2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/lib/flow.h
Mike Pattrick 3b1882261c ofproto-dpif-mirror: Add support for pre-selection filter.
Currently a bridge mirror will collect all packets and tools like
ovs-tcpdump can apply additional filters after they have already been
duplicated by vswitchd. This can result in inefficient collection.

This patch adds support to apply pre-selection to bridge mirrors, which
can limit which packets are mirrored based on flow metadata. This
significantly improves overall vswitchd performance during mirroring if
only a subset of traffic is required.

Signed-off-by: Mike Pattrick <mkp@redhat.com>
Signed-off-by: Ilya Maximets <i.maximets@ovn.org>
2024-07-16 00:28:23 +02:00

1226 lines
41 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FLOW_H
#define FLOW_H 1
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/icmp6.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "bitmap.h"
#include "byte-order.h"
#include "openvswitch/compiler.h"
#include "openflow/nicira-ext.h"
#include "openflow/openflow.h"
#include "openvswitch/flow.h"
#include "packets.h"
#include "hash.h"
#include "util.h"
struct dpif_flow_stats;
struct dpif_flow_attrs;
struct ds;
struct flow_wildcards;
struct minimask;
struct dp_packet;
struct ofputil_port_map;
struct pkt_metadata;
struct match;
/* Some flow fields are mutually exclusive or only appear within the flow
* pipeline. IPv6 headers are bigger than IPv4 and MPLS, and IPv6 ND packets
* are bigger than TCP,UDP and IGMP packets. */
#define FLOW_MAX_PACKET_U64S (FLOW_U64S \
/* Unused in datapath */ - FLOW_U64_SIZE(regs) \
- FLOW_U64_SIZE(metadata) \
/* L2.5/3 */ - FLOW_U64_SIZE(nw_src) /* incl. nw_dst */ \
- FLOW_U64_SIZE(mpls_lse) \
/* L4 */ - FLOW_U64_SIZE(tp_src) \
)
extern const uint8_t flow_segment_u64s[];
/* Configured maximum VLAN headers. */
extern int flow_vlan_limit;
#define FLOW_U64_OFFSET(FIELD) \
(offsetof(struct flow, FIELD) / sizeof(uint64_t))
#define FLOW_U64_OFFREM(FIELD) \
(offsetof(struct flow, FIELD) % sizeof(uint64_t))
/* Number of 64-bit units spanned by a 'FIELD'. */
#define FLOW_U64_SIZE(FIELD) \
DIV_ROUND_UP(FLOW_U64_OFFREM(FIELD) + MEMBER_SIZEOF(struct flow, FIELD), \
sizeof(uint64_t))
void flow_extract(struct dp_packet *, struct flow *);
void flow_zero_wildcards(struct flow *, const struct flow_wildcards *);
void flow_unwildcard_tp_ports(const struct flow *, struct flow_wildcards *);
void flow_get_metadata(const struct flow *, struct match *flow_metadata);
struct netdev *flow_get_tunnel_netdev(struct flow_tnl *tunnel);
const char *ct_state_to_string(uint32_t state);
uint32_t ct_state_from_string(const char *);
bool parse_ct_state(const char *state_str, uint32_t default_state,
uint32_t *ct_state, struct ds *);
bool validate_ct_state(uint32_t state, struct ds *);
void flow_clear_conntrack(struct flow *);
char *flow_to_string(const struct flow *, const struct ofputil_port_map *);
void format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t),
uint32_t flags, char del);
void format_flags_masked(struct ds *ds, const char *name,
const char *(*bit_to_string)(uint32_t),
uint32_t flags, uint32_t mask, uint32_t max_mask);
void format_packet_type_masked(struct ds *, ovs_be32 value, ovs_be32 mask);
int parse_flags(const char *s, const char *(*bit_to_string)(uint32_t),
char end, const char *field_name, char **res_string,
uint32_t *res_flags, uint32_t allowed, uint32_t *res_mask);
void flow_format(struct ds *, const struct flow *,
const struct ofputil_port_map *);
void flow_print(FILE *, const struct flow *, const struct ofputil_port_map *);
static inline int flow_compare_3way(const struct flow *, const struct flow *);
static inline bool flow_equal(const struct flow *, const struct flow *);
static inline size_t flow_hash(const struct flow *, uint32_t basis);
void flow_set_dl_vlan(struct flow *, ovs_be16 vid, int id);
void flow_fix_vlan_tpid(struct flow *);
void flow_set_vlan_vid(struct flow *, ovs_be16 vid);
void flow_set_vlan_pcp(struct flow *, uint8_t pcp, int id);
void flow_limit_vlans(int vlan_limit);
int flow_count_vlan_headers(const struct flow *);
void flow_skip_common_vlan_headers(const struct flow *a, int *p_an,
const struct flow *b, int *p_bn);
void flow_pop_vlan(struct flow*, struct flow_wildcards*);
void flow_push_vlan_uninit(struct flow*, struct flow_wildcards*);
int flow_count_mpls_labels(const struct flow *, struct flow_wildcards *);
int flow_count_common_mpls_labels(const struct flow *a, int an,
const struct flow *b, int bn,
struct flow_wildcards *wc);
void flow_push_mpls(struct flow *, int n, ovs_be16 mpls_eth_type,
struct flow_wildcards *, bool clear_flow_L3);
bool flow_pop_mpls(struct flow *, int n, ovs_be16 eth_type,
struct flow_wildcards *);
void flow_set_mpls_label(struct flow *, int idx, ovs_be32 label);
void flow_set_mpls_ttl(struct flow *, int idx, uint8_t ttl);
void flow_set_mpls_tc(struct flow *, int idx, uint8_t tc);
void flow_set_mpls_bos(struct flow *, int idx, uint8_t stack);
void flow_set_mpls_lse(struct flow *, int idx, ovs_be32 lse);
void flow_compose(struct dp_packet *, const struct flow *,
const void *l7, size_t l7_len, bool bad_csum);
void packet_expand(struct dp_packet *, const struct flow *, size_t size);
bool parse_ipv6_ext_hdrs(const void **datap, size_t *sizep, uint8_t *nw_proto,
uint8_t *nw_frag,
const struct ovs_16aligned_ip6_frag **frag_hdr,
const struct ip6_rt_hdr **rt_hdr);
bool parse_nsh(const void **datap, size_t *sizep, struct ovs_key_nsh *key);
uint16_t parse_tcp_flags(struct dp_packet *packet, ovs_be16 *dl_type_p,
uint8_t *nw_frag_p, ovs_be16 *first_vlan_tci_p);
static inline uint64_t
flow_get_xreg(const struct flow *flow, int idx)
{
return ((uint64_t) flow->regs[idx * 2] << 32) | flow->regs[idx * 2 + 1];
}
static inline void
flow_set_xreg(struct flow *flow, int idx, uint64_t value)
{
flow->regs[idx * 2] = value >> 32;
flow->regs[idx * 2 + 1] = value;
}
static inline ovs_u128
flow_get_xxreg(const struct flow *flow, int idx)
{
ovs_u128 value;
value.u64.hi = (uint64_t) flow->regs[idx * 4] << 32;
value.u64.hi |= flow->regs[idx * 4 + 1];
value.u64.lo = (uint64_t) flow->regs[idx * 4 + 2] << 32;
value.u64.lo |= flow->regs[idx * 4 + 3];
return value;
}
static inline void
flow_set_xxreg(struct flow *flow, int idx, ovs_u128 value)
{
flow->regs[idx * 4] = value.u64.hi >> 32;
flow->regs[idx * 4 + 1] = value.u64.hi;
flow->regs[idx * 4 + 2] = value.u64.lo >> 32;
flow->regs[idx * 4 + 3] = value.u64.lo;
}
static inline int
flow_compare_3way(const struct flow *a, const struct flow *b)
{
return memcmp(a, b, sizeof *a);
}
static inline bool
flow_equal(const struct flow *a, const struct flow *b)
{
return !flow_compare_3way(a, b);
}
static inline size_t
flow_hash(const struct flow *flow, uint32_t basis)
{
return hash_bytes64((const uint64_t *)flow, sizeof *flow, basis);
}
static inline uint16_t
ofp_to_u16(ofp_port_t ofp_port)
{
return (OVS_FORCE uint16_t) ofp_port;
}
static inline uint32_t
odp_to_u32(odp_port_t odp_port)
{
return (OVS_FORCE uint32_t) odp_port;
}
static inline uint32_t
ofp11_to_u32(ofp11_port_t ofp11_port)
{
return (OVS_FORCE uint32_t) ofp11_port;
}
static inline ofp_port_t
u16_to_ofp(uint16_t port)
{
return OFP_PORT_C(port);
}
static inline odp_port_t
u32_to_odp(uint32_t port)
{
return ODP_PORT_C(port);
}
static inline ofp11_port_t
u32_to_ofp11(uint32_t port)
{
return OFP11_PORT_C(port);
}
static inline uint32_t
hash_ofp_port(ofp_port_t ofp_port)
{
return hash_int(ofp_to_u16(ofp_port), 0);
}
static inline uint32_t
hash_odp_port(odp_port_t odp_port)
{
return hash_int(odp_to_u32(odp_port), 0);
}
uint32_t flow_hash_5tuple(const struct flow *flow, uint32_t basis);
uint32_t flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis);
uint32_t flow_hash_symmetric_l2(const struct flow *flow, uint32_t basis);
uint32_t flow_hash_symmetric_l3l4(const struct flow *flow, uint32_t basis,
bool inc_udp_ports );
uint32_t flow_hash_symmetric_l3(const struct flow *flow, uint32_t basis);
/* Initialize a flow with random fields that matter for nx_hash_fields. */
void flow_random_hash_fields(struct flow *);
void flow_mask_hash_fields(const struct flow *, struct flow_wildcards *,
enum nx_hash_fields);
uint32_t flow_hash_fields(const struct flow *, enum nx_hash_fields,
uint16_t basis);
const char *flow_hash_fields_to_str(enum nx_hash_fields);
bool flow_hash_fields_valid(enum nx_hash_fields);
uint32_t flow_hash_in_wildcards(const struct flow *,
const struct flow_wildcards *,
uint32_t basis);
bool flow_equal_except(const struct flow *a, const struct flow *b,
const struct flow_wildcards *);
/* Bitmap for flow values. For each 1-bit the corresponding flow value is
* explicitly specified, other values are zeroes.
*
* map_t must be wide enough to hold any member of struct flow. */
typedef unsigned long long map_t;
#define MAP_T_BITS (sizeof(map_t) * CHAR_BIT)
#define MAP_1 (map_t)1
#define MAP_MAX TYPE_MAXIMUM(map_t)
#define MAP_IS_SET(MAP, IDX) ((MAP) & (MAP_1 << (IDX)))
/* Iterate through the indices of all 1-bits in 'MAP'. */
#define MAP_FOR_EACH_INDEX(IDX, MAP) \
ULLONG_FOR_EACH_1(IDX, MAP)
#define FLOWMAP_UNITS DIV_ROUND_UP(FLOW_U64S, MAP_T_BITS)
struct flowmap {
map_t bits[FLOWMAP_UNITS];
};
#define FLOWMAP_EMPTY_INITIALIZER { { 0 } }
static inline void flowmap_init(struct flowmap *);
static inline bool flowmap_equal(struct flowmap, struct flowmap);
static inline bool flowmap_is_set(const struct flowmap *, size_t idx);
static inline bool flowmap_are_set(const struct flowmap *, size_t idx,
unsigned int n_bits);
static inline void flowmap_set(struct flowmap *, size_t idx,
unsigned int n_bits);
static inline void flowmap_clear(struct flowmap *, size_t idx,
unsigned int n_bits);
static inline struct flowmap flowmap_or(struct flowmap, struct flowmap);
static inline struct flowmap flowmap_and(struct flowmap, struct flowmap);
static inline bool flowmap_is_empty(struct flowmap);
static inline unsigned int flowmap_n_1bits(struct flowmap);
#define FLOWMAP_HAS_FIELD(FM, FIELD) \
flowmap_are_set(FM, FLOW_U64_OFFSET(FIELD), FLOW_U64_SIZE(FIELD))
#define FLOWMAP_SET(FM, FIELD) \
flowmap_set(FM, FLOW_U64_OFFSET(FIELD), FLOW_U64_SIZE(FIELD))
#define FLOWMAP_SET__(FM, FIELD, SIZE) \
flowmap_set(FM, FLOW_U64_OFFSET(FIELD), \
DIV_ROUND_UP(SIZE, sizeof(uint64_t)))
/* XXX: Only works for full 64-bit units. */
#define FLOWMAP_CLEAR(FM, FIELD) \
BUILD_ASSERT_DECL(FLOW_U64_OFFREM(FIELD) == 0); \
BUILD_ASSERT_DECL(sizeof(((struct flow *)0)->FIELD) % sizeof(uint64_t) == 0); \
flowmap_clear(FM, FLOW_U64_OFFSET(FIELD), FLOW_U64_SIZE(FIELD))
/* Iterate through all units in 'FMAP'. */
#define FLOWMAP_FOR_EACH_UNIT(UNIT) \
for ((UNIT) = 0; (UNIT) < FLOWMAP_UNITS; (UNIT)++)
/* Iterate through all map units in 'FMAP'. */
#define FLOWMAP_FOR_EACH_MAP(MAP, FLOWMAP) \
for (size_t unit__ = 0; \
unit__ < FLOWMAP_UNITS && ((MAP) = (FLOWMAP).bits[unit__], true); \
unit__++)
struct flowmap_aux;
static inline bool flowmap_next_index(struct flowmap_aux *, size_t *idx);
#define FLOWMAP_AUX_INITIALIZER(FLOWMAP) { .unit = 0, .map = (FLOWMAP) }
/* Iterate through all struct flow u64 indices specified by 'MAP'. This is a
* slower but easier version of the FLOWMAP_FOR_EACH_MAP() &
* MAP_FOR_EACH_INDEX() combination. */
#define FLOWMAP_FOR_EACH_INDEX(IDX, MAP) \
for (struct flowmap_aux aux__ = FLOWMAP_AUX_INITIALIZER(MAP); \
flowmap_next_index(&aux__, &(IDX));)
/* Flowmap inline implementations. */
static inline void
flowmap_init(struct flowmap *fm)
{
memset(fm, 0, sizeof *fm);
}
static inline bool
flowmap_equal(struct flowmap a, struct flowmap b)
{
return !memcmp(&a, &b, sizeof a);
}
static inline bool
flowmap_is_set(const struct flowmap *fm, size_t idx)
{
return (fm->bits[idx / MAP_T_BITS] & (MAP_1 << (idx % MAP_T_BITS))) != 0;
}
/* Returns 'true' if any of the 'n_bits' bits starting at 'idx' are set in
* 'fm'. 'n_bits' can be at most MAP_T_BITS. */
static inline bool
flowmap_are_set(const struct flowmap *fm, size_t idx, unsigned int n_bits)
{
map_t n_bits_mask = (MAP_1 << n_bits) - 1;
size_t unit = idx / MAP_T_BITS;
idx %= MAP_T_BITS;
if (fm->bits[unit] & (n_bits_mask << idx)) {
return true;
}
/* The seemingly unnecessary bounds check on 'unit' is a workaround for a
* false-positive array out of bounds error by GCC 4.9. */
if (unit + 1 < FLOWMAP_UNITS && idx + n_bits > MAP_T_BITS) {
/* Check the remaining bits from the next unit. */
return fm->bits[unit + 1] & (n_bits_mask >> (MAP_T_BITS - idx));
}
return false;
}
/* Set the 'n_bits' consecutive bits in 'fm', starting at bit 'idx'.
* 'n_bits' can be at most MAP_T_BITS. */
static inline void
flowmap_set(struct flowmap *fm, size_t idx, unsigned int n_bits)
{
map_t n_bits_mask = (MAP_1 << n_bits) - 1;
size_t unit = idx / MAP_T_BITS;
idx %= MAP_T_BITS;
fm->bits[unit] |= n_bits_mask << idx;
/* The seemingly unnecessary bounds check on 'unit' is a workaround for a
* false-positive array out of bounds error by GCC 4.9. */
if (unit + 1 < FLOWMAP_UNITS && idx + n_bits > MAP_T_BITS) {
/* 'MAP_T_BITS - idx' bits were set on 'unit', set the remaining
* bits from the next unit. */
fm->bits[unit + 1] |= n_bits_mask >> (MAP_T_BITS - idx);
}
}
/* Clears the 'n_bits' consecutive bits in 'fm', starting at bit 'idx'.
* 'n_bits' can be at most MAP_T_BITS. */
static inline void
flowmap_clear(struct flowmap *fm, size_t idx, unsigned int n_bits)
{
map_t n_bits_mask = (MAP_1 << n_bits) - 1;
size_t unit = idx / MAP_T_BITS;
idx %= MAP_T_BITS;
fm->bits[unit] &= ~(n_bits_mask << idx);
/* The seemingly unnecessary bounds check on 'unit' is a workaround for a
* false-positive array out of bounds error by GCC 4.9. */
if (unit + 1 < FLOWMAP_UNITS && idx + n_bits > MAP_T_BITS) {
/* 'MAP_T_BITS - idx' bits were cleared on 'unit', clear the
* remaining bits from the next unit. */
fm->bits[unit + 1] &= ~(n_bits_mask >> (MAP_T_BITS - idx));
}
}
/* OR the bits in the flowmaps. */
static inline struct flowmap
flowmap_or(struct flowmap a, struct flowmap b)
{
struct flowmap map;
size_t unit;
FLOWMAP_FOR_EACH_UNIT (unit) {
map.bits[unit] = a.bits[unit] | b.bits[unit];
}
return map;
}
/* AND the bits in the flowmaps. */
static inline struct flowmap
flowmap_and(struct flowmap a, struct flowmap b)
{
struct flowmap map;
size_t unit;
FLOWMAP_FOR_EACH_UNIT (unit) {
map.bits[unit] = a.bits[unit] & b.bits[unit];
}
return map;
}
static inline bool
flowmap_is_empty(struct flowmap fm)
{
map_t map;
FLOWMAP_FOR_EACH_MAP (map, fm) {
if (map) {
return false;
}
}
return true;
}
static inline unsigned int
flowmap_n_1bits(struct flowmap fm)
{
unsigned int n_1bits = 0;
size_t unit;
FLOWMAP_FOR_EACH_UNIT (unit) {
n_1bits += count_1bits(fm.bits[unit]);
}
return n_1bits;
}
struct flowmap_aux {
size_t unit;
struct flowmap map;
};
static inline bool
flowmap_next_index(struct flowmap_aux *aux, size_t *idx)
{
for (;;) {
map_t *map = &aux->map.bits[aux->unit];
if (*map) {
*idx = aux->unit * MAP_T_BITS + raw_ctz(*map);
*map = zero_rightmost_1bit(*map);
return true;
}
if (++aux->unit >= FLOWMAP_UNITS) {
return false;
}
}
}
/* Compressed flow. */
/* A sparse representation of a "struct flow".
*
* A "struct flow" is fairly large and tends to be mostly zeros. Sparse
* representation has two advantages. First, it saves memory and, more
* importantly, minimizes the number of accessed cache lines. Second, it saves
* time when the goal is to iterate over only the nonzero parts of the struct.
*
* The map member hold one bit for each uint64_t in a "struct flow". Each
* 0-bit indicates that the corresponding uint64_t is zero, each 1-bit that it
* *may* be nonzero (see below how this applies to minimasks).
*
* The values indicated by 'map' always follow the miniflow in memory. The
* user of the miniflow is responsible for always having enough storage after
* the struct miniflow corresponding to the number of 1-bits in maps.
*
* Elements in values array are allowed to be zero. This is useful for "struct
* minimatch", for which ensuring that the miniflow and minimask members have
* same maps allows optimization. This allowance applies only to a miniflow
* that is not a mask. That is, a minimask may NOT have zero elements in its
* values.
*
* A miniflow is always dynamically allocated so that the maps are followed by
* at least as many elements as there are 1-bits in maps. */
struct miniflow {
struct flowmap map;
/* Followed by:
* uint64_t values[n];
* where 'n' is miniflow_n_values(miniflow). */
};
BUILD_ASSERT_DECL(sizeof(struct miniflow) % sizeof(uint64_t) == 0);
#define MINIFLOW_VALUES_SIZE(COUNT) ((COUNT) * sizeof(uint64_t))
static inline uint64_t *miniflow_values(struct miniflow *mf)
{
return (uint64_t *)(mf + 1);
}
static inline const uint64_t *miniflow_get_values(const struct miniflow *mf)
{
return (const uint64_t *)(mf + 1);
}
struct pkt_metadata;
/* The 'dst' must follow with buffer space for FLOW_U64S 64-bit units.
* 'dst->map' is ignored on input and set on output to indicate which fields
* were extracted. */
void miniflow_extract(struct dp_packet *packet, struct miniflow *dst);
void miniflow_map_init(struct miniflow *, const struct flow *);
void flow_wc_map(const struct flow *, struct flowmap *);
size_t miniflow_alloc(struct miniflow *dsts[], size_t n,
const struct miniflow *src);
void miniflow_init(struct miniflow *, const struct flow *);
void miniflow_clone(struct miniflow *, const struct miniflow *,
size_t n_values);
struct miniflow * miniflow_create(const struct flow *);
void miniflow_expand(const struct miniflow *, struct flow *);
static inline uint64_t flow_u64_value(const struct flow *flow, size_t index)
{
return ((uint64_t *)flow)[index];
}
static inline uint64_t *flow_u64_lvalue(struct flow *flow, size_t index)
{
return &((uint64_t *)flow)[index];
}
static inline size_t
miniflow_n_values(const struct miniflow *flow)
{
return flowmap_n_1bits(flow->map);
}
struct flow_for_each_in_maps_aux {
const struct flow *flow;
struct flowmap_aux map_aux;
};
static inline bool
flow_values_get_next_in_maps(struct flow_for_each_in_maps_aux *aux,
uint64_t *value)
{
size_t idx;
if (flowmap_next_index(&aux->map_aux, &idx)) {
*value = flow_u64_value(aux->flow, idx);
return true;
}
return false;
}
/* Iterate through all flow u64 values specified by 'MAPS'. */
#define FLOW_FOR_EACH_IN_MAPS(VALUE, FLOW, MAPS) \
for (struct flow_for_each_in_maps_aux aux__ \
= { (FLOW), FLOWMAP_AUX_INITIALIZER(MAPS) }; \
flow_values_get_next_in_maps(&aux__, &(VALUE));)
struct mf_for_each_in_map_aux {
size_t unit; /* Current 64-bit unit of the flowmaps
being processed. */
struct flowmap fmap; /* Remaining 1-bits corresponding to the
64-bit words in 'values' */
struct flowmap map; /* Remaining 1-bits corresponding to the
64-bit words of interest. */
const uint64_t *values; /* 64-bit words corresponding to the
1-bits in 'fmap'. */
};
/* Get the data from 'aux->values' corresponding to the next lowest 1-bit
* in 'aux->map', given that 'aux->values' points to an array of 64-bit
* words corresponding to the 1-bits in 'aux->fmap', starting from the
* rightmost 1-bit.
*
* Returns 'true' if the traversal is incomplete, 'false' otherwise.
* 'aux' is prepared for the next iteration after each call.
*
* This is used to traverse through, for example, the values in a miniflow
* representation of a flow key selected by non-zero 64-bit words in a
* corresponding subtable mask. */
static inline bool
mf_get_next_in_map(struct mf_for_each_in_map_aux *aux,
uint64_t *value)
{
map_t *map, *fmap;
map_t rm1bit;
/* Skip empty map units. */
while (OVS_UNLIKELY(!*(map = &aux->map.bits[aux->unit]))) {
/* Skip remaining data in the current unit before advancing
* to the next. */
aux->values += count_1bits(aux->fmap.bits[aux->unit]);
if (++aux->unit == FLOWMAP_UNITS) {
return false;
}
}
rm1bit = rightmost_1bit(*map);
*map -= rm1bit;
fmap = &aux->fmap.bits[aux->unit];
/* If the rightmost 1-bit found from the current unit in 'aux->map'
* ('rm1bit') is also present in 'aux->fmap', store the corresponding
* value from 'aux->values' to '*value', otherwise store 0. */
if (OVS_LIKELY(*fmap & rm1bit)) {
/* Skip all 64-bit words in 'values' preceding the one corresponding
* to 'rm1bit'. */
map_t trash = *fmap & (rm1bit - 1);
/* Avoid resetting 'fmap' and calling count_1bits() when trash is
* zero. */
if (trash) {
*fmap -= trash;
aux->values += count_1bits(trash);
}
*value = *aux->values;
} else {
*value = 0;
}
return true;
}
/* Iterate through miniflow u64 values specified by 'FLOWMAP'. */
#define MINIFLOW_FOR_EACH_IN_FLOWMAP(VALUE, FLOW, FLOWMAP) \
for (struct mf_for_each_in_map_aux aux__ = \
{ 0, (FLOW)->map, (FLOWMAP), miniflow_get_values(FLOW) }; \
mf_get_next_in_map(&aux__, &(VALUE));)
/* This can be used when it is known that 'idx' is set in 'map'. */
static inline const uint64_t *
miniflow_values_get__(const uint64_t *values, map_t map, size_t idx)
{
return values + count_1bits(map & ((MAP_1 << idx) - 1));
}
/* This can be used when it is known that 'u64_idx' is set in
* the map of 'mf'. */
static inline const uint64_t *
miniflow_get__(const struct miniflow *mf, size_t idx)
{
const uint64_t *values = miniflow_get_values(mf);
const map_t *map = mf->map.bits;
while (idx >= MAP_T_BITS) {
idx -= MAP_T_BITS;
values += count_1bits(*map++);
}
return miniflow_values_get__(values, *map, idx);
}
#define MINIFLOW_IN_MAP(MF, IDX) flowmap_is_set(&(MF)->map, IDX)
/* Get the value of the struct flow 'FIELD' as up to 8 byte wide integer type
* 'TYPE' from miniflow 'MF'. */
#define MINIFLOW_GET_TYPE(MF, TYPE, FIELD) \
(BUILD_ASSERT(sizeof(TYPE) == sizeof(((struct flow *)0)->FIELD)), \
BUILD_ASSERT_GCCONLY(__builtin_types_compatible_p(TYPE, typeof(((struct flow *)0)->FIELD))), \
MINIFLOW_GET_TYPE__(MF, TYPE, FIELD))
/* Like MINIFLOW_GET_TYPE, but without checking that TYPE is the correct width
* for FIELD. (This is useful for deliberately reading adjacent fields in one
* go.) */
#define MINIFLOW_GET_TYPE__(MF, TYPE, FIELD) \
(MINIFLOW_IN_MAP(MF, FLOW_U64_OFFSET(FIELD)) \
? ((OVS_FORCE const TYPE *)miniflow_get__(MF, FLOW_U64_OFFSET(FIELD))) \
[FLOW_U64_OFFREM(FIELD) / sizeof(TYPE)] \
: 0)
#define MINIFLOW_GET_U128(FLOW, FIELD) \
(ovs_u128) { .u64 = { \
(MINIFLOW_IN_MAP(FLOW, FLOW_U64_OFFSET(FIELD)) ? \
*miniflow_get__(FLOW, FLOW_U64_OFFSET(FIELD)) : 0), \
(MINIFLOW_IN_MAP(FLOW, FLOW_U64_OFFSET(FIELD) + 1) ? \
*miniflow_get__(FLOW, FLOW_U64_OFFSET(FIELD) + 1) : 0) } }
#define MINIFLOW_GET_U8(FLOW, FIELD) \
MINIFLOW_GET_TYPE(FLOW, uint8_t, FIELD)
#define MINIFLOW_GET_U16(FLOW, FIELD) \
MINIFLOW_GET_TYPE(FLOW, uint16_t, FIELD)
#define MINIFLOW_GET_BE16(FLOW, FIELD) \
MINIFLOW_GET_TYPE(FLOW, ovs_be16, FIELD)
#define MINIFLOW_GET_U32(FLOW, FIELD) \
MINIFLOW_GET_TYPE(FLOW, uint32_t, FIELD)
#define MINIFLOW_GET_BE32(FLOW, FIELD) \
MINIFLOW_GET_TYPE(FLOW, ovs_be32, FIELD)
#define MINIFLOW_GET_U64(FLOW, FIELD) \
MINIFLOW_GET_TYPE(FLOW, uint64_t, FIELD)
#define MINIFLOW_GET_BE64(FLOW, FIELD) \
MINIFLOW_GET_TYPE(FLOW, ovs_be64, FIELD)
static inline uint64_t miniflow_get(const struct miniflow *,
unsigned int u64_ofs);
static inline uint32_t miniflow_get_u32(const struct miniflow *,
unsigned int u32_ofs);
static inline ovs_be32 miniflow_get_be32(const struct miniflow *,
unsigned int be32_ofs);
static inline uint16_t miniflow_get_vid(const struct miniflow *, size_t);
static inline uint16_t miniflow_get_tcp_flags(const struct miniflow *);
static inline ovs_be64 miniflow_get_metadata(const struct miniflow *);
static inline uint64_t miniflow_get_tun_metadata_present_map(
const struct miniflow *);
static inline uint32_t miniflow_get_recirc_id(const struct miniflow *);
static inline uint32_t miniflow_get_dp_hash(const struct miniflow *);
static inline ovs_be32 miniflow_get_ports(const struct miniflow *);
bool miniflow_equal(const struct miniflow *a, const struct miniflow *b);
bool miniflow_equal_in_minimask(const struct miniflow *a,
const struct miniflow *b,
const struct minimask *);
bool miniflow_equal_flow_in_minimask(const struct miniflow *a,
const struct flow *b,
const struct minimask *);
uint32_t miniflow_hash_5tuple(const struct miniflow *flow, uint32_t basis);
/* Compressed flow wildcards. */
/* A sparse representation of a "struct flow_wildcards".
*
* See the large comment on struct miniflow for details.
*
* Note: While miniflow can have zero data for a 1-bit in the map,
* a minimask may not! We rely on this in the implementation. */
struct minimask {
struct miniflow masks;
};
void minimask_init(struct minimask *, const struct flow_wildcards *);
struct minimask * minimask_create(const struct flow_wildcards *);
void minimask_combine(struct minimask *dst,
const struct minimask *a, const struct minimask *b,
uint64_t storage[FLOW_U64S]);
void minimask_expand(const struct minimask *, struct flow_wildcards *);
static inline uint32_t minimask_get_u32(const struct minimask *,
unsigned int u32_ofs);
static inline ovs_be32 minimask_get_be32(const struct minimask *,
unsigned int be32_ofs);
static inline uint16_t minimask_get_vid_mask(const struct minimask *, size_t);
static inline ovs_be64 minimask_get_metadata_mask(const struct minimask *);
bool minimask_equal(const struct minimask *a, const struct minimask *b);
bool minimask_has_extra(const struct minimask *, const struct minimask *);
/* Returns true if 'mask' matches every packet, false if 'mask' fixes any bits
* or fields. */
static inline bool
minimask_is_catchall(const struct minimask *mask)
{
/* For every 1-bit in mask's map, the corresponding value is non-zero,
* so the only way the mask can not fix any bits or fields is for the
* map the be zero. */
return flowmap_is_empty(mask->masks.map);
}
/* Returns the uint64_t that would be at byte offset '8 * u64_ofs' if 'flow'
* were expanded into a "struct flow". */
static inline uint64_t miniflow_get(const struct miniflow *flow,
unsigned int u64_ofs)
{
return MINIFLOW_IN_MAP(flow, u64_ofs) ? *miniflow_get__(flow, u64_ofs) : 0;
}
static inline uint32_t miniflow_get_u32(const struct miniflow *flow,
unsigned int u32_ofs)
{
uint64_t value = miniflow_get(flow, u32_ofs / 2);
#if WORDS_BIGENDIAN
return (u32_ofs & 1) ? value : value >> 32;
#else
return (u32_ofs & 1) ? value >> 32 : value;
#endif
}
static inline ovs_be32 miniflow_get_be32(const struct miniflow *flow,
unsigned int be32_ofs)
{
return (OVS_FORCE ovs_be32)miniflow_get_u32(flow, be32_ofs);
}
/* Returns the VID within the vlan_tci member of the "struct flow" represented
* by 'flow'. */
static inline uint16_t
miniflow_get_vid(const struct miniflow *flow, size_t n)
{
if (n < FLOW_MAX_VLAN_HEADERS) {
union flow_vlan_hdr hdr = {
.qtag = MINIFLOW_GET_BE32(flow, vlans[n].qtag)
};
return vlan_tci_to_vid(hdr.tci);
}
return 0;
}
/* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'mask'
* were expanded into a "struct flow_wildcards". */
static inline uint32_t
minimask_get_u32(const struct minimask *mask, unsigned int u32_ofs)
{
return miniflow_get_u32(&mask->masks, u32_ofs);
}
static inline ovs_be32
minimask_get_be32(const struct minimask *mask, unsigned int be32_ofs)
{
return (OVS_FORCE ovs_be32)minimask_get_u32(mask, be32_ofs);
}
/* Returns the VID mask within the vlan_tci member of the "struct
* flow_wildcards" represented by 'mask'. */
static inline uint16_t
minimask_get_vid_mask(const struct minimask *mask, size_t n)
{
return miniflow_get_vid(&mask->masks, n);
}
/* Returns the value of the "tcp_flags" field in 'flow'. */
static inline uint16_t
miniflow_get_tcp_flags(const struct miniflow *flow)
{
return ntohs(MINIFLOW_GET_BE16(flow, tcp_flags));
}
/* Returns the value of the OpenFlow 1.1+ "metadata" field in 'flow'. */
static inline ovs_be64
miniflow_get_metadata(const struct miniflow *flow)
{
return MINIFLOW_GET_BE64(flow, metadata);
}
/* Returns the bitmap that indicates which tunnel metadata fields are present
* in 'flow'. */
static inline uint64_t
miniflow_get_tun_metadata_present_map(const struct miniflow *flow)
{
return MINIFLOW_GET_U64(flow, tunnel.metadata.present.map);
}
/* Returns the recirc_id in 'flow.' */
static inline uint32_t
miniflow_get_recirc_id(const struct miniflow *flow)
{
return MINIFLOW_GET_U32(flow, recirc_id);
}
/* Returns the dp_hash in 'flow.' */
static inline uint32_t
miniflow_get_dp_hash(const struct miniflow *flow)
{
return MINIFLOW_GET_U32(flow, dp_hash);
}
/* Returns the 'tp_src' and 'tp_dst' fields together as one piece of data. */
static inline ovs_be32
miniflow_get_ports(const struct miniflow *flow)
{
return MINIFLOW_GET_TYPE__(flow, ovs_be32, tp_src);
}
/* Returns the mask for the OpenFlow 1.1+ "metadata" field in 'mask'.
*
* The return value is all-1-bits if 'mask' matches on the whole value of the
* metadata field, all-0-bits if 'mask' entirely wildcards the metadata field,
* or some other value if the metadata field is partially matched, partially
* wildcarded. */
static inline ovs_be64
minimask_get_metadata_mask(const struct minimask *mask)
{
return MINIFLOW_GET_BE64(&mask->masks, metadata);
}
/* Perform a bitwise OR of miniflow 'src' flow data specified in 'subset' with
* the equivalent fields in 'dst', storing the result in 'dst'. 'subset' must
* be a subset of 'src's map. */
static inline void
flow_union_with_miniflow_subset(struct flow *dst, const struct miniflow *src,
struct flowmap subset)
{
uint64_t *dst_u64 = (uint64_t *) dst;
const uint64_t *p = miniflow_get_values(src);
map_t map;
FLOWMAP_FOR_EACH_MAP (map, subset) {
size_t idx;
MAP_FOR_EACH_INDEX(idx, map) {
dst_u64[idx] |= *p++;
}
dst_u64 += MAP_T_BITS;
}
}
/* Perform a bitwise OR of miniflow 'src' flow data with the equivalent
* fields in 'dst', storing the result in 'dst'. */
static inline void
flow_union_with_miniflow(struct flow *dst, const struct miniflow *src)
{
flow_union_with_miniflow_subset(dst, src, src->map);
}
/* Perform a bitwise OR of minimask 'src' mask data with the equivalent
* fields in 'dst', storing the result in 'dst'. */
static inline void
flow_wildcards_union_with_minimask(struct flow_wildcards *dst,
const struct minimask *src)
{
flow_union_with_miniflow_subset(&dst->masks, &src->masks, src->masks.map);
}
static inline bool is_ct_valid(const struct flow *flow,
const struct flow_wildcards *mask,
struct flow_wildcards *wc)
{
/* Matches are checked with 'mask' and without 'wc'. */
if (mask && !wc) {
/* Must match at least one of the bits that implies a valid
* conntrack entry, or an explicit not-invalid. */
return flow->ct_state & (CS_NEW | CS_ESTABLISHED | CS_RELATED
| CS_REPLY_DIR | CS_SRC_NAT | CS_DST_NAT)
|| (flow->ct_state & CS_TRACKED
&& mask->masks.ct_state & CS_INVALID
&& !(flow->ct_state & CS_INVALID));
}
/* Else we are checking a fully extracted flow, where valid CT state always
* has either 'new', 'established', or 'reply_dir' bit set. */
#define CS_VALID_MASK (CS_NEW | CS_ESTABLISHED | CS_REPLY_DIR)
if (wc) {
wc->masks.ct_state |= CS_VALID_MASK;
}
return flow->ct_state & CS_VALID_MASK;
}
static inline void
pkt_metadata_from_flow(struct pkt_metadata *md, const struct flow *flow)
{
/* Update this function whenever struct flow changes. */
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 42);
md->recirc_id = flow->recirc_id;
md->dp_hash = flow->dp_hash;
flow_tnl_copy__(&md->tunnel, &flow->tunnel);
md->skb_priority = flow->skb_priority;
md->pkt_mark = flow->pkt_mark;
md->in_port = flow->in_port;
md->ct_state = flow->ct_state;
md->ct_zone = flow->ct_zone;
md->ct_mark = flow->ct_mark;
md->ct_label = flow->ct_label;
md->ct_orig_tuple_ipv6 = false;
if (flow->dl_type && is_ct_valid(flow, NULL, NULL)) {
if (flow->dl_type == htons(ETH_TYPE_IP)) {
md->ct_orig_tuple.ipv4 = (struct ovs_key_ct_tuple_ipv4) {
flow->ct_nw_src,
flow->ct_nw_dst,
flow->ct_tp_src,
flow->ct_tp_dst,
flow->ct_nw_proto,
};
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
md->ct_orig_tuple_ipv6 = true;
md->ct_orig_tuple.ipv6 = (struct ovs_key_ct_tuple_ipv6) {
flow->ct_ipv6_src,
flow->ct_ipv6_dst,
flow->ct_tp_src,
flow->ct_tp_dst,
flow->ct_nw_proto,
};
} else {
/* Reset ct_orig_tuple for other types. */
memset(&md->ct_orig_tuple, 0, sizeof md->ct_orig_tuple);
}
} else {
memset(&md->ct_orig_tuple, 0, sizeof md->ct_orig_tuple);
}
}
/* Often, during translation we need to read a value from a flow('FLOW') and
* unwildcard the corresponding bits in the wildcards('WC'). This macro makes
* it easier to do that. */
#define FLOW_WC_GET_AND_MASK_WC(FLOW, WC, FIELD) \
(((WC) ? WC_MASK_FIELD(WC, FIELD) : NULL), ((FLOW)->FIELD))
static inline bool is_ethernet(const struct flow *flow,
struct flow_wildcards *wc)
{
if (wc) {
WC_MASK_FIELD(wc, packet_type);
}
return flow->packet_type == htonl(PT_ETH);
}
static inline ovs_be16 get_dl_type(const struct flow *flow)
{
if (flow->packet_type == htonl(PT_ETH)) {
return flow->dl_type;
} else if (pt_ns(flow->packet_type) == OFPHTN_ETHERTYPE) {
return pt_ns_type_be(flow->packet_type);
} else {
return htons(FLOW_DL_TYPE_NONE);
}
}
static inline bool is_vlan(const struct flow *flow,
struct flow_wildcards *wc)
{
if (!is_ethernet(flow, wc)) {
return false;
}
if (wc) {
WC_MASK_FIELD_MASK(wc, vlans[0].tci, htons(VLAN_CFI));
}
return (flow->vlans[0].tci & htons(VLAN_CFI)) != 0;
}
static inline bool is_ip_any(const struct flow *flow)
{
return dl_type_is_ip_any(get_dl_type(flow));
}
static inline bool is_ip_proto(const struct flow *flow, uint8_t ip_proto,
struct flow_wildcards *wc)
{
if (is_ip_any(flow)) {
if (wc) {
WC_MASK_FIELD(wc, nw_proto);
}
return flow->nw_proto == ip_proto;
}
return false;
}
static inline bool is_tcp(const struct flow *flow,
struct flow_wildcards *wc)
{
return is_ip_proto(flow, IPPROTO_TCP, wc);
}
static inline bool is_udp(const struct flow *flow,
struct flow_wildcards *wc)
{
return is_ip_proto(flow, IPPROTO_UDP, wc);
}
static inline bool is_sctp(const struct flow *flow,
struct flow_wildcards *wc)
{
return is_ip_proto(flow, IPPROTO_SCTP, wc);
}
static inline bool is_icmpv4(const struct flow *flow,
struct flow_wildcards *wc)
{
if (get_dl_type(flow) == htons(ETH_TYPE_IP)) {
if (wc) {
memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
}
return flow->nw_proto == IPPROTO_ICMP;
}
return false;
}
static inline bool is_icmpv6(const struct flow *flow,
struct flow_wildcards *wc)
{
if (get_dl_type(flow) == htons(ETH_TYPE_IPV6)) {
if (wc) {
memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
}
return flow->nw_proto == IPPROTO_ICMPV6;
}
return false;
}
static inline bool is_nd(const struct flow *flow,
struct flow_wildcards *wc)
{
if (is_icmpv6(flow, wc)) {
if (wc) {
memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
}
if (flow->tp_dst != htons(0)) {
return false;
}
if (wc) {
memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
}
return (flow->tp_src == htons(ND_NEIGHBOR_SOLICIT) ||
flow->tp_src == htons(ND_NEIGHBOR_ADVERT));
}
return false;
}
static inline bool is_arp(const struct flow *flow)
{
return (flow->dl_type == htons(ETH_TYPE_ARP));
}
static inline bool is_garp(const struct flow *flow,
struct flow_wildcards *wc)
{
if (is_arp(flow)) {
return (FLOW_WC_GET_AND_MASK_WC(flow, wc, nw_src) ==
FLOW_WC_GET_AND_MASK_WC(flow, wc, nw_dst));
}
return false;
}
static inline bool is_igmp(const struct flow *flow, struct flow_wildcards *wc)
{
if (get_dl_type(flow) == htons(ETH_TYPE_IP)) {
if (wc) {
memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
}
return flow->nw_proto == IPPROTO_IGMP;
}
return false;
}
static inline bool is_mld(const struct flow *flow,
struct flow_wildcards *wc)
{
if (is_icmpv6(flow, wc)) {
if (wc) {
memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
}
return (flow->tp_src == htons(MLD_QUERY)
|| flow->tp_src == htons(MLD_REPORT)
|| flow->tp_src == htons(MLD_DONE)
|| flow->tp_src == htons(MLD2_REPORT));
}
return false;
}
static inline bool is_mld_query(const struct flow *flow,
struct flow_wildcards *wc)
{
if (is_icmpv6(flow, wc)) {
if (wc) {
memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
}
return flow->tp_src == htons(MLD_QUERY);
}
return false;
}
static inline bool is_mld_report(const struct flow *flow,
struct flow_wildcards *wc)
{
return is_mld(flow, wc) && !is_mld_query(flow, wc);
}
static inline bool is_stp(const struct flow *flow)
{
return (flow->dl_type == htons(FLOW_DL_TYPE_NONE)
&& eth_addr_equals(flow->dl_dst, eth_addr_stp));
}
/* Returns true if flow->tp_dst equals 'port'. If 'wc' is nonnull, sets
* appropriate bits in wc->masks.tp_dst to account for the test.
*
* The caller must already have ensured that 'flow' is a protocol for which
* tp_dst is relevant. */
static inline bool tp_dst_equals(const struct flow *flow, uint16_t port,
struct flow_wildcards *wc)
{
uint16_t diff = port ^ ntohs(flow->tp_dst);
if (wc) {
if (diff) {
/* Set mask for the most significant mismatching bit. */
int ofs = raw_clz64((uint64_t) diff << 48); /* range [0,15] */
wc->masks.tp_dst |= htons(0x8000 >> ofs);
} else {
/* Must match all bits. */
wc->masks.tp_dst = OVS_BE16_MAX;
}
}
return !diff;
}
#endif /* flow.h */