODE "227"
/* Maximum decimal digits for port in FTP command.
* The port is represented as two 3 digit numbers with the
* high part a multiple of 256. */
#define MAX_FTP_PORT_DGTS 3
/* FTP extension EPRT string used for active mode. */
#define FTP_EPRT_CMD "EPRT"
/* FTP extension EPSV string used for passive mode. */
#define FTP_EPSV_REPLY "EXTENDED PASSIVE"
/* Maximum decimal digits for port in FTP extended command. */
#define MAX_EXT_FTP_PORT_DGTS 5
/* FTP extended command code for IPv6. */
#define FTP_AF_V6 '2'
/* Used to indicate a wildcard L4 source port number for ALGs.
* This is used for port numbers that we cannot predict in
* expectations. */
#define ALG_WC_SRC_PORT 0
/* If the total number of connections goes above this value, no new connections
* are accepted. */
#define DEFAULT_N_CONN_LIMIT 3000000
/* Does a member by member comparison of two conn_keys; this
* function must be kept in sync with struct conn_key; returns 0
* if the keys are equal or 1 if the keys are not equal. */
static int
conn_key_cmp(const struct conn_key *key1, const struct conn_key *key2)
{
if (!memcmp(&key1->src.addr, &key2->src.addr, sizeof key1->src.addr) &&
!memcmp(&key1->dst.addr, &key2->dst.addr, sizeof key1->dst.addr) &&
(key1->src.icmp_id == key2->src.icmp_id) &&
(key1->src.icmp_type == key2->src.icmp_type) &&
(key1->src.icmp_code == key2->src.icmp_code) &&
(key1->dst.icmp_id == key2->dst.icmp_id) &&
(key1->dst.icmp_type == key2->dst.icmp_type) &&
(key1->dst.icmp_code == key2->dst.icmp_code) &&
(key1->dl_type == key2->dl_type) &&
(key1->zone == key2->zone) &&
(key1->nw_proto == key2->nw_proto)) {
return 0;
}
return 1;
}
/* Initializes the connection tracker 'ct'. The caller is responsible for
* calling 'conntrack_destroy()', when the instance is not needed anymore */
struct conntrack *
conntrack_init(void)
{
static struct ovsthread_once setup_l4_once = OVSTHREAD_ONCE_INITIALIZER;
struct conntrack *ct = xzalloc(sizeof *ct);
/* This value can be used during init (e.g. timeout_policy_init()),
* set it first to ensure it is available.
*/
ct->hash_basis = random_uint32();
ovs_rwlock_init(&ct->resources_lock);
ovs_rwlock_wrlock(&ct->resources_lock);
hmap_init(&ct->alg_expectations);
hindex_init(&ct->alg_expectation_refs);
ovs_rwlock_unlock(&ct->resources_lock);
ovs_mutex_init_adaptive(&ct->ct_lock);
ovs_mutex_lock(&ct->ct_lock);
for (unsigned i = 0; i < ARRAY_SIZE(ct->conns); i++) {
cmap_init(&ct->conns[i]);
}
for (unsigned i = 0; i < ARRAY_SIZE(ct->exp_lists); i++) {
rculist_init(&ct->exp_lists[i]);
}
cmap_init(&ct->zone_limits);
ct->zone_limit_seq = 0;
timeout_policy_init(ct);
ovs_mutex_unlock(&ct->ct_lock);
atomic_count_init(&ct->n_conn, 0);
atomic_init(&ct->n_conn_limit, DEFAULT_N_CONN_LIMIT);
atomic_init(&ct->tcp_seq_chk, true);
atomic_init(&ct->sweep_ms, 20000);
atomic_init(&ct->default_zone_limit, 0);
latch_init(&ct->clean_thread_exit);
ct->clean_thread = ovs_thread_create("ct_clean", clean_thread_main, ct);
ct->ipf = ipf_init();
/* Initialize the l4 protocols. */
if (ovsthread_once_start(&setup_l4_once)) {
for (int i = 0; i < ARRAY_SIZE(l4_protos); i++) {
l4_protos[i] = &ct_proto_other;
}
/* IPPROTO_UDP uses ct_proto_other, so no need to initialize it. */
l4_protos[IPPROTO_TCP] = &ct_proto_tcp;
l4_protos[IPPROTO_ICMP] = &ct_proto_icmp4;
l4_protos[IPPROTO_ICMPV6] = &ct_proto_icmp6;
ovsthread_once_done(&setup_l4_once);
}
return ct;
}
static uint32_t
zone_key_hash(int32_t zone, uint32_t basis)
{
size_t hash = hash_int((OVS_FORCE uint32_t) zone, basis);
return hash;
}
static int64_t
zone_limit_get_limit__(struct conntrack_zone_limit *czl)
{
int64_t limit;
atomic_read_relaxed(&czl->limit, &limit);
return limit;
}
static int64_t
zone_limit_get_limit(struct conntrack *ct, struct conntrack_zone_limit *czl)
{
int64_t limit = zone_limit_get_limit__(czl);
if (limit == ZONE_LIMIT_CONN_DEFAULT) {
atomic_read_relaxed(&ct->default_zone_limit, &limit);
limit = limit ? limit : -1;
}
return limit;
}
static struct zone_limit *
zone_limit_lookup_protected(struct conntrack *ct, int32_t zone)
OVS_REQUIRES(ct->ct_lock)
{
uint32_t hash = zone_key_hash(zone, ct->hash_basis);
struct zone_limit *zl;
CMAP_FOR_EACH_WITH_HASH_PROTECTED (zl, node, hash, &ct->zone_limits) {
if (zl->czl.zone == zone) {
return zl;
}
}
return NULL;
}
static struct zone_limit *
zone_limit_lookup(struct conntrack *ct, int32_t zone)
{
uint32_t hash = zone_key_hash(zone, ct->hash_basis);
struct zone_limit *zl;
CMAP_FOR_EACH_WITH_HASH (zl, node, hash, &ct->zone_limits) {
if (zl->czl.zone == zone) {
return zl;
}
}
return NULL;
}
static struct zone_limit *
zone_limit_create__(struct conntrack *ct, int32_t zone, int64_t limit)
OVS_REQUIRES(ct->ct_lock)
{
struct zone_limit *zl = NULL;
if (zone > DEFAULT_ZONE && zone <= MAX_ZONE) {
zl = xmalloc(sizeof *zl);
atomic_init(&zl->czl.limit, limit);
atomic_count_init(&zl->czl.count, 0);
zl->czl.zone = zone;
zl->czl.zone_limit_seq = ct->zone_limit_seq++;
uint32_t hash = zone_key_hash(zone, ct->hash_basis);
cmap_insert(&ct->zone_limits, &zl->node, hash);
}
return zl;
}
static struct zone_limit *
zone_limit_create(struct conntrack *ct, int32_t zone, int64_t limit)
OVS_REQUIRES(ct->ct_lock)
{
struct zone_limit *zl = zone_limit_lookup_protected(ct, zone);
if (zl) {
return zl;
}
return zone_limit_create__(ct, zone, limit);
}
/* Lazily creates a new entry in the zone_limits cmap if default limit
* is set and there's no entry for the zone. */
static struct zone_limit *
zone_limit_lookup_or_default(struct conntrack *ct, int32_t zone)
OVS_REQUIRES(ct->ct_lock)
{
struct zone_limit *zl = zone_limit_lookup_protected(ct, zone);
if (!zl) {
uint32_t limit;
atomic_read_relaxed(&ct->default_zone_limit, &limit);
if (limit) {
zl = zone_limit_create__(ct, zone, ZONE_LIMIT_CONN_DEFAULT);
}
}
return zl;
}
struct conntrack_zone_info
zone_limit_get(struct conntrack *ct, int32_t zone)
{
struct conntrack_zone_info czl = {
.zone = DEFAULT_ZONE,
.limit = 0,
.count = 0,
};
struct zone_limit *zl = zone_limit_lookup(ct, zone);
if (zl) {
int64_t czl_limit = zone_limit_get_limit__(&zl->czl);
if (czl_limit > ZONE_LIMIT_CONN_DEFAULT) {
czl.zone = zl->czl.zone;
czl.limit = czl_limit;
} else {
atomic_read_relaxed(&ct->default_zone_limit, &czl.limit);
}
czl.count = atomic_count_get(&zl->czl.count);
} else {
atomic_read_relaxed(&ct->default_zone_limit, &czl.limit);
}
return czl;
}
static void
zone_limit_clean__(struct conntrack *ct, struct zone_limit *zl)
OVS_REQUIRES(ct->ct_lock)
{
uint32_t hash = zone_key_hash(zl->czl.zone, ct->hash_basis);
cmap_remove(&ct->zone_limits, &zl->node, hash);
ovsrcu_postpone(free, zl);
}
static void
zone_limit_clean(struct conntrack *ct, struct zone_limit *zl)
OVS_REQUIRES(ct->ct_lock)
{
uint32_t limit;
atomic_read_relaxed(&ct->default_zone_limit, &limit);
/* Do not remove the entry if the default limit is enabled, but
* simply move the limit to default. */
if (limit) {
atomic_store_relaxed(&zl->czl.limit, ZONE_LIMIT_CONN_DEFAULT);
} else {
zone_limit_clean__(ct, zl);
}
}
static void
zone_limit_clean_default(struct conntrack *ct)
OVS_REQUIRES(ct->ct_lock)
{
struct zone_limit *zl;
int64_t czl_limit;
atomic_store_relaxed(&ct->default_zone_limit, 0);
CMAP_FOR_EACH (zl, node, &ct->zone_limits) {
atomic_read_relaxed(&zl->czl.limit, &czl_limit);
if (zone_limit_get_limit__(&zl->czl) == ZONE_LIMIT_CONN_DEFAULT) {
zone_limit_clean__(ct, zl);
}
}
}
static bool
zone_limit_delete__(struct conntrack *ct, int32_t zone)
OVS_REQUIRES(ct->ct_lock)
{
struct zone_limit *zl = NULL;
if (zone == DEFAULT_ZONE) {
zone_limit_clean_default(ct);
} else {
zl = zone_limit_lookup_protected(ct, zone);
if (zl) {
zone_limit_clean(ct, zl);
}
}
return zl != NULL;
}
int
zone_limit_delete(struct conntrack *ct, int32_t zone)
{
bool deleted;
ovs_mutex_lock(&ct->ct_lock);
deleted = zone_limit_delete__(ct, zone);
ovs_mutex_unlock(&ct->ct_lock);
if (zone != DEFAULT_ZONE) {
VLOG_INFO(deleted
? "Deleted zone limit for zone %d"
: "Attempted delete of non-existent zone limit: zone %d",
zone);
}
return 0;
}
static void
zone_limit_update_default(struct conntrack *ct, int32_t zone, uint32_t limit)
{
/* limit zero means delete default. */
if (limit == 0) {
ovs_mutex_lock(&ct->ct_lock);
zone_limit_delete__(ct, zone);
ovs_mutex_unlock(&ct->ct_lock);
} else {
atomic_store_relaxed(&ct->default_zone_limit, limit);
}
}
int
zone_limit_update(struct conntrack *ct, int32_t zone, uint32_t limit)
{
struct zone_limit *zl;
int err = 0;
if (zone == DEFAULT_ZONE) {
zone_limit_update_default(ct, zone, limit);
VLOG_INFO("Set default zone limit to %u", limit);
return err;
}
zl = zone_limit_lookup(ct, zone);
if (zl) {
atomic_store_relaxed(&zl->czl.limit, limit);
VLOG_INFO("Changed zone limit of %u for zone %d", limit, zone);
} else {
ovs_mutex_lock(&ct->ct_lock);
err = zone_limit_create(ct, zone, limit) == NULL;
ovs_mutex_unlock(&ct->ct_lock);
if (!err) {
VLOG_INFO("Created zone limit of %u for zone %d", limit, zone);
} else {
VLOG_WARN("Request to create zone limit for invalid zone %d",
zone);
}
}
return err;
}
static void
conn_clean__(struct conntrack *ct, struct conn *conn)
OVS_REQUIRES(ct->ct_lock)
{
uint32_t hash;
if (conn->alg) {
expectation_clean(ct, &conn->key_node[CT_DIR_FWD].key);
}
hash = conn_key_hash(&conn->key_node[CT_DIR_FWD].key, ct->hash_basis);
cmap_remove(&ct->conns[conn->key_node[CT_DIR_FWD].key.zone],
&conn->key_node[CT_DIR_FWD].cm_node, hash);
if (conn->nat_action) {
hash = conn_key_hash(&conn->key_node[CT_DIR_REV].key,
ct->hash_basis);
cmap_remove(&ct->conns[conn->key_node[CT_DIR_REV].key.zone],
&conn->key_node[CT_DIR_REV].cm_node, hash);
}
rculist_remove(&conn->node);
}
/* Also removes the associated nat 'conn' from the lookup
datastructures. */
static void
conn_clean(struct conntrack *ct, struct conn *conn)
OVS_EXCLUDED(conn->lock, ct->ct_lock)
{
if (atomic_flag_test_and_set(&conn->reclaimed)) {
return;
}
ovs_mutex_lock(&ct->ct_lock);
conn_clean__(ct, conn);
ovs_mutex_unlock(&ct->ct_lock);
struct zone_limit *zl = zone_limit_lookup(ct, conn->admit_zone);
if (zl && zl->czl.zone_limit_seq == conn->zone_limit_seq) {
atomic_count_dec(&zl->czl.count);
}
ovsrcu_postpone(delete_conn, conn);
atomic_count_dec(&ct->n_conn);
}
static void
conn_force_expire(struct conn *conn)
{
atomic_store_relaxed(&conn->expiration, 0);
}
/* Destroys the connection tracker 'ct' and frees all the allocated memory.
* The caller of this function must already have shut down packet input
* and PMD threads (which would have been quiesced). */
void
conntrack_destroy(struct conntrack *ct)
{
struct conn *conn;
latch_set(&ct->clean_thread_exit);
pthread_join(ct->clean_thread, NULL);
latch_destroy(&ct->clean_thread_exit);
for (unsigned i = 0; i < N_EXP_LISTS; i++) {
RCULIST_FOR_EACH (conn, node, &ct->exp_lists[i]) {
conn_clean(ct, conn);
}
}
struct zone_limit *zl;
CMAP_FOR_EACH (zl, node, &ct->zone_limits) {
uint32_t hash = zone_key_hash(zl->czl.zone, ct->hash_basis);
cmap_remove(&ct->zone_limits, &zl->node, hash);
ovsrcu_postpone(free, zl);
}
struct timeout_policy *tp;
CMAP_FOR_EACH (tp, node, &ct->timeout_policies) {
uint32_t hash = hash_int(tp->policy.id, ct->hash_basis);
cmap_remove(&ct->timeout_policies, &tp->node, hash);
ovsrcu_postpone(free, tp);
}
ovs_mutex_lock(&ct->ct_lock);
for (unsigned i = 0; i < ARRAY_SIZE(ct->conns); i++) {
cmap_destroy(&ct->conns[i]);
}
cmap_destroy(&ct->zone_limits);
cmap_destroy(&ct->timeout_policies);
ovs_mutex_unlock(&ct->ct_lock);
ovs_mutex_destroy(&ct->ct_lock);
ovs_rwlock_wrlock(&ct->resources_lock);
struct alg_exp_node *alg_exp_node;
HMAP_FOR_EACH_POP (alg_exp_node, node, &ct->alg_expectations) {
free(alg_exp_node);
}
hmap_destroy(&ct->alg_expectations);
hindex_destroy(&ct->alg_expectation_refs);
ovs_rwlock_unlock(&ct->resources_lock);
ovs_rwlock_destroy(&ct->resources_lock);
ipf_destroy(ct->ipf);
free(ct);
}
static bool
conn_key_lookup(struct conntrack *ct, const struct conn_key *key,
uint32_t hash, long long now, struct conn **conn_out,
bool *reply)
{
struct conn_key_node *keyn;
struct conn *conn = NULL;
bool found = false;
CMAP_FOR_EACH_WITH_HASH (keyn, cm_node, hash, &ct->conns[key->zone]) {
if (keyn->dir == CT_DIR_FWD) {
conn = CONTAINER_OF(keyn, struct conn, key_node[CT_DIR_FWD]);
} else {
conn = CONTAINER_OF(keyn, struct conn, key_node[CT_DIR_REV]);
}
if (conn_expired(conn, now)) {
continue;
}
for (int i = CT_DIR_FWD; i < CT_DIRS; i++) {
if (!conn_key_cmp(&conn->key_node[i].key, key)) {
found = true;
if (reply) {
*reply = (i == CT_DIR_REV);
}
goto out_found;
}
}
}
out_found:
if (found && conn_out) {
*conn_out = conn;
} else if (conn_out) {
*conn_out = NULL;
}
return found;
}
static bool
conn_lookup(struct conntrack *ct, const struct conn_key *key,
long long now, struct conn **conn_out, bool *reply)
{
uint32_t hash = conn_key_hash(key, ct->hash_basis);
return conn_key_lookup(ct, key, hash, now, conn_out, reply);
}
static void
write_ct_md(struct dp_packet *pkt, uint16_t zone, const struct conn *conn,
const struct conn_key *key, const struct alg_exp_node *alg_exp)
{
pkt->md.ct_state |= CS_TRACKED;
pkt->md.ct_zone = zone;
if (conn) {
ovs_mutex_lock(&conn->lock);
pkt->md.ct_mark = conn->mark;
pkt->md.ct_label = conn->label;
ovs_mutex_unlock(&conn->lock);
} else {
pkt->md.ct_mark = 0;
pkt->md.ct_label = OVS_U128_ZERO;
}
/* Use the original direction tuple if we have it. */
if (conn) {
if (conn->alg_related) {
key = &conn->parent_key;
} else {
key = &conn->key_node[CT_DIR_FWD].key;
}
} else if (alg_exp) {
pkt->md.ct_mark = alg_exp->parent_mark;
pkt->md.ct_label = alg_exp->parent_label;
key = &alg_exp->parent_key;
}
pkt->md.ct_orig_tuple_ipv6 = false;
if (key) {
if (key->dl_type == htons(ETH_TYPE_IP)) {
pkt->md.ct_orig_tuple.ipv4 = (struct ovs_key_ct_tuple_ipv4) {
key->src.addr.ipv4,
key->dst.addr.ipv4,
key->nw_proto != IPPROTO_ICMP
? key->src.port : htons(key->src.icmp_type),
key->nw_proto != IPPROTO_ICMP
? key->dst.port : htons(key->src.icmp_code),
key->nw_proto,
};
} else {
pkt->md.ct_orig_tuple_ipv6 = true;
pkt->md.ct_orig_tuple.ipv6 = (struct ovs_key_ct_tuple_ipv6) {
key->src.addr.ipv6,
key->dst.addr.ipv6,
key->nw_proto != IPPROTO_ICMPV6
? key->src.port : htons(key->src.icmp_type),
key->nw_proto != IPPROTO_ICMPV6
? key->dst.port : htons(key->src.icmp_code),
key->nw_proto,
};
}
} else {
memset(&pkt->md.ct_orig_tuple, 0, sizeof pkt->md.ct_orig_tuple);
}
}
static uint8_t
get_ip_proto(const struct dp_packet *pkt)
{
uint8_t ip_proto;
struct eth_header *l2 = dp_packet_eth(pkt);
if (l2->eth_type == htons(ETH_TYPE_IPV6)) {
struct ovs_16aligned_ip6_hdr *nh6 = dp_packet_l3(pkt);
ip_proto = nh6->ip6_ctlun.ip6_un1.ip6_un1_nxt;
} else {
struct ip_header *l3_hdr = dp_packet_l3(pkt);
ip_proto = l3_hdr->ip_proto;
}
return ip_proto;
}
static bool
is_ftp_ctl(const enum ct_alg_ctl_type ct_alg_ctl)
{
return ct_alg_ctl == CT_ALG_CTL_FTP;
}
static enum ct_alg_ctl_type
get_alg_ctl_type(const struct dp_packet *pkt, const char *helper)
{
/* CT_IPPORT_FTP/TFTP is used because IPPORT_FTP/TFTP in not defined
* in OSX, at least in in.h. Since these values will never change, remove
* the external dependency. */
enum { CT_IPPORT_FTP = 21 };
enum { CT_IPPORT_TFTP = 69 };
uint8_t ip_proto = get_ip_proto(pkt);
struct udp_header *uh = dp_packet_l4(pkt);
struct tcp_header *th = dp_packet_l4(pkt);
ovs_be16 ftp_port = htons(CT_IPPORT_FTP);
ovs_be16 tftp_port = htons(CT_IPPORT_TFTP);
if (helper) {
if ((ip_proto == IPPROTO_TCP) &&
!strncmp(helper, "ftp", strlen("ftp"))) {
return CT_ALG_CTL_FTP;
}
if ((ip_proto == IPPROTO_UDP) &&
!strncmp(helper, "tftp", strlen("tftp"))) {
return CT_ALG_CTL_TFTP;
}
}
if (ip_proto == IPPROTO_UDP && uh->udp_dst == tftp_port) {
return CT_ALG_CTL_TFTP;
} else if (ip_proto == IPPROTO_TCP &&
(th->tcp_src == ftp_port || th->tcp_dst == ftp_port)) {
return CT_ALG_CTL_FTP;
}
return CT_ALG_CTL_NONE;
}
static bool
alg_src_ip_wc(enum ct_alg_ctl_type alg_ctl_type)
{
if (alg_ctl_type == CT_ALG_CTL_SIP) {
return true;
}
return false;
}
static void
handle_alg_ctl(struct conntrack *ct, const struct conn_lookup_ctx *ctx,
struct dp_packet *pkt, enum ct_alg_ctl_type ct_alg_ctl,
struct conn *conn, long long now, bool nat)
{
/* ALG control packet handling with expectation creation. */
if (OVS_UNLIKELY(alg_helpers[ct_alg_ctl] && conn && conn->alg)) {
ovs_mutex_lock(&conn->lock);
alg_helpers[ct_alg_ctl](ct, ctx, pkt, conn, now, CT_FTP_CTL_INTEREST,
nat);
ovs_mutex_unlock(&conn->lock);
}
}
static void
pat_packet(struct dp_packet *pkt, const struct conn_key *key)
{
if (key->nw_proto == IPPROTO_TCP) {
packet_set_tcp_port(pkt, key->dst.port, key->src.port);
} else if (key->nw_proto == IPPROTO_UDP) {
packet_set_udp_port(pkt, key->dst.port, key->src.port);
} else if (key->nw_proto == IPPROTO_SCTP) {
packet_set_sctp_port(pkt, key->dst.port, key->src.port);
}
}
static uint16_t
nat_action_reverse(uint16_t nat_action)
{
if (nat_action & NAT_ACTION_SRC) {
nat_action ^= NAT_ACTION_SRC;
nat_action |= NAT_ACTION_DST;
} else if (nat_action & NAT_ACTION_DST) {
nat_action ^= NAT_ACTION_DST;
nat_action |= NAT_ACTION_SRC;
}
return nat_action;
}
static void
nat_packet_ipv4(struct dp_packet *pkt, const struct conn_key *key,
uint16_t nat_action)
{
struct ip_header *nh = dp_packet_l3(pkt);
if (nat_action & NAT_ACTION_SRC) {
packet_set_ipv4_addr(pkt, &nh->ip_src, key->dst.addr.ipv4);
} else if (nat_action & NAT_ACTION_DST) {
packet_set_ipv4_addr(pkt, &nh->ip_dst, key->src.addr.ipv4);
}
}
static void
nat_packet_ipv6(struct dp_packet *pkt, const struct conn_key *key,
uint16_t nat_action)
{
struct ovs_16aligned_ip6_hdr *nh6 = dp_packet_l3(pkt);
if (nat_action & NAT_ACTION_SRC) {
packet_set_ipv6_addr(pkt, key->nw_proto, nh6->ip6_src.be32,
&key->dst.addr.ipv6, true);
} else if (nat_action & NAT_ACTION_DST) {
packet_set_ipv6_addr(pkt, key->nw_proto, nh6->ip6_dst.be32,
&key->src.addr.ipv6, true);
}
}
static void
nat_inner_packet(struct dp_packet *pkt, struct conn_key *key,
uint16_t nat_action)
{
char *tail = dp_packet_tail(pkt);
uint16_t pad = dp_packet_l2_pad_size(pkt);
struct conn_key inner_key;
const char *inner_l4 = NULL;
uint16_t orig_l3_ofs = pkt->l3_ofs;
uint16_t orig_l4_ofs = pkt->l4_ofs;
uint32_t orig_offloads = pkt->offloads;
void *l3 = dp_packet_l3(pkt);
void *l4 = dp_packet_l4(pkt);
void *inner_l3;
/* These calls are already verified to succeed during the code path from
* 'conn_key_extract()' which calls
* 'extract_l4_icmp()'/'extract_l4_icmp6()'. */
if (key->dl_type == htons(ETH_TYPE_IP)) {
inner_l3 = (char *) l4 + sizeof(struct icmp_header);
extract_l3_ipv4(&inner_key, inner_l3, tail - ((char *) inner_l3) - pad,
&inner_l4, false);
} else {
inner_l3 = (char *) l4 + sizeof(struct icmp6_data_header);
extract_l3_ipv6(&inner_key, inner_l3, tail - ((char *) inner_l3) - pad,
&inner_l4);
}
pkt->l3_ofs += (char *) inner_l3 - (char *) l3;
pkt->l4_ofs += inner_l4 - (char *) l4;
/* Drop any offloads to force below helpers to calculate checksums
* if needed. */
dp_packet_ip_checksum_set_unknown(pkt);
dp_packet_l4_checksum_set_unknown(pkt);
/* Reverse the key for inner packet. */
struct conn_key rev_key = *key;
conn_key_reverse(&rev_key);
pat_packet(pkt, &rev_key);
if (key->dl_type == htons(ETH_TYPE_IP)) {
nat_packet_ipv4(pkt, &rev_key, nat_action);
struct icmp_header *icmp = (struct icmp_header *) l4;
icmp->icmp_csum = 0;
icmp->icmp_csum = csum(icmp, tail - (char *) icmp - pad);
} else {
nat_packet_ipv6(pkt, &rev_key, nat_action);
struct icmp6_data_header *icmp6 = (struct icmp6_data_header *) l4;
icmp6->icmp6_base.icmp6_cksum = 0;
icmp6->icmp6_base.icmp6_cksum =
packet_csum_upperlayer6(l3, icmp6, IPPROTO_ICMPV6,
tail - (char *) icmp6 - pad);
}
pkt->l3_ofs = orig_l3_ofs;
pkt->l4_ofs = orig_l4_ofs;
pkt->offloads = orig_offloads;
}
static void
nat_packet(struct dp_packet *pkt, struct conn *conn, bool reply, bool related)
{
enum key_dir dir = reply ? CT_DIR_FWD : CT_DIR_REV;
struct conn_key *key = &conn->key_node[dir].key;
uint16_t nat_action = reply ? nat_action_reverse(conn->nat_action)
: conn->nat_action;
/* Update ct_state. */
if (nat_action & NAT_ACTION_SRC) {
pkt->md.ct_state |= CS_SRC_NAT;
} else if (nat_action & NAT_ACTION_DST) {
pkt->md.ct_state |= CS_DST_NAT;
}
/* Reverse the key for outer header. */
if (key->dl_type == htons(ETH_TYPE_IP)) {
nat_packet_ipv4(pkt, key, nat_action);
} else {
nat_packet_ipv6(pkt, key, nat_action);
}
if (nat_action & NAT_ACTION_SRC || nat_action & NAT_ACTION_DST) {
if (OVS_UNLIKELY(related)) {
nat_action = nat_action_reverse(nat_action);
nat_inner_packet(pkt, key, nat_action);
} else {
pat_packet(pkt, key);
}
}
}
static void
conn_seq_skew_set(struct conntrack *ct, const struct conn *conn_in,
long long now, int seq_skew, bool seq_skew_dir)
{
struct conn *conn;
conn_lookup(ct, &conn_in->key_node[CT_DIR_FWD].key, now, &conn, NULL);
if (conn && seq_skew) {
conn->seq_skew = seq_skew;
conn->seq_skew_dir = seq_skew_dir;
}
}
static bool
ct_verify_helper(const char *helper, enum ct_alg_ctl_type ct_alg_ctl)
{
if (ct_alg_ctl == CT_ALG_CTL_NONE) {
return true;
} else if (helper) {
if ((ct_alg_ctl == CT_ALG_CTL_FTP) &&
!strncmp(helper, "ftp", strlen("ftp"))) {
return true;
} else if ((ct_alg_ctl == CT_ALG_CTL_TFTP) &&
!strncmp(helper, "tftp", strlen("tftp"))) {
return true;
} else {
return false;
}
} else {
return false;
}
}
static struct conn *
conn_not_found(struct conntrack *ct, struct dp_packet *pkt,
struct conn_lookup_ctx *ctx, bool commit, long long now,
const struct nat_action_info_t *nat_action_info,
const char *helper, const struct alg_exp_node *alg_exp,
enum ct_alg_ctl_type ct_alg_ctl, uint32_t tp_id)
OVS_REQUIRES(ct->ct_lock)
{
struct conn *nc = NULL;
if (!valid_new(pkt, &ctx->key)) {
pkt->md.ct_state = CS_INVALID;
return nc;
}
pkt->md.ct_state = CS_NEW;
if (alg_exp) {
pkt->md.ct_state |= CS_RELATED;
}
if (commit) {
int64_t czl_limit;
struct conn_key_node *fwd_key_node, *rev_key_node;
struct zone_limit *zl = zone_limit_lookup_or_default(ct,
ctx->key.zone);
if (zl) {
czl_limit = zone_limit_get_limit(ct, &zl->czl);
if (czl_limit >= 0 &&
atomic_count_get(&zl->czl.count) >= czl_limit) {
COVERAGE_INC(conntrack_zone_full);
return nc;
}
}
unsigned int n_conn_limit;
atomic_read_relaxed(&ct->n_conn_limit, &n_conn_limit);
if (atomic_count_get(&ct->n_conn) >= n_conn_limit) {
COVERAGE_INC(conntrack_full);
return nc;
}
nc = new_conn(ct, pkt, &ctx->key, now, tp_id);
fwd_key_node = &nc->key_node[CT_DIR_FWD];
rev_key_node = &nc->key_node[CT_DIR_REV];
memcpy(&fwd_key_node->key, &ctx->key, sizeof fwd_key_node->key);
memcpy(&rev_key_node->key, &fwd_key_node->key,
sizeof rev_key_node->key);
conn_key_reverse(&rev_key_node->key);
if (ct_verify_helper(helper, ct_alg_ctl)) {
nc->alg = nullable_xstrdup(helper);
}
if (alg_exp) {
nc->alg_related = true;
nc->mark = alg_exp->parent_mark;
nc->label = alg_exp->parent_label;
nc->parent_key = alg_exp->parent_key;
}
ovs_mutex_init_adaptive(&nc->lock);
atomic_flag_clear(&nc->reclaimed);
fwd_key_node->dir = CT_DIR_FWD;
rev_key_node->dir = CT_DIR_REV;
if (zl) {
nc->admit_zone = zl->czl.zone;
nc->zone_limit_seq = zl->czl.zone_limit_seq;
} else {
nc->admit_zone = INVALID_ZONE;
}
if (nat_action_info) {
nc->nat_action = nat_action_info->nat_action;
if (alg_exp) {
if (alg_exp->nat_rpl_dst) {
rev_key_node->key.dst.addr = alg_exp->alg_nat_repl_addr;
nc->nat_action = NAT_ACTION_SRC;
} else {
rev_key_node->key.src.addr = alg_exp->alg_nat_repl_addr;
nc->nat_action = NAT_ACTION_DST;
}
} else {
bool nat_res = nat_get_unique_tuple(ct, nc, nat_action_info);
if (!nat_res) {
goto nat_res_exhaustion;
}
}
nat_packet(pkt, nc, false, ctx->icmp_related);
uint32_t rev_hash = conn_key_hash(&rev_key_node->key,
ct->hash_basis);
cmap_insert(&ct->conns[ctx->key.zone],
&rev_key_node->cm_node, rev_hash);
}
cmap_insert(&ct->conns[ctx->key.zone],
&fwd_key_node->cm_node, ctx->hash);
conn_expire_push_front(ct, nc);
atomic_count_inc(&ct->n_conn);
if (zl) {
atomic_count_inc(&zl->czl.count);
}
ctx->conn = nc; /* For completeness. */
}
return nc;
/* This would be a user error or a DOS attack. A user error is prevented
* by allocating enough combinations of NAT addresses when combined with
* ephemeral ports. A DOS attack should be protected against with
* firewall rules or a separate firewall. Also using zone partitioning
* can limit DoS impact. */
nat_res_exhaustion:
delete_conn__(nc);
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 5);
VLOG_WARN_RL(&rl, "Unable to NAT due to tuple space exhaustion - "
"if DoS attack, use firewalling and/or zone partitioning.");
return NULL;
}
static bool
conn_update_state(struct conntrack *ct, struct dp_packet *pkt,
struct conn_lookup_ctx *ctx, struct conn *conn,
long long now)
{
bool create_new_conn = false;
if (ctx->icmp_related) {
pkt->md.ct_state |= CS_RELATED;
if (ctx->reply) {
pkt->md.ct_state |= CS_REPLY_DIR;
}
} else {
if (conn->alg_related) {
pkt->md.ct_state |= CS_RELATED;
}
enum ct_update_res res = conn_update(ct, conn, pkt, ctx, now);
switch (res) {
case CT_UPDATE_VALID:
pkt->md.ct_state |= CS_ESTABLISHED;
pkt->md.ct_state &= ~CS_NEW;
if (ctx->reply) {
pkt->md.ct_state |= CS_REPLY_DIR;
}
break;
case CT_UPDATE_INVALID:
pkt->md.ct_state = CS_INVALID;
break;
case CT_UPDATE_NEW:
if (conn_lookup(ct, &conn->key_node[CT_DIR_FWD].key,
now, NULL, NULL)) {
conn_force_expire(conn);
}
create_new_conn = true;
break;
case CT_UPDATE_VALID_NEW:
pkt->md.ct_state |= CS_NEW;
break;
default:
OVS_NOT_REACHED();
}
}
return create_new_conn;
}
static void
handle_nat(struct dp_packet *pkt, struct conn *conn,
uint16_t zone, bool reply, bool related)
{
if (conn->nat_action &&
(!(pkt->md.ct_state & (CS_SRC_NAT | CS_DST_NAT)) ||
(pkt->md.ct_state & (CS_SRC_NAT | CS_DST_NAT) &&
zone != pkt->md.ct_zone))) {
if (pkt->md.ct_state & (CS_SRC_NAT | CS_DST_NAT)) {
pkt->md.ct_state &= ~(CS_SRC_NAT | CS_DST_NAT);
}
nat_packet(pkt, conn, reply, related);
}
}
static bool
check_orig_tuple(struct conntrack *ct, struct dp_packet *pkt,
struct conn_lookup_ctx *ctx_in, long long now,
struct conn **conn,
const struct nat_action_info_t *nat_action_info)
{
if (!(pkt->md.ct_state & (CS_SRC_NAT | CS_DST_NAT)) ||
(ctx_in->key.dl_type == htons(ETH_TYPE_IP) &&
!pkt->md.ct_orig_tuple.ipv4.ipv4_proto) ||
(ctx_in->key.dl_type == htons(ETH_TYPE_IPV6) &&
!pkt->md.ct_orig_tuple.ipv6.ipv6_proto) ||
nat_action_info) {
return false;
}
struct conn_key key;
memset(&key, 0 , sizeof key);
if (ctx_in->key.dl_type == htons(ETH_TYPE_IP)) {
key.src.addr.ipv4 = pkt->md.ct_orig_tuple.ipv4.ipv4_src;
key.dst.addr.ipv4 = pkt->md.ct_orig_tuple.ipv4.ipv4_dst;
if (ctx_in->key.nw_proto == IPPROTO_ICMP) {
key.src.icmp_id = ctx_in->key.src.icmp_id;
key.dst.icmp_id = ctx_in->key.dst.icmp_id;
uint16_t src_port = ntohs(pkt->md.ct_orig_tuple.ipv4.src_port);
key.src.icmp_type = (uint8_t) src_port;
key.dst.icmp_type = reverse_icmp_type(key.src.icmp_type);
} else {
key.src.port = pkt->md.ct_orig_tuple.ipv4.src_port;
key.dst.port = pkt->md.ct_orig_tuple.ipv4.dst_port;
}
key.nw_proto = pkt->md.ct_orig_tuple.ipv4.ipv4_proto;
} else {
key.src.addr.ipv6 = pkt->md.ct_orig_tuple.ipv6.ipv6_src;
key.dst.addr.ipv6 = pkt->md.ct_orig_tuple.ipv6.ipv6_dst;
if (ctx_in->key.nw_proto == IPPROTO_ICMPV6) {
key.src.icmp_id = ctx_in->key.src.icmp_id;
key.dst.icmp_id = ctx_in->key.dst.icmp_id;
uint16_t src_port = ntohs(pkt->md.ct_orig_tuple.ipv6.src_port);
key.src.icmp_type = (uint8_t) src_port;
key.dst.icmp_type = reverse_icmp6_type(key.src.icmp_type);
} else {
key.src.port = pkt->md.ct_orig_tuple.ipv6.src_port;
key.dst.port = pkt->md.ct_orig_tuple.ipv6.dst_port;
}
key.nw_proto = pkt->md.ct_orig_tuple.ipv6.ipv6_proto;
}
key.dl_type = ctx_in->key.dl_type;
key.zone = pkt->md.ct_zone;
conn_lookup(ct, &key, now, conn, NULL);
return *conn ? true : false;
}
static bool
conn_update_state_alg(struct conntrack *ct, struct dp_packet *pkt,
struct conn_lookup_ctx *ctx, struct conn *conn,
const struct nat_action_info_t *nat_action_info,
enum ct_alg_ctl_type ct_alg_ctl, long long now,
bool *create_new_conn)
{
if (is_ftp_ctl(ct_alg_ctl)) {
/* Keep sequence tracking in sync with the source of the
* sequence skew. */
ovs_mutex_lock(&conn->lock);
if (ctx->reply != conn->seq_skew_dir) {
handle_ftp_ctl(ct, ctx, pkt, conn, now, CT_FTP_CTL_OTHER,
!!nat_action_info);
/* conn_update_state locks for unrelated fields, so unlock. */
ovs_mutex_unlock(&conn->lock);
*create_new_conn = conn_update_state(ct, pkt, ctx, conn, now);
} else {
/* conn_update_state locks for unrelated fields, so unlock. */
ovs_mutex_unlock(&conn->lock);
*create_new_conn = conn_update_state(ct, pkt, ctx, conn, now);
ovs_mutex_lock(&conn->lock);
if (*create_new_conn == false) {
handle_ftp_ctl(ct, ctx, pkt, conn, now, CT_FTP_CTL_OTHER,
!!nat_action_info);
}
ovs_mutex_unlock(&conn->lock);
}
return true;
}
return false;
}
static void
set_cached_conn(const struct nat_action_info_t *nat_action_info,
const struct conn_lookup_ctx *ctx, struct conn *conn,
struct dp_packet *pkt)
{
if (OVS_LIKELY(!nat_action_info)) {
pkt->md.conn = conn;
pkt->md.reply = ctx->reply;
pkt->md.icmp_related = ctx->icmp_related;
} else {
pkt->md.conn = NULL;
}
}
static void
process_one_fast(uint16_t zone, const uint32_t *setmark,
const struct ovs_key_ct_labels *setlabel,
const struct nat_action_info_t *nat_action_info,
struct conn *conn, struct dp_packet *pkt)
{
if (nat_action_info) {
handle_nat(pkt, conn, zone, pkt->md.reply, pkt->md.icmp_related);
pkt->md.conn = NULL;
}
pkt->md.ct_zone = zone;
ovs_mutex_lock(&conn->lock);
pkt->md.ct_mark = conn->mark;
pkt->md.ct_label = conn->label;
ovs_mutex_unlock(&conn->lock);
if (setmark) {
set_mark(pkt, conn, setmark[0], setmark[1]);
}
if (setlabel) {
set_label(pkt, conn, &setlabel[0], &setlabel[1]);
}
}
static void
initial_conn_lookup(struct conntrack *ct, struct conn_lookup_ctx *ctx,
long long now, bool natted)
{
if (natted) {
/* If the packet has been already natted (e.g. a previous
* action took place), retrieve it performing a lookup of its
* reverse key. */
conn_key_reverse(&ctx->key);
}
conn_key_lookup(ct, &ctx->key, ctx->hash, now, &ctx->conn, &ctx->reply);
if (natted) {
if (OVS_LIKELY(ctx->conn)) {
enum key_dir dir;
ctx->reply = !ctx->reply;
dir = ctx->reply ? CT_DIR_REV : CT_DIR_FWD;
ctx->key = ctx->conn->key_node[dir].key;
ctx->hash = conn_key_hash(&ctx->key, ct->hash_basis);
} else {
/* A lookup failure does not necessarily imply that an
* error occurred, it may simply indicate that a conn got
* removed during the recirculation. */
COVERAGE_INC(conntrack_lookup_natted_miss);
conn_key_reverse(&ctx->key);
}
}
}
static void
process_one(struct conntrack *ct, struct dp_packet *pkt,
struct conn_lookup_ctx *ctx, uint16_t zone,
bool force, bool commit, long long now, const uint32_t *setmark,
const struct ovs_key_ct_labels *setlabel,
const struct nat_action_info_t *nat_action_info,
const char *helper, uint32_t tp_id)
{
/* Reset ct_state whenever entering a new zone. */
if (pkt->md.ct_state && pkt->md.ct_zone != zone) {
pkt->md.ct_state = 0;
}
bool create_new_conn = false;
initial_conn_lookup(ct, ctx, now, !!(pkt->md.ct_state &
(CS_SRC_NAT | CS_DST_NAT)));
struct conn *conn = ctx->conn;
/* Delete found entry if in wrong direction. 'force' implies commit. */
if (OVS_UNLIKELY(force && ctx->reply && conn)) {
if (conn_lookup(ct, &conn->key_node[CT_DIR_FWD].key,
now, NULL, NULL)) {
conn_force_expire(conn);
}
conn = NULL;
}
if (conn && helper == NULL) {
helper = conn->alg;
}
enum ct_alg_ctl_type ct_alg_ctl = get_alg_ctl_type(pkt, helper);
if (OVS_LIKELY(conn)) {
if (OVS_LIKELY(!conn_update_state_alg(ct, pkt, ctx, conn,
nat_action_info,
ct_alg_ctl, now,
&create_new_conn))) {
create_new_conn = conn_update_state(ct, pkt, ctx, conn, now);
}
if (nat_action_info && !create_new_conn) {
handle_nat(pkt, conn, zone, ctx->reply, ctx->icmp_related);
}
} else if (check_orig_tuple(ct, pkt, ctx, now, &conn, nat_action_info)) {
create_new_conn = conn_update_state(ct, pkt, ctx, conn, now);
} else {
if (ctx->icmp_related) {
/* An icmp related conn should always be found; no new
connection is created based on an icmp related packet. */
pkt->md.ct_state = CS_INVALID;
} else {
create_new_conn = true;
}
}
const struct alg_exp_node *alg_exp = NULL;
struct alg_exp_node alg_exp_entry;
if (OVS_UNLIKELY(create_new_conn)) {
ovs_rwlock_rdlock(&ct->resources_lock);
alg_exp = expectation_lookup(&ct->alg_expectations, &ctx->key,
ct->hash_basis,
alg_src_ip_wc(ct_alg_ctl));
if (alg_exp) {
memcpy(&alg_exp_entry, alg_exp, sizeof alg_exp_entry);
alg_exp = &alg_exp_entry;
}
ovs_rwlock_unlock(&ct->resources_lock);
ovs_mutex_lock(&ct->ct_lock);
if (!conn_lookup(ct, &ctx->key, now, NULL, NULL)) {
conn = conn_not_found(ct, pkt, ctx, commit, now, nat_action_info,
helper, alg_exp, ct_alg_ctl, tp_id);
}
ovs_mutex_unlock(&ct->ct_lock);
}
write_ct_md(pkt, zone, conn, &ctx->key, alg_exp);
if (conn && setmark) {
set_mark(pkt, conn, setmark[0], setmark[1]);
}
if (conn && setlabel) {
set_label(pkt, conn, &setlabel[0], &setlabel[1]);
}
handle_alg_ctl(ct, ctx, pkt, ct_alg_ctl, conn, now, !!nat_action_info);
set_cached_conn(nat_action_info, ctx, conn, pkt);
}
/* Sends the packets in '*pkt_batch' through the connection tracker 'ct'. All
* the packets must have the same 'dl_type' (IPv4 or IPv6) and should have
* the l3 and and l4 offset properly set. Performs fragment reassembly with
* the help of ipf_preprocess_conntrack().
*
* If 'commit' is true, the packets are allowed to create new entries in the
* connection tables. 'setmark', if not NULL, should point to a two
* elements array containing a value and a mask to set the connection mark.
* 'setlabel' behaves similarly for the connection label.*/
int
conntrack_execute(struct conntrack *ct, struct dp_packet_batch *pkt_batch,
ovs_be16 dl_type, bool force, bool commit, uint16_t zone,
const uint32_t *setmark,
const struct ovs_key_ct_labels *setlabel,
const char *helper,
const struct nat_action_info_t *nat_action_info,
long long now, uint32_t tp_id)
{
odp_port_t in_port = ODPP_LOCAL;
struct conn_lookup_ctx ctx;
struct dp_packet *packet;
DP_PACKET_BATCH_FOR_EACH (i, packet, pkt_batch) {
/* The ipf preprocess function may consume all packets from this batch,
* save an in_port. */
in_port = packet->md.in_port.odp_port;
break;
}
ipf_preprocess_conntrack(ct->ipf, pkt_batch, now, dl_type, zone,
ct->hash_basis);
DP_PACKET_BATCH_FOR_EACH (i, packet, pkt_batch) {
struct conn *conn = packet->md.conn;
if (helper == NULL && conn != NULL) {
helper = conn->alg;
}
if (OVS_UNLIKELY(packet->md.ct_state == CS_INVALID)) {
write_ct_md(packet, zone, NULL, NULL, NULL);
} else if (conn &&
conn->key_node[CT_DIR_FWD].key.zone == zone && !force &&
!get_alg_ctl_type(packet, helper)) {
process_one_fast(zone, setmark, setlabel, nat_action_info,
conn, packet);
} else if (OVS_UNLIKELY(!conn_key_extract(ct, packet, dl_type, &ctx,
zone))) {
packet->md.ct_state = CS_INVALID;
write_ct_md(packet, zone, NULL, NULL, NULL);
} else {
process_one(ct, packet, &ctx, zone, force, commit, now, setmark,
setlabel, nat_action_info, helper, tp_id);
}
}
ipf_postprocess_conntrack(ct->ipf, pkt_batch, now, dl_type, zone, in_port);
return 0;
}
void
conntrack_clear(struct dp_packet *packet)
{
/* According to pkt_metadata_init(), ct_state == 0 is enough to make all of
* the conntrack fields invalid. */
packet->md.ct_state = 0;
pkt_metadata_init_conn(&packet->md);
}
static void
set_mark(struct dp_packet *pkt, struct conn *conn, uint32_t val, uint32_t mask)
{
ovs_mutex_lock(&conn->lock);
if (conn->alg_related) {
pkt->md.ct_mark = conn->mark;
} else {
pkt->md.ct_mark = val | (pkt->md.ct_mark & ~(mask));
conn->mark = pkt->md.ct_mark;
}
ovs_mutex_unlock(&conn->lock);
}
static void
set_label(struct dp_packet *pkt, struct conn *conn,
const struct ovs_key_ct_labels *val,
const struct ovs_key_ct_labels *mask)
{
ovs_mutex_lock(&conn->lock);
if (conn->alg_related) {
pkt->md.ct_label = conn->label;
} else {
ovs_u128 v, m;
memcpy(&v, val, sizeof v);
memcpy(&m, mask, sizeof m);
pkt->md.ct_label.u64.lo = v.u64.lo
| (pkt->md.ct_label.u64.lo & ~(m.u64.lo));
pkt->md.ct_label.u64.hi = v.u64.hi
| (pkt->md.ct_label.u64.hi & ~(m.u64.hi));
conn->label = pkt->md.ct_label;
}
ovs_mutex_unlock(&conn->lock);
}
int
conntrack_set_sweep_interval(struct conntrack *ct, uint32_t ms)
{
atomic_store_relaxed(&ct->sweep_ms, ms);
return 0;
}
uint32_t
conntrack_get_sweep_interval(struct conntrack *ct)
{
uint32_t ms;
atomic_read_relaxed(&ct->sweep_ms, &ms);
return ms;
}
static size_t
ct_sweep(struct conntrack *ct, struct rculist *list, long long now,
size_t *cleaned_count)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct conn *conn;
size_t cleaned = 0;
size_t count = 0;
RCULIST_FOR_EACH (conn, node, list) {
if (conn_expired(conn, now)) {
conn_clean(ct, conn);
cleaned++;
}
count++;
}
if (cleaned_count) {
*cleaned_count = cleaned;
}
return count;
}
/* Cleans up old connection entries from 'ct'. Returns the time
* when the next wake will happen. The return value might be zero,
* meaning that an internal limit has been reached. */
static long long
conntrack_clean(struct conntrack *ct, long long now)
{
long long next_wakeup = now + conntrack_get_sweep_interval(ct);
unsigned int n_conn_limit, i;
size_t clean_end, count = 0;
size_t total_cleaned = 0;
atomic_read_relaxed(&ct->n_conn_limit, &n_conn_limit);
clean_end = n_conn_limit / 64;
for (i = ct->next_sweep; i < N_EXP_LISTS; i++) {
size_t cleaned;
if (count > clean_end) {
next_wakeup = 0;
break;
}
count += ct_sweep(ct, &ct->exp_lists[i], now, &cleaned);
total_cleaned += cleaned;
}
ct->next_sweep = (i < N_EXP_LISTS) ? i : 0;
VLOG_DBG("conntrack cleaned %"PRIuSIZE" entries out of %"PRIuSIZE
" entries in %lld msec", total_cleaned, count,
time_msec() - now);
return next_wakeup;
}
/* Cleanup:
*
* We must call conntrack_clean() periodically. conntrack_clean() return
* value gives an hint on when the next cleanup must be done. */
#define CT_CLEAN_MIN_INTERVAL_MS 200
static void *
clean_thread_main(void *f_)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct conntrack *ct = f_;
while (!latch_is_set(&ct->clean_thread_exit)) {
long long next_wake;
long long now = time_msec();
next_wake = conntrack_clean(ct, now);
if (next_wake < now) {
poll_timer_wait_until(now + CT_CLEAN_MIN_INTERVAL_MS);
} else {
poll_timer_wait_until(next_wake);
}
latch_wait(&ct->clean_thread_exit);
poll_block();
}
return NULL;
}
/* 'Data' is a pointer to the beginning of the L3 header and 'new_data' is
* used to store a pointer to the first byte after the L3 header. 'Size' is
* the size of the packet beyond the data pointer. */
static inline bool
extract_l3_ipv4(struct conn_key *key, const void *data, size_t size,
const char **new_data, bool validate_checksum)
{
if (OVS_UNLIKELY(size < IP_HEADER_LEN)) {
return false;
}
const struct ip_header *ip = data;
size_t ip_len = IP_IHL(ip->ip_ihl_ver) * 4;
if (OVS_UNLIKELY(ip_len < IP_HEADER_LEN)) {
return false;
}
if (OVS_UNLIKELY(size < ip_len)) {
return false;
}
if (IP_IS_LATER_FRAG(ip->ip_frag_off)) {
return false;
}
if (validate_checksum) {
COVERAGE_INC(conntrack_l3csum_checked);
if (csum(data, ip_len)) {
COVERAGE_INC(conntrack_l3csum_err);
return false;
}
}
if (new_data) {
*new_data = (char *) data + ip_len;
}
key->src.addr.ipv4 = get_16aligned_be32(&ip->ip_src);
key->dst.addr.ipv4 = get_16aligned_be32(&ip->ip_dst);
key->nw_proto = ip->ip_proto;
return true;
}
/* 'Data' is a pointer to the beginning of the L3 header and 'new_data' is
* used to store a pointer to the first byte after the L3 header. 'Size' is
* the size of the packet beyond the data pointer. */
static inline bool
extract_l3_ipv6(struct conn_key *key, const void *data, size_t size,
const char **new_data)
{
const struct ovs_16aligned_ip6_hdr *ip6 = data;
if (OVS_UNLIKELY(size < sizeof *ip6)) {
return false;
}
data = ip6 + 1;
size -= sizeof *ip6;
uint8_t nw_proto = ip6->ip6_nxt;
uint8_t nw_frag = 0;
if (!parse_ipv6_ext_hdrs(&data, &size, &nw_proto, &nw_frag,
NULL, NULL)) {
return false;
}
if (nw_frag) {
return false;
}
if (new_data) {
*new_data = data;
}
memcpy(&key->src.addr.ipv6, &ip6->ip6_src, sizeof key->src.addr);
memcpy(&key->dst.addr.ipv6, &ip6->ip6_dst, sizeof key->dst.addr);
key->nw_proto = nw_proto;
return true;
}
static inline bool
checksum_valid(const struct conn_key *key, const void *data, size_t size,
const void *l3)
{
bool valid;
if (key->dl_type == htons(ETH_TYPE_IP)) {
uint32_t csum = packet_csum_pseudoheader(l3);
valid = (csum_finish(csum_continue(csum, data, size)) == 0);
} else if (key->dl_type == htons(ETH_TYPE_IPV6)) {
valid = (packet_csum_upperlayer6(l3, data, key->nw_proto, size) == 0);
} else {
valid = false;
}
COVERAGE_INC(conntrack_l4csum_checked);
if (!valid) {
COVERAGE_INC(conntrack_l4csum_err);
}
return valid;
}
static inline bool
sctp_checksum_valid(const void *data, size_t size)
{
struct sctp_header *sctp = (struct sctp_header *) data;
ovs_be32 rcvd_csum, csum;
rcvd_csum = get_16aligned_be32(&sctp->sctp_csum);
put_16aligned_be32(&sctp->sctp_csum, 0);
csum = crc32c(data, size);
put_16aligned_be32(&sctp->sctp_csum, rcvd_csum);
COVERAGE_INC(conntrack_l4csum_checked);
if (rcvd_csum != csum) {
COVERAGE_INC(conntrack_l4csum_err);
return false;
}
return true;
}
static inline bool
check_l4_tcp(const struct conn_key *key, const void *data, size_t size,
const void *l3, bool validate_checksum)
{
const struct tcp_header *tcp = data;
if (size < sizeof *tcp) {
return false;
}
size_t tcp_len = TCP_OFFSET(tcp->tcp_ctl) * 4;
if (OVS_UNLIKELY(tcp_len < TCP_HEADER_LEN || tcp_len > size)) {
return false;
}
return validate_checksum ? checksum_valid(key, data, size, l3) : true;
}
static inline bool
check_l4_udp(const struct conn_key *key, const void *data, size_t size,
const void *l3, bool validate_checksum)
{
const struct udp_header *udp = data;
if (size < sizeof *udp) {
return false;
}
size_t udp_len = ntohs(udp->udp_len);
if (OVS_UNLIKELY(udp_len < UDP_HEADER_LEN || udp_len > size)) {
return false;
}
/* Validation must be skipped if checksum is 0 on IPv4 packets */
return (udp->udp_csum == 0 && key->dl_type == htons(ETH_TYPE_IP))
|| (validate_checksum ? checksum_valid(key, data, size, l3) : true);
}
static inline bool
sctp_check_len(const struct sctp_header *sh, size_t size)
{
const struct sctp_chunk_header *sch;
size_t next;
if (size < SCTP_HEADER_LEN) {
return false;
}
/* rfc4960: Chunks (including Type, Length, and Value fields) are padded
* out by the sender with all zero bytes to be a multiple of 4 bytes long.
*/
for (next = sizeof(struct sctp_header),
sch = SCTP_NEXT_CHUNK(sh, next);
next < size;
next += ROUND_UP(ntohs(sch->length), 4),
sch = SCTP_NEXT_CHUNK(sh, next)) {
/* rfc4960: This value represents the size of the chunk in bytes,
* including the Chunk Type, Chunk Flags, Chunk Length, and Chunk Value
* fields.
* Therefore, if the Chunk Value field is zero-length, the Length
* field will be set to 4. */
if (ntohs(sch->length) < sizeof *sch) {
return false;
}
}
return (next == size);
}
static inline bool
check_l4_sctp(const void *data, size_t size, bool validate_checksum)
{
if (OVS_UNLIKELY(!sctp_check_len(data, size))) {
return false;
}
return validate_checksum ? sctp_checksum_valid(data, size) : true;
}
static inline bool
check_l4_icmp(const void *data, size_t size, bool validate_checksum)
{
if (validate_checksum) {
COVERAGE_INC(conntrack_l4csum_checked);
if (csum(data, size)) {
COVERAGE_INC(conntrack_l4csum_err);
return false;
}
}
return true;
}
static inline bool
check_l4_icmp6(const struct conn_key *key, const void *data, size_t size,
const void *l3, bool validate_checksum)
{
return validate_checksum ? checksum_valid(key, data, size, l3) : true;
}
static inline bool
extract_l4_tcp(struct conn_key *key, const void *data, size_t size,
size_t *chk_len)
{
if (OVS_UNLIKELY(size < (chk_len ? *chk_len : TCP_HEADER_LEN))) {
return false;
}
const struct tcp_header *tcp = data;
key->src.port = tcp->tcp_src;
key->dst.port = tcp->tcp_dst;
/* Port 0 is invalid */
return key->src.port && key->dst.port;
}
static inline bool
extract_l4_udp(struct conn_key *key, const void *data, size_t size,
size_t *chk_len)
{
if (OVS_UNLIKELY(size < (chk_len ? *chk_len : UDP_HEADER_LEN))) {
return false;
}
const struct udp_header *udp = data;
key->src.port = udp->udp_src;
key->dst.port = udp->udp_dst;
/* Port 0 is invalid */
return key->src.port && key->dst.port;
}
static inline bool
extract_l4_sctp(struct conn_key *key, const void *data, size_t size,
size_t *chk_len)
{
if (OVS_UNLIKELY(size < (chk_len ? *chk_len : SCTP_HEADER_LEN))) {
return false;
}
const struct sctp_header *sctp = data;
key->src.port = sctp->sctp_src;
key->dst.port = sctp->sctp_dst;
return key->src.port && key->dst.port;
}
static inline bool extract_l4(struct conn_key *key, const void *data,
size_t size, bool *related, const void *l3,
bool validate_checksum, size_t *chk_len);
static uint8_t
reverse_icmp_type(uint8_t type)
{
switch (type) {
case ICMP4_ECHO_REQUEST:
return ICMP4_ECHO_REPLY;
case ICMP4_ECHO_REPLY:
return ICMP4_ECHO_REQUEST;
case ICMP4_TIMESTAMP:
return ICMP4_TIMESTAMPREPLY;
case ICMP4_TIMESTAMPREPLY:
return ICMP4_TIMESTAMP;
case ICMP4_INFOREQUEST:
return ICMP4_INFOREPLY;
case ICMP4_INFOREPLY:
return ICMP4_INFOREQUEST;
default:
OVS_NOT_REACHED();
}
}
/* If 'related' is not NULL and the function is processing an ICMP
* error packet, extract the l3 and l4 fields from the nested header
* instead and set *related to true. If 'related' is NULL we're
* already processing a nested header and no such recursion is
* possible */
static inline int
extract_l4_icmp(struct conn_key *key, const void *data, size_t size,
bool *related, size_t *chk_len)
{
if (OVS_UNLIKELY(size < (chk_len ? *chk_len : ICMP_HEADER_LEN))) {
return false;
}
const struct icmp_header *icmp = data;
switch (icmp->icmp_type) {
case ICMP4_ECHO_REQUEST:
case ICMP4_ECHO_REPLY:
case ICMP4_TIMESTAMP:
case ICMP4_TIMESTAMPREPLY:
case ICMP4_INFOREQUEST:
case ICMP4_INFOREPLY:
if (icmp->icmp_code != 0) {
return false;
}
/* Separate ICMP connection: identified using id */
key->src.icmp_id = key->dst.icmp_id = icmp->icmp_fields.echo.id;
key->src.icmp_type = icmp->icmp_type;
key->dst.icmp_type = reverse_icmp_type(icmp->icmp_type);
break;
case ICMP4_DST_UNREACH:
case ICMP4_TIME_EXCEEDED:
case ICMP4_PARAM_PROB:
case ICMP4_SOURCEQUENCH:
case ICMP4_REDIRECT: {
/* ICMP packet part of another connection. We should
* extract the key from embedded packet header */
struct conn_key inner_key;
const char *l3 = (const char *) (icmp + 1);
const char *tail = (const char *) data + size;
const char *l4;
if (!related) {
return false;
}
memset(&inner_key, 0, sizeof inner_key);
inner_key.dl_type = htons(ETH_TYPE_IP);
bool ok = extract_l3_ipv4(&inner_key, l3, tail - l3, &l4, false);
if (!ok) {
return false;
}
if (inner_key.src.addr.ipv4 != key->dst.addr.ipv4) {
return false;
}
key->src = inner_key.src;
key->dst = inner_key.dst;
key->nw_proto = inner_key.nw_proto;
size_t check_len = ICMP_ERROR_DATA_L4_LEN;
ok = extract_l4(key, l4, tail - l4, NULL, l3, false, &check_len);
if (ok) {
conn_key_reverse(key);
*related = true;
}
return ok;
}
default:
return false;
}
return true;
}
static uint8_t
reverse_icmp6_type(uint8_t type)
{
switch (type) {
case ICMP6_ECHO_REQUEST:
return ICMP6_ECHO_REPLY;
case ICMP6_ECHO_REPLY:
return ICMP6_ECHO_REQUEST;
default:
OVS_NOT_REACHED();
}
}
/* If 'related' is not NULL and the function is processing an ICMP
* error packet, extract the l3 and l4 fields from the nested header
* instead and set *related to true. If 'related' is NULL we're
* already processing a nested header and no such recursion is
* possible */
static inline bool
extract_l4_icmp6(struct conn_key *key, const void *data, size_t size,
bool *related)
{
const struct icmp6_header *icmp6 = data;
/* All the messages that we support need at least 4 bytes after
* the header */
if (size < sizeof *icmp6 + 4) {
return false;
}
switch (icmp6->icmp6_type) {
case ICMP6_ECHO_REQUEST:
case ICMP6_ECHO_REPLY:
if (icmp6->icmp6_code != 0) {
return false;
}
/* Separate ICMP connection: identified using id */
key->src.icmp_id = key->dst.icmp_id = *(ovs_be16 *) (icmp6 + 1);
key->src.icmp_type = icmp6->icmp6_type;
key->dst.icmp_type = reverse_icmp6_type(icmp6->icmp6_type);
break;
case ICMP6_DST_UNREACH:
case ICMP6_PACKET_TOO_BIG:
case ICMP6_TIME_EXCEEDED:
case ICMP6_PARAM_PROB: {
/* ICMP packet part of another connection. We should
* extract the key from embedded packet header */
struct conn_key inner_key;
const char *l3 = (const char *) icmp6 + 8;
const char *tail = (const char *) data + size;
const char *l4 = NULL;
if (!related) {
return false;
}
memset(&inner_key, 0, sizeof inner_key);
inner_key.dl_type = htons(ETH_TYPE_IPV6);
bool ok = extract_l3_ipv6(&inner_key, l3, tail - l3, &l4);
if (!ok) {
return false;
}
/* pf doesn't do this, but it seems a good idea */
if (!ipv6_addr_equals(&inner_key.src.addr.ipv6,
&key->dst.addr.ipv6)) {
return false;
}
key->src = inner_key.src;
key->dst = inner_key.dst;
key->nw_proto = inner_key.nw_proto;
ok = extract_l4(key, l4, tail - l4, NULL, l3, false, NULL);
if (ok) {
conn_key_reverse(key);
*related = true;
}
return ok;
}
default:
return false;
}
return true;
}
/* Extract l4 fields into 'key', which must already contain valid l3
* members.
*
* If 'related' is not NULL and an ICMP error packet is being
* processed, the function will extract the key from the packet nested
* in the ICMP payload and set '*related' to true.
*
* 'size' here is the layer 4 size, which can be a nested size if parsing
* an ICMP or ICMP6 header.
*
* If 'related' is NULL, it means that we're already parsing a header nested
* in an ICMP error. In this case, we skip the checksum and some length
* validations. */
static inline bool
extract_l4(struct conn_key *key, const void *data, size_t size, bool *related,
const void *l3, bool validate_checksum, size_t *chk_len)
{
if (key->nw_proto == IPPROTO_TCP) {
return (!related || check_l4_tcp(key, data, size, l3,
validate_checksum))
&& extract_l4_tcp(key, data, size, chk_len);
} else if (key->nw_proto == IPPROTO_UDP) {
return (!related || check_l4_udp(key, data, size, l3,
validate_checksum))
&& extract_l4_udp(key, data, size, chk_len);
} else if (key->nw_proto == IPPROTO_SCTP) {
return (!related || check_l4_sctp(data, size, validate_checksum))
&& extract_l4_sctp(key, data, size, chk_len);
} else if (key->dl_type == htons(ETH_TYPE_IP)
&& key->nw_proto == IPPROTO_ICMP) {
return (!related || check_l4_icmp(data, size, validate_checksum))
&& extract_l4_icmp(key, data, size, related, chk_len);
} else if (key->dl_type == htons(ETH_TYPE_IPV6)
&& key->nw_proto == IPPROTO_ICMPV6) {
return (!related || check_l4_icmp6(key, data, size, l3,
validate_checksum))
&& extract_l4_icmp6(key, data, size, related);
}
/* For all other protocols we do not have L4 keys, so keep them zero. */
return true;
}
static bool
conn_key_extract(struct conntrack *ct, struct dp_packet *pkt, ovs_be16 dl_type,
struct conn_lookup_ctx *ctx, uint16_t zone)
{
const struct eth_header *l2 = dp_packet_eth(pkt);
const struct ip_header *l3 = dp_packet_l3(pkt);
const char *l4 = dp_packet_l4(pkt);
memset(ctx, 0, sizeof *ctx);
if (!l2 || !l3 || !l4) {
return false;
}
ctx->key.zone = zone;
/* XXX In this function we parse the packet (again, it has already
* gone through miniflow_extract()) for two reasons:
*
* 1) To extract the l3 addresses and l4 ports.
* We already have the l3 and l4 headers' pointers. Extracting
* the l3 addresses and the l4 ports is really cheap, since they
* can be found at fixed locations.
* 2) To extract the l4 type.
* Extracting the l4 types, for IPv6 can be quite expensive, because
* it's not at a fixed location.
*
* Here's a way to avoid (2) with the help of the datapath.
* The datapath doesn't keep the packet's extracted flow[1], so
* using that is not an option. We could use the packet's matching
* megaflow, but we have to make sure that the l4 type (nw_proto)
* is unwildcarded. This means either:
*
* a) dpif-netdev unwildcards the l4 type when a new flow is installed
* if the actions contains ct().
*
* b) ofproto-dpif-xlate unwildcards the l4 type when translating a ct()
* action. This is already done in different actions, but it's
* unnecessary for the kernel.
*
* ---
* [1] The reasons for this are that keeping the flow increases
* (slightly) the cache footprint and increases computation
* time as we move the packet around. Most importantly, the flow
* should be updated by the actions and this can be slow, as
* we use a sparse representation (miniflow).
*
*/
bool ok;
ctx->key.dl_type = dl_type;
if (ctx->key.dl_type == htons(ETH_TYPE_IP)) {
if (dp_packet_ip_checksum_bad(pkt)) {
ok = false;
COVERAGE_INC(conntrack_l3csum_err);
} else {
/* Validate the checksum only when hwol is not supported and the
* packet's checksum status is not known. */
ok = extract_l3_ipv4(&ctx->key, l3, dp_packet_l3_size(pkt), NULL,
dp_packet_ip_checksum_unknown(pkt));
}
} else if (ctx->key.dl_type == htons(ETH_TYPE_IPV6)) {
ok = extract_l3_ipv6(&ctx->key, l3, dp_packet_l3_size(pkt), NULL);
} else {
ok = false;
}
if (ok) {
if (!dp_packet_l4_checksum_bad(pkt)) {
/* Validate the checksum only when hwol is not supported. */
if (extract_l4(&ctx->key, l4, dp_packet_l4_size(pkt),
&ctx->icmp_related, l3,
dp_packet_l4_checksum_unknown(pkt),
NULL)) {
ctx->hash = conn_key_hash(&ctx->key, ct->hash_basis);
return true;
}
} else {
COVERAGE_INC(conntrack_l4csum_err);
}
}
return false;
}
static uint32_t
ct_addr_hash_add(uint32_t hash, const union ct_addr *addr)
{
BUILD_ASSERT_DECL(sizeof *addr % 4 == 0);
return hash_add_bytes32(hash, (const uint32_t *) addr, sizeof *addr);
}
static uint32_t
ct_endpoint_hash_add(uint32_t hash, const struct ct_endpoint *ep)
{
BUILD_ASSERT_DECL(sizeof *ep % 4 == 0);
return hash_add_bytes32(hash, (const uint32_t *) ep, sizeof *ep);
}
/* Symmetric */
static uint32_t
conn_key_hash(const struct conn_key *key, uint32_t basis)
{
uint32_t hsrc, hdst, hash;
hsrc = hdst = basis;
hsrc = ct_endpoint_hash_add(hsrc, &key->src);
hdst = ct_endpoint_hash_add(hdst, &key->dst);
/* Even if source and destination are swapped the hash will be the same. */
hash = hsrc ^ hdst;
/* Hash the rest of the key(L3 and L4 types and zone). */
return hash_words((uint32_t *) (&key->dst + 1),
(uint32_t *) (key + 1) - (uint32_t *) (&key->dst + 1),
hash);
}
static void
conn_key_reverse(struct conn_key *key)
{
struct ct_endpoint tmp = key->src;
key->src = key->dst;
key->dst = tmp;
}
static uint32_t
nat_ipv6_addrs_delta(const struct in6_addr *ipv6_min,
const struct in6_addr *ipv6_max)
{
const uint8_t *ipv6_min_hi = &ipv6_min->s6_addr[0];
const uint8_t *ipv6_min_lo = &ipv6_min->s6_addr[0] + sizeof(uint64_t);
const uint8_t *ipv6_max_hi = &ipv6_max->s6_addr[0];
const uint8_t *ipv6_max_lo = &ipv6_max->s6_addr[0] + sizeof(uint64_t);
ovs_be64 addr6_64_min_hi;
ovs_be64 addr6_64_min_lo;
memcpy(&addr6_64_min_hi, ipv6_min_hi, sizeof addr6_64_min_hi);
memcpy(&addr6_64_min_lo, ipv6_min_lo, sizeof addr6_64_min_lo);
ovs_be64 addr6_64_max_hi;
ovs_be64 addr6_64_max_lo;
memcpy(&addr6_64_max_hi, ipv6_max_hi, sizeof addr6_64_max_hi);
memcpy(&addr6_64_max_lo, ipv6_max_lo, sizeof addr6_64_max_lo);
uint64_t diff;
if (addr6_64_min_hi == addr6_64_max_hi &&
ntohll(addr6_64_min_lo) <= ntohll(addr6_64_max_lo)) {
diff = ntohll(addr6_64_max_lo) - ntohll(addr6_64_min_lo);
} else if (ntohll(addr6_64_min_hi) + 1 == ntohll(addr6_64_max_hi) &&
ntohll(addr6_64_min_lo) > ntohll(addr6_64_max_lo)) {
diff = UINT64_MAX - (ntohll(addr6_64_min_lo) -
ntohll(addr6_64_max_lo) - 1);
} else {
/* Limit address delta supported to 32 bits or 4 billion approximately.
* Possibly, this should be visible to the user through a datapath
* support check, however the practical impact is probably nil. */
diff = 0xfffffffe;
}
if (diff > 0xfffffffe) {
diff = 0xfffffffe;
}
return diff;
}
/* This function must be used in tandem with nat_ipv6_addrs_delta(), which
* restricts the input parameters. */
static void
nat_ipv6_addr_increment(struct in6_addr *ipv6, uint32_t increment)
{
uint8_t *ipv6_hi = &ipv6->s6_addr[0];
uint8_t *ipv6_lo = &ipv6->s6_addr[0] + sizeof(ovs_be64);
ovs_be64 addr6_64_hi;
ovs_be64 addr6_64_lo;
memcpy(&addr6_64_hi, ipv6_hi, sizeof addr6_64_hi);
memcpy(&addr6_64_lo, ipv6_lo, sizeof addr6_64_lo);
if (UINT64_MAX - increment >= ntohll(addr6_64_lo)) {
addr6_64_lo = htonll(increment + ntohll(addr6_64_lo));
} else if (addr6_64_hi != OVS_BE64_MAX) {
addr6_64_hi = htonll(1 + ntohll(addr6_64_hi));
addr6_64_lo = htonll(increment - (UINT64_MAX -
ntohll(addr6_64_lo) + 1));
} else {
OVS_NOT_REACHED();
}
memcpy(ipv6_hi, &addr6_64_hi, sizeof addr6_64_hi);
memcpy(ipv6_lo, &addr6_64_lo, sizeof addr6_64_lo);
}
static uint32_t
nat_range_hash(const struct conn_key *key, uint32_t basis,
const struct nat_action_info_t *nat_info)
{
uint32_t hash = basis;
if (!basis) {
hash = ct_addr_hash_add(hash, &key->src.addr);
} else {
hash = ct_endpoint_hash_add(hash, &key->src);
hash = ct_endpoint_hash_add(hash, &key->dst);
}
hash = ct_addr_hash_add(hash, &nat_info->min_addr);
hash = ct_addr_hash_add(hash, &nat_info->max_addr);
hash = hash_add(hash,
((uint32_t) nat_info->max_port << 16)
| nat_info->min_port);
hash = hash_add(hash, (OVS_FORCE uint32_t) key->dl_type);
hash = hash_add(hash, key->nw_proto);
hash = hash_add(hash, key->zone);
/* The purpose of the second parameter is to distinguish hashes of data of
* different length; our data always has the same length so there is no
* value in counting. */
return hash_finish(hash, 0);
}
/* Ports are stored in host byte order for convenience. */
static void
set_sport_range(const struct nat_action_info_t *ni, const struct conn_key *k,
uint32_t off, uint16_t *curr, uint16_t *min,
uint16_t *max)
{
if (((ni->nat_action & NAT_ACTION_SNAT_ALL) == NAT_ACTION_SRC) ||
((ni->nat_action & NAT_ACTION_DST))) {
*curr = ntohs(k->src.port);
if (*curr < 512) {
*min = 1;
*max = 511;
} else if (*curr < 1024) {
*min = 600;
*max = 1023;
} else {
*min = MIN_NAT_EPHEMERAL_PORT;
*max = MAX_NAT_EPHEMERAL_PORT;
}
} else {
*min = ni->min_port;
*max = ni->max_port;
*curr = *min + (off % ((*max - *min) + 1));
}
}
static void
set_dport_range(const struct nat_action_info_t *ni, const struct conn_key *k,
uint32_t off, uint16_t *curr, uint16_t *min,
uint16_t *max)
{
if (ni->nat_action & NAT_ACTION_DST_PORT) {
*min = ni->min_port;
*max = ni->max_port;
*curr = *min + (off % ((*max - *min) + 1));
} else {
*curr = ntohs(k->dst.port);
*min = *max = *curr;
}
}
/* Gets an in range address based on the hash.
* Addresses are kept in network order. */
static void
get_addr_in_range(union ct_addr *min, union ct_addr *max,
union ct_addr *curr, uint32_t hash, bool ipv4)
{
uint32_t offt, range;
if (ipv4) {
range = (ntohl(max->ipv4) - ntohl(min->ipv4)) + 1;
offt = hash % range;
curr->ipv4 = htonl(ntohl(min->ipv4) + offt);
} else {
range = nat_ipv6_addrs_delta(&min->ipv6, &max->ipv6) + 1;
/* Range must be within 32 bits for full hash coverage. A 64 or
* 128 bit hash is unnecessary and hence not used here. Most code
* is kept common with V4; nat_ipv6_addrs_delta() will do the
* enforcement via max_ct_addr. */
offt = hash % range;
curr->ipv6 = min->ipv6;
nat_ipv6_addr_increment(&curr->ipv6, offt);
}
}
static void
find_addr(const struct conn_key *key, union ct_addr *min,
union ct_addr *max, union ct_addr *curr,
uint32_t hash, bool ipv4,
const struct nat_action_info_t *nat_info)
{
union ct_addr zero_ip;
memset(&zero_ip, 0, sizeof zero_ip);
/* All-zero case. */
if (!memcmp(min, &zero_ip, sizeof *min)) {
if (nat_info->nat_action & NAT_ACTION_SRC) {
*curr = key->src.addr;
} else if (nat_info->nat_action & NAT_ACTION_DST) {
*curr = key->dst.addr;
}
} else {
get_addr_in_range(min, max, curr, hash, ipv4);
}
}
static void
store_addr_to_key(union ct_addr *addr, struct conn_key *key,
uint16_t action)
{
if (action & NAT_ACTION_SRC) {
key->dst.addr = *addr;
} else {
key->src.addr = *addr;
}
}
static bool
nat_get_unique_l4(struct conntrack *ct, struct conn_key *rev_key,
ovs_be16 *port, uint16_t curr, uint16_t min,
uint16_t max)
{
static const unsigned int max_attempts = 128;
uint16_t range = max - min + 1;
unsigned int attempts;
uint16_t orig = curr;
unsigned int i = 0;
attempts = range;
if (attempts > max_attempts) {
attempts = max_attempts;
}
another_round:
i = 0;
FOR_EACH_PORT_IN_RANGE (curr, min, max) {
if (i++ >= attempts) {
break;
}
*port = htons(curr);
if (!conn_lookup(ct, rev_key, time_msec(), NULL, NULL)) {
return true;
}
}
if (attempts < range && attempts >= 16) {
attempts /= 2;
curr = min + (random_uint32() % range);
goto another_round;
}
*port = htons(orig);
return false;
}
/* This function tries to get a unique tuple.
* Every iteration checks that the reverse tuple doesn't
* collide with any existing one.
*
* In case of SNAT:
* - Pick a src IP address in the range.
* - Try to find a source port in range (if any).
* - If no port range exists, use the whole
* ephemeral range (after testing the port
* used by the sender), otherwise use the
* specified range.
*
* In case of DNAT:
* - Pick a dst IP address in the range.
* - For each dport in range (if any) tries to find
* an unique tuple.
* - Eventually, if the previous attempt fails,
* tries to find a source port in the ephemeral
* range (after testing the port used by the sender).
*
* If none can be found, return exhaustion to the caller. */
static bool
nat_get_unique_tuple(struct conntrack *ct, struct conn *conn,
const struct nat_action_info_t *nat_info)
{
struct conn_key *fwd_key = &conn->key_node[CT_DIR_FWD].key;
struct conn_key *rev_key = &conn->key_node[CT_DIR_REV].key;
bool pat_proto = fwd_key->nw_proto == IPPROTO_TCP ||
fwd_key->nw_proto == IPPROTO_UDP ||
fwd_key->nw_proto == IPPROTO_SCTP;
uint16_t min_dport, max_dport, curr_dport;
uint16_t min_sport, max_sport, curr_sport;
union ct_addr min_addr, max_addr, addr;
uint32_t hash, port_off, basis;
memset(&min_addr, 0, sizeof min_addr);
memset(&max_addr, 0, sizeof max_addr);
memset(&addr, 0, sizeof addr);
basis = (nat_info->nat_flags & NAT_PERSISTENT) ? 0 : ct->hash_basis;
hash = nat_range_hash(fwd_key, basis, nat_info);
if (nat_info->nat_flags & NAT_RANGE_RANDOM) {
port_off = random_uint32();
} else if (basis) {
port_off = hash;
} else {
port_off = nat_range_hash(fwd_key, ct->hash_basis, nat_info);
}
min_addr = nat_info->min_addr;
max_addr = nat_info->max_addr;
find_addr(fwd_key, &min_addr, &max_addr, &addr, hash,
(fwd_key->dl_type == htons(ETH_TYPE_IP)), nat_info);
set_sport_range(nat_info, fwd_key, port_off, &curr_sport,
&min_sport, &max_sport);
set_dport_range(nat_info, fwd_key, port_off, &curr_dport,
&min_dport, &max_dport);
if (pat_proto) {
rev_key->src.port = htons(curr_dport);
rev_key->dst.port = htons(curr_sport);
}
store_addr_to_key(&addr, rev_key, nat_info->nat_action);
if (!pat_proto) {
return !conn_lookup(ct, rev_key, time_msec(), NULL, NULL);
}
bool found = false;
if (nat_info->nat_action & NAT_ACTION_DST_PORT) {
found = nat_get_unique_l4(ct, rev_key, &rev_key->src.port,
curr_dport, min_dport, max_dport);
}
if (!found) {
found = nat_get_unique_l4(ct, rev_key, &rev_key->dst.port,
curr_sport, min_sport, max_sport);
}
if (found) {
return true;
}
return false;
}
static enum ct_update_res
conn_update(struct conntrack *ct, struct conn *conn, struct dp_packet *pkt,
struct conn_lookup_ctx *ctx, long long now)
{
ovs_mutex_lock(&conn->lock);
uint8_t nw_proto = conn->key_node[CT_DIR_FWD].key.nw_proto;
enum ct_update_res update_res =
l4_protos[nw_proto]->conn_update(ct, conn, pkt, ctx->reply, now);
ovs_mutex_unlock(&conn->lock);
return update_res;
}
static void
conn_expire_push_front(struct conntrack *ct, struct conn *conn)
OVS_REQUIRES(ct->ct_lock)
{
unsigned int curr = ct->next_list;
ct->next_list = (ct->next_list + 1) % N_EXP_LISTS;
rculist_push_front(&ct->exp_lists[curr], &conn->node);
}
static long long int
conn_expiration(const struct conn *conn)
{
long long int expiration;
atomic_read_relaxed(&CONST_CAST(struct conn *, conn)->expiration,
&expiration);
return expiration;
}
static bool
conn_expired(const struct conn *conn, long long now)
{
return now >= conn_expiration(conn);
}
static bool
valid_new(struct dp_packet *pkt, struct conn_key *key)
{
return l4_protos[key->nw_proto]->valid_new(pkt);
}
static struct conn *
new_conn(struct conntrack *ct, struct dp_packet *pkt, struct conn_key *key,
long long now, uint32_t tp_id)
{
return l4_protos[key->nw_proto]->new_conn(ct, pkt, now, tp_id);
}
static void
delete_conn__(struct conn *conn)
{
free(conn->alg);
free(conn);
}
static void
delete_conn(struct conn *conn)
{
ovs_mutex_destroy(&conn->lock);
delete_conn__(conn);
}
/* Convert a conntrack address 'a' into an IP address 'b' based on 'dl_type'.
*
* Note that 'dl_type' should be either "ETH_TYPE_IP" or "ETH_TYPE_IPv6"
* in network-byte order. */
static void
ct_endpoint_to_ct_dpif_inet_addr(const union ct_addr *a,
union ct_dpif_inet_addr *b,
ovs_be16 dl_type)
{
if (dl_type == htons(ETH_TYPE_IP)) {
b->ip = a->ipv4;
} else if (dl_type == htons(ETH_TYPE_IPV6)){
b->in6 = a->ipv6;
}
}
/* Convert an IP address 'a' into a conntrack address 'b' based on 'dl_type'.
*
* Note that 'dl_type' should be either "ETH_TYPE_IP" or "ETH_TYPE_IPv6"
* in network-byte order. */
static void
ct_dpif_inet_addr_to_ct_endpoint(const union ct_dpif_inet_addr *a,
union ct_addr *b, ovs_be16 dl_type)
{
if (dl_type == htons(ETH_TYPE_IP)) {
b->ipv4 = a->ip;
} else if (dl_type == htons(ETH_TYPE_IPV6)){
b->ipv6 = a->in6;
}
}
static void
conn_key_to_tuple(const struct conn_key *key, struct ct_dpif_tuple *tuple)
{
if (key->dl_type == htons(ETH_TYPE_IP)) {
tuple->l3_type = AF_INET;
} else if (key->dl_type == htons(ETH_TYPE_IPV6)) {
tuple->l3_type = AF_INET6;
}
tuple->ip_proto = key->nw_proto;
ct_endpoint_to_ct_dpif_inet_addr(&key->src.addr, &tuple->src,
key->dl_type);
ct_endpoint_to_ct_dpif_inet_addr(&key->dst.addr, &tuple->dst,
key->dl_type);
if (key->nw_proto == IPPROTO_ICMP || key->nw_proto == IPPROTO_ICMPV6) {
tuple->icmp_id = key->src.icmp_id;
tuple->icmp_type = key->src.icmp_type;
tuple->icmp_code = key->src.icmp_code;
} else {
tuple->src_port = key->src.port;
tuple->dst_port = key->dst.port;
}
}
static void
tuple_to_conn_key(const struct ct_dpif_tuple *tuple, uint16_t zone,
struct conn_key *key)
{
if (tuple->l3_type == AF_INET) {
key->dl_type = htons(ETH_TYPE_IP);
} else if (tuple->l3_type == AF_INET6) {
key->dl_type = htons(ETH_TYPE_IPV6);
}
key->nw_proto = tuple->ip_proto;
ct_dpif_inet_addr_to_ct_endpoint(&tuple->src, &key->src.addr,
key->dl_type);
ct_dpif_inet_addr_to_ct_endpoint(&tuple->dst, &key->dst.addr,
key->dl_type);
if (tuple->ip_proto == IPPROTO_ICMP || tuple->ip_proto == IPPROTO_ICMPV6) {
key->src.icmp_id = tuple->icmp_id;
key->src.icmp_type = tuple->icmp_type;
key->src.icmp_code = tuple->icmp_code;
key->dst.icmp_id = tuple->icmp_id;
key->dst.icmp_type = (tuple->ip_proto == IPPROTO_ICMP)
? reverse_icmp_type(tuple->icmp_type)
: reverse_icmp6_type(tuple->icmp_type);
key->dst.icmp_code = tuple->icmp_code;
} else {
key->src.port = tuple->src_port;
key->dst.port = tuple->dst_port;
}
key->zone = zone;
}
static void
conn_to_ct_dpif_entry(const struct conn *conn, struct ct_dpif_entry *entry,
long long now)
{
const struct conn_key *rev_key = &conn->key_node[CT_DIR_REV].key;
const struct conn_key *key = &conn->key_node[CT_DIR_FWD].key;
memset(entry, 0, sizeof *entry);
conn_key_to_tuple(key, &entry->tuple_orig);
conn_key_to_tuple(rev_key, &entry->tuple_reply);
if (conn->alg_related) {
conn_key_to_tuple(&conn->parent_key, &entry->tuple_parent);
}
entry->zone = key->zone;
ovs_mutex_lock(&conn->lock);
entry->mark = conn->mark;
memcpy(&entry->labels, &conn->label, sizeof entry->labels);
long long expiration = conn_expiration(conn) - now;
struct ct_l4_proto *class = l4_protos[key->nw_proto];
if (class->conn_get_protoinfo) {
class->conn_get_protoinfo(conn, &entry->protoinfo);
}
ovs_mutex_unlock(&conn->lock);
entry->timeout = (expiration > 0) ? expiration / 1000 : 0;
if (conn->alg) {
/* Caller is responsible for freeing. */
entry->helper.name = xstrdup(conn->alg);
}
}
struct ipf *
conntrack_ipf_ctx(struct conntrack *ct)
{
return ct->ipf;
}
int
conntrack_dump_start(struct conntrack *ct, struct conntrack_dump *dump,
const uint16_t *pzone, int *ptot_bkts)
{
memset(dump, 0, sizeof(*dump));
if (pzone) {
dump->zone = *pzone;
dump->filter_zone = true;
dump->current_zone = dump->zone;
}
dump->ct = ct;
*ptot_bkts = 1; /* Need to clean up the callers. */
dump->cursor = cmap_cursor_start(&dump->ct->conns[dump->current_zone]);
return 0;
}
int
conntrack_dump_next(struct conntrack_dump *dump, struct ct_dpif_entry *entry)
{
long long now = time_msec();
struct conn_key_node *keyn;
struct conn *conn;
while (true) {
CMAP_CURSOR_FOR_EACH_CONTINUE (keyn, cm_node, &dump->cursor) {
if (keyn->dir != CT_DIR_FWD) {
continue;
}
conn = CONTAINER_OF(keyn, struct conn, key_node[CT_DIR_FWD]);
if (conn_expired(conn, now)) {
continue;
}
conn_to_ct_dpif_entry(conn, entry, now);
return 0;
}
if (dump->filter_zone || dump->current_zone == UINT16_MAX) {
break;
}
dump->current_zone++;
dump->cursor = cmap_cursor_start(&dump->ct->conns[dump->current_zone]);
}
return EOF;
}
int
conntrack_dump_done(struct conntrack_dump *dump OVS_UNUSED)
{
return 0;
}
static void
exp_node_to_ct_dpif_exp(const struct alg_exp_node *exp,
struct ct_dpif_exp *entry)
{
memset(entry, 0, sizeof *entry);
conn_key_to_tuple(&exp->key, &entry->tuple_orig);
conn_key_to_tuple(&exp->parent_key, &entry->tuple_parent);
entry->zone = exp->key.zone;
entry->mark = exp->parent_mark;
memcpy(&entry->labels, &exp->parent_label, sizeof entry->labels);
entry->protoinfo.proto = exp->key.nw_proto;
}
int
conntrack_exp_dump_start(struct conntrack *ct, struct conntrack_dump *dump,
const uint16_t *pzone)
{
memset(dump, 0, sizeof(*dump));
if (pzone) {
dump->zone = *pzone;
dump->filter_zone = true;
}
dump->ct = ct;
return 0;
}
int
conntrack_exp_dump_next(struct conntrack_dump *dump, struct ct_dpif_exp *entry)
{
struct conntrack *ct = dump->ct;
struct alg_exp_node *enode;
int ret = EOF;
ovs_rwlock_rdlock(&ct->resources_lock);
for (;;) {
struct hmap_node *node = hmap_at_position(&ct->alg_expectations,
&dump->hmap_pos);
if (!node) {
break;
}
enode = CONTAINER_OF(node, struct alg_exp_node, node);
if (!dump->filter_zone || enode->key.zone == dump->zone) {
ret = 0;
exp_node_to_ct_dpif_exp(enode, entry);
break;
}
}
ovs_rwlock_unlock(&ct->resources_lock);
return ret;
}
int
conntrack_exp_dump_done(struct conntrack_dump *dump OVS_UNUSED)
{
return 0;
}
static int
conntrack_flush_zone(struct conntrack *ct, const uint16_t zone)
{
struct conn_key_node *keyn;
struct conn *conn;
CMAP_FOR_EACH (keyn, cm_node, &ct->conns[zone]) {
if (keyn->dir != CT_DIR_FWD) {
continue;
}
conn = CONTAINER_OF(keyn, struct conn, key_node[CT_DIR_FWD]);
conn_clean(ct, conn);
}
return 0;
}
int
conntrack_flush(struct conntrack *ct, const uint16_t *zone)
{
if (zone) {
return conntrack_flush_zone(ct, *zone);
}
for (unsigned i = 0; i < ARRAY_SIZE(ct->conns); i++) {
conntrack_flush_zone(ct, i);
}
return 0;
}
int
conntrack_flush_tuple(struct conntrack *ct, const struct ct_dpif_tuple *tuple,
uint16_t zone)
{
struct conn_key key;
struct conn *conn;
int error = 0;
memset(&key, 0, sizeof(key));
tuple_to_conn_key(tuple, zone, &key);
conn_lookup(ct, &key, time_msec(), &conn, NULL);
if (conn) {
conn_clean(ct, conn);
} else {
VLOG_WARN("Tuple not found");
error = ENOENT;
}
return error;
}
int
conntrack_set_maxconns(struct conntrack *ct, uint32_t maxconns)
{
atomic_store_relaxed(&ct->n_conn_limit, maxconns);
return 0;
}
int
conntrack_get_maxconns(struct conntrack *ct, uint32_t *maxconns)
{
atomic_read_relaxed(&ct->n_conn_limit, maxconns);
return 0;
}
int
conntrack_get_nconns(struct conntrack *ct, uint32_t *nconns)
{
*nconns = atomic_count_get(&ct->n_conn);
return 0;
}
int
conntrack_set_tcp_seq_chk(struct conntrack *ct, bool enabled)
{
atomic_store_relaxed(&ct->tcp_seq_chk, enabled);
return 0;
}
bool
conntrack_get_tcp_seq_chk(struct conntrack *ct)
{
bool enabled;
atomic_read_relaxed(&ct->tcp_seq_chk, &enabled);
return enabled;
}
/* This function must be called with the ct->resources read lock taken. */
static struct alg_exp_node *
expectation_lookup(struct hmap *alg_expectations, const struct conn_key *key,
uint32_t basis, bool src_ip_wc)
{
struct conn_key check_key;
memcpy(&check_key, key, sizeof check_key);
check_key.src.port = ALG_WC_SRC_PORT;
if (src_ip_wc) {
memset(&check_key.src.addr, 0, sizeof check_key.src.addr);
}
struct alg_exp_node *alg_exp_node;
HMAP_FOR_EACH_WITH_HASH (alg_exp_node, node,
conn_key_hash(&check_key, basis),
alg_expectations) {
if (!conn_key_cmp(&alg_exp_node->key, &check_key)) {
return alg_exp_node;
}
}
return NULL;
}
/* This function must be called with the ct->resources write lock taken. */
static void
expectation_remove(struct hmap *alg_expectations,
const struct conn_key *key, uint32_t basis)
{
struct alg_exp_node *alg_exp_node;
HMAP_FOR_EACH_WITH_HASH (alg_exp_node, node, conn_key_hash(key, basis),
alg_expectations) {
if (!conn_key_cmp(&alg_exp_node->key, key)) {
hmap_remove(alg_expectations, &alg_exp_node->node);
break;
}
}
}
/* This function must be called with the ct->resources read lock taken. */
static struct alg_exp_node *
expectation_ref_lookup_unique(const struct hindex *alg_expectation_refs,
const struct conn_key *parent_key,
const struct conn_key *alg_exp_key,
uint32_t basis)
{
struct alg_exp_node *alg_exp_node;
HINDEX_FOR_EACH_WITH_HASH (alg_exp_node, node_ref,
conn_key_hash(parent_key, basis),
alg_expectation_refs) {
if (!conn_key_cmp(&alg_exp_node->parent_key, parent_key) &&
!conn_key_cmp(&alg_exp_node->key, alg_exp_key)) {
return alg_exp_node;
}
}
return NULL;
}
/* This function must be called with the ct->resources write lock taken. */
static void
expectation_ref_create(struct hindex *alg_expectation_refs,
struct alg_exp_node *alg_exp_node,
uint32_t basis)
{
if (!expectation_ref_lookup_unique(alg_expectation_refs,
&alg_exp_node->parent_key,
&alg_exp_node->key, basis)) {
hindex_insert(alg_expectation_refs, &alg_exp_node->node_ref,
conn_key_hash(&alg_exp_node->parent_key, basis));
}
}
static void
expectation_clean(struct conntrack *ct, const struct conn_key *parent_key)
{
ovs_rwlock_wrlock(&ct->resources_lock);
struct alg_exp_node *node;
HINDEX_FOR_EACH_WITH_HASH_SAFE (node, node_ref,
conn_key_hash(parent_key, ct->hash_basis),
&ct->alg_expectation_refs) {
if (!conn_key_cmp(&node->parent_key, parent_key)) {
expectation_remove(&ct->alg_expectations, &node->key,
ct->hash_basis);
hindex_remove(&ct->alg_expectation_refs, &node->node_ref);
free(node);
}
}
ovs_rwlock_unlock(&ct->resources_lock);
}
static void
expectation_create(struct conntrack *ct, ovs_be16 dst_port,
const struct conn *parent_conn, bool reply, bool src_ip_wc,
bool skip_nat)
{
const struct conn_key *pconn_key, *pconn_rev_key;
union ct_addr src_addr;
union ct_addr dst_addr;
union ct_addr alg_nat_repl_addr;
struct alg_exp_node *alg_exp_node = xzalloc(sizeof *alg_exp_node);
pconn_key = &parent_conn->key_node[CT_DIR_FWD].key;
pconn_rev_key = &parent_conn->key_node[CT_DIR_REV].key;
if (reply) {
src_addr = pconn_key->src.addr;
dst_addr = pconn_key->dst.addr;
alg_exp_node->nat_rpl_dst = true;
if (skip_nat) {
alg_nat_repl_addr = dst_addr;
} else if (parent_conn->nat_action & NAT_ACTION_DST) {
alg_nat_repl_addr = pconn_rev_key->src.addr;
alg_exp_node->nat_rpl_dst = false;
} else {
alg_nat_repl_addr = pconn_rev_key->dst.addr;
}
} else {
src_addr = pconn_rev_key->src.addr;
dst_addr = pconn_rev_key->dst.addr;
alg_exp_node->nat_rpl_dst = false;
if (skip_nat) {
alg_nat_repl_addr = src_addr;
} else if (parent_conn->nat_action & NAT_ACTION_DST) {
alg_nat_repl_addr = pconn_key->dst.addr;
alg_exp_node->nat_rpl_dst = true;
} else {
alg_nat_repl_addr = pconn_key->src.addr;
}
}
if (src_ip_wc) {
memset(&src_addr, 0, sizeof src_addr);
}
alg_exp_node->key.dl_type = pconn_key->dl_type;
alg_exp_node->key.nw_proto = pconn_key->nw_proto;
alg_exp_node->key.zone = pconn_key->zone;
alg_exp_node->key.src.addr = src_addr;
alg_exp_node->key.dst.addr = dst_addr;
alg_exp_node->key.src.port = ALG_WC_SRC_PORT;
alg_exp_node->key.dst.port = dst_port;
alg_exp_node->parent_mark = parent_conn->mark;
alg_exp_node->parent_label = parent_conn->label;
memcpy(&alg_exp_node->parent_key, pconn_key,
sizeof alg_exp_node->parent_key);
/* Take the write lock here because it is almost 100%
* likely that the lookup will fail and
* expectation_create() will be called below. */
ovs_rwlock_wrlock(&ct->resources_lock);
struct alg_exp_node *alg_exp = expectation_lookup(
&ct->alg_expectations, &alg_exp_node->key, ct->hash_basis, src_ip_wc);
if (alg_exp) {
free(alg_exp_node);
ovs_rwlock_unlock(&ct->resources_lock);
return;
}
alg_exp_node->alg_nat_repl_addr = alg_nat_repl_addr;
hmap_insert(&ct->alg_expectations, &alg_exp_node->node,
conn_key_hash(&alg_exp_node->key, ct->hash_basis));
expectation_ref_create(&ct->alg_expectation_refs, alg_exp_node,
ct->hash_basis);
ovs_rwlock_unlock(&ct->resources_lock);
}
static void
replace_substring(char *substr, uint8_t substr_size,
uint8_t total_size, char *rep_str,
uint8_t rep_str_size)
{
memmove(substr + rep_str_size, substr + substr_size,
total_size - substr_size);
memcpy(substr, rep_str, rep_str_size);
}
static void
repl_bytes(char *str, char c1, char c2)
{
while (*str) {
if (*str == c1) {
*str = c2;
}
str++;
}
}
static void
modify_packet(struct dp_packet *pkt, char *pkt_str, size_t size,
char *repl_str, size_t repl_size,
uint32_t orig_used_size)
{
replace_substring(pkt_str, size,
(const char *) dp_packet_tail(pkt) - pkt_str,
repl_str, repl_size);
dp_packet_set_size(pkt, orig_used_size + (int) repl_size - (int) size);
}
/* Replace IPV4 address in FTP message with NATed address. */
static int
repl_ftp_v4_addr(struct dp_packet *pkt, ovs_be32 v4_addr_rep,
char *ftp_data_start,
size_t addr_offset_from_ftp_data_start,
size_t addr_size OVS_UNUSED)
{
enum { MAX_FTP_V4_NAT_DELTA = 8 };
/* Do conservative check for pathological MTU usage. */
uint32_t orig_used_size = dp_packet_size(pkt);
if (orig_used_size + MAX_FTP_V4_NAT_DELTA >
dp_packet_get_allocated(pkt)) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 5);
VLOG_WARN_RL(&rl, "Unsupported effective MTU %u used with FTP V4",
dp_packet_get_allocated(pkt));
return 0;
}
char v4_addr_str[INET_ADDRSTRLEN] = {0};
ovs_assert(inet_ntop(AF_INET, &v4_addr_rep, v4_addr_str,
sizeof v4_addr_str));
repl_bytes(v4_addr_str, '.', ',');
modify_packet(pkt, ftp_data_start + addr_offset_from_ftp_data_start,
addr_size, v4_addr_str, strlen(v4_addr_str),
orig_used_size);
return (int) strlen(v4_addr_str) - (int) addr_size;
}
static char *
skip_non_digits(char *str)
{
while (!isdigit(*str) && *str != 0) {
str++;
}
return str;
}
static char *
terminate_number_str(char *str, uint8_t max_digits)
{
uint8_t digits_found = 0;
while (isdigit(*str) && digits_found <= max_digits) {
str++;
digits_found++;
}
*str = 0;
return str;
}
static void
get_ftp_ctl_msg(struct dp_packet *pkt, char *ftp_msg)
{
struct tcp_header *th = dp_packet_l4(pkt);
char *tcp_hdr = (char *) th;
uint32_t tcp_payload_len = dp_packet_get_tcp_payload_length(pkt);
size_t tcp_payload_of_interest = MIN(tcp_payload_len,
LARGEST_FTP_MSG_OF_INTEREST);
size_t tcp_hdr_len = TCP_OFFSET(th->tcp_ctl) * 4;
ovs_strlcpy(ftp_msg, tcp_hdr + tcp_hdr_len,
tcp_payload_of_interest);
}
static enum ftp_ctl_pkt
detect_ftp_ctl_type(const struct conn_lookup_ctx *ctx,
struct dp_packet *pkt)
{
char ftp_msg[LARGEST_FTP_MSG_OF_INTEREST + 1] = {0};
get_ftp_ctl_msg(pkt, ftp_msg);
if (ctx->key.dl_type == htons(ETH_TYPE_IPV6)) {
if (strncasecmp(ftp_msg, FTP_EPRT_CMD, strlen(FTP_EPRT_CMD)) &&
!strcasestr(ftp_msg, FTP_EPSV_REPLY)) {
return CT_FTP_CTL_OTHER;
}
} else {
if (strncasecmp(ftp_msg, FTP_PORT_CMD, strlen(FTP_PORT_CMD)) &&
strncasecmp(ftp_msg, FTP_PASV_REPLY_CODE,
strlen(FTP_PASV_REPLY_CODE))) {
return CT_FTP_CTL_OTHER;
}
}
return CT_FTP_CTL_INTEREST;
}
static enum ftp_ctl_pkt
process_ftp_ctl_v4(struct conntrack *ct,
struct dp_packet *pkt,
const struct conn *conn_for_expectation,
ovs_be32 *v4_addr_rep,
char **ftp_data_v4_start,
size_t *addr_offset_from_ftp_data_start,
size_t *addr_size)
{
struct tcp_header *th = dp_packet_l4(pkt);
size_t tcp_hdr_len = TCP_OFFSET(th->tcp_ctl) * 4;
char *tcp_hdr = (char *) th;
*ftp_data_v4_start = tcp_hdr + tcp_hdr_len;
char ftp_msg[LARGEST_FTP_MSG_OF_INTEREST + 1] = {0};
get_ftp_ctl_msg(pkt, ftp_msg);
char *ftp = ftp_msg;
enum ct_alg_mode mode;
if (!strncasecmp(ftp, FTP_PORT_CMD, strlen(FTP_PORT_CMD))) {
ftp = ftp_msg + strlen(FTP_PORT_CMD);
mode = CT_FTP_MODE_ACTIVE;
} else {
ftp = ftp_msg + strlen(FTP_PASV_REPLY_CODE);
mode = CT_FTP_MODE_PASSIVE;
}
/* Find first space. */
ftp = strchr(ftp, ' ');
if (!ftp) {
return CT_FTP_CTL_INVALID;
}
/* Find the first digit, after space. */
ftp = skip_non_digits(ftp);
if (*ftp == 0) {
return CT_FTP_CTL_INVALID;
}
char *ip_addr_start = ftp;
*addr_offset_from_ftp_data_start = ip_addr_start - ftp_msg;
uint8_t comma_count = 0;
while (comma_count < 4 && *ftp) {
if (*ftp == ',') {
comma_count++;
if (comma_count == 4) {
*ftp = 0;
} else {
*ftp = '.';
}
}
ftp++;
}
if (comma_count != 4) {
return CT_FTP_CTL_INVALID;
}
struct in_addr ip_addr;
int rc2 = inet_pton(AF_INET, ip_addr_start, &ip_addr);
if (rc2 != 1) {
return CT_FTP_CTL_INVALID;
}
*addr_size = ftp - ip_addr_start - 1;
char *save_ftp = ftp;
ftp = terminate_number_str(ftp, MAX_FTP_PORT_DGTS);
if (!ftp) {
return CT_FTP_CTL_INVALID;
}
int value;
if (!str_to_int(save_ftp, 10, &value)) {
return CT_FTP_CTL_INVALID;
}
/* This is derived from the L4 port maximum is 65535. */
if (value > 255) {
return CT_FTP_CTL_INVALID;
}
uint16_t port_hs = value;
port_hs <<= 8;
/* Skip over comma. */
ftp++;
save_ftp = ftp;
bool digit_found = false;
while (isdigit(*ftp)) {
ftp++;
digit_found = true;
}
if (!digit_found) {
return CT_FTP_CTL_INVALID;
}
*ftp = 0;
if (!str_to_int(save_ftp, 10, &value)) {
return CT_FTP_CTL_INVALID;
}
if (value > 255) {
return CT_FTP_CTL_INVALID;
}
port_hs |= value;
ovs_be16 port = htons(port_hs);
ovs_be32 conn_ipv4_addr;
switch (mode) {
case CT_FTP_MODE_ACTIVE:
*v4_addr_rep =
conn_for_expectation->key_node[CT_DIR_REV].key.dst.addr.ipv4;
conn_ipv4_addr =
conn_for_expectation->key_node[CT_DIR_FWD].key.src.addr.ipv4;
break;
case CT_FTP_MODE_PASSIVE:
*v4_addr_rep =
conn_for_expectation->key_node[CT_DIR_FWD].key.dst.addr.ipv4;
conn_ipv4_addr =
conn_for_expectation->key_node[CT_DIR_REV].key.src.addr.ipv4;
break;
case CT_TFTP_MODE:
default:
OVS_NOT_REACHED();
}
ovs_be32 ftp_ipv4_addr;
ftp_ipv4_addr = ip_addr.s_addr;
/* Although most servers will block this exploit, there may be some
* less well managed. */
if (ftp_ipv4_addr != conn_ipv4_addr && ftp_ipv4_addr != *v4_addr_rep) {
return CT_FTP_CTL_INVALID;
}
expectation_create(ct, port, conn_for_expectation,
!!(pkt->md.ct_state & CS_REPLY_DIR), false, false);
return CT_FTP_CTL_INTEREST;
}
static char *
skip_ipv6_digits(char *str)
{
while (isxdigit(*str) || *str == ':' || *str == '.') {
str++;
}
return str;
}
static enum ftp_ctl_pkt
process_ftp_ctl_v6(struct conntrack *ct,
struct dp_packet *pkt,
const struct conn *conn_for_exp,
union ct_addr *v6_addr_rep, char **ftp_data_start,
size_t *addr_offset_from_ftp_data_start,
size_t *addr_size, enum ct_alg_mode *mode)
{
struct tcp_header *th = dp_packet_l4(pkt);
size_t tcp_hdr_len = TCP_OFFSET(th->tcp_ctl) * 4;
char *tcp_hdr = (char *) th;
char ftp_msg[LARGEST_FTP_MSG_OF_INTEREST + 1] = {0};
get_ftp_ctl_msg(pkt, ftp_msg);
*ftp_data_start = tcp_hdr + tcp_hdr_len;
char *ftp = ftp_msg;
struct in6_addr ip6_addr;
if (!strncasecmp(ftp, FTP_EPRT_CMD, strlen(FTP_EPRT_CMD))) {
ftp = ftp_msg + strlen(FTP_EPRT_CMD);
ftp = skip_non_digits(ftp);
if (*ftp != FTP_AF_V6 || isdigit(ftp[1])) {
return CT_FTP_CTL_INVALID;
}
/* Jump over delimiter. */
ftp += 2;
memset(&ip6_addr, 0, sizeof ip6_addr);
char *ip_addr_start = ftp;
*addr_offset_from_ftp_data_start = ip_addr_start - ftp_msg;
ftp = skip_ipv6_digits(ftp);
*ftp = 0;
*addr_size = ftp - ip_addr_start;
int rc2 = inet_pton(AF_INET6, ip_addr_start, &ip6_addr);
if (rc2 != 1) {
return CT_FTP_CTL_INVALID;
}
ftp++;
*mode = CT_FTP_MODE_ACTIVE;
} else {
ftp = ftp_msg + strcspn(ftp_msg, "(");
ftp = skip_non_digits(ftp);
if (!isdigit(*ftp)) {
return CT_FTP_CTL_INVALID;
}
/* Not used for passive mode. */
*addr_offset_from_ftp_data_start = 0;
*addr_size = 0;
*mode = CT_FTP_MODE_PASSIVE;
}
char *save_ftp = ftp;
ftp = terminate_number_str(ftp, MAX_EXT_FTP_PORT_DGTS);
if (!ftp) {
return CT_FTP_CTL_INVALID;
}
int value;
if (!str_to_int(save_ftp, 10, &value)) {
return CT_FTP_CTL_INVALID;
}
if (value > CT_MAX_L4_PORT) {
return CT_FTP_CTL_INVALID;
}
uint16_t port_hs = value;
ovs_be16 port = htons(port_hs);
switch (*mode) {
case CT_FTP_MODE_ACTIVE:
*v6_addr_rep = conn_for_exp->key_node[CT_DIR_REV].key.dst.addr;
/* Although most servers will block this exploit, there may be some
* less well managed. */
if (memcmp(&ip6_addr, &v6_addr_rep->ipv6, sizeof ip6_addr) &&
memcmp(&ip6_addr,
&conn_for_exp->key_node[CT_DIR_FWD].key.src.addr.ipv6,
sizeof ip6_addr)) {
return CT_FTP_CTL_INVALID;
}
break;
case CT_FTP_MODE_PASSIVE:
*v6_addr_rep = conn_for_exp->key_node[CT_DIR_FWD].key.dst.addr;
break;
case CT_TFTP_MODE:
default:
OVS_NOT_REACHED();
}
expectation_create(ct, port, conn_for_exp,
!!(pkt->md.ct_state & CS_REPLY_DIR), false, false);
return CT_FTP_CTL_INTEREST;
}
static int
repl_ftp_v6_addr(struct dp_packet *pkt, union ct_addr v6_addr_rep,
char *ftp_data_start,
size_t addr_offset_from_ftp_data_start,
size_t addr_size, enum ct_alg_mode mode)
{
/* This is slightly bigger than really possible. */
enum { MAX_FTP_V6_NAT_DELTA = 45 };
if (mode == CT_FTP_MODE_PASSIVE) {
return 0;
}
/* Do conservative check for pathological MTU usage. */
uint32_t orig_used_size = dp_packet_size(pkt);
if (orig_used_size + MAX_FTP_V6_NAT_DELTA >
dp_packet_get_allocated(pkt)) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 5);
VLOG_WARN_RL(&rl, "Unsupported effective MTU %u used with FTP V6",
dp_packet_get_allocated(pkt));
return 0;
}
char v6_addr_str[INET6_ADDRSTRLEN] = {0};
ovs_assert(inet_ntop(AF_INET6, &v6_addr_rep.ipv6, v6_addr_str,
sizeof v6_addr_str));
modify_packet(pkt, ftp_data_start + addr_offset_from_ftp_data_start,
addr_size, v6_addr_str, strlen(v6_addr_str),
orig_used_size);
return (int) strlen(v6_addr_str) - (int) addr_size;
}
/* Increment/decrement a TCP sequence number. */
static void
adj_seqnum(ovs_16aligned_be32 *val, int32_t inc)
{
put_16aligned_be32(val, htonl(ntohl(get_16aligned_be32(val)) + inc));
}
static void
handle_ftp_ctl(struct conntrack *ct, const struct conn_lookup_ctx *ctx,
struct dp_packet *pkt, struct conn *ec, long long now,
enum ftp_ctl_pkt ftp_ctl, bool nat)
{
struct ip_header *l3_hdr = dp_packet_l3(pkt);
ovs_be32 v4_addr_rep = 0;
union ct_addr v6_addr_rep;
size_t addr_offset_from_ftp_data_start = 0;
size_t addr_size = 0;
char *ftp_data_start;
enum ct_alg_mode mode = CT_FTP_MODE_ACTIVE;
if (detect_ftp_ctl_type(ctx, pkt) != ftp_ctl) {
return;
}
struct ovs_16aligned_ip6_hdr *nh6 = dp_packet_l3(pkt);
int64_t seq_skew = 0;
if (ftp_ctl == CT_FTP_CTL_INTEREST) {
enum ftp_ctl_pkt rc;
if (ctx->key.dl_type == htons(ETH_TYPE_IPV6)) {
rc = process_ftp_ctl_v6(ct, pkt, ec,
&v6_addr_rep, &ftp_data_start,
&addr_offset_from_ftp_data_start,
&addr_size, &mode);
} else {
rc = process_ftp_ctl_v4(ct, pkt, ec,
&v4_addr_rep, &ftp_data_start,
&addr_offset_from_ftp_data_start,
&addr_size);
}
if (rc == CT_FTP_CTL_INVALID) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 5);
VLOG_WARN_RL(&rl, "Invalid FTP control packet format");
pkt->md.ct_state |= CS_TRACKED | CS_INVALID;
return;
} else if (rc == CT_FTP_CTL_INTEREST) {
uint16_t ip_len;
if (ctx->key.dl_type == htons(ETH_TYPE_IPV6)) {
if (nat) {
seq_skew = repl_ftp_v6_addr(pkt, v6_addr_rep,
ftp_data_start,
addr_offset_from_ftp_data_start,
addr_size, mode);
}
if (seq_skew) {
ip_len = ntohs(nh6->ip6_ctlun.ip6_un1.ip6_un1_plen) +
seq_skew;
nh6->ip6_ctlun.ip6_un1.ip6_un1_plen = htons(ip_len);
}
} else {
if (nat) {
seq_skew = repl_ftp_v4_addr(pkt, v4_addr_rep,
ftp_data_start,
addr_offset_from_ftp_data_start,
addr_size);
}
if (seq_skew) {
ip_len = ntohs(l3_hdr->ip_tot_len) + seq_skew;
if (dp_packet_ip_checksum_valid(pkt)) {
dp_packet_ip_checksum_set_partial(pkt);
} else {
l3_hdr->ip_csum = recalc_csum16(l3_hdr->ip_csum,
l3_hdr->ip_tot_len,
htons(ip_len));
}
l3_hdr->ip_tot_len = htons(ip_len);
}
}
} else {
OVS_NOT_REACHED();
}
}
struct tcp_header *th = dp_packet_l4(pkt);
if (nat && ec->seq_skew != 0) {
ctx->reply != ec->seq_skew_dir ?
adj_seqnum(&th->tcp_ack, -ec->seq_skew) :
adj_seqnum(&th->tcp_seq, ec->seq_skew);
}
if (dp_packet_l4_checksum_valid(pkt)) {
dp_packet_l4_checksum_set_partial(pkt);
} else {
th->tcp_csum = 0;
if (ctx->key.dl_type == htons(ETH_TYPE_IPV6)) {
th->tcp_csum = packet_csum_upperlayer6(nh6, th, ctx->key.nw_proto,
dp_packet_l4_size(pkt));
} else {
uint32_t tcp_csum = packet_csum_pseudoheader(l3_hdr);
th->tcp_csum = csum_finish(
csum_continue(tcp_csum, th, dp_packet_l4_size(pkt)));
}
}
if (seq_skew) {
conn_seq_skew_set(ct, ec, now, seq_skew + ec->seq_skew,
ctx->reply);
}
}
static void
handle_tftp_ctl(struct conntrack *ct,
const struct conn_lookup_ctx *ctx OVS_UNUSED,
struct dp_packet *pkt, struct conn *conn_for_expectation,
long long now OVS_UNUSED, enum ftp_ctl_pkt ftp_ctl OVS_UNUSED,
bool nat OVS_UNUSED)
{
expectation_create(ct,
conn_for_expectation->key_node[CT_DIR_FWD].key.src.port,
conn_for_expectation,
!!(pkt->md.ct_state & CS_REPLY_DIR), false, false);
}