mirror of
https://github.com/openvswitch/ovs
synced 2025-08-22 09:58:01 +00:00
As the packet traverses through OVS, offloading Tx flags must be carefully evaluated and updated which results in a bit of complexity because of a separate "outer" Tx offloading flag coming from DPDK API, and a "normal"/"inner" Tx offloading flag. On the other hand, the DPDK mbuf API specifies 4 status when it comes to IP checksums: - RTE_MBUF_F_RX_IP_CKSUM_UNKNOWN: no information about the RX IP checksum - RTE_MBUF_F_RX_IP_CKSUM_BAD: the IP checksum in the packet is wrong - RTE_MBUF_F_RX_IP_CKSUM_GOOD: the IP checksum in the packet is valid - RTE_MBUF_F_RX_IP_CKSUM_NONE: the IP checksum is not correct in the packet data, but the integrity of the IP header is verified. This patch changes OVS API so that OVS code only tracks the status of the checksum of the "current" L3 header and let the Tx flags aspect to the netdev-* implementations. With this API, the flow extraction can be cleaned up. During packet processing, OVS can simply look for the IP checksum validity (either good, or partial) before changing some IP header, and then mark the checksum as partial. In the conntrack case, when natting packets, the checksum status of the inner part (ICMP error case) must be forced temporarily as unknown to force checksum resolution. When tunneling comes into play, IP checksums status is bit-shifted for future considerations in the processing if, for example, the tunnel header gets decapsulated again, or in the netdev-* implementations that support tunnel offloading. Finally, netdev-* implementations only need to care about packets in partial status: a good checksum does not need touching, a bad checksum has been updated by kept as bad by OVS, an unknown checksum is either an IPv6 or if it was an IPv4, OVS updated it too (keeping it good or bad accordingly). Rename current API for consistency with dp_packet_(inner_)?ip_checksum_. Signed-off-by: David Marchand <david.marchand@redhat.com> Signed-off-by: Ilya Maximets <i.maximets@ovn.org>
1562 lines
51 KiB
C
1562 lines
51 KiB
C
/*
|
|
* Copyright (c) 2019 Nicira, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at:
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <ctype.h>
|
|
#include <errno.h>
|
|
#include <sys/types.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet/icmp6.h>
|
|
#include <string.h>
|
|
|
|
#include "coverage.h"
|
|
#include "csum.h"
|
|
#include "ipf.h"
|
|
#include "latch.h"
|
|
#include "openvswitch/hmap.h"
|
|
#include "openvswitch/poll-loop.h"
|
|
#include "openvswitch/types.h"
|
|
#include "openvswitch/vlog.h"
|
|
#include "ovs-atomic.h"
|
|
#include "packets.h"
|
|
#include "util.h"
|
|
|
|
VLOG_DEFINE_THIS_MODULE(ipf);
|
|
COVERAGE_DEFINE(ipf_stuck_frag_list_expired);
|
|
COVERAGE_DEFINE(ipf_stuck_frag_list_purged);
|
|
COVERAGE_DEFINE(ipf_l3csum_checked);
|
|
COVERAGE_DEFINE(ipf_l3csum_err);
|
|
|
|
enum {
|
|
IPV4_PACKET_MAX_HDR_SIZE = 60,
|
|
IPV4_PACKET_MAX_SIZE = 65535,
|
|
IPV6_PACKET_MAX_DATA = 65535,
|
|
};
|
|
|
|
enum ipf_list_state {
|
|
IPF_LIST_STATE_UNUSED,
|
|
IPF_LIST_STATE_REASS_FAIL,
|
|
IPF_LIST_STATE_OTHER_SEEN,
|
|
IPF_LIST_STATE_FIRST_SEEN,
|
|
IPF_LIST_STATE_LAST_SEEN,
|
|
IPF_LIST_STATE_FIRST_LAST_SEEN,
|
|
IPF_LIST_STATE_COMPLETED,
|
|
IPF_LIST_STATE_NUM,
|
|
};
|
|
|
|
static char *ipf_state_name[IPF_LIST_STATE_NUM] =
|
|
{"unused", "reassemble fail", "other frag", "first frag", "last frag",
|
|
"first/last frag", "complete"};
|
|
|
|
enum ipf_list_type {
|
|
IPF_FRAG_COMPLETED_LIST,
|
|
IPF_FRAG_EXPIRY_LIST,
|
|
};
|
|
|
|
enum {
|
|
IPF_INVALID_IDX = -1,
|
|
IPF_V4_FRAG_SIZE_LBOUND = 400,
|
|
IPF_V4_FRAG_SIZE_MIN_DEF = 1200,
|
|
IPF_V6_FRAG_SIZE_LBOUND = 400, /* Useful for testing. */
|
|
IPF_V6_FRAG_SIZE_MIN_DEF = 1280,
|
|
IPF_MAX_FRAGS_DEFAULT = 1000,
|
|
IPF_NFRAG_UBOUND = 5000,
|
|
};
|
|
|
|
enum ipf_counter_type {
|
|
IPF_NFRAGS_ACCEPTED,
|
|
IPF_NFRAGS_COMPL_SENT,
|
|
IPF_NFRAGS_EXPIRED,
|
|
IPF_NFRAGS_TOO_SMALL,
|
|
IPF_NFRAGS_OVERLAP,
|
|
IPF_NFRAGS_PURGED,
|
|
IPF_NFRAGS_NUM_CNTS,
|
|
};
|
|
|
|
union ipf_addr {
|
|
ovs_be32 ipv4;
|
|
struct in6_addr ipv6;
|
|
};
|
|
|
|
/* Represents a single fragment; part of a list of fragments. */
|
|
struct ipf_frag {
|
|
struct dp_packet *pkt;
|
|
uint16_t start_data_byte;
|
|
uint16_t end_data_byte;
|
|
};
|
|
|
|
/* The key for a collection of fragments potentially making up an unfragmented
|
|
* packet. */
|
|
struct ipf_list_key {
|
|
/* ipf_list_key_hash() requires 'src_addr' and 'dst_addr' to be the first
|
|
* two members. */
|
|
union ipf_addr src_addr;
|
|
union ipf_addr dst_addr;
|
|
uint32_t recirc_id;
|
|
ovs_be32 ip_id; /* V6 is 32 bits. */
|
|
ovs_be16 dl_type;
|
|
uint16_t zone;
|
|
uint8_t nw_proto;
|
|
};
|
|
|
|
/* A collection of fragments potentially making up an unfragmented packet. */
|
|
struct ipf_list {
|
|
struct hmap_node node; /* In struct ipf's 'frag_lists'. */
|
|
struct ovs_list list_node; /* In struct ipf's 'frag_exp_list' or
|
|
* 'frag_complete_list'. */
|
|
struct ipf_frag *frag_list; /* List of fragments for this list. */
|
|
struct ipf_list_key key; /* The key for the fragemnt list. */
|
|
struct dp_packet *reass_execute_ctx; /* Reassembled packet. */
|
|
long long expiration; /* In milliseconds. */
|
|
int last_sent_idx; /* Last sent fragment idx. */
|
|
int last_inuse_idx; /* Last inuse fragment idx. */
|
|
int size; /* Fragment list size. */
|
|
uint8_t state; /* Frag list state; see ipf_list_state. */
|
|
};
|
|
|
|
/* Represents a reassambled packet which typically is passed through
|
|
* conntrack. */
|
|
struct reassembled_pkt {
|
|
struct ovs_list rp_list_node; /* In struct ipf's
|
|
* 'reassembled_pkt_list'. */
|
|
struct dp_packet *pkt;
|
|
struct ipf_list *list;
|
|
};
|
|
|
|
struct ipf {
|
|
/* The clean thread is used to clean up fragments in the 'ipf'
|
|
* module if packet batches are not longer be sent through its user. */
|
|
pthread_t ipf_clean_thread;
|
|
struct latch ipf_clean_thread_exit;
|
|
|
|
int max_v4_frag_list_size;
|
|
|
|
struct ovs_mutex ipf_lock; /* Protects all of the following. */
|
|
/* These contain 'struct ipf_list's. */
|
|
struct hmap frag_lists OVS_GUARDED;
|
|
struct ovs_list frag_exp_list OVS_GUARDED;
|
|
struct ovs_list frag_complete_list OVS_GUARDED;
|
|
/* Contains 'struct reassembled_pkt's. */
|
|
struct ovs_list reassembled_pkt_list OVS_GUARDED;
|
|
|
|
/* Used to allow disabling fragmentation reassembly. */
|
|
atomic_bool ifp_v4_enabled;
|
|
atomic_bool ifp_v6_enabled;
|
|
|
|
/* Will be clamped above 400 bytes; the value chosen should handle
|
|
* alg control packets of interest that use string encoding of mutable
|
|
* IP fields; meaning, the control packets should not be fragmented. */
|
|
atomic_uint min_v4_frag_size;
|
|
atomic_uint min_v6_frag_size;
|
|
|
|
/* Configurable maximum allowable fragments in process. */
|
|
atomic_uint nfrag_max;
|
|
|
|
/* Number of fragments in process. */
|
|
atomic_count nfrag;
|
|
|
|
atomic_uint64_t n4frag_cnt[IPF_NFRAGS_NUM_CNTS];
|
|
atomic_uint64_t n6frag_cnt[IPF_NFRAGS_NUM_CNTS];
|
|
};
|
|
|
|
static void
|
|
ipf_print_reass_packet(const char *es, const void *pkt)
|
|
{
|
|
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10);
|
|
if (!VLOG_DROP_WARN(&rl)) {
|
|
struct ds ds = DS_EMPTY_INITIALIZER;
|
|
ds_put_hex_dump(&ds, pkt, 128, 0, false);
|
|
VLOG_WARN("%s\n%s", es, ds_cstr(&ds));
|
|
ds_destroy(&ds);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ipf_count(struct ipf *ipf, bool v6, enum ipf_counter_type cntr)
|
|
{
|
|
atomic_count_inc64(v6 ? &ipf->n6frag_cnt[cntr] : &ipf->n4frag_cnt[cntr]);
|
|
}
|
|
|
|
static bool
|
|
ipf_get_v4_enabled(struct ipf *ipf)
|
|
{
|
|
bool ifp_v4_enabled_;
|
|
atomic_read_relaxed(&ipf->ifp_v4_enabled, &ifp_v4_enabled_);
|
|
return ifp_v4_enabled_;
|
|
}
|
|
|
|
static bool
|
|
ipf_get_v6_enabled(struct ipf *ipf)
|
|
{
|
|
bool ifp_v6_enabled_;
|
|
atomic_read_relaxed(&ipf->ifp_v6_enabled, &ifp_v6_enabled_);
|
|
return ifp_v6_enabled_;
|
|
}
|
|
|
|
static bool
|
|
ipf_get_enabled(struct ipf *ipf)
|
|
{
|
|
return ipf_get_v4_enabled(ipf) || ipf_get_v6_enabled(ipf);
|
|
}
|
|
|
|
static uint32_t
|
|
ipf_addr_hash_add(uint32_t hash, const union ipf_addr *addr)
|
|
{
|
|
BUILD_ASSERT_DECL(sizeof *addr % 4 == 0);
|
|
return hash_add_bytes32(hash, (const uint32_t *) addr, sizeof *addr);
|
|
}
|
|
|
|
/* Adds a list of fragments to the list tracking expiry of yet to be
|
|
* completed reassembled packets, hence subject to expirty. */
|
|
static void
|
|
ipf_expiry_list_add(struct ovs_list *frag_exp_list, struct ipf_list *ipf_list,
|
|
long long now)
|
|
/* OVS_REQUIRES(ipf->ipf_lock) */
|
|
{
|
|
enum {
|
|
IPF_FRAG_LIST_TIMEOUT = 15000,
|
|
};
|
|
|
|
ipf_list->expiration = now + IPF_FRAG_LIST_TIMEOUT;
|
|
ovs_list_push_back(frag_exp_list, &ipf_list->list_node);
|
|
}
|
|
|
|
/* Adds a list of fragments to the list of completed packets, which will be
|
|
* subsequently transmitted. */
|
|
static void
|
|
ipf_completed_list_add(struct ovs_list *frag_complete_list,
|
|
struct ipf_list *ipf_list)
|
|
/* OVS_REQUIRES(ipf_lock) */
|
|
{
|
|
ovs_list_push_back(frag_complete_list, &ipf_list->list_node);
|
|
}
|
|
|
|
/* Adds a reassmebled packet to the list of reassembled packets, awaiting some
|
|
* processing, such as being sent through conntrack. */
|
|
static void
|
|
ipf_reassembled_list_add(struct ovs_list *reassembled_pkt_list,
|
|
struct reassembled_pkt *rp)
|
|
/* OVS_REQUIRES(ipf_lock) */
|
|
{
|
|
ovs_list_push_back(reassembled_pkt_list, &rp->rp_list_node);
|
|
}
|
|
|
|
/* Removed a frag list from tracking datastructures and frees list heap
|
|
* memory. */
|
|
static void
|
|
ipf_list_clean(struct hmap *frag_lists,
|
|
struct ipf_list *ipf_list)
|
|
/* OVS_REQUIRES(ipf_lock) */
|
|
{
|
|
ovs_list_remove(&ipf_list->list_node);
|
|
hmap_remove(frag_lists, &ipf_list->node);
|
|
free(ipf_list->frag_list);
|
|
free(ipf_list);
|
|
}
|
|
|
|
/* Removed a frag list sitting on the expiry list from tracking
|
|
* datastructures and frees list heap memory. */
|
|
static void
|
|
ipf_expiry_list_clean(struct hmap *frag_lists,
|
|
struct ipf_list *ipf_list)
|
|
/* OVS_REQUIRES(ipf_lock) */
|
|
{
|
|
ipf_list_clean(frag_lists, ipf_list);
|
|
}
|
|
|
|
/* Removed a frag list sitting on the completed list from tracking
|
|
* datastructures and frees list heap memory. */
|
|
static void
|
|
ipf_completed_list_clean(struct hmap *frag_lists,
|
|
struct ipf_list *ipf_list)
|
|
/* OVS_REQUIRES(ipf_lock) */
|
|
{
|
|
ipf_list_clean(frag_lists, ipf_list);
|
|
}
|
|
|
|
static void
|
|
ipf_expiry_list_remove(struct ipf_list *ipf_list)
|
|
/* OVS_REQUIRES(ipf_lock) */
|
|
{
|
|
ovs_list_remove(&ipf_list->list_node);
|
|
}
|
|
|
|
static void
|
|
ipf_reassembled_list_remove(struct reassembled_pkt *rp)
|
|
/* OVS_REQUIRES(ipf_lock) */
|
|
{
|
|
ovs_list_remove(&rp->rp_list_node);
|
|
}
|
|
|
|
/* Symmetric */
|
|
static uint32_t
|
|
ipf_list_key_hash(const struct ipf_list_key *key, uint32_t basis)
|
|
{
|
|
uint32_t hsrc, hdst, hash;
|
|
hsrc = hdst = basis;
|
|
hsrc = ipf_addr_hash_add(hsrc, &key->src_addr);
|
|
hdst = ipf_addr_hash_add(hdst, &key->dst_addr);
|
|
hash = hsrc ^ hdst;
|
|
|
|
/* Hash the rest of the key. */
|
|
return hash_words((uint32_t *) (&key->dst_addr + 1),
|
|
(uint32_t *) (key + 1) -
|
|
(uint32_t *) (&key->dst_addr + 1),
|
|
hash);
|
|
}
|
|
|
|
static bool
|
|
ipf_is_first_v4_frag(const struct dp_packet *pkt)
|
|
{
|
|
const struct ip_header *l3 = dp_packet_l3(pkt);
|
|
if (!(l3->ip_frag_off & htons(IP_FRAG_OFF_MASK)) &&
|
|
l3->ip_frag_off & htons(IP_MORE_FRAGMENTS)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
ipf_is_last_v4_frag(const struct dp_packet *pkt)
|
|
{
|
|
const struct ip_header *l3 = dp_packet_l3(pkt);
|
|
if (l3->ip_frag_off & htons(IP_FRAG_OFF_MASK) &&
|
|
!(l3->ip_frag_off & htons(IP_MORE_FRAGMENTS))) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
ipf_is_v6_frag(ovs_be16 ip6f_offlg)
|
|
{
|
|
if (ip6f_offlg & (IP6F_OFF_MASK | IP6F_MORE_FRAG)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
ipf_is_first_v6_frag(ovs_be16 ip6f_offlg)
|
|
{
|
|
if (!(ip6f_offlg & IP6F_OFF_MASK) &&
|
|
ip6f_offlg & IP6F_MORE_FRAG) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
ipf_is_last_v6_frag(ovs_be16 ip6f_offlg)
|
|
{
|
|
if ((ip6f_offlg & IP6F_OFF_MASK) &&
|
|
!(ip6f_offlg & IP6F_MORE_FRAG)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Checks for a completed packet collection of fragments. */
|
|
static bool
|
|
ipf_list_complete(const struct ipf_list *ipf_list)
|
|
/* OVS_REQUIRES(ipf_lock) */
|
|
{
|
|
for (int i = 1; i <= ipf_list->last_inuse_idx; i++) {
|
|
if (ipf_list->frag_list[i - 1].end_data_byte + 1
|
|
!= ipf_list->frag_list[i].start_data_byte) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Runs O(n) for a sorted or almost sorted list. */
|
|
static void
|
|
ipf_sort(struct ipf_frag *frag_list, size_t last_idx)
|
|
/* OVS_REQUIRES(ipf_lock) */
|
|
{
|
|
for (int li = 1; li <= last_idx; li++) {
|
|
struct ipf_frag ipf_frag = frag_list[li];
|
|
int ci = li - 1;
|
|
while (ci >= 0 &&
|
|
frag_list[ci].start_data_byte > ipf_frag.start_data_byte) {
|
|
frag_list[ci + 1] = frag_list[ci];
|
|
ci--;
|
|
}
|
|
frag_list[ci + 1] = ipf_frag;
|
|
}
|
|
}
|
|
|
|
/* Called on a sorted complete list of v4 fragments to reassemble them into
|
|
* a single packet that can be processed, such as passing through conntrack.
|
|
*/
|
|
static struct dp_packet *
|
|
ipf_reassemble_v4_frags(struct ipf_list *ipf_list)
|
|
/* OVS_REQUIRES(ipf_lock) */
|
|
{
|
|
struct ipf_frag *frag_list = ipf_list->frag_list;
|
|
struct dp_packet *pkt = dp_packet_clone(frag_list[0].pkt);
|
|
dp_packet_set_size(pkt, dp_packet_size(pkt) - dp_packet_l2_pad_size(pkt));
|
|
struct ip_header *l3 = dp_packet_l3(pkt);
|
|
int len = ntohs(l3->ip_tot_len);
|
|
int orig_len = dp_packet_size(pkt);
|
|
|
|
int rest_len = frag_list[ipf_list->last_inuse_idx].end_data_byte -
|
|
frag_list[1].start_data_byte + 1;
|
|
|
|
if (orig_len + rest_len > IPV4_PACKET_MAX_SIZE) {
|
|
ipf_print_reass_packet(
|
|
"Unsupported big reassembled v4 packet; v4 hdr:", l3);
|
|
dp_packet_delete(pkt);
|
|
return NULL;
|
|
}
|
|
|
|
dp_packet_prealloc_tailroom(pkt, rest_len);
|
|
|
|
for (int i = 1; i <= ipf_list->last_inuse_idx; i++) {
|
|
size_t add_len = frag_list[i].end_data_byte -
|
|
frag_list[i].start_data_byte + 1;
|
|
const char *l4 = dp_packet_l4(frag_list[i].pkt);
|
|
dp_packet_put(pkt, l4, add_len);
|
|
}
|
|
|
|
len += rest_len;
|
|
l3 = dp_packet_l3(pkt);
|
|
ovs_be16 new_ip_frag_off = l3->ip_frag_off & ~htons(IP_MORE_FRAGMENTS);
|
|
if (dp_packet_ip_checksum_valid(pkt)) {
|
|
dp_packet_ip_checksum_set_partial(pkt);
|
|
} else {
|
|
l3->ip_csum = recalc_csum16(l3->ip_csum, l3->ip_frag_off,
|
|
new_ip_frag_off);
|
|
l3->ip_csum = recalc_csum16(l3->ip_csum, l3->ip_tot_len, htons(len));
|
|
}
|
|
l3->ip_tot_len = htons(len);
|
|
l3->ip_frag_off = new_ip_frag_off;
|
|
dp_packet_set_l2_pad_size(pkt, 0);
|
|
|
|
return pkt;
|
|
}
|
|
|
|
/* Called on a sorted complete list of v6 fragments to reassemble them into
|
|
* a single packet that can be processed, such as passing through conntrack.
|
|
*/
|
|
static struct dp_packet *
|
|
ipf_reassemble_v6_frags(struct ipf_list *ipf_list)
|
|
/* OVS_REQUIRES(ipf_lock) */
|
|
{
|
|
struct ipf_frag *frag_list = ipf_list->frag_list;
|
|
struct dp_packet *pkt = dp_packet_clone(frag_list[0].pkt);
|
|
dp_packet_set_size(pkt, dp_packet_size(pkt) - dp_packet_l2_pad_size(pkt));
|
|
struct ovs_16aligned_ip6_hdr *l3 = dp_packet_l3(pkt);
|
|
int pl = ntohs(l3->ip6_plen) - sizeof(struct ovs_16aligned_ip6_frag);
|
|
int orig_len = dp_packet_size(pkt);
|
|
|
|
int rest_len = frag_list[ipf_list->last_inuse_idx].end_data_byte -
|
|
frag_list[1].start_data_byte + 1;
|
|
|
|
if (orig_len + rest_len > IPV6_PACKET_MAX_DATA) {
|
|
ipf_print_reass_packet(
|
|
"Unsupported big reassembled v6 packet; v6 hdr:", l3);
|
|
dp_packet_delete(pkt);
|
|
return NULL;
|
|
}
|
|
|
|
dp_packet_prealloc_tailroom(pkt, rest_len);
|
|
|
|
for (int i = 1; i <= ipf_list->last_inuse_idx; i++) {
|
|
size_t add_len = frag_list[i].end_data_byte -
|
|
frag_list[i].start_data_byte + 1;
|
|
const char *l4 = dp_packet_l4(frag_list[i].pkt);
|
|
dp_packet_put(pkt, l4, add_len);
|
|
}
|
|
|
|
pl += rest_len;
|
|
l3 = dp_packet_l3(pkt);
|
|
|
|
uint8_t nw_proto = l3->ip6_nxt;
|
|
uint8_t nw_frag = 0;
|
|
const void *data = l3 + 1;
|
|
size_t datasize = pl;
|
|
|
|
const struct ovs_16aligned_ip6_frag *frag_hdr;
|
|
if (!parse_ipv6_ext_hdrs(&data, &datasize, &nw_proto, &nw_frag, &frag_hdr,
|
|
NULL) || !nw_frag || !frag_hdr) {
|
|
|
|
ipf_print_reass_packet("Unparsed reassembled v6 packet; v6 hdr:", l3);
|
|
dp_packet_delete(pkt);
|
|
return NULL;
|
|
}
|
|
|
|
struct ovs_16aligned_ip6_frag *fh =
|
|
CONST_CAST(struct ovs_16aligned_ip6_frag *, frag_hdr);
|
|
fh->ip6f_offlg = 0;
|
|
l3->ip6_plen = htons(pl);
|
|
l3->ip6_ctlun.ip6_un1.ip6_un1_nxt = nw_proto;
|
|
dp_packet_set_l2_pad_size(pkt, 0);
|
|
return pkt;
|
|
}
|
|
|
|
/* Called when a frag list state transitions to another state. This is
|
|
* triggered by new fragment for the list being received. Returns a reassembled
|
|
* packet if this fragment has completed one. */
|
|
static struct reassembled_pkt *
|
|
ipf_list_state_transition(struct ipf *ipf, struct ipf_list *ipf_list,
|
|
bool ff, bool lf, bool v6)
|
|
OVS_REQUIRES(ipf->ipf_lock)
|
|
{
|
|
enum ipf_list_state curr_state = ipf_list->state;
|
|
struct reassembled_pkt *ret = NULL;
|
|
enum ipf_list_state next_state;
|
|
switch (curr_state) {
|
|
case IPF_LIST_STATE_UNUSED:
|
|
case IPF_LIST_STATE_OTHER_SEEN:
|
|
if (ff) {
|
|
next_state = IPF_LIST_STATE_FIRST_SEEN;
|
|
} else if (lf) {
|
|
next_state = IPF_LIST_STATE_LAST_SEEN;
|
|
} else {
|
|
next_state = IPF_LIST_STATE_OTHER_SEEN;
|
|
}
|
|
break;
|
|
case IPF_LIST_STATE_FIRST_SEEN:
|
|
if (lf) {
|
|
next_state = IPF_LIST_STATE_FIRST_LAST_SEEN;
|
|
} else {
|
|
next_state = IPF_LIST_STATE_FIRST_SEEN;
|
|
}
|
|
break;
|
|
case IPF_LIST_STATE_LAST_SEEN:
|
|
if (ff) {
|
|
next_state = IPF_LIST_STATE_FIRST_LAST_SEEN;
|
|
} else {
|
|
next_state = IPF_LIST_STATE_LAST_SEEN;
|
|
}
|
|
break;
|
|
case IPF_LIST_STATE_FIRST_LAST_SEEN:
|
|
next_state = IPF_LIST_STATE_FIRST_LAST_SEEN;
|
|
break;
|
|
case IPF_LIST_STATE_COMPLETED:
|
|
case IPF_LIST_STATE_REASS_FAIL:
|
|
case IPF_LIST_STATE_NUM:
|
|
default:
|
|
OVS_NOT_REACHED();
|
|
}
|
|
|
|
if (next_state == IPF_LIST_STATE_FIRST_LAST_SEEN) {
|
|
ipf_sort(ipf_list->frag_list, ipf_list->last_inuse_idx);
|
|
if (ipf_list_complete(ipf_list)) {
|
|
struct dp_packet *reass_pkt = v6
|
|
? ipf_reassemble_v6_frags(ipf_list)
|
|
: ipf_reassemble_v4_frags(ipf_list);
|
|
if (reass_pkt) {
|
|
struct reassembled_pkt *rp = xzalloc(sizeof *rp);
|
|
rp->pkt = reass_pkt;
|
|
rp->list = ipf_list;
|
|
ipf_reassembled_list_add(&ipf->reassembled_pkt_list, rp);
|
|
ipf_expiry_list_remove(ipf_list);
|
|
next_state = IPF_LIST_STATE_COMPLETED;
|
|
ret = rp;
|
|
} else {
|
|
next_state = IPF_LIST_STATE_REASS_FAIL;
|
|
}
|
|
}
|
|
}
|
|
ipf_list->state = next_state;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Some sanity checks are redundant, but prudent, in case code paths for
|
|
* fragments change in future. The processing cost for fragments is not
|
|
* important. */
|
|
static bool
|
|
ipf_is_valid_v4_frag(struct ipf *ipf, struct dp_packet *pkt)
|
|
{
|
|
const struct eth_header *l2 = dp_packet_eth(pkt);
|
|
const struct ip_header *l3 = dp_packet_l3(pkt);
|
|
|
|
if (OVS_UNLIKELY(!l2 || !l3)) {
|
|
goto invalid_pkt;
|
|
}
|
|
|
|
size_t l3_size = dp_packet_l3_size(pkt);
|
|
if (OVS_UNLIKELY(l3_size < IP_HEADER_LEN)) {
|
|
goto invalid_pkt;
|
|
}
|
|
|
|
if (!IP_IS_FRAGMENT(l3->ip_frag_off)) {
|
|
return false;
|
|
}
|
|
|
|
uint16_t ip_tot_len = ntohs(l3->ip_tot_len);
|
|
if (OVS_UNLIKELY(ip_tot_len != l3_size)) {
|
|
goto invalid_pkt;
|
|
}
|
|
|
|
size_t ip_hdr_len = IP_IHL(l3->ip_ihl_ver) * 4;
|
|
if (OVS_UNLIKELY(ip_hdr_len < IP_HEADER_LEN)) {
|
|
goto invalid_pkt;
|
|
}
|
|
if (OVS_UNLIKELY(l3_size < ip_hdr_len)) {
|
|
goto invalid_pkt;
|
|
}
|
|
|
|
bool bad_csum = dp_packet_ip_checksum_bad(pkt);
|
|
if (OVS_UNLIKELY(!bad_csum && dp_packet_ip_checksum_unknown(pkt))) {
|
|
COVERAGE_INC(ipf_l3csum_checked);
|
|
bad_csum = csum(l3, ip_hdr_len);
|
|
}
|
|
if (OVS_UNLIKELY(bad_csum)) {
|
|
COVERAGE_INC(ipf_l3csum_err);
|
|
goto invalid_pkt;
|
|
}
|
|
|
|
uint32_t min_v4_frag_size_;
|
|
atomic_read_relaxed(&ipf->min_v4_frag_size, &min_v4_frag_size_);
|
|
bool lf = ipf_is_last_v4_frag(pkt);
|
|
if (OVS_UNLIKELY(!lf && dp_packet_l3_size(pkt) < min_v4_frag_size_)) {
|
|
ipf_count(ipf, false, IPF_NFRAGS_TOO_SMALL);
|
|
goto invalid_pkt;
|
|
}
|
|
return true;
|
|
|
|
invalid_pkt:
|
|
pkt->md.ct_state = CS_INVALID;
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
ipf_v4_key_extract(struct dp_packet *pkt, ovs_be16 dl_type, uint16_t zone,
|
|
struct ipf_list_key *key, uint16_t *start_data_byte,
|
|
uint16_t *end_data_byte, bool *ff, bool *lf)
|
|
{
|
|
const struct ip_header *l3 = dp_packet_l3(pkt);
|
|
uint16_t ip_tot_len = ntohs(l3->ip_tot_len);
|
|
size_t ip_hdr_len = IP_IHL(l3->ip_ihl_ver) * 4;
|
|
|
|
*start_data_byte = ntohs(l3->ip_frag_off & htons(IP_FRAG_OFF_MASK)) * 8;
|
|
*end_data_byte = *start_data_byte + ip_tot_len - ip_hdr_len - 1;
|
|
*ff = ipf_is_first_v4_frag(pkt);
|
|
*lf = ipf_is_last_v4_frag(pkt);
|
|
memset(key, 0, sizeof *key);
|
|
key->ip_id = be16_to_be32(l3->ip_id);
|
|
key->dl_type = dl_type;
|
|
key->src_addr.ipv4 = get_16aligned_be32(&l3->ip_src);
|
|
key->dst_addr.ipv4 = get_16aligned_be32(&l3->ip_dst);
|
|
key->nw_proto = l3->ip_proto;
|
|
key->zone = zone;
|
|
key->recirc_id = pkt->md.recirc_id;
|
|
return true;
|
|
}
|
|
|
|
/* Some sanity checks are redundant, but prudent, in case code paths for
|
|
* fragments change in future. The processing cost for fragments is not
|
|
* important. */
|
|
static bool
|
|
ipf_is_valid_v6_frag(struct ipf *ipf, struct dp_packet *pkt)
|
|
{
|
|
const struct eth_header *l2 = dp_packet_eth(pkt);
|
|
const struct ovs_16aligned_ip6_hdr *l3 = dp_packet_l3(pkt);
|
|
const char *l4 = dp_packet_l4(pkt);
|
|
|
|
if (OVS_UNLIKELY(!l2 || !l3 || !l4)) {
|
|
goto invalid_pkt;
|
|
}
|
|
|
|
size_t l3_size = dp_packet_l3_size(pkt);
|
|
size_t l3_hdr_size = sizeof *l3;
|
|
|
|
if (OVS_UNLIKELY(l3_size < l3_hdr_size)) {
|
|
goto invalid_pkt;
|
|
}
|
|
|
|
uint8_t nw_frag = 0;
|
|
uint8_t nw_proto = l3->ip6_nxt;
|
|
const void *data = l3 + 1;
|
|
size_t datasize = l3_size - l3_hdr_size;
|
|
const struct ovs_16aligned_ip6_frag *frag_hdr;
|
|
if (!parse_ipv6_ext_hdrs(&data, &datasize, &nw_proto, &nw_frag,
|
|
&frag_hdr, NULL) || !nw_frag || !frag_hdr) {
|
|
return false;
|
|
}
|
|
|
|
int pl = ntohs(l3->ip6_plen);
|
|
if (OVS_UNLIKELY(pl + l3_hdr_size != l3_size)) {
|
|
goto invalid_pkt;
|
|
}
|
|
|
|
ovs_be16 ip6f_offlg = frag_hdr->ip6f_offlg;
|
|
if (OVS_UNLIKELY(!ipf_is_v6_frag(ip6f_offlg))) {
|
|
return false;
|
|
}
|
|
|
|
uint32_t min_v6_frag_size_;
|
|
atomic_read_relaxed(&ipf->min_v6_frag_size, &min_v6_frag_size_);
|
|
bool lf = ipf_is_last_v6_frag(ip6f_offlg);
|
|
|
|
if (OVS_UNLIKELY(!lf && dp_packet_l3_size(pkt) < min_v6_frag_size_)) {
|
|
ipf_count(ipf, true, IPF_NFRAGS_TOO_SMALL);
|
|
goto invalid_pkt;
|
|
}
|
|
|
|
return true;
|
|
|
|
invalid_pkt:
|
|
pkt->md.ct_state = CS_INVALID;
|
|
return false;
|
|
|
|
}
|
|
|
|
static void
|
|
ipf_v6_key_extract(struct dp_packet *pkt, ovs_be16 dl_type, uint16_t zone,
|
|
struct ipf_list_key *key, uint16_t *start_data_byte,
|
|
uint16_t *end_data_byte, bool *ff, bool *lf)
|
|
{
|
|
const struct ovs_16aligned_ip6_hdr *l3 = dp_packet_l3(pkt);
|
|
uint8_t nw_frag = 0;
|
|
uint8_t nw_proto = l3->ip6_nxt;
|
|
const void *data = l3 + 1;
|
|
size_t datasize = dp_packet_l3_size(pkt) - sizeof *l3;
|
|
const struct ovs_16aligned_ip6_frag *frag_hdr;
|
|
|
|
parse_ipv6_ext_hdrs(&data, &datasize, &nw_proto, &nw_frag, &frag_hdr,
|
|
NULL);
|
|
ovs_assert(nw_frag && frag_hdr);
|
|
ovs_be16 ip6f_offlg = frag_hdr->ip6f_offlg;
|
|
*start_data_byte = ntohs(ip6f_offlg & IP6F_OFF_MASK) +
|
|
sizeof (struct ovs_16aligned_ip6_frag);
|
|
*end_data_byte = *start_data_byte + dp_packet_l4_size(pkt) - 1;
|
|
*ff = ipf_is_first_v6_frag(ip6f_offlg);
|
|
*lf = ipf_is_last_v6_frag(ip6f_offlg);
|
|
memset(key, 0, sizeof *key);
|
|
key->ip_id = get_16aligned_be32(&frag_hdr->ip6f_ident);
|
|
key->dl_type = dl_type;
|
|
memcpy(&key->src_addr.ipv6, &l3->ip6_src, sizeof key->src_addr.ipv6);
|
|
/* We are not supporting parsing of the routing header to use as the
|
|
* dst address part of the key. */
|
|
memcpy(&key->dst_addr.ipv6, &l3->ip6_dst, sizeof key->dst_addr.ipv6);
|
|
key->nw_proto = 0; /* Not used for key for V6. */
|
|
key->zone = zone;
|
|
key->recirc_id = pkt->md.recirc_id;
|
|
}
|
|
|
|
static bool
|
|
ipf_list_key_eq(const struct ipf_list_key *key1,
|
|
const struct ipf_list_key *key2)
|
|
/* OVS_REQUIRES(ipf_lock) */
|
|
{
|
|
if (!memcmp(&key1->src_addr, &key2->src_addr, sizeof key1->src_addr) &&
|
|
!memcmp(&key1->dst_addr, &key2->dst_addr, sizeof key1->dst_addr) &&
|
|
key1->dl_type == key2->dl_type &&
|
|
key1->ip_id == key2->ip_id &&
|
|
key1->zone == key2->zone &&
|
|
key1->nw_proto == key2->nw_proto &&
|
|
key1->recirc_id == key2->recirc_id) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static struct ipf_list *
|
|
ipf_list_key_lookup(struct ipf *ipf, const struct ipf_list_key *key,
|
|
uint32_t hash)
|
|
OVS_REQUIRES(ipf->ipf_lock)
|
|
{
|
|
struct ipf_list *ipf_list;
|
|
HMAP_FOR_EACH_WITH_HASH (ipf_list, node, hash, &ipf->frag_lists) {
|
|
if (ipf_list_key_eq(&ipf_list->key, key)) {
|
|
return ipf_list;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static bool
|
|
ipf_is_frag_duped(const struct ipf_frag *frag_list, int last_inuse_idx,
|
|
size_t start_data_byte, size_t end_data_byte)
|
|
/* OVS_REQUIRES(ipf_lock) */
|
|
{
|
|
for (int i = 0; i <= last_inuse_idx; i++) {
|
|
if ((start_data_byte >= frag_list[i].start_data_byte &&
|
|
start_data_byte <= frag_list[i].end_data_byte) ||
|
|
(end_data_byte >= frag_list[i].start_data_byte &&
|
|
end_data_byte <= frag_list[i].end_data_byte)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Adds a fragment to a list of fragments, if the fragment is not a
|
|
* duplicate. If the fragment is a duplicate, that fragment is marked
|
|
* invalid to avoid the work that conntrack would do to mark the fragment
|
|
* as invalid, which it will in all cases. */
|
|
static bool
|
|
ipf_process_frag(struct ipf *ipf, struct ipf_list *ipf_list,
|
|
struct dp_packet *pkt, uint16_t start_data_byte,
|
|
uint16_t end_data_byte, bool ff, bool lf, bool v6,
|
|
struct reassembled_pkt **rp)
|
|
OVS_REQUIRES(ipf->ipf_lock)
|
|
{
|
|
bool duped_frag = ipf_is_frag_duped(ipf_list->frag_list,
|
|
ipf_list->last_inuse_idx, start_data_byte, end_data_byte);
|
|
int last_inuse_idx = ipf_list->last_inuse_idx;
|
|
|
|
if (!duped_frag) {
|
|
if (last_inuse_idx < ipf_list->size - 1) {
|
|
/* In the case of dpdk, it would be unfortunate if we had
|
|
* to create a clone fragment outside the dpdk mp due to the
|
|
* mempool size being too limited. We will otherwise need to
|
|
* recommend not setting the mempool number of buffers too low
|
|
* and also clamp the number of fragments. */
|
|
struct ipf_frag *frag = &ipf_list->frag_list[last_inuse_idx + 1];
|
|
frag->pkt = pkt;
|
|
frag->start_data_byte = start_data_byte;
|
|
frag->end_data_byte = end_data_byte;
|
|
ipf_list->last_inuse_idx++;
|
|
atomic_count_inc(&ipf->nfrag);
|
|
ipf_count(ipf, v6, IPF_NFRAGS_ACCEPTED);
|
|
*rp = ipf_list_state_transition(ipf, ipf_list, ff, lf, v6);
|
|
} else {
|
|
OVS_NOT_REACHED();
|
|
}
|
|
} else {
|
|
ipf_count(ipf, v6, IPF_NFRAGS_OVERLAP);
|
|
pkt->md.ct_state = CS_INVALID;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
ipf_list_init(struct ipf_list *ipf_list, struct ipf_list_key *key,
|
|
int max_frag_list_size)
|
|
{
|
|
ipf_list->key = *key;
|
|
ipf_list->last_inuse_idx = IPF_INVALID_IDX;
|
|
ipf_list->last_sent_idx = IPF_INVALID_IDX;
|
|
ipf_list->reass_execute_ctx = NULL;
|
|
ipf_list->state = IPF_LIST_STATE_UNUSED;
|
|
ipf_list->size = max_frag_list_size;
|
|
ipf_list->frag_list
|
|
= xzalloc(ipf_list->size * sizeof *ipf_list->frag_list);
|
|
}
|
|
|
|
/* Generates a fragment list key from a well formed fragment and either starts
|
|
* a new fragment list or increases the size of the existing fragment list,
|
|
* while checking if the maximum supported fragements are supported or the
|
|
* list size is impossibly big. Calls 'ipf_process_frag()' to add a fragment
|
|
* to a list of fragemnts. */
|
|
static bool
|
|
ipf_handle_frag(struct ipf *ipf, struct dp_packet *pkt, ovs_be16 dl_type,
|
|
uint16_t zone, long long now, uint32_t hash_basis,
|
|
struct reassembled_pkt **rp)
|
|
OVS_REQUIRES(ipf->ipf_lock)
|
|
{
|
|
struct ipf_list_key key;
|
|
/* Initialize 4 variables for some versions of GCC. */
|
|
uint16_t start_data_byte = 0;
|
|
uint16_t end_data_byte = 0;
|
|
bool ff = false;
|
|
bool lf = false;
|
|
bool v6 = dl_type == htons(ETH_TYPE_IPV6);
|
|
|
|
if (v6 && ipf_get_v6_enabled(ipf)) {
|
|
ipf_v6_key_extract(pkt, dl_type, zone, &key, &start_data_byte,
|
|
&end_data_byte, &ff, &lf);
|
|
} else if (!v6 && ipf_get_v4_enabled(ipf)) {
|
|
ipf_v4_key_extract(pkt, dl_type, zone, &key, &start_data_byte,
|
|
&end_data_byte, &ff, &lf);
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
unsigned int nfrag_max;
|
|
atomic_read_relaxed(&ipf->nfrag_max, &nfrag_max);
|
|
if (atomic_count_get(&ipf->nfrag) >= nfrag_max) {
|
|
return false;
|
|
}
|
|
|
|
uint32_t hash = ipf_list_key_hash(&key, hash_basis);
|
|
struct ipf_list *ipf_list = ipf_list_key_lookup(ipf, &key, hash);
|
|
enum {
|
|
IPF_FRAG_LIST_MIN_INCREMENT = 4,
|
|
IPF_IPV6_MAX_FRAG_LIST_SIZE = 65535,
|
|
};
|
|
|
|
int max_frag_list_size;
|
|
if (v6) {
|
|
/* Because the calculation with extension headers is variable,
|
|
* we don't calculate a hard maximum fragment list size upfront. The
|
|
* fragment list size is practically limited by the code, however. */
|
|
max_frag_list_size = IPF_IPV6_MAX_FRAG_LIST_SIZE;
|
|
} else {
|
|
max_frag_list_size = ipf->max_v4_frag_list_size;
|
|
}
|
|
|
|
if (!ipf_list) {
|
|
ipf_list = xmalloc(sizeof *ipf_list);
|
|
ipf_list_init(ipf_list, &key,
|
|
MIN(max_frag_list_size, IPF_FRAG_LIST_MIN_INCREMENT));
|
|
hmap_insert(&ipf->frag_lists, &ipf_list->node, hash);
|
|
ipf_expiry_list_add(&ipf->frag_exp_list, ipf_list, now);
|
|
} else if (ipf_list->state == IPF_LIST_STATE_REASS_FAIL ||
|
|
ipf_list->state == IPF_LIST_STATE_COMPLETED) {
|
|
/* Bail out as early as possible. */
|
|
return false;
|
|
} else if (ipf_list->last_inuse_idx + 1 >= ipf_list->size) {
|
|
int increment = MIN(IPF_FRAG_LIST_MIN_INCREMENT,
|
|
max_frag_list_size - ipf_list->size);
|
|
/* Enforce limit. */
|
|
if (increment > 0) {
|
|
ipf_list->frag_list =
|
|
xrealloc(ipf_list->frag_list, (ipf_list->size + increment) *
|
|
sizeof *ipf_list->frag_list);
|
|
ipf_list->size += increment;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return ipf_process_frag(ipf, ipf_list, pkt, start_data_byte,
|
|
end_data_byte, ff, lf, v6, rp);
|
|
}
|
|
|
|
/* Filters out fragments from a batch of fragments and adjust the batch. */
|
|
static void
|
|
ipf_extract_frags_from_batch(struct ipf *ipf, struct dp_packet_batch *pb,
|
|
ovs_be16 dl_type, uint16_t zone, long long now,
|
|
uint32_t hash_basis)
|
|
{
|
|
const size_t pb_cnt = dp_packet_batch_size(pb);
|
|
int pb_idx; /* Index in a packet batch. */
|
|
struct dp_packet *pkt;
|
|
|
|
DP_PACKET_BATCH_REFILL_FOR_EACH (pb_idx, pb_cnt, pkt, pb) {
|
|
if (OVS_UNLIKELY((dl_type == htons(ETH_TYPE_IP) &&
|
|
ipf_is_valid_v4_frag(ipf, pkt))
|
|
||
|
|
(dl_type == htons(ETH_TYPE_IPV6) &&
|
|
ipf_is_valid_v6_frag(ipf, pkt)))) {
|
|
struct reassembled_pkt *rp = NULL;
|
|
|
|
ovs_mutex_lock(&ipf->ipf_lock);
|
|
if (!ipf_handle_frag(ipf, pkt, dl_type, zone, now, hash_basis,
|
|
&rp)) {
|
|
dp_packet_batch_refill(pb, pkt, pb_idx);
|
|
} else {
|
|
if (rp && !dp_packet_batch_is_full(pb)) {
|
|
dp_packet_batch_refill(pb, rp->pkt, pb_idx);
|
|
rp->list->reass_execute_ctx = rp->pkt;
|
|
}
|
|
}
|
|
ovs_mutex_unlock(&ipf->ipf_lock);
|
|
} else {
|
|
dp_packet_batch_refill(pb, pkt, pb_idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* In case of DPDK, a memory source check is done, as DPDK memory pool
|
|
* management has trouble dealing with multiple source types. The
|
|
* check_source paramater is used to indicate when this check is needed. */
|
|
static bool
|
|
ipf_dp_packet_batch_add(struct dp_packet_batch *pb , struct dp_packet *pkt,
|
|
bool check_source OVS_UNUSED)
|
|
{
|
|
#ifdef DPDK_NETDEV
|
|
if ((dp_packet_batch_is_full(pb)) ||
|
|
/* DPDK cannot handle multiple sources in a batch. */
|
|
(check_source && !dp_packet_batch_is_empty(pb)
|
|
&& pb->packets[0]->source != pkt->source)) {
|
|
#else
|
|
if (dp_packet_batch_is_full(pb)) {
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
dp_packet_batch_add(pb, pkt);
|
|
return true;
|
|
}
|
|
|
|
/* This would be used in rare cases where a list cannot be sent. One rare
|
|
* reason known right now is a mempool source check, which exists due to DPDK
|
|
* support, where packets are no longer being received on any port with a
|
|
* source matching the fragment. Another reason is a race where all
|
|
* conntrack rules are unconfigured when some fragments are yet to be
|
|
* flushed.
|
|
*
|
|
* Returns true if the list was purged. */
|
|
static bool
|
|
ipf_purge_list_check(struct ipf *ipf, struct ipf_list *ipf_list,
|
|
long long now)
|
|
OVS_REQUIRES(ipf->ipf_lock)
|
|
{
|
|
enum {
|
|
IPF_FRAG_LIST_PURGE_TIME_ADJ = 10000
|
|
};
|
|
|
|
if (now < ipf_list->expiration + IPF_FRAG_LIST_PURGE_TIME_ADJ) {
|
|
return false;
|
|
}
|
|
|
|
while (ipf_list->last_sent_idx < ipf_list->last_inuse_idx) {
|
|
struct dp_packet * pkt
|
|
= ipf_list->frag_list[ipf_list->last_sent_idx + 1].pkt;
|
|
dp_packet_delete(pkt);
|
|
atomic_count_dec(&ipf->nfrag);
|
|
COVERAGE_INC(ipf_stuck_frag_list_purged);
|
|
ipf_count(ipf, ipf_list->key.dl_type == htons(ETH_TYPE_IPV6),
|
|
IPF_NFRAGS_PURGED);
|
|
ipf_list->last_sent_idx++;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Does the packet batch management and common accounting work associated
|
|
* with 'ipf_send_completed_frags()' and 'ipf_send_expired_frags()'. */
|
|
static bool
|
|
ipf_send_frags_in_list(struct ipf *ipf, struct ipf_list *ipf_list,
|
|
struct dp_packet_batch *pb, bool v6, long long now)
|
|
OVS_REQUIRES(ipf->ipf_lock)
|
|
{
|
|
if (ipf_purge_list_check(ipf, ipf_list, now)) {
|
|
return true;
|
|
}
|
|
|
|
while (ipf_list->last_sent_idx < ipf_list->last_inuse_idx) {
|
|
struct dp_packet *pkt
|
|
= ipf_list->frag_list[ipf_list->last_sent_idx + 1].pkt;
|
|
if (ipf_dp_packet_batch_add(pb, pkt, true)) {
|
|
ipf_list->last_sent_idx++;
|
|
atomic_count_dec(&ipf->nfrag);
|
|
|
|
ipf_count(ipf, v6, IPF_NFRAGS_COMPL_SENT);
|
|
|
|
if (ipf_list->last_sent_idx == ipf_list->last_inuse_idx) {
|
|
return true;
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
OVS_NOT_REACHED();
|
|
}
|
|
|
|
/* Adds fragments associated with a completed fragment list to a packet batch
|
|
* to be processed by the calling application, typically conntrack. Also
|
|
* cleans up the list context when it is empty.*/
|
|
static void
|
|
ipf_send_completed_frags(struct ipf *ipf, struct dp_packet_batch *pb,
|
|
long long now, bool v6, uint16_t zone,
|
|
odp_port_t in_port)
|
|
{
|
|
if (ovs_list_is_empty(&ipf->frag_complete_list)) {
|
|
return;
|
|
}
|
|
|
|
ovs_mutex_lock(&ipf->ipf_lock);
|
|
struct ipf_list *ipf_list;
|
|
|
|
LIST_FOR_EACH_SAFE (ipf_list, list_node, &ipf->frag_complete_list) {
|
|
|
|
if ((ipf_list->key.dl_type == htons(ETH_TYPE_IPV6)) != v6) {
|
|
continue;
|
|
}
|
|
if (ipf_list->key.zone != zone) {
|
|
continue;
|
|
}
|
|
|
|
/* Check that the batch's in_port matches. */
|
|
struct dp_packet *pkt
|
|
= ipf_list->frag_list[ipf_list->last_sent_idx + 1].pkt;
|
|
if (in_port != pkt->md.in_port.odp_port) {
|
|
continue;
|
|
}
|
|
|
|
if (ipf_send_frags_in_list(ipf, ipf_list, pb, v6, now)) {
|
|
ipf_completed_list_clean(&ipf->frag_lists, ipf_list);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
ovs_mutex_unlock(&ipf->ipf_lock);
|
|
}
|
|
|
|
/* Remove expired fragment lists and clean up the list context. */
|
|
static void
|
|
ipf_delete_expired_frags(struct ipf *ipf, long long now)
|
|
{
|
|
enum {
|
|
/* Very conservative, due to DOS probability. */
|
|
IPF_FRAG_LIST_MAX_EXPIRED = 1,
|
|
};
|
|
|
|
|
|
if (ovs_list_is_empty(&ipf->frag_exp_list)) {
|
|
return;
|
|
}
|
|
|
|
ovs_mutex_lock(&ipf->ipf_lock);
|
|
struct ipf_list *ipf_list;
|
|
size_t lists_removed = 0;
|
|
|
|
LIST_FOR_EACH_SAFE (ipf_list, list_node, &ipf->frag_exp_list) {
|
|
if (now <= ipf_list->expiration ||
|
|
lists_removed >= IPF_FRAG_LIST_MAX_EXPIRED) {
|
|
break;
|
|
}
|
|
|
|
while (ipf_list->last_sent_idx < ipf_list->last_inuse_idx) {
|
|
struct dp_packet * pkt
|
|
= ipf_list->frag_list[ipf_list->last_sent_idx + 1].pkt;
|
|
dp_packet_delete(pkt);
|
|
atomic_count_dec(&ipf->nfrag);
|
|
COVERAGE_INC(ipf_stuck_frag_list_expired);
|
|
ipf_count(ipf, ipf_list->key.dl_type == htons(ETH_TYPE_IPV6),
|
|
IPF_NFRAGS_EXPIRED);
|
|
ipf_list->last_sent_idx++;
|
|
}
|
|
ipf_expiry_list_clean(&ipf->frag_lists, ipf_list);
|
|
lists_removed++;
|
|
}
|
|
|
|
ovs_mutex_unlock(&ipf->ipf_lock);
|
|
}
|
|
|
|
/* Adds a reassmebled packet to a packet batch to be processed by the caller.
|
|
*/
|
|
static void
|
|
ipf_execute_reass_pkts(struct ipf *ipf, struct dp_packet_batch *pb,
|
|
ovs_be16 dl_type)
|
|
{
|
|
if (ovs_list_is_empty(&ipf->reassembled_pkt_list)) {
|
|
return;
|
|
}
|
|
|
|
ovs_mutex_lock(&ipf->ipf_lock);
|
|
struct reassembled_pkt *rp;
|
|
|
|
LIST_FOR_EACH_SAFE (rp, rp_list_node, &ipf->reassembled_pkt_list) {
|
|
if (!rp->list->reass_execute_ctx &&
|
|
rp->list->key.dl_type == dl_type &&
|
|
ipf_dp_packet_batch_add(pb, rp->pkt, false)) {
|
|
rp->list->reass_execute_ctx = rp->pkt;
|
|
}
|
|
}
|
|
|
|
ovs_mutex_unlock(&ipf->ipf_lock);
|
|
}
|
|
|
|
/* Checks for reassembled packets post processing by conntrack and edits the
|
|
* fragments if needed based on what conntrack decided. */
|
|
static void
|
|
ipf_post_execute_reass_pkts(struct ipf *ipf,
|
|
struct dp_packet_batch *pb, bool v6)
|
|
{
|
|
if (ovs_list_is_empty(&ipf->reassembled_pkt_list)) {
|
|
return;
|
|
}
|
|
|
|
ovs_mutex_lock(&ipf->ipf_lock);
|
|
struct reassembled_pkt *rp;
|
|
|
|
LIST_FOR_EACH_SAFE (rp, rp_list_node, &ipf->reassembled_pkt_list) {
|
|
const size_t pb_cnt = dp_packet_batch_size(pb);
|
|
int pb_idx;
|
|
struct dp_packet *pkt;
|
|
/* Inner batch loop is constant time since batch size is <=
|
|
* NETDEV_MAX_BURST. */
|
|
DP_PACKET_BATCH_REFILL_FOR_EACH (pb_idx, pb_cnt, pkt, pb) {
|
|
if (rp && pkt == rp->list->reass_execute_ctx) {
|
|
const struct ipf_frag *frag_0 = &rp->list->frag_list[0];
|
|
void *l4_frag = dp_packet_l4(frag_0->pkt);
|
|
void *l4_reass = dp_packet_l4(pkt);
|
|
memcpy(l4_frag, l4_reass, dp_packet_l4_size(frag_0->pkt));
|
|
|
|
for (int i = 0; i <= rp->list->last_inuse_idx; i++) {
|
|
const struct ipf_frag *frag_i = &rp->list->frag_list[i];
|
|
|
|
frag_i->pkt->md.ct_label = pkt->md.ct_label;
|
|
frag_i->pkt->md.ct_mark = pkt->md.ct_mark;
|
|
frag_i->pkt->md.ct_state = pkt->md.ct_state;
|
|
frag_i->pkt->md.ct_zone = pkt->md.ct_zone;
|
|
frag_i->pkt->md.ct_orig_tuple_ipv6 =
|
|
pkt->md.ct_orig_tuple_ipv6;
|
|
if (pkt->md.ct_orig_tuple_ipv6) {
|
|
frag_i->pkt->md.ct_orig_tuple.ipv6 =
|
|
pkt->md.ct_orig_tuple.ipv6;
|
|
} else {
|
|
frag_i->pkt->md.ct_orig_tuple.ipv4 =
|
|
pkt->md.ct_orig_tuple.ipv4;
|
|
}
|
|
if (v6) {
|
|
struct ovs_16aligned_ip6_hdr *l3_frag
|
|
= dp_packet_l3(frag_i->pkt);
|
|
struct ovs_16aligned_ip6_hdr *l3_reass
|
|
= dp_packet_l3(pkt);
|
|
l3_frag->ip6_src = l3_reass->ip6_src;
|
|
l3_frag->ip6_dst = l3_reass->ip6_dst;
|
|
} else {
|
|
struct ip_header *l3_frag = dp_packet_l3(frag_i->pkt);
|
|
struct ip_header *l3_reass = dp_packet_l3(pkt);
|
|
if (dp_packet_ip_checksum_valid(frag_i->pkt)) {
|
|
dp_packet_ip_checksum_set_partial(frag_i->pkt);
|
|
} else {
|
|
ovs_be32 reass_ip =
|
|
get_16aligned_be32(&l3_reass->ip_src);
|
|
ovs_be32 frag_ip =
|
|
get_16aligned_be32(&l3_frag->ip_src);
|
|
|
|
l3_frag->ip_csum = recalc_csum32(l3_frag->ip_csum,
|
|
frag_ip,
|
|
reass_ip);
|
|
reass_ip = get_16aligned_be32(&l3_reass->ip_dst);
|
|
frag_ip = get_16aligned_be32(&l3_frag->ip_dst);
|
|
l3_frag->ip_csum = recalc_csum32(l3_frag->ip_csum,
|
|
frag_ip,
|
|
reass_ip);
|
|
}
|
|
|
|
l3_frag->ip_src = l3_reass->ip_src;
|
|
l3_frag->ip_dst = l3_reass->ip_dst;
|
|
}
|
|
}
|
|
|
|
ipf_completed_list_add(&ipf->frag_complete_list, rp->list);
|
|
ipf_reassembled_list_remove(rp);
|
|
dp_packet_delete(rp->pkt);
|
|
free(rp);
|
|
rp = NULL;
|
|
} else {
|
|
dp_packet_batch_refill(pb, pkt, pb_idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
ovs_mutex_unlock(&ipf->ipf_lock);
|
|
}
|
|
|
|
/* Extracts any fragments from the batch and reassembles them when a
|
|
* complete packet is received. Completed packets are attempted to
|
|
* be added to the batch to be sent through conntrack. */
|
|
void
|
|
ipf_preprocess_conntrack(struct ipf *ipf, struct dp_packet_batch *pb,
|
|
long long now, ovs_be16 dl_type, uint16_t zone,
|
|
uint32_t hash_basis)
|
|
{
|
|
if (ipf_get_enabled(ipf)) {
|
|
ipf_extract_frags_from_batch(ipf, pb, dl_type, zone, now, hash_basis);
|
|
}
|
|
|
|
if (ipf_get_enabled(ipf) || atomic_count_get(&ipf->nfrag)) {
|
|
ipf_execute_reass_pkts(ipf, pb, dl_type);
|
|
}
|
|
}
|
|
|
|
/* Updates fragments based on the processing of the reassembled packet sent
|
|
* through conntrack and adds these fragments to any batches seen. Expired
|
|
* fragments are marked as invalid and also added to the batches seen
|
|
* with low priority. Reassembled packets are freed. */
|
|
void
|
|
ipf_postprocess_conntrack(struct ipf *ipf, struct dp_packet_batch *pb,
|
|
long long now, ovs_be16 dl_type, uint16_t zone,
|
|
odp_port_t in_port)
|
|
{
|
|
if (ipf_get_enabled(ipf) || atomic_count_get(&ipf->nfrag)) {
|
|
bool v6 = dl_type == htons(ETH_TYPE_IPV6);
|
|
ipf_post_execute_reass_pkts(ipf, pb, v6);
|
|
ipf_send_completed_frags(ipf, pb, now, v6, zone, in_port);
|
|
ipf_delete_expired_frags(ipf, now);
|
|
}
|
|
}
|
|
|
|
static void *
|
|
ipf_clean_thread_main(void *f)
|
|
{
|
|
struct ipf *ipf = f;
|
|
|
|
enum {
|
|
IPF_FRAG_LIST_CLEAN_TIMEOUT = 60000,
|
|
};
|
|
|
|
while (!latch_is_set(&ipf->ipf_clean_thread_exit)) {
|
|
|
|
long long now = time_msec();
|
|
|
|
if (!ovs_list_is_empty(&ipf->frag_exp_list) ||
|
|
!ovs_list_is_empty(&ipf->frag_complete_list)) {
|
|
|
|
ovs_mutex_lock(&ipf->ipf_lock);
|
|
|
|
struct ipf_list *ipf_list;
|
|
LIST_FOR_EACH_SAFE (ipf_list, list_node,
|
|
&ipf->frag_exp_list) {
|
|
if (ipf_purge_list_check(ipf, ipf_list, now)) {
|
|
ipf_expiry_list_clean(&ipf->frag_lists, ipf_list);
|
|
}
|
|
}
|
|
|
|
LIST_FOR_EACH_SAFE (ipf_list, list_node,
|
|
&ipf->frag_complete_list) {
|
|
if (ipf_purge_list_check(ipf, ipf_list, now)) {
|
|
ipf_completed_list_clean(&ipf->frag_lists, ipf_list);
|
|
}
|
|
}
|
|
|
|
ovs_mutex_unlock(&ipf->ipf_lock);
|
|
}
|
|
|
|
poll_timer_wait_until(now + IPF_FRAG_LIST_CLEAN_TIMEOUT);
|
|
latch_wait(&ipf->ipf_clean_thread_exit);
|
|
poll_block();
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct ipf *
|
|
ipf_init(void)
|
|
{
|
|
struct ipf *ipf = xzalloc(sizeof *ipf);
|
|
|
|
ovs_mutex_init_adaptive(&ipf->ipf_lock);
|
|
ovs_mutex_lock(&ipf->ipf_lock);
|
|
hmap_init(&ipf->frag_lists);
|
|
ovs_list_init(&ipf->frag_exp_list);
|
|
ovs_list_init(&ipf->frag_complete_list);
|
|
ovs_list_init(&ipf->reassembled_pkt_list);
|
|
atomic_init(&ipf->min_v4_frag_size, IPF_V4_FRAG_SIZE_MIN_DEF);
|
|
atomic_init(&ipf->min_v6_frag_size, IPF_V6_FRAG_SIZE_MIN_DEF);
|
|
ipf->max_v4_frag_list_size = DIV_ROUND_UP(
|
|
IPV4_PACKET_MAX_SIZE - IPV4_PACKET_MAX_HDR_SIZE,
|
|
ipf->min_v4_frag_size - IPV4_PACKET_MAX_HDR_SIZE);
|
|
ovs_mutex_unlock(&ipf->ipf_lock);
|
|
atomic_count_init(&ipf->nfrag, 0);
|
|
for (size_t i = 0; i < IPF_NFRAGS_NUM_CNTS; i++) {
|
|
atomic_init(&ipf->n4frag_cnt[i], 0);
|
|
atomic_init(&ipf->n6frag_cnt[i], 0);
|
|
}
|
|
atomic_init(&ipf->nfrag_max, IPF_MAX_FRAGS_DEFAULT);
|
|
atomic_init(&ipf->ifp_v4_enabled, true);
|
|
atomic_init(&ipf->ifp_v6_enabled, true);
|
|
latch_init(&ipf->ipf_clean_thread_exit);
|
|
ipf->ipf_clean_thread = ovs_thread_create("ipf_clean",
|
|
ipf_clean_thread_main, ipf);
|
|
|
|
return ipf;
|
|
}
|
|
|
|
void
|
|
ipf_destroy(struct ipf *ipf)
|
|
{
|
|
ovs_mutex_lock(&ipf->ipf_lock);
|
|
latch_set(&ipf->ipf_clean_thread_exit);
|
|
pthread_join(ipf->ipf_clean_thread, NULL);
|
|
latch_destroy(&ipf->ipf_clean_thread_exit);
|
|
|
|
struct ipf_list *ipf_list;
|
|
HMAP_FOR_EACH_POP (ipf_list, node, &ipf->frag_lists) {
|
|
while (ipf_list->last_sent_idx < ipf_list->last_inuse_idx) {
|
|
struct dp_packet *pkt
|
|
= ipf_list->frag_list[ipf_list->last_sent_idx + 1].pkt;
|
|
dp_packet_delete(pkt);
|
|
atomic_count_dec(&ipf->nfrag);
|
|
ipf_list->last_sent_idx++;
|
|
}
|
|
free(ipf_list->frag_list);
|
|
free(ipf_list);
|
|
}
|
|
|
|
if (atomic_count_get(&ipf->nfrag)) {
|
|
VLOG_WARN("ipf destroy with non-zero fragment count. ");
|
|
}
|
|
|
|
struct reassembled_pkt *rp;
|
|
LIST_FOR_EACH_POP (rp, rp_list_node, &ipf->reassembled_pkt_list) {
|
|
dp_packet_delete(rp->pkt);
|
|
free(rp);
|
|
}
|
|
|
|
hmap_destroy(&ipf->frag_lists);
|
|
ovs_list_poison(&ipf->frag_exp_list);
|
|
ovs_list_poison(&ipf->frag_complete_list);
|
|
ovs_list_poison(&ipf->reassembled_pkt_list);
|
|
ovs_mutex_unlock(&ipf->ipf_lock);
|
|
ovs_mutex_destroy(&ipf->ipf_lock);
|
|
free(ipf);
|
|
}
|
|
|
|
int
|
|
ipf_set_enabled(struct ipf *ipf, bool v6, bool enable)
|
|
{
|
|
atomic_store_relaxed(v6 ? &ipf->ifp_v6_enabled : &ipf->ifp_v4_enabled,
|
|
enable);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ipf_set_min_frag(struct ipf *ipf, bool v6, uint32_t value)
|
|
{
|
|
/* If the user specifies an unreasonably large number, fragmentation
|
|
* will not work well but it will not blow up. */
|
|
if (value < (v6 ? IPF_V6_FRAG_SIZE_LBOUND : IPF_V4_FRAG_SIZE_LBOUND)) {
|
|
return 1;
|
|
}
|
|
|
|
ovs_mutex_lock(&ipf->ipf_lock);
|
|
if (v6) {
|
|
atomic_store_relaxed(&ipf->min_v6_frag_size, value);
|
|
} else {
|
|
atomic_store_relaxed(&ipf->min_v4_frag_size, value);
|
|
ipf->max_v4_frag_list_size = DIV_ROUND_UP(
|
|
IPV4_PACKET_MAX_SIZE - IPV4_PACKET_MAX_HDR_SIZE,
|
|
ipf->min_v4_frag_size - IPV4_PACKET_MAX_HDR_SIZE);
|
|
}
|
|
ovs_mutex_unlock(&ipf->ipf_lock);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ipf_set_max_nfrags(struct ipf *ipf, uint32_t value)
|
|
{
|
|
if (value > IPF_NFRAG_UBOUND) {
|
|
return 1;
|
|
}
|
|
atomic_store_relaxed(&ipf->nfrag_max, value);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ipf_get_status(struct ipf *ipf, struct ipf_status *ipf_status)
|
|
{
|
|
ipf_status->nfrag = atomic_count_get(&ipf->nfrag);
|
|
atomic_read_relaxed(&ipf->nfrag_max, &ipf_status->nfrag_max);
|
|
|
|
atomic_read_relaxed(&ipf->ifp_v4_enabled, &ipf_status->v4.enabled);
|
|
atomic_read_relaxed(&ipf->min_v4_frag_size,
|
|
&ipf_status->v4.min_frag_size);
|
|
atomic_read_relaxed(&ipf->n4frag_cnt[IPF_NFRAGS_ACCEPTED],
|
|
&ipf_status->v4.nfrag_accepted);
|
|
atomic_read_relaxed(&ipf->n4frag_cnt[IPF_NFRAGS_COMPL_SENT],
|
|
&ipf_status->v4.nfrag_completed_sent);
|
|
atomic_read_relaxed(&ipf->n4frag_cnt[IPF_NFRAGS_EXPIRED],
|
|
&ipf_status->v4.nfrag_expired_sent);
|
|
atomic_read_relaxed(&ipf->n4frag_cnt[IPF_NFRAGS_TOO_SMALL],
|
|
&ipf_status->v4.nfrag_too_small);
|
|
atomic_read_relaxed(&ipf->n4frag_cnt[IPF_NFRAGS_OVERLAP],
|
|
&ipf_status->v4.nfrag_overlap);
|
|
atomic_read_relaxed(&ipf->n4frag_cnt[IPF_NFRAGS_PURGED],
|
|
&ipf_status->v4.nfrag_purged);
|
|
|
|
atomic_read_relaxed(&ipf->ifp_v6_enabled, &ipf_status->v6.enabled);
|
|
atomic_read_relaxed(&ipf->min_v6_frag_size,
|
|
&ipf_status->v6.min_frag_size);
|
|
atomic_read_relaxed(&ipf->n6frag_cnt[IPF_NFRAGS_ACCEPTED],
|
|
&ipf_status->v6.nfrag_accepted);
|
|
atomic_read_relaxed(&ipf->n6frag_cnt[IPF_NFRAGS_COMPL_SENT],
|
|
&ipf_status->v6.nfrag_completed_sent);
|
|
atomic_read_relaxed(&ipf->n6frag_cnt[IPF_NFRAGS_EXPIRED],
|
|
&ipf_status->v6.nfrag_expired_sent);
|
|
atomic_read_relaxed(&ipf->n6frag_cnt[IPF_NFRAGS_TOO_SMALL],
|
|
&ipf_status->v6.nfrag_too_small);
|
|
atomic_read_relaxed(&ipf->n6frag_cnt[IPF_NFRAGS_OVERLAP],
|
|
&ipf_status->v6.nfrag_overlap);
|
|
atomic_read_relaxed(&ipf->n6frag_cnt[IPF_NFRAGS_PURGED],
|
|
&ipf_status->v6.nfrag_purged);
|
|
return 0;
|
|
}
|
|
|
|
struct ipf_dump_ctx {
|
|
struct hmap_position bucket_pos;
|
|
};
|
|
|
|
/* Allocates an 'ipf_dump_ctx' to keep track of an hmap position. The
|
|
* caller must call ipf_dump_done() when dumping is finished. */
|
|
int
|
|
ipf_dump_start(struct ipf_dump_ctx **ipf_dump_ctx)
|
|
{
|
|
*ipf_dump_ctx = xzalloc(sizeof **ipf_dump_ctx);
|
|
return 0;
|
|
}
|
|
|
|
/* Creates a string representation of the state of an 'ipf_list' and puts
|
|
* it in 'ds'. */
|
|
static void
|
|
ipf_dump_create(const struct ipf_list *ipf_list, struct ds *ds)
|
|
{
|
|
ds_put_cstr(ds, "(");
|
|
if (ipf_list->key.dl_type == htons(ETH_TYPE_IP)) {
|
|
ds_put_format(ds, "src="IP_FMT",dst="IP_FMT",",
|
|
IP_ARGS(ipf_list->key.src_addr.ipv4),
|
|
IP_ARGS(ipf_list->key.dst_addr.ipv4));
|
|
} else {
|
|
ds_put_cstr(ds, "src=");
|
|
ipv6_format_addr(&ipf_list->key.src_addr.ipv6, ds);
|
|
ds_put_cstr(ds, ",dst=");
|
|
ipv6_format_addr(&ipf_list->key.dst_addr.ipv6, ds);
|
|
ds_put_cstr(ds, ",");
|
|
}
|
|
|
|
ds_put_format(ds, "recirc_id=%u,ip_id=%u,dl_type=0x%x,zone=%u,nw_proto=%u",
|
|
ipf_list->key.recirc_id, ntohl(ipf_list->key.ip_id),
|
|
ntohs(ipf_list->key.dl_type), ipf_list->key.zone,
|
|
ipf_list->key.nw_proto);
|
|
|
|
ds_put_format(ds, ",num_fragments=%u,state=%s",
|
|
ipf_list->last_inuse_idx + 1,
|
|
ipf_state_name[ipf_list->state]);
|
|
|
|
ds_put_cstr(ds, ")");
|
|
}
|
|
|
|
/* Finds the next ipf list starting from 'ipf_dump_ctx->bucket_pos' and uses
|
|
* ipf_dump_create() to create a string representation of the state of an
|
|
* ipf list, to which 'dump' is pointed to. Returns EOF when there are no
|
|
* more ipf lists. */
|
|
int
|
|
ipf_dump_next(struct ipf *ipf, struct ipf_dump_ctx *ipf_dump_ctx, char **dump)
|
|
{
|
|
ovs_mutex_lock(&ipf->ipf_lock);
|
|
|
|
struct hmap_node *node = hmap_at_position(&ipf->frag_lists,
|
|
&ipf_dump_ctx->bucket_pos);
|
|
if (!node) {
|
|
ovs_mutex_unlock(&ipf->ipf_lock);
|
|
return EOF;
|
|
} else {
|
|
struct ipf_list *ipf_list_;
|
|
INIT_CONTAINER(ipf_list_, node, node);
|
|
struct ipf_list ipf_list = *ipf_list_;
|
|
ovs_mutex_unlock(&ipf->ipf_lock);
|
|
struct ds ds = DS_EMPTY_INITIALIZER;
|
|
ipf_dump_create(&ipf_list, &ds);
|
|
*dump = ds_steal_cstr(&ds);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Frees 'ipf_dump_ctx' allocated by ipf_dump_start(). */
|
|
int
|
|
ipf_dump_done(struct ipf_dump_ctx *ipf_dump_ctx)
|
|
{
|
|
free(ipf_dump_ctx);
|
|
return 0;
|
|
}
|