2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-31 06:15:47 +00:00
Files
ovs/lib/match.c
Ilya Maximets 53d9dcb9fb match: Fix false-positive snprintf size warning.
GCC 14.1.1 of Fedora 41 thinks that 'i' can be in a full range and
so 8 bytes is not enough to print it.

 lib/match.c: In function 'match_format':
 lib/match.c:1631:45:
         error: '%d' directive output may be truncated writing
                between 1 and 11 bytes into a region of size 8
  1631 |             snprintf(str_i, sizeof(str_i), "%d", i);
       |                                             ^~
 lib/match.c:1631:44:
           note: directive argument in the range [-2147483646, 1]
  1631 |             snprintf(str_i, sizeof(str_i), "%d", i);
       |                                            ^~~~
 lib/match.c:1631:13:
           note: 'snprintf' output between 2 and 12 bytes into
                 a destination of size 8
  1631 |             snprintf(str_i, sizeof(str_i), "%d", i);
       |             ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In practice that value can't be larger than 2, but it's not a
performance critical code, so let's just increase the size to
a maximum 12.

Acked-by: Mike Pattrick <mkp@redhat.com>
Signed-off-by: Ilya Maximets <i.maximets@ovn.org>
2024-07-17 20:32:56 +02:00

1979 lines
60 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "openvswitch/match.h"
#include <stdlib.h>
#include "flow.h"
#include "byte-order.h"
#include "colors.h"
#include "openvswitch/dynamic-string.h"
#include "openvswitch/meta-flow.h"
#include "openvswitch/ofp-port.h"
#include "packets.h"
#include "tun-metadata.h"
#include "openvswitch/nsh.h"
/* Converts the flow in 'flow' into a match in 'match', with the given
* 'wildcards'. */
void
match_init(struct match *match,
const struct flow *flow, const struct flow_wildcards *wc)
{
match->flow = *flow;
match->wc = *wc;
match_zero_wildcarded_fields(match);
memset(&match->tun_md, 0, sizeof match->tun_md);
}
/* Converts a flow into a match. It sets the wildcard masks based on
* the packet contents. It will not set the mask for fields that do not
* make sense for the packet type. */
void
match_wc_init(struct match *match, const struct flow *flow)
{
match->flow = *flow;
flow_wildcards_init_for_packet(&match->wc, flow);
WC_MASK_FIELD(&match->wc, regs);
WC_MASK_FIELD(&match->wc, metadata);
memset(&match->tun_md, 0, sizeof match->tun_md);
}
/* Initializes 'match' as a "catch-all" match that matches every packet. */
void
match_init_catchall(struct match *match)
{
memset(&match->flow, 0, sizeof match->flow);
flow_wildcards_init_catchall(&match->wc);
memset(&match->tun_md, 0, sizeof match->tun_md);
}
/* For each bit or field wildcarded in 'match', sets the corresponding bit or
* field in 'flow' to all-0-bits. It is important to maintain this invariant
* in a match that might be inserted into a classifier.
*
* It is never necessary to call this function directly for a match that is
* initialized or modified only by match_*() functions. It is useful to
* restore the invariant in a match whose 'wc' member is modified by hand.
*/
void
match_zero_wildcarded_fields(struct match *match)
{
flow_zero_wildcards(&match->flow, &match->wc);
}
void
match_set_dp_hash(struct match *match, uint32_t value)
{
match_set_dp_hash_masked(match, value, UINT32_MAX);
}
void
match_set_dp_hash_masked(struct match *match, uint32_t value, uint32_t mask)
{
match->wc.masks.dp_hash = mask;
match->flow.dp_hash = value & mask;
}
void
match_set_recirc_id(struct match *match, uint32_t value)
{
match->flow.recirc_id = value;
match->wc.masks.recirc_id = UINT32_MAX;
}
void
match_set_conj_id(struct match *match, uint32_t value)
{
match->flow.conj_id = value;
match->wc.masks.conj_id = UINT32_MAX;
}
void
match_set_reg(struct match *match, unsigned int reg_idx, uint32_t value)
{
match_set_reg_masked(match, reg_idx, value, UINT32_MAX);
}
void
match_set_reg_masked(struct match *match, unsigned int reg_idx,
uint32_t value, uint32_t mask)
{
ovs_assert(reg_idx < FLOW_N_REGS);
flow_wildcards_set_reg_mask(&match->wc, reg_idx, mask);
match->flow.regs[reg_idx] = value & mask;
}
void
match_set_xreg(struct match *match, unsigned int xreg_idx, uint64_t value)
{
match_set_xreg_masked(match, xreg_idx, value, UINT64_MAX);
}
void
match_set_xreg_masked(struct match *match, unsigned int xreg_idx,
uint64_t value, uint64_t mask)
{
ovs_assert(xreg_idx < FLOW_N_XREGS);
flow_wildcards_set_xreg_mask(&match->wc, xreg_idx, mask);
flow_set_xreg(&match->flow, xreg_idx, value & mask);
}
void
match_set_xxreg(struct match *match, unsigned int xxreg_idx, ovs_u128 value)
{
match_set_xxreg_masked(match, xxreg_idx, value, OVS_U128_MAX);
}
void
match_set_xxreg_masked(struct match *match, unsigned int xxreg_idx,
ovs_u128 value, ovs_u128 mask)
{
ovs_assert(xxreg_idx < FLOW_N_XXREGS);
flow_wildcards_set_xxreg_mask(&match->wc, xxreg_idx, mask);
flow_set_xxreg(&match->flow, xxreg_idx, ovs_u128_and(value, mask));
}
void
match_set_actset_output(struct match *match, ofp_port_t actset_output)
{
match->wc.masks.actset_output = u16_to_ofp(UINT16_MAX);
match->flow.actset_output = actset_output;
}
void
match_set_metadata(struct match *match, ovs_be64 metadata)
{
match_set_metadata_masked(match, metadata, OVS_BE64_MAX);
}
void
match_set_metadata_masked(struct match *match,
ovs_be64 metadata, ovs_be64 mask)
{
match->wc.masks.metadata = mask;
match->flow.metadata = metadata & mask;
}
void
match_set_tun_id(struct match *match, ovs_be64 tun_id)
{
match_set_tun_id_masked(match, tun_id, OVS_BE64_MAX);
}
void
match_set_tun_id_masked(struct match *match, ovs_be64 tun_id, ovs_be64 mask)
{
match->wc.masks.tunnel.tun_id = mask;
match->flow.tunnel.tun_id = tun_id & mask;
}
void
match_set_tun_src(struct match *match, ovs_be32 src)
{
match_set_tun_src_masked(match, src, OVS_BE32_MAX);
}
void
match_set_tun_src_masked(struct match *match, ovs_be32 src, ovs_be32 mask)
{
match->wc.masks.tunnel.ip_src = mask;
match->flow.tunnel.ip_src = src & mask;
}
void
match_set_tun_dst(struct match *match, ovs_be32 dst)
{
match_set_tun_dst_masked(match, dst, OVS_BE32_MAX);
}
void
match_set_tun_dst_masked(struct match *match, ovs_be32 dst, ovs_be32 mask)
{
match->wc.masks.tunnel.ip_dst = mask;
match->flow.tunnel.ip_dst = dst & mask;
}
void
match_set_tun_ipv6_src(struct match *match, const struct in6_addr *src)
{
match->flow.tunnel.ipv6_src = *src;
match->wc.masks.tunnel.ipv6_src = in6addr_exact;
}
void
match_set_tun_ipv6_src_masked(struct match *match, const struct in6_addr *src,
const struct in6_addr *mask)
{
match->flow.tunnel.ipv6_src = ipv6_addr_bitand(src, mask);
match->wc.masks.tunnel.ipv6_src = *mask;
}
void
match_set_tun_ipv6_dst(struct match *match, const struct in6_addr *dst)
{
match->flow.tunnel.ipv6_dst = *dst;
match->wc.masks.tunnel.ipv6_dst = in6addr_exact;
}
void
match_set_tun_ipv6_dst_masked(struct match *match, const struct in6_addr *dst,
const struct in6_addr *mask)
{
match->flow.tunnel.ipv6_dst = ipv6_addr_bitand(dst, mask);
match->wc.masks.tunnel.ipv6_dst = *mask;
}
void
match_set_tun_ttl(struct match *match, uint8_t ttl)
{
match_set_tun_ttl_masked(match, ttl, UINT8_MAX);
}
void
match_set_tun_ttl_masked(struct match *match, uint8_t ttl, uint8_t mask)
{
match->wc.masks.tunnel.ip_ttl = mask;
match->flow.tunnel.ip_ttl = ttl & mask;
}
void
match_set_tun_tos(struct match *match, uint8_t tos)
{
match_set_tun_tos_masked(match, tos, UINT8_MAX);
}
void
match_set_tun_tos_masked(struct match *match, uint8_t tos, uint8_t mask)
{
match->wc.masks.tunnel.ip_tos = mask;
match->flow.tunnel.ip_tos = tos & mask;
}
void
match_set_tun_flags(struct match *match, uint16_t flags)
{
match_set_tun_flags_masked(match, flags, UINT16_MAX);
}
void
match_set_tun_flags_masked(struct match *match, uint16_t flags, uint16_t mask)
{
mask &= FLOW_TNL_PUB_F_MASK;
match->wc.masks.tunnel.flags = mask;
match->flow.tunnel.flags = flags & mask;
}
void
match_set_tun_tp_dst(struct match *match, ovs_be16 tp_dst)
{
match_set_tun_tp_dst_masked(match, tp_dst, OVS_BE16_MAX);
}
void
match_set_tun_tp_dst_masked(struct match *match, ovs_be16 port, ovs_be16 mask)
{
match->wc.masks.tunnel.tp_dst = mask;
match->flow.tunnel.tp_dst = port & mask;
}
void
match_set_tun_gbp_id_masked(struct match *match, ovs_be16 gbp_id, ovs_be16 mask)
{
match->wc.masks.tunnel.gbp_id = mask;
match->flow.tunnel.gbp_id = gbp_id & mask;
}
void
match_set_tun_gbp_id(struct match *match, ovs_be16 gbp_id)
{
match_set_tun_gbp_id_masked(match, gbp_id, OVS_BE16_MAX);
}
void
match_set_tun_gbp_flags_masked(struct match *match, uint8_t flags, uint8_t mask)
{
match->wc.masks.tunnel.gbp_flags = mask;
match->flow.tunnel.gbp_flags = flags & mask;
}
void
match_set_tun_gbp_flags(struct match *match, uint8_t flags)
{
match_set_tun_gbp_flags_masked(match, flags, UINT8_MAX);
}
void
match_set_tun_erspan_ver_masked(struct match *match, uint8_t ver, uint8_t mask)
{
match->wc.masks.tunnel.erspan_ver = ver;
match->flow.tunnel.erspan_ver = ver & mask;
}
void
match_set_tun_erspan_ver(struct match *match, uint8_t ver)
{
match_set_tun_erspan_ver_masked(match, ver, UINT8_MAX);
}
void
match_set_tun_erspan_idx_masked(struct match *match, uint32_t erspan_idx,
uint32_t mask)
{
match->wc.masks.tunnel.erspan_idx = mask;
match->flow.tunnel.erspan_idx = erspan_idx & mask;
}
void
match_set_tun_erspan_idx(struct match *match, uint32_t erspan_idx)
{
match_set_tun_erspan_idx_masked(match, erspan_idx, UINT32_MAX);
}
void
match_set_tun_erspan_dir_masked(struct match *match, uint8_t dir,
uint8_t mask)
{
match->wc.masks.tunnel.erspan_dir = dir;
match->flow.tunnel.erspan_dir = dir & mask;
}
void
match_set_tun_erspan_dir(struct match *match, uint8_t dir)
{
match_set_tun_erspan_dir_masked(match, dir, UINT8_MAX);
}
void
match_set_tun_erspan_hwid_masked(struct match *match, uint8_t hwid,
uint8_t mask)
{
match->wc.masks.tunnel.erspan_hwid = hwid;
match->flow.tunnel.erspan_hwid = hwid & mask;
}
void
match_set_tun_erspan_hwid(struct match *match, uint8_t hwid)
{
match_set_tun_erspan_hwid_masked(match, hwid, UINT8_MAX);
}
void
match_set_tun_gtpu_flags_masked(struct match *match, uint8_t flags,
uint8_t mask)
{
match->wc.masks.tunnel.gtpu_flags = flags;
match->flow.tunnel.gtpu_flags = flags & mask;
}
void
match_set_tun_gtpu_flags(struct match *match, uint8_t flags)
{
match_set_tun_gtpu_flags_masked(match, flags, UINT8_MAX);
}
void
match_set_tun_gtpu_msgtype_masked(struct match *match, uint8_t msgtype,
uint8_t mask)
{
match->wc.masks.tunnel.gtpu_msgtype = msgtype;
match->flow.tunnel.gtpu_msgtype = msgtype & mask;
}
void
match_set_tun_gtpu_msgtype(struct match *match, uint8_t msgtype)
{
match_set_tun_gtpu_msgtype_masked(match, msgtype, UINT8_MAX);
}
void
match_set_in_port(struct match *match, ofp_port_t ofp_port)
{
match->wc.masks.in_port.ofp_port = u16_to_ofp(UINT16_MAX);
match->flow.in_port.ofp_port = ofp_port;
}
void
match_set_skb_priority(struct match *match, uint32_t skb_priority)
{
match->wc.masks.skb_priority = UINT32_MAX;
match->flow.skb_priority = skb_priority;
}
void
match_set_pkt_mark(struct match *match, uint32_t pkt_mark)
{
match_set_pkt_mark_masked(match, pkt_mark, UINT32_MAX);
}
void
match_set_pkt_mark_masked(struct match *match, uint32_t pkt_mark, uint32_t mask)
{
match->flow.pkt_mark = pkt_mark & mask;
match->wc.masks.pkt_mark = mask;
}
void
match_set_ct_state(struct match *match, uint32_t ct_state)
{
match_set_ct_state_masked(match, ct_state, UINT32_MAX);
}
void
match_set_ct_state_masked(struct match *match, uint32_t ct_state, uint32_t mask)
{
match->flow.ct_state = ct_state & mask & UINT8_MAX;
match->wc.masks.ct_state = mask & UINT8_MAX;
}
void
match_set_ct_zone(struct match *match, uint16_t ct_zone)
{
match_set_ct_zone_masked(match, ct_zone, UINT16_MAX);
}
void
match_set_ct_zone_masked(struct match *match, uint16_t ct_zone, uint16_t mask)
{
match->flow.ct_zone = ct_zone & mask;
match->wc.masks.ct_zone = mask;
}
void
match_set_ct_mark(struct match *match, uint32_t ct_mark)
{
match_set_ct_mark_masked(match, ct_mark, UINT32_MAX);
}
void
match_set_ct_mark_masked(struct match *match, uint32_t ct_mark,
uint32_t mask)
{
match->flow.ct_mark = ct_mark & mask;
match->wc.masks.ct_mark = mask;
}
void
match_set_ct_label(struct match *match, ovs_u128 ct_label)
{
ovs_u128 mask;
mask.u64.lo = UINT64_MAX;
mask.u64.hi = UINT64_MAX;
match_set_ct_label_masked(match, ct_label, mask);
}
void
match_set_ct_label_masked(struct match *match, ovs_u128 value, ovs_u128 mask)
{
match->flow.ct_label.u64.lo = value.u64.lo & mask.u64.lo;
match->flow.ct_label.u64.hi = value.u64.hi & mask.u64.hi;
match->wc.masks.ct_label = mask;
}
void
match_set_ct_nw_src(struct match *match, ovs_be32 ct_nw_src)
{
match->flow.ct_nw_src = ct_nw_src;
match->wc.masks.ct_nw_src = OVS_BE32_MAX;
}
void
match_set_ct_nw_src_masked(struct match *match, ovs_be32 ct_nw_src,
ovs_be32 mask)
{
match->flow.ct_nw_src = ct_nw_src & mask;
match->wc.masks.ct_nw_src = mask;
}
void
match_set_ct_nw_dst(struct match *match, ovs_be32 ct_nw_dst)
{
match->flow.ct_nw_dst = ct_nw_dst;
match->wc.masks.ct_nw_dst = OVS_BE32_MAX;
}
void
match_set_ct_nw_dst_masked(struct match *match, ovs_be32 ct_nw_dst,
ovs_be32 mask)
{
match->flow.ct_nw_dst = ct_nw_dst & mask;
match->wc.masks.ct_nw_dst = mask;
}
void
match_set_ct_nw_proto(struct match *match, uint8_t ct_nw_proto)
{
match->flow.ct_nw_proto = ct_nw_proto;
match->wc.masks.ct_nw_proto = UINT8_MAX;
}
void
match_set_ct_tp_src(struct match *match, ovs_be16 ct_tp_src)
{
match_set_ct_tp_src_masked(match, ct_tp_src, OVS_BE16_MAX);
}
void
match_set_ct_tp_src_masked(struct match *match, ovs_be16 port, ovs_be16 mask)
{
match->flow.ct_tp_src = port & mask;
match->wc.masks.ct_tp_src = mask;
}
void
match_set_ct_tp_dst(struct match *match, ovs_be16 ct_tp_dst)
{
match_set_ct_tp_dst_masked(match, ct_tp_dst, OVS_BE16_MAX);
}
void
match_set_ct_tp_dst_masked(struct match *match, ovs_be16 port, ovs_be16 mask)
{
match->flow.ct_tp_dst = port & mask;
match->wc.masks.ct_tp_dst = mask;
}
void
match_set_ct_ipv6_src(struct match *match, const struct in6_addr *src)
{
match->flow.ct_ipv6_src = *src;
match->wc.masks.ct_ipv6_src = in6addr_exact;
}
void
match_set_ct_ipv6_src_masked(struct match *match, const struct in6_addr *src,
const struct in6_addr *mask)
{
match->flow.ct_ipv6_src = ipv6_addr_bitand(src, mask);
match->wc.masks.ct_ipv6_src = *mask;
}
void
match_set_ct_ipv6_dst(struct match *match, const struct in6_addr *dst)
{
match->flow.ct_ipv6_dst = *dst;
match->wc.masks.ct_ipv6_dst = in6addr_exact;
}
void
match_set_ct_ipv6_dst_masked(struct match *match, const struct in6_addr *dst,
const struct in6_addr *mask)
{
match->flow.ct_ipv6_dst = ipv6_addr_bitand(dst, mask);
match->wc.masks.ct_ipv6_dst = *mask;
}
void
match_set_packet_type(struct match *match, ovs_be32 packet_type)
{
match->flow.packet_type = packet_type;
match->wc.masks.packet_type = OVS_BE32_MAX;
}
/* If 'match' does not match on any packet type, make it match on Ethernet
* packets (the default packet type, as specified by OpenFlow). */
void
match_set_default_packet_type(struct match *match)
{
if (!match->wc.masks.packet_type) {
match_set_packet_type(match, htonl(PT_ETH));
}
}
/* Returns true if 'match' matches only Ethernet packets (the default packet
* type, as specified by OpenFlow). */
bool
match_has_default_packet_type(const struct match *match)
{
return (match->flow.packet_type == htonl(PT_ETH)
&& match->wc.masks.packet_type == OVS_BE32_MAX);
}
/* A match on 'field' is being added to or has been added to 'match'. If
* 'field' is a data field, and 'match' does not already match on packet_type,
* this function make it match on the Ethernet packet_type.
*
* This function is useful because OpenFlow implicitly applies to Ethernet
* packets when there's no explicit packet_type, but matching on a metadata
* field doesn't imply anything about the packet_type and falsely inferring
* that it does can cause harm. A flow that matches only on metadata fields,
* for example, should be able to match more than just Ethernet flows. There
* are also important reasons that a catch-all match (one with no field matches
* at all) should not imply a packet_type(0,0) match. For example, a "flow
* dump" request that matches on no fields should return every flow in the
* switch, not just the flows that match on Ethernet. As a second example,
* OpenFlow 1.2+ special-cases "table miss" flows, that is catch-all flows with
* priority 0, and inferring a match on packet_type(0,0) causes such a flow not
* to be a table miss flow. */
void
match_add_ethernet_prereq(struct match *match, const struct mf_field *field)
{
if (field->prereqs != MFP_NONE) {
match_set_default_packet_type(match);
}
}
void
match_set_dl_type(struct match *match, ovs_be16 dl_type)
{
match->wc.masks.dl_type = OVS_BE16_MAX;
match->flow.dl_type = dl_type;
}
/* Modifies 'value_src' so that the Ethernet address must match 'value_dst'
* exactly. 'mask_dst' is set to all 1s. */
static void
set_eth(const struct eth_addr value_src,
struct eth_addr *value_dst,
struct eth_addr *mask_dst)
{
*value_dst = value_src;
*mask_dst = eth_addr_exact;
}
/* Modifies 'value_src' so that the Ethernet address must match 'value_src'
* after each byte is ANDed with the appropriate byte in 'mask_src'.
* 'mask_dst' is set to 'mask_src' */
static void
set_eth_masked(const struct eth_addr value_src,
const struct eth_addr mask_src,
struct eth_addr *value_dst, struct eth_addr *mask_dst)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(value_dst->be16); i++) {
value_dst->be16[i] = value_src.be16[i] & mask_src.be16[i];
}
*mask_dst = mask_src;
}
/* Modifies 'rule' so that the source Ethernet address must match 'dl_src'
* exactly. */
void
match_set_dl_src(struct match *match, const struct eth_addr dl_src)
{
set_eth(dl_src, &match->flow.dl_src, &match->wc.masks.dl_src);
}
/* Modifies 'rule' so that the source Ethernet address must match 'dl_src'
* after each byte is ANDed with the appropriate byte in 'mask'. */
void
match_set_dl_src_masked(struct match *match,
const struct eth_addr dl_src,
const struct eth_addr mask)
{
set_eth_masked(dl_src, mask, &match->flow.dl_src, &match->wc.masks.dl_src);
}
/* Modifies 'match' so that the Ethernet address must match 'dl_dst'
* exactly. */
void
match_set_dl_dst(struct match *match, const struct eth_addr dl_dst)
{
set_eth(dl_dst, &match->flow.dl_dst, &match->wc.masks.dl_dst);
}
/* Modifies 'match' so that the Ethernet address must match 'dl_dst' after each
* byte is ANDed with the appropriate byte in 'mask'.
*
* This function will assert-fail if 'mask' is invalid. Only 'mask' values
* accepted by flow_wildcards_is_dl_dst_mask_valid() are allowed. */
void
match_set_dl_dst_masked(struct match *match,
const struct eth_addr dl_dst,
const struct eth_addr mask)
{
set_eth_masked(dl_dst, mask, &match->flow.dl_dst, &match->wc.masks.dl_dst);
}
void
match_set_dl_tci(struct match *match, ovs_be16 tci)
{
match_set_dl_tci_masked(match, tci, htons(0xffff));
}
void
match_set_dl_tci_masked(struct match *match, ovs_be16 tci, ovs_be16 mask)
{
match->flow.vlans[0].tci = tci & mask;
match->wc.masks.vlans[0].tci = mask;
}
/* Modifies 'match' so that the VLAN VID is wildcarded. If the PCP is already
* wildcarded, then 'match' will match a packet regardless of whether it has an
* 802.1Q header or not. */
void
match_set_any_vid(struct match *match)
{
if (match->wc.masks.vlans[0].tci & htons(VLAN_PCP_MASK)) {
match->wc.masks.vlans[0].tci &= ~htons(VLAN_VID_MASK);
match->flow.vlans[0].tci &= ~htons(VLAN_VID_MASK);
} else {
match_set_dl_tci_masked(match, htons(0), htons(0));
}
}
/* Modifies 'match' depending on 'dl_vlan':
*
* - If 'dl_vlan' is htons(OFP_VLAN_NONE), makes 'match' match only packets
* without an 802.1Q header.
*
* - Otherwise, makes 'match' match only packets with an 802.1Q header whose
* VID equals the low 12 bits of 'dl_vlan'.
*/
void
match_set_dl_vlan(struct match *match, ovs_be16 dl_vlan, int id)
{
flow_set_dl_vlan(&match->flow, dl_vlan, id);
if (dl_vlan == htons(OFP10_VLAN_NONE)) {
match->wc.masks.vlans[id].tci = OVS_BE16_MAX;
} else {
match->wc.masks.vlans[id].tci |= htons(VLAN_VID_MASK | VLAN_CFI);
}
}
/* Sets the VLAN VID that 'match' matches to 'vid', which is interpreted as an
* OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID
* plus CFI). */
void
match_set_vlan_vid(struct match *match, ovs_be16 vid)
{
match_set_vlan_vid_masked(match, vid, htons(VLAN_VID_MASK | VLAN_CFI));
}
/* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
* OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID
* plus CFI), with the corresponding 'mask'. */
void
match_set_vlan_vid_masked(struct match *match, ovs_be16 vid, ovs_be16 mask)
{
ovs_be16 pcp_mask = htons(VLAN_PCP_MASK);
ovs_be16 vid_mask = htons(VLAN_VID_MASK | VLAN_CFI);
mask &= vid_mask;
flow_set_vlan_vid(&match->flow, vid & mask);
match->wc.masks.vlans[0].tci =
mask | (match->wc.masks.vlans[0].tci & pcp_mask);
}
/* Modifies 'match' so that the VLAN PCP is wildcarded. If the VID is already
* wildcarded, then 'match' will match a packet regardless of whether it has an
* 802.1Q header or not. */
void
match_set_any_pcp(struct match *match)
{
if (match->wc.masks.vlans[0].tci & htons(VLAN_VID_MASK)) {
match->wc.masks.vlans[0].tci &= ~htons(VLAN_PCP_MASK);
match->flow.vlans[0].tci &= ~htons(VLAN_PCP_MASK);
} else {
match_set_dl_tci_masked(match, htons(0), htons(0));
}
}
/* Modifies 'match' so that it matches only packets with an 802.1Q header whose
* PCP equals the low 3 bits of 'dl_vlan_pcp'. */
void
match_set_dl_vlan_pcp(struct match *match, uint8_t dl_vlan_pcp, int id)
{
flow_set_vlan_pcp(&match->flow, dl_vlan_pcp, id);
match->wc.masks.vlans[id].tci |= htons(VLAN_CFI | VLAN_PCP_MASK);
}
/* Modifies 'match' so that the MPLS label 'idx' matches 'lse' exactly. */
void
match_set_mpls_lse(struct match *match, int idx, ovs_be32 lse)
{
match->wc.masks.mpls_lse[idx] = OVS_BE32_MAX;
match->flow.mpls_lse[idx] = lse;
}
/* Modifies 'match' so that the MPLS label is wildcarded. */
void
match_set_any_mpls_label(struct match *match, int idx)
{
match->wc.masks.mpls_lse[idx] &= ~htonl(MPLS_LABEL_MASK);
flow_set_mpls_label(&match->flow, idx, htonl(0));
}
/* Modifies 'match' so that it matches only packets with an MPLS header whose
* label equals the low 20 bits of 'mpls_label'. */
void
match_set_mpls_label(struct match *match, int idx, ovs_be32 mpls_label)
{
match->wc.masks.mpls_lse[idx] |= htonl(MPLS_LABEL_MASK);
flow_set_mpls_label(&match->flow, idx, mpls_label);
}
/* Modifies 'match' so that the MPLS TC is wildcarded. */
void
match_set_any_mpls_tc(struct match *match, int idx)
{
match->wc.masks.mpls_lse[idx] &= ~htonl(MPLS_TC_MASK);
flow_set_mpls_tc(&match->flow, idx, 0);
}
/* Modifies 'match' so that it matches only packets with an MPLS header whose
* Traffic Class equals the low 3 bits of 'mpls_tc'. */
void
match_set_mpls_tc(struct match *match, int idx, uint8_t mpls_tc)
{
match->wc.masks.mpls_lse[idx] |= htonl(MPLS_TC_MASK);
flow_set_mpls_tc(&match->flow, idx, mpls_tc);
}
/* Modifies 'match' so that the MPLS stack flag is wildcarded. */
void
match_set_any_mpls_bos(struct match *match, int idx)
{
match->wc.masks.mpls_lse[idx] &= ~htonl(MPLS_BOS_MASK);
flow_set_mpls_bos(&match->flow, idx, 0);
}
/* Modifies 'match' so that it matches only packets with an MPLS header whose
* Stack Flag equals the lower bit of 'mpls_bos' */
void
match_set_mpls_bos(struct match *match, int idx, uint8_t mpls_bos)
{
match->wc.masks.mpls_lse[idx] |= htonl(MPLS_BOS_MASK);
flow_set_mpls_bos(&match->flow, idx, mpls_bos);
}
/* Modifies 'match' so that the TTL of MPLS label 'idx' is wildcarded. */
void
match_set_any_mpls_ttl(struct match *match, int idx)
{
match->wc.masks.mpls_lse[idx] &= ~htonl(MPLS_TTL_MASK);
flow_set_mpls_ttl(&match->flow, idx, 0);
}
/* Modifies 'match' so that it matches only packets in which the TTL of MPLS
* label 'idx' equals 'mpls_ttl'. */
void
match_set_mpls_ttl(struct match *match, int idx, uint8_t mpls_ttl)
{
match->wc.masks.mpls_lse[idx] |= htonl(MPLS_TTL_MASK);
flow_set_mpls_ttl(&match->flow, idx, mpls_ttl);
}
/* Modifies 'match' so that the MPLS LSE is wildcarded. */
void
match_set_any_mpls_lse(struct match *match, int idx)
{
match->wc.masks.mpls_lse[idx] = htonl(0);
flow_set_mpls_lse(&match->flow, idx, htonl(0));
}
void
match_set_tp_src(struct match *match, ovs_be16 tp_src)
{
match_set_tp_src_masked(match, tp_src, OVS_BE16_MAX);
}
void
match_set_tp_src_masked(struct match *match, ovs_be16 port, ovs_be16 mask)
{
match->flow.tp_src = port & mask;
match->wc.masks.tp_src = mask;
}
void
match_set_tp_dst(struct match *match, ovs_be16 tp_dst)
{
match_set_tp_dst_masked(match, tp_dst, OVS_BE16_MAX);
}
void
match_set_tp_dst_masked(struct match *match, ovs_be16 port, ovs_be16 mask)
{
match->flow.tp_dst = port & mask;
match->wc.masks.tp_dst = mask;
}
void
match_set_tcp_flags(struct match *match, ovs_be16 flags)
{
match_set_tcp_flags_masked(match, flags, OVS_BE16_MAX);
}
void
match_set_tcp_flags_masked(struct match *match, ovs_be16 flags, ovs_be16 mask)
{
match->flow.tcp_flags = flags & mask;
match->wc.masks.tcp_flags = mask;
}
void
match_set_nw_proto(struct match *match, uint8_t nw_proto)
{
match->flow.nw_proto = nw_proto;
match->wc.masks.nw_proto = UINT8_MAX;
}
void
match_set_nw_proto_masked(struct match *match,
const uint8_t nw_proto, const uint8_t mask)
{
match->flow.nw_proto = nw_proto;
match->wc.masks.nw_proto = mask;
}
void
match_set_nw_src(struct match *match, ovs_be32 nw_src)
{
match->flow.nw_src = nw_src;
match->wc.masks.nw_src = OVS_BE32_MAX;
}
void
match_set_nw_src_masked(struct match *match,
ovs_be32 nw_src, ovs_be32 mask)
{
match->flow.nw_src = nw_src & mask;
match->wc.masks.nw_src = mask;
}
void
match_set_nw_dst(struct match *match, ovs_be32 nw_dst)
{
match->flow.nw_dst = nw_dst;
match->wc.masks.nw_dst = OVS_BE32_MAX;
}
void
match_set_nw_dst_masked(struct match *match, ovs_be32 ip, ovs_be32 mask)
{
match->flow.nw_dst = ip & mask;
match->wc.masks.nw_dst = mask;
}
void
match_set_nw_dscp(struct match *match, uint8_t nw_dscp)
{
match->wc.masks.nw_tos |= IP_DSCP_MASK;
match->flow.nw_tos &= ~IP_DSCP_MASK;
match->flow.nw_tos |= nw_dscp & IP_DSCP_MASK;
}
void
match_set_nw_ecn(struct match *match, uint8_t nw_ecn)
{
match->wc.masks.nw_tos |= IP_ECN_MASK;
match->flow.nw_tos &= ~IP_ECN_MASK;
match->flow.nw_tos |= nw_ecn & IP_ECN_MASK;
}
void
match_set_nw_ttl(struct match *match, uint8_t nw_ttl)
{
match->wc.masks.nw_ttl = UINT8_MAX;
match->flow.nw_ttl = nw_ttl;
}
void
match_set_nw_tos_masked(struct match *match, uint8_t nw_tos, uint8_t mask)
{
match->flow.nw_tos = nw_tos & mask;
match->wc.masks.nw_tos = mask;
}
void
match_set_nw_ttl_masked(struct match *match, uint8_t nw_ttl, uint8_t mask)
{
match->flow.nw_ttl = nw_ttl & mask;
match->wc.masks.nw_ttl = mask;
}
void
match_set_nw_frag(struct match *match, uint8_t nw_frag)
{
match->wc.masks.nw_frag |= FLOW_NW_FRAG_MASK;
match->flow.nw_frag = nw_frag;
}
void
match_set_nw_frag_masked(struct match *match,
uint8_t nw_frag, uint8_t mask)
{
match->flow.nw_frag = nw_frag & mask;
match->wc.masks.nw_frag = mask;
}
void
match_set_icmp_type(struct match *match, uint8_t icmp_type)
{
match_set_tp_src(match, htons(icmp_type));
}
void
match_set_icmp_code(struct match *match, uint8_t icmp_code)
{
match_set_tp_dst(match, htons(icmp_code));
}
void
match_set_arp_opcode_masked(struct match *match,
const uint8_t opcode,
const uint8_t mask)
{
match_set_nw_proto_masked(match, opcode, mask);
}
void
match_set_arp_spa_masked(struct match *match,
const ovs_be32 arp_spa,
const ovs_be32 mask)
{
match_set_nw_src_masked(match, arp_spa, mask);
}
void
match_set_arp_tpa_masked(struct match *match,
const ovs_be32 arp_tpa,
const ovs_be32 mask)
{
match_set_nw_dst_masked(match, arp_tpa, mask);
}
void
match_set_arp_sha(struct match *match, const struct eth_addr sha)
{
match->flow.arp_sha = sha;
match->wc.masks.arp_sha = eth_addr_exact;
}
void
match_set_arp_sha_masked(struct match *match,
const struct eth_addr arp_sha,
const struct eth_addr mask)
{
set_eth_masked(arp_sha, mask,
&match->flow.arp_sha, &match->wc.masks.arp_sha);
}
void
match_set_arp_tha(struct match *match, const struct eth_addr tha)
{
match->flow.arp_tha = tha;
match->wc.masks.arp_tha = eth_addr_exact;
}
void
match_set_arp_tha_masked(struct match *match,
const struct eth_addr arp_tha,
const struct eth_addr mask)
{
set_eth_masked(arp_tha, mask,
&match->flow.arp_tha, &match->wc.masks.arp_tha);
}
void
match_set_ipv6_src(struct match *match, const struct in6_addr *src)
{
match->flow.ipv6_src = *src;
match->wc.masks.ipv6_src = in6addr_exact;
}
void
match_set_ipv6_src_masked(struct match *match, const struct in6_addr *src,
const struct in6_addr *mask)
{
match->flow.ipv6_src = ipv6_addr_bitand(src, mask);
match->wc.masks.ipv6_src = *mask;
}
void
match_set_ipv6_dst(struct match *match, const struct in6_addr *dst)
{
match->flow.ipv6_dst = *dst;
match->wc.masks.ipv6_dst = in6addr_exact;
}
void
match_set_ipv6_dst_masked(struct match *match, const struct in6_addr *dst,
const struct in6_addr *mask)
{
match->flow.ipv6_dst = ipv6_addr_bitand(dst, mask);
match->wc.masks.ipv6_dst = *mask;
}
void
match_set_ipv6_label(struct match *match, ovs_be32 ipv6_label)
{
match->wc.masks.ipv6_label = OVS_BE32_MAX;
match->flow.ipv6_label = ipv6_label;
}
void
match_set_ipv6_label_masked(struct match *match, ovs_be32 ipv6_label,
ovs_be32 mask)
{
match->flow.ipv6_label = ipv6_label & mask;
match->wc.masks.ipv6_label = mask;
}
void
match_set_nd_target(struct match *match, const struct in6_addr *target)
{
match->flow.nd_target = *target;
match->wc.masks.nd_target = in6addr_exact;
}
void
match_set_nd_target_masked(struct match *match,
const struct in6_addr *target,
const struct in6_addr *mask)
{
match->flow.nd_target = ipv6_addr_bitand(target, mask);
match->wc.masks.nd_target = *mask;
}
void
match_set_nd_reserved (struct match *match, ovs_be32 value)
{
match->flow.igmp_group_ip4 = value;
match->wc.masks.igmp_group_ip4 = OVS_BE32_MAX;
}
void
match_set_nd_options_type(struct match *match, uint8_t option)
{
match_set_tcp_flags(match, htons(option));
}
/* Returns true if 'a' and 'b' wildcard the same fields and have the same
* values for fixed fields, otherwise false. */
bool
match_equal(const struct match *a, const struct match *b)
{
return (flow_wildcards_equal(&a->wc, &b->wc)
&& flow_equal(&a->flow, &b->flow));
}
/* Returns a hash value for the flow and wildcards in 'match', starting from
* 'basis'. */
uint32_t
match_hash(const struct match *match, uint32_t basis)
{
return flow_wildcards_hash(&match->wc, flow_hash(&match->flow, basis));
}
static bool
match_has_default_recirc_id(const struct match *m)
{
return m->flow.recirc_id == 0 && (m->wc.masks.recirc_id == UINT32_MAX ||
m->wc.masks.recirc_id == 0);
}
static bool
match_has_default_dp_hash(const struct match *m)
{
return ((m->flow.dp_hash | m->wc.masks.dp_hash) == 0);
}
/* Return true if the hidden fields of the match are set to the default values.
* The default values equals to those set up by match_init_hidden_fields(). */
bool
match_has_default_hidden_fields(const struct match *m)
{
return match_has_default_recirc_id(m) && match_has_default_dp_hash(m);
}
void
match_init_hidden_fields(struct match *m)
{
match_set_recirc_id(m, 0);
match_set_dp_hash_masked(m, 0, 0);
}
static void
format_eth_masked(struct ds *s, const char *name,
const struct eth_addr eth, const struct eth_addr mask)
{
if (!eth_addr_is_zero(mask)) {
ds_put_format(s, "%s%s=%s", colors.param, name, colors.end);
eth_format_masked(eth, &mask, s);
ds_put_char(s, ',');
}
}
static void
format_ip_netmask(struct ds *s, const char *name, ovs_be32 ip,
ovs_be32 netmask)
{
if (netmask) {
ds_put_format(s, "%s%s=%s", colors.param, name, colors.end);
ip_format_masked(ip, netmask, s);
ds_put_char(s, ',');
}
}
static void
format_ipv6_netmask(struct ds *s, const char *name,
const struct in6_addr *addr,
const struct in6_addr *netmask)
{
if (!ipv6_mask_is_any(netmask)) {
ds_put_format(s, "%s%s=%s", colors.param, name, colors.end);
ipv6_format_masked(addr, netmask, s);
ds_put_char(s, ',');
}
}
static void
format_uint8_masked(struct ds *s, const char *name,
uint8_t value, uint8_t mask)
{
if (mask != 0) {
ds_put_format(s, "%s%s=%s", colors.param, name, colors.end);
if (mask == UINT8_MAX) {
ds_put_format(s, "%"PRIu8, value);
} else {
ds_put_format(s, "0x%02"PRIx8"/0x%02"PRIx8, value, mask);
}
ds_put_char(s, ',');
}
}
static void
format_uint16_masked(struct ds *s, const char *name,
uint16_t value, uint16_t mask)
{
if (mask != 0) {
ds_put_format(s, "%s%s=%s", colors.param, name, colors.end);
if (mask == UINT16_MAX) {
ds_put_format(s, "%"PRIu16, value);
} else {
ds_put_format(s, "0x%"PRIx16"/0x%"PRIx16, value, mask);
}
ds_put_char(s, ',');
}
}
static void
format_be16_masked(struct ds *s, const char *name,
ovs_be16 value, ovs_be16 mask)
{
if (mask != htons(0)) {
ds_put_format(s, "%s%s=%s", colors.param, name, colors.end);
if (mask == OVS_BE16_MAX) {
ds_put_format(s, "%"PRIu16, ntohs(value));
} else {
ds_put_format(s, "0x%"PRIx16"/0x%"PRIx16,
ntohs(value), ntohs(mask));
}
ds_put_char(s, ',');
}
}
static void
format_be32_masked(struct ds *s, const char *name,
ovs_be32 value, ovs_be32 mask)
{
if (mask != htonl(0)) {
ds_put_format(s, "%s%s=%s", colors.param, name, colors.end);
if (mask == OVS_BE32_MAX) {
ds_put_format(s, "%"PRIu32, ntohl(value));
} else {
ds_put_format(s, "0x%08"PRIx32"/0x%08"PRIx32,
ntohl(value), ntohl(mask));
}
ds_put_char(s, ',');
}
}
static void
format_be32_masked_hex(struct ds *s, const char *name,
ovs_be32 value, ovs_be32 mask)
{
if (mask != htonl(0)) {
ds_put_format(s, "%s%s=%s", colors.param, name, colors.end);
if (mask == OVS_BE32_MAX) {
ds_put_format(s, "0x%"PRIx32, ntohl(value));
} else {
ds_put_format(s, "0x%"PRIx32"/0x%"PRIx32,
ntohl(value), ntohl(mask));
}
ds_put_char(s, ',');
}
}
static void
format_uint32_masked(struct ds *s, const char *name,
uint32_t value, uint32_t mask)
{
if (mask) {
ds_put_format(s, "%s%s=%s%#"PRIx32,
colors.param, name, colors.end, value);
if (mask != UINT32_MAX) {
ds_put_format(s, "/%#"PRIx32, mask);
}
ds_put_char(s, ',');
}
}
static void
format_be64_masked(struct ds *s, const char *name,
ovs_be64 value, ovs_be64 mask)
{
if (mask != htonll(0)) {
ds_put_format(s, "%s%s=%s%#"PRIx64,
colors.param, name, colors.end, ntohll(value));
if (mask != OVS_BE64_MAX) {
ds_put_format(s, "/%#"PRIx64, ntohll(mask));
}
ds_put_char(s, ',');
}
}
static void
format_flow_tunnel(struct ds *s, const struct match *match)
{
const struct flow_wildcards *wc = &match->wc;
const struct flow_tnl *tnl = &match->flow.tunnel;
format_be64_masked(s, "tun_id", tnl->tun_id, wc->masks.tunnel.tun_id);
format_ip_netmask(s, "tun_src", tnl->ip_src, wc->masks.tunnel.ip_src);
format_ip_netmask(s, "tun_dst", tnl->ip_dst, wc->masks.tunnel.ip_dst);
format_ipv6_netmask(s, "tun_ipv6_src", &tnl->ipv6_src,
&wc->masks.tunnel.ipv6_src);
format_ipv6_netmask(s, "tun_ipv6_dst", &tnl->ipv6_dst,
&wc->masks.tunnel.ipv6_dst);
if (wc->masks.tunnel.gbp_id) {
format_be16_masked(s, "tun_gbp_id", tnl->gbp_id,
wc->masks.tunnel.gbp_id);
}
if (wc->masks.tunnel.gbp_flags) {
ds_put_format(s, "tun_gbp_flags=%#"PRIx8",", tnl->gbp_flags);
}
if (wc->masks.tunnel.ip_tos) {
ds_put_format(s, "tun_tos=%"PRIx8",", tnl->ip_tos);
}
if (wc->masks.tunnel.ip_ttl) {
ds_put_format(s, "tun_ttl=%"PRIu8",", tnl->ip_ttl);
}
if (wc->masks.tunnel.erspan_ver) {
ds_put_format(s, "tun_erspan_ver=%"PRIu8",", tnl->erspan_ver);
}
if (wc->masks.tunnel.erspan_idx && tnl->erspan_ver == 1) {
ds_put_format(s, "tun_erspan_idx=%#"PRIx32",", tnl->erspan_idx);
}
if (wc->masks.tunnel.erspan_dir && tnl->erspan_ver == 2) {
ds_put_format(s, "tun_erspan_dir=%"PRIu8",", tnl->erspan_dir);
}
if (wc->masks.tunnel.erspan_hwid && tnl->erspan_ver == 2) {
ds_put_format(s, "tun_erspan_hwid=%#"PRIx8",", tnl->erspan_hwid);
}
if (wc->masks.tunnel.gtpu_flags) {
ds_put_format(s, "gtpu_flags=%#"PRIx8",", tnl->gtpu_flags);
}
if (wc->masks.tunnel.gtpu_msgtype) {
ds_put_format(s, "gtpu_msgtype=%"PRIu8",", tnl->gtpu_msgtype);
}
if (wc->masks.tunnel.flags & FLOW_TNL_F_MASK) {
format_flags_masked(s, "tun_flags", flow_tun_flag_to_string,
tnl->flags & FLOW_TNL_F_MASK,
wc->masks.tunnel.flags & FLOW_TNL_F_MASK,
FLOW_TNL_F_MASK);
ds_put_char(s, ',');
}
tun_metadata_match_format(s, match);
}
static void
format_ct_label_masked(struct ds *s, const ovs_u128 *key, const ovs_u128 *mask)
{
if (!ovs_u128_is_zero(*mask)) {
ovs_be128 value = hton128(*key);
ds_put_format(s, "%sct_label=%s", colors.param, colors.end);
ds_put_hex(s, &value, sizeof value);
if (!is_all_ones(mask, sizeof(*mask))) {
value = hton128(*mask);
ds_put_char(s, '/');
ds_put_hex(s, &value, sizeof value);
}
ds_put_char(s, ',');
}
}
static void
format_nsh_masked(struct ds *s, const struct flow *f, const struct flow *m)
{
ovs_be32 spi_mask = nsh_path_hdr_to_spi(m->nsh.path_hdr);
if (spi_mask == htonl(NSH_SPI_MASK >> NSH_SPI_SHIFT)) {
spi_mask = OVS_BE32_MAX;
}
format_uint8_masked(s, "nsh_flags", f->nsh.flags, m->nsh.flags);
format_uint8_masked(s, "nsh_ttl", f->nsh.ttl, m->nsh.ttl);
format_uint8_masked(s, "nsh_mdtype", f->nsh.mdtype, m->nsh.mdtype);
format_uint8_masked(s, "nsh_np", f->nsh.np, m->nsh.np);
format_be32_masked_hex(s, "nsh_spi", nsh_path_hdr_to_spi(f->nsh.path_hdr),
spi_mask);
format_uint8_masked(s, "nsh_si", nsh_path_hdr_to_si(f->nsh.path_hdr),
nsh_path_hdr_to_si(m->nsh.path_hdr));
if (m->nsh.mdtype == UINT8_MAX && f->nsh.mdtype == NSH_M_TYPE1) {
format_be32_masked_hex(s, "nsh_c1", f->nsh.context[0],
m->nsh.context[0]);
format_be32_masked_hex(s, "nsh_c2", f->nsh.context[1],
m->nsh.context[1]);
format_be32_masked_hex(s, "nsh_c3", f->nsh.context[2],
m->nsh.context[2]);
format_be32_masked_hex(s, "nsh_c4", f->nsh.context[3],
m->nsh.context[3]);
}
}
/* Appends a string representation of 'match' to 's'. If 'priority' is
* different from OFP_DEFAULT_PRIORITY, includes it in 's'. If 'port_map' is
* nonnull, uses it to translate port numbers to names in output. */
void
match_format(const struct match *match,
const struct ofputil_port_map *port_map,
struct ds *s, int priority)
{
const struct flow_wildcards *wc = &match->wc;
size_t start_len = s->length;
const struct flow *f = &match->flow;
bool skip_type = false;
bool skip_proto = false;
ovs_be16 dl_type = f->dl_type;
bool is_megaflow = false;
int i;
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 42);
if (priority != OFP_DEFAULT_PRIORITY) {
ds_put_format(s, "%spriority=%s%d,",
colors.special, colors.end, priority);
}
format_uint32_masked(s, "pkt_mark", f->pkt_mark, wc->masks.pkt_mark);
if (wc->masks.recirc_id) {
format_uint32_masked(s, "recirc_id", f->recirc_id,
wc->masks.recirc_id);
is_megaflow = true;
}
if (wc->masks.dp_hash) {
format_uint32_masked(s, "dp_hash", f->dp_hash,
wc->masks.dp_hash);
}
if (wc->masks.conj_id) {
ds_put_format(s, "%sconj_id%s=%"PRIu32",",
colors.param, colors.end, f->conj_id);
}
if (wc->masks.skb_priority) {
ds_put_format(s, "%sskb_priority=%s%#"PRIx32",",
colors.param, colors.end, f->skb_priority);
}
if (wc->masks.actset_output) {
ds_put_format(s, "%sactset_output=%s", colors.param, colors.end);
ofputil_format_port(f->actset_output, port_map, s);
ds_put_char(s, ',');
}
if (wc->masks.ct_state) {
if (wc->masks.ct_state == UINT8_MAX) {
ds_put_format(s, "%sct_state=%s", colors.param, colors.end);
if (f->ct_state) {
format_flags(s, ct_state_to_string, f->ct_state, '|');
} else {
ds_put_cstr(s, "0"); /* No state. */
}
} else {
format_flags_masked(s, "ct_state", ct_state_to_string,
f->ct_state, wc->masks.ct_state, UINT8_MAX);
}
ds_put_char(s, ',');
}
if (wc->masks.ct_zone) {
format_uint16_masked(s, "ct_zone", f->ct_zone, wc->masks.ct_zone);
}
if (wc->masks.ct_mark) {
format_uint32_masked(s, "ct_mark", f->ct_mark, wc->masks.ct_mark);
}
if (!ovs_u128_is_zero(wc->masks.ct_label)) {
format_ct_label_masked(s, &f->ct_label, &wc->masks.ct_label);
}
format_ip_netmask(s, "ct_nw_src", f->ct_nw_src,
wc->masks.ct_nw_src);
format_ipv6_netmask(s, "ct_ipv6_src", &f->ct_ipv6_src,
&wc->masks.ct_ipv6_src);
format_ip_netmask(s, "ct_nw_dst", f->ct_nw_dst,
wc->masks.ct_nw_dst);
format_ipv6_netmask(s, "ct_ipv6_dst", &f->ct_ipv6_dst,
&wc->masks.ct_ipv6_dst);
if (wc->masks.ct_nw_proto) {
ds_put_format(s, "%sct_nw_proto=%s%"PRIu8",",
colors.param, colors.end, f->ct_nw_proto);
format_be16_masked(s, "ct_tp_src", f->ct_tp_src, wc->masks.ct_tp_src);
format_be16_masked(s, "ct_tp_dst", f->ct_tp_dst, wc->masks.ct_tp_dst);
}
if (wc->masks.packet_type &&
(!match_has_default_packet_type(match) || is_megaflow)) {
format_packet_type_masked(s, f->packet_type, wc->masks.packet_type);
ds_put_char(s, ',');
if (pt_ns(f->packet_type) == OFPHTN_ETHERTYPE) {
dl_type = pt_ns_type_be(f->packet_type);
}
}
if (wc->masks.dl_type) {
skip_type = true;
if (dl_type == htons(ETH_TYPE_IP)) {
if (wc->masks.nw_proto) {
skip_proto = true;
if (f->nw_proto == IPPROTO_ICMP) {
ds_put_format(s, "%sicmp%s,", colors.value, colors.end);
} else if (f->nw_proto == IPPROTO_TCP) {
ds_put_format(s, "%stcp%s,", colors.value, colors.end);
} else if (f->nw_proto == IPPROTO_UDP) {
ds_put_format(s, "%sudp%s,", colors.value, colors.end);
} else if (f->nw_proto == IPPROTO_SCTP) {
ds_put_format(s, "%ssctp%s,", colors.value, colors.end);
} else {
ds_put_format(s, "%sip%s,", colors.value, colors.end);
skip_proto = false;
}
} else {
ds_put_format(s, "%sip%s,", colors.value, colors.end);
}
} else if (dl_type == htons(ETH_TYPE_IPV6)) {
if (wc->masks.nw_proto) {
skip_proto = true;
if (f->nw_proto == IPPROTO_ICMPV6) {
ds_put_format(s, "%sicmp6%s,", colors.value, colors.end);
} else if (f->nw_proto == IPPROTO_TCP) {
ds_put_format(s, "%stcp6%s,", colors.value, colors.end);
} else if (f->nw_proto == IPPROTO_UDP) {
ds_put_format(s, "%sudp6%s,", colors.value, colors.end);
} else if (f->nw_proto == IPPROTO_SCTP) {
ds_put_format(s, "%ssctp6%s,", colors.value, colors.end);
} else {
ds_put_format(s, "%sipv6%s,", colors.value, colors.end);
skip_proto = false;
}
} else {
ds_put_format(s, "%sipv6%s,", colors.value, colors.end);
}
} else if (dl_type == htons(ETH_TYPE_ARP)) {
ds_put_format(s, "%sarp%s,", colors.value, colors.end);
} else if (dl_type == htons(ETH_TYPE_RARP)) {
ds_put_format(s, "%srarp%s,", colors.value, colors.end);
} else if (dl_type == htons(ETH_TYPE_MPLS)) {
ds_put_format(s, "%smpls%s,", colors.value, colors.end);
} else if (dl_type == htons(ETH_TYPE_MPLS_MCAST)) {
ds_put_format(s, "%smplsm%s,", colors.value, colors.end);
} else {
skip_type = false;
}
}
for (i = 0; i < FLOW_N_REGS; i++) {
#define REGNAME_LEN 20
char regname[REGNAME_LEN];
if (snprintf(regname, REGNAME_LEN, "reg%d", i) >= REGNAME_LEN) {
strcpy(regname, "reg?");
}
format_uint32_masked(s, regname, f->regs[i], wc->masks.regs[i]);
}
format_flow_tunnel(s, match);
format_be64_masked(s, "metadata", f->metadata, wc->masks.metadata);
if (wc->masks.in_port.ofp_port) {
ds_put_format(s, "%sin_port=%s", colors.param, colors.end);
ofputil_format_port(f->in_port.ofp_port, port_map, s);
ds_put_char(s, ',');
}
for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) {
char str_i[12];
if (!wc->masks.vlans[i].tci) {
break;
}
/* Print VLAN tags as dl_vlan, dl_vlan1, dl_vlan2 ... */
if (i == 0) {
str_i[0] = '\0';
} else {
snprintf(str_i, sizeof(str_i), "%d", i);
}
ovs_be16 vid_mask = wc->masks.vlans[i].tci & htons(VLAN_VID_MASK);
ovs_be16 pcp_mask = wc->masks.vlans[i].tci & htons(VLAN_PCP_MASK);
ovs_be16 cfi = wc->masks.vlans[i].tci & htons(VLAN_CFI);
if (cfi && f->vlans[i].tci & htons(VLAN_CFI)
&& (!vid_mask || vid_mask == htons(VLAN_VID_MASK))
&& (!pcp_mask || pcp_mask == htons(VLAN_PCP_MASK))
&& (vid_mask || pcp_mask)) {
if (vid_mask) {
ds_put_format(s, "%sdl_vlan%s=%s%"PRIu16",",
colors.param, str_i, colors.end,
vlan_tci_to_vid(f->vlans[i].tci));
}
if (pcp_mask) {
ds_put_format(s, "%sdl_vlan_pcp%s=%s%d,",
colors.param, str_i, colors.end,
vlan_tci_to_pcp(f->vlans[i].tci));
}
} else if (wc->masks.vlans[i].tci == htons(0xffff)) {
ds_put_format(s, "%svlan_tci%s=%s0x%04"PRIx16",",
colors.param, str_i, colors.end,
ntohs(f->vlans[i].tci));
} else {
ds_put_format(s, "%svlan_tci%s=%s0x%04"PRIx16"/0x%04"PRIx16",",
colors.param, str_i, colors.end,
ntohs(f->vlans[i].tci),
ntohs(wc->masks.vlans[i].tci));
}
}
format_eth_masked(s, "dl_src", f->dl_src, wc->masks.dl_src);
format_eth_masked(s, "dl_dst", f->dl_dst, wc->masks.dl_dst);
if (!skip_type && wc->masks.dl_type) {
ds_put_format(s, "%sdl_type=%s0x%04"PRIx16",",
colors.param, colors.end, ntohs(dl_type));
}
if (dl_type == htons(ETH_TYPE_IPV6)) {
format_ipv6_netmask(s, "ipv6_src", &f->ipv6_src, &wc->masks.ipv6_src);
format_ipv6_netmask(s, "ipv6_dst", &f->ipv6_dst, &wc->masks.ipv6_dst);
if (wc->masks.ipv6_label) {
if (wc->masks.ipv6_label == OVS_BE32_MAX) {
ds_put_format(s, "%sipv6_label=%s0x%05"PRIx32",",
colors.param, colors.end,
ntohl(f->ipv6_label));
} else {
ds_put_format(s, "%sipv6_label=%s0x%05"PRIx32"/0x%05"PRIx32",",
colors.param, colors.end, ntohl(f->ipv6_label),
ntohl(wc->masks.ipv6_label));
}
}
} else if (dl_type == htons(ETH_TYPE_ARP) ||
dl_type == htons(ETH_TYPE_RARP)) {
format_ip_netmask(s, "arp_spa", f->nw_src, wc->masks.nw_src);
format_ip_netmask(s, "arp_tpa", f->nw_dst, wc->masks.nw_dst);
} else if (dl_type == htons(ETH_TYPE_NSH)) {
format_nsh_masked(s, f, &wc->masks);
} else {
format_ip_netmask(s, "nw_src", f->nw_src, wc->masks.nw_src);
format_ip_netmask(s, "nw_dst", f->nw_dst, wc->masks.nw_dst);
}
if (!skip_proto && wc->masks.nw_proto) {
if (dl_type == htons(ETH_TYPE_ARP) ||
dl_type == htons(ETH_TYPE_RARP)) {
ds_put_format(s, "%sarp_op=%s%"PRIu8",",
colors.param, colors.end, f->nw_proto);
} else {
ds_put_format(s, "%snw_proto=%s%"PRIu8",",
colors.param, colors.end, f->nw_proto);
}
}
if (dl_type == htons(ETH_TYPE_ARP) ||
dl_type == htons(ETH_TYPE_RARP)) {
format_eth_masked(s, "arp_sha", f->arp_sha, wc->masks.arp_sha);
format_eth_masked(s, "arp_tha", f->arp_tha, wc->masks.arp_tha);
}
if (wc->masks.nw_tos & IP_DSCP_MASK) {
ds_put_format(s, "%snw_tos=%s%d,",
colors.param, colors.end, f->nw_tos & IP_DSCP_MASK);
}
if (wc->masks.nw_tos & IP_ECN_MASK) {
ds_put_format(s, "%snw_ecn=%s%d,",
colors.param, colors.end, f->nw_tos & IP_ECN_MASK);
}
if (wc->masks.nw_ttl) {
ds_put_format(s, "%snw_ttl=%s%d,",
colors.param, colors.end, f->nw_ttl);
}
if (wc->masks.mpls_lse[0] & htonl(MPLS_LABEL_MASK)) {
ds_put_format(s, "%smpls_label=%s%"PRIu32",", colors.param,
colors.end, mpls_lse_to_label(f->mpls_lse[0]));
}
if (wc->masks.mpls_lse[0] & htonl(MPLS_TC_MASK)) {
ds_put_format(s, "%smpls_tc=%s%"PRIu8",", colors.param, colors.end,
mpls_lse_to_tc(f->mpls_lse[0]));
}
if (wc->masks.mpls_lse[0] & htonl(MPLS_TTL_MASK)) {
ds_put_format(s, "%smpls_ttl=%s%"PRIu8",", colors.param, colors.end,
mpls_lse_to_ttl(f->mpls_lse[0]));
}
if (wc->masks.mpls_lse[0] & htonl(MPLS_BOS_MASK)) {
ds_put_format(s, "%smpls_bos=%s%"PRIu8",", colors.param, colors.end,
mpls_lse_to_bos(f->mpls_lse[0]));
}
format_be32_masked(s, "mpls_lse1", f->mpls_lse[1], wc->masks.mpls_lse[1]);
format_be32_masked(s, "mpls_lse2", f->mpls_lse[2], wc->masks.mpls_lse[2]);
switch (wc->masks.nw_frag & FLOW_NW_FRAG_MASK) {
case FLOW_NW_FRAG_ANY | FLOW_NW_FRAG_LATER:
ds_put_format(s, "%snw_frag=%s%s,", colors.param, colors.end,
f->nw_frag & FLOW_NW_FRAG_ANY
? (f->nw_frag & FLOW_NW_FRAG_LATER ? "later" : "first")
: (f->nw_frag & FLOW_NW_FRAG_LATER ? "<error>" : "no"));
break;
case FLOW_NW_FRAG_ANY:
ds_put_format(s, "%snw_frag=%s%s,", colors.param, colors.end,
f->nw_frag & FLOW_NW_FRAG_ANY ? "yes" : "no");
break;
case FLOW_NW_FRAG_LATER:
ds_put_format(s, "%snw_frag=%s%s,", colors.param, colors.end,
f->nw_frag & FLOW_NW_FRAG_LATER ? "later" : "not_later");
break;
}
if (dl_type == htons(ETH_TYPE_IP) &&
f->nw_proto == IPPROTO_ICMP) {
format_be16_masked(s, "icmp_type", f->tp_src, wc->masks.tp_src);
format_be16_masked(s, "icmp_code", f->tp_dst, wc->masks.tp_dst);
} else if (dl_type == htons(ETH_TYPE_IPV6) &&
f->nw_proto == IPPROTO_ICMPV6) {
format_be16_masked(s, "icmp_type", f->tp_src, wc->masks.tp_src);
format_be16_masked(s, "icmp_code", f->tp_dst, wc->masks.tp_dst);
format_ipv6_netmask(s, "nd_target", &f->nd_target,
&wc->masks.nd_target);
format_eth_masked(s, "nd_sll", f->arp_sha, wc->masks.arp_sha);
format_eth_masked(s, "nd_tll", f->arp_tha, wc->masks.arp_tha);
if (wc->masks.igmp_group_ip4) {
format_be32_masked(s,"nd_reserved", f->igmp_group_ip4,
wc->masks.igmp_group_ip4);
}
if (wc->masks.tcp_flags) {
format_be16_masked(s,"nd_options_type", f->tcp_flags,
wc->masks.tcp_flags);
}
} else {
format_be16_masked(s, "tp_src", f->tp_src, wc->masks.tp_src);
format_be16_masked(s, "tp_dst", f->tp_dst, wc->masks.tp_dst);
}
if (is_ip_any(f) && f->nw_proto == IPPROTO_TCP && wc->masks.tcp_flags) {
format_flags_masked(s, "tcp_flags", packet_tcp_flag_to_string,
ntohs(f->tcp_flags), TCP_FLAGS(wc->masks.tcp_flags),
TCP_FLAGS(OVS_BE16_MAX));
}
if (s->length > start_len) {
ds_chomp(s, ',');
}
}
/* Converts 'match' to a string and returns the string. If 'priority' is
* different from OFP_DEFAULT_PRIORITY, includes it in the string. If
* 'port_map' is nonnull, uses it to translate port numbers to names in
* output. The caller must free the string (with free()). */
char *
match_to_string(const struct match *match,
const struct ofputil_port_map *port_map, int priority)
{
struct ds s = DS_EMPTY_INITIALIZER;
match_format(match, port_map, &s, priority);
return ds_steal_cstr(&s);
}
void
match_print(const struct match *match,
const struct ofputil_port_map *port_map)
{
char *s = match_to_string(match, port_map, OFP_DEFAULT_PRIORITY);
puts(s);
free(s);
}
/* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
* with minimatch_destroy(). */
void
minimatch_init(struct minimatch *dst, const struct match *src)
{
struct miniflow tmp;
miniflow_map_init(&tmp, &src->wc.masks);
/* Allocate two consecutive miniflows. */
miniflow_alloc(dst->flows, 2, &tmp);
miniflow_init(dst->flow, &src->flow);
minimask_init(dst->mask, &src->wc);
dst->tun_md = tun_metadata_allocation_clone(&src->tun_md);
}
/* Initializes 'match' as a "catch-all" match that matches every packet. */
void
minimatch_init_catchall(struct minimatch *match)
{
match->flows[0] = xcalloc(2, sizeof *match->flow);
match->flows[1] = match->flows[0] + 1;
match->tun_md = NULL;
}
/* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
* with minimatch_destroy(). */
void
minimatch_clone(struct minimatch *dst, const struct minimatch *src)
{
/* Allocate two consecutive miniflows. */
size_t data_size = miniflow_alloc(dst->flows, 2, &src->mask->masks);
memcpy(miniflow_values(dst->flow),
miniflow_get_values(src->flow), data_size);
memcpy(miniflow_values(&dst->mask->masks),
miniflow_get_values(&src->mask->masks), data_size);
dst->tun_md = tun_metadata_allocation_clone(src->tun_md);
}
/* Initializes 'dst' with the data in 'src', destroying 'src'. The caller must
* eventually free 'dst' with minimatch_destroy(). */
void
minimatch_move(struct minimatch *dst, struct minimatch *src)
{
dst->flow = src->flow;
dst->mask = src->mask;
dst->tun_md = src->tun_md;
}
/* Frees any memory owned by 'match'. Does not free the storage in which
* 'match' itself resides; the caller is responsible for that. */
void
minimatch_destroy(struct minimatch *match)
{
free(match->flow);
free(match->tun_md);
}
/* Initializes 'dst' as a copy of 'src'. */
void
minimatch_expand(const struct minimatch *src, struct match *dst)
{
miniflow_expand(src->flow, &dst->flow);
minimask_expand(src->mask, &dst->wc);
tun_metadata_allocation_copy(&dst->tun_md, src->tun_md);
}
/* Returns true if 'a' and 'b' match the same packets, false otherwise. */
bool
minimatch_equal(const struct minimatch *a, const struct minimatch *b)
{
return minimask_equal(a->mask, b->mask)
&& miniflow_equal(a->flow, b->flow);
}
/* Returns a hash value for the flow and wildcards in 'match', starting from
* 'basis'. */
uint32_t
minimatch_hash(const struct minimatch *match, uint32_t basis)
{
size_t n_values = miniflow_n_values(match->flow);
size_t flow_size = sizeof *match->flow + MINIFLOW_VALUES_SIZE(n_values);
return hash_bytes(match->flow, 2 * flow_size, basis);
}
/* Returns true if 'target' satisifies 'match', that is, if each bit for which
* 'match' specifies a particular value has the correct value in 'target'.
*
* This function is equivalent to miniflow_equal_flow_in_minimask(&match->flow,
* target, &match->mask) but it is faster because of the invariant that
* match->flow.map and match->mask.map are the same. */
bool
minimatch_matches_flow(const struct minimatch *match,
const struct flow *target)
{
const uint64_t *flowp = miniflow_get_values(match->flow);
const uint64_t *maskp = miniflow_get_values(&match->mask->masks);
size_t idx;
FLOWMAP_FOR_EACH_INDEX(idx, match->flow->map) {
if ((*flowp++ ^ flow_u64_value(target, idx)) & *maskp++) {
return false;
}
}
return true;
}
/* Appends a string representation of 'match' to 's'. If 'priority' is
* different from OFP_DEFAULT_PRIORITY, includes it in 's'. If 'port_map' is
* nonnull, uses it to translate port numbers to names in output. */
void
minimatch_format(const struct minimatch *match,
const struct tun_table *tun_table,
const struct ofputil_port_map *port_map,
struct ds *s, int priority)
{
struct match megamatch;
minimatch_expand(match, &megamatch);
megamatch.flow.tunnel.metadata.tab = tun_table;
match_format(&megamatch, port_map, s, priority);
}
/* Converts 'match' to a string and returns the string. If 'priority' is
* different from OFP_DEFAULT_PRIORITY, includes it in the string. The caller
* must free the string (with free()). If 'port_map' is nonnull, uses it to
* translate port numbers to names in output. */
char *
minimatch_to_string(const struct minimatch *match,
const struct ofputil_port_map *port_map, int priority)
{
struct match megamatch;
minimatch_expand(match, &megamatch);
return match_to_string(&megamatch, port_map, priority);
}
static bool
minimatch_has_default_recirc_id(const struct minimatch *m)
{
uint32_t flow_recirc_id = miniflow_get_recirc_id(m->flow);
uint32_t mask_recirc_id = miniflow_get_recirc_id(&m->mask->masks);
return flow_recirc_id == 0 && (mask_recirc_id == UINT32_MAX ||
mask_recirc_id == 0);
}
static bool
minimatch_has_default_dp_hash(const struct minimatch *m)
{
return (!miniflow_get_dp_hash(m->flow)
&& !miniflow_get_dp_hash(&m->mask->masks));
}
/* Return true if the hidden fields of the match are set to the default values.
* The default values equals to those set up by match_init_hidden_fields(). */
bool
minimatch_has_default_hidden_fields(const struct minimatch *m)
{
return (minimatch_has_default_recirc_id(m)
&& minimatch_has_default_dp_hash(m));
}