2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/lib/ovs-thread.c
Ilya Maximets 46159983d9 ovs-thread: Log pthread failures.
Currently, failures of pthread_* functions are printed to stderr
only and then OVS aborts.  These error messages are hard to find
and may be even just lost.

Use VLOG_ABORT() instead.  It will do the same thing, but will try
to log the error to the log file and syslog first, if configured.

Using VLOG_ABORT() instead of VLOG_FATAL() to preserve the abort()
logic and not just exit with a failure code, because it's likely
we want a core dump if one of these function failed.  For example,
we would like to have a stack trace in a core dump in case a mutex
lock failed with 'deadlock avoided'.

Acked-by: Simon Horman <horms@ovn.org>
Acked-by: Eelco Chaudron <echaudro@redhat.com>
Signed-off-by: Ilya Maximets <i.maximets@ovn.org>
2024-02-21 20:45:23 +01:00

923 lines
26 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2013, 2014, 2015, 2016 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "ovs-thread.h"
#include <errno.h>
#include <poll.h>
#ifndef _WIN32
#include <signal.h>
#endif
#include <stdlib.h>
#include <unistd.h>
#include "compiler.h"
#include "fatal-signal.h"
#include "hash.h"
#include "openvswitch/list.h"
#include "ovs-rcu.h"
#include "openvswitch/poll-loop.h"
#include "seq.h"
#include "socket-util.h"
#include "timeval.h"
#include "util.h"
#ifdef __CHECKER__
/* Omit the definitions in this file because they are somewhat difficult to
* write without prompting "sparse" complaints, without ugliness or
* cut-and-paste. Since "sparse" is just a checker, not a compiler, it
* doesn't matter that we don't define them. */
#else
#include "openvswitch/vlog.h"
VLOG_DEFINE_THIS_MODULE(ovs_thread);
/* If there is a reason that we cannot fork anymore (unless the fork will be
* immediately followed by an exec), then this points to a string that
* explains why. */
static const char *must_not_fork;
/* True if we created any threads beyond the main initial thread. */
static bool multithreaded;
#define LOCK_FUNCTION(TYPE, FUN) \
void \
ovs_##TYPE##_##FUN##_at(const struct ovs_##TYPE *l_, \
const char *where) \
OVS_NO_THREAD_SAFETY_ANALYSIS \
{ \
struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \
int error; \
\
/* Verify that 'l' was initialized. */ \
if (OVS_UNLIKELY(!l->where)) { \
VLOG_ABORT("%s: %s() passed uninitialized ovs_"#TYPE, \
where, __func__); \
} \
\
error = pthread_##TYPE##_##FUN(&l->lock); \
if (OVS_UNLIKELY(error)) { \
VLOG_ABORT("%s: pthread_%s_%s failed: %s", where, #TYPE, #FUN, \
ovs_strerror(error)); \
} \
l->where = where; \
}
LOCK_FUNCTION(mutex, lock);
LOCK_FUNCTION(rwlock, rdlock);
LOCK_FUNCTION(rwlock, wrlock);
#ifdef HAVE_PTHREAD_SPIN_LOCK
LOCK_FUNCTION(spin, lock);
#endif
#define TRY_LOCK_FUNCTION(TYPE, FUN) \
int \
ovs_##TYPE##_##FUN##_at(const struct ovs_##TYPE *l_, \
const char *where) \
OVS_NO_THREAD_SAFETY_ANALYSIS \
{ \
struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \
int error; \
\
/* Verify that 'l' was initialized. */ \
if (OVS_UNLIKELY(!l->where)) { \
VLOG_ABORT("%s: %s() passed uninitialized ovs_"#TYPE, \
where, __func__); \
} \
\
error = pthread_##TYPE##_##FUN(&l->lock); \
if (OVS_UNLIKELY(error) && error != EBUSY) { \
VLOG_ABORT("%s: pthread_%s_%s failed: %s", where, #TYPE, #FUN, \
ovs_strerror(error)); \
} \
if (!error) { \
l->where = where; \
} \
return error; \
}
TRY_LOCK_FUNCTION(mutex, trylock);
TRY_LOCK_FUNCTION(rwlock, tryrdlock);
TRY_LOCK_FUNCTION(rwlock, trywrlock);
#ifdef HAVE_PTHREAD_SPIN_LOCK
TRY_LOCK_FUNCTION(spin, trylock);
#endif
#define UNLOCK_FUNCTION(TYPE, FUN, WHERE) \
void \
ovs_##TYPE##_##FUN(const struct ovs_##TYPE *l_) \
OVS_NO_THREAD_SAFETY_ANALYSIS \
{ \
struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \
int error; \
\
/* Verify that 'l' was initialized. */ \
ovs_assert(l->where); \
\
l->where = WHERE; \
error = pthread_##TYPE##_##FUN(&l->lock); \
if (OVS_UNLIKELY(error)) { \
VLOG_ABORT("%s: pthread_%s_%s failed: %s", l->where, #TYPE, #FUN, \
ovs_strerror(error)); \
} \
}
UNLOCK_FUNCTION(mutex, unlock, "<unlocked>");
UNLOCK_FUNCTION(mutex, destroy, NULL);
UNLOCK_FUNCTION(rwlock, unlock, "<unlocked>");
UNLOCK_FUNCTION(rwlock, destroy, NULL);
#ifdef HAVE_PTHREAD_SPIN_LOCK
UNLOCK_FUNCTION(spin, unlock, "<unlocked>");
UNLOCK_FUNCTION(spin, destroy, NULL);
#endif
#define XPTHREAD_FUNC1(FUNCTION, PARAM1) \
void \
x##FUNCTION(PARAM1 arg1) \
{ \
int error = FUNCTION(arg1); \
if (OVS_UNLIKELY(error)) { \
VLOG_ABORT("%s failed: %s", #FUNCTION, \
ovs_strerror(error)); \
} \
}
#define XPTHREAD_FUNC2(FUNCTION, PARAM1, PARAM2) \
void \
x##FUNCTION(PARAM1 arg1, PARAM2 arg2) \
{ \
int error = FUNCTION(arg1, arg2); \
if (OVS_UNLIKELY(error)) { \
VLOG_ABORT("%s failed: %s", #FUNCTION, \
ovs_strerror(error)); \
} \
}
#define XPTHREAD_FUNC3(FUNCTION, PARAM1, PARAM2, PARAM3)\
void \
x##FUNCTION(PARAM1 arg1, PARAM2 arg2, PARAM3 arg3) \
{ \
int error = FUNCTION(arg1, arg2, arg3); \
if (OVS_UNLIKELY(error)) { \
VLOG_ABORT("%s failed: %s", #FUNCTION, \
ovs_strerror(error)); \
} \
}
XPTHREAD_FUNC1(pthread_mutexattr_init, pthread_mutexattr_t *);
XPTHREAD_FUNC1(pthread_mutexattr_destroy, pthread_mutexattr_t *);
XPTHREAD_FUNC2(pthread_mutexattr_settype, pthread_mutexattr_t *, int);
XPTHREAD_FUNC2(pthread_mutexattr_gettype, pthread_mutexattr_t *, int *);
XPTHREAD_FUNC1(pthread_rwlockattr_init, pthread_rwlockattr_t *);
XPTHREAD_FUNC1(pthread_rwlockattr_destroy, pthread_rwlockattr_t *);
#ifdef PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP
XPTHREAD_FUNC2(pthread_rwlockattr_setkind_np, pthread_rwlockattr_t *, int);
#endif
XPTHREAD_FUNC2(pthread_cond_init, pthread_cond_t *, pthread_condattr_t *);
XPTHREAD_FUNC1(pthread_cond_destroy, pthread_cond_t *);
XPTHREAD_FUNC1(pthread_cond_signal, pthread_cond_t *);
XPTHREAD_FUNC1(pthread_cond_broadcast, pthread_cond_t *);
XPTHREAD_FUNC2(pthread_join, pthread_t, void **);
typedef void destructor_func(void *);
XPTHREAD_FUNC2(pthread_key_create, pthread_key_t *, destructor_func *);
XPTHREAD_FUNC1(pthread_key_delete, pthread_key_t);
XPTHREAD_FUNC2(pthread_setspecific, pthread_key_t, const void *);
#ifndef _WIN32
XPTHREAD_FUNC3(pthread_sigmask, int, const sigset_t *, sigset_t *);
#endif
static void
ovs_mutex_init__(const struct ovs_mutex *l_, int type)
{
struct ovs_mutex *l = CONST_CAST(struct ovs_mutex *, l_);
pthread_mutexattr_t attr;
int error;
l->where = "<unlocked>";
xpthread_mutexattr_init(&attr);
xpthread_mutexattr_settype(&attr, type);
error = pthread_mutex_init(&l->lock, &attr);
if (OVS_UNLIKELY(error)) {
VLOG_ABORT("pthread_mutex_init failed: %s", ovs_strerror(error));
}
xpthread_mutexattr_destroy(&attr);
}
/* Initializes 'mutex' as a normal (non-recursive) mutex. */
void
ovs_mutex_init(const struct ovs_mutex *mutex)
{
ovs_mutex_init__(mutex, PTHREAD_MUTEX_ERRORCHECK);
}
/* Initializes 'mutex' as a recursive mutex. */
void
ovs_mutex_init_recursive(const struct ovs_mutex *mutex)
{
ovs_mutex_init__(mutex, PTHREAD_MUTEX_RECURSIVE);
}
/* Initializes 'mutex' as a recursive mutex. */
void
ovs_mutex_init_adaptive(const struct ovs_mutex *mutex)
{
#ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
ovs_mutex_init__(mutex, PTHREAD_MUTEX_ADAPTIVE_NP);
#else
ovs_mutex_init(mutex);
#endif
}
void
ovs_rwlock_init(const struct ovs_rwlock *l_)
{
struct ovs_rwlock *l = CONST_CAST(struct ovs_rwlock *, l_);
int error;
l->where = "<unlocked>";
#ifdef PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP
pthread_rwlockattr_t attr;
xpthread_rwlockattr_init(&attr);
xpthread_rwlockattr_setkind_np(
&attr, PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
error = pthread_rwlock_init(&l->lock, &attr);
xpthread_rwlockattr_destroy(&attr);
#else
/* It is important to avoid passing a rwlockattr in this case because
* Windows pthreads 2.9.1 (and earlier) fail and abort if passed one, even
* one without any special attributes. */
error = pthread_rwlock_init(&l->lock, NULL);
#endif
if (OVS_UNLIKELY(error)) {
VLOG_ABORT("pthread_rwlock_init failed: %s", ovs_strerror(error));
}
}
/* Provides an error-checking wrapper around pthread_cond_wait().
*
* If the wait can take a significant amount of time, consider bracketing this
* call with calls to ovsrcu_quiesce_start() and ovsrcu_quiesce_end(). */
void
ovs_mutex_cond_wait(pthread_cond_t *cond, const struct ovs_mutex *mutex_)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct ovs_mutex *mutex = CONST_CAST(struct ovs_mutex *, mutex_);
int error;
error = pthread_cond_wait(cond, &mutex->lock);
if (OVS_UNLIKELY(error)) {
VLOG_ABORT("pthread_cond_wait failed: %s", ovs_strerror(error));
}
}
#ifdef HAVE_PTHREAD_SPIN_LOCK
static void
ovs_spin_init__(const struct ovs_spin *l_, int pshared)
{
struct ovs_spin *l = CONST_CAST(struct ovs_spin *, l_);
int error;
l->where = "<unlocked>";
error = pthread_spin_init(&l->lock, pshared);
if (OVS_UNLIKELY(error)) {
VLOG_ABORT("pthread_spin_init failed: %s", ovs_strerror(error));
}
}
void
ovs_spin_init(const struct ovs_spin *spin)
{
ovs_spin_init__(spin, PTHREAD_PROCESS_PRIVATE);
}
#endif
struct ovs_barrier_impl {
uint32_t size; /* Number of threads to wait. */
atomic_count count; /* Number of threads already hit the barrier. */
struct seq *seq;
struct ovs_refcount refcnt;
};
static void
ovs_barrier_impl_ref(struct ovs_barrier_impl *impl)
{
ovs_refcount_ref(&impl->refcnt);
}
static void
ovs_barrier_impl_unref(struct ovs_barrier_impl *impl)
{
if (ovs_refcount_unref(&impl->refcnt) == 1) {
seq_destroy(impl->seq);
free(impl);
}
}
/* Initializes the 'barrier'. 'size' is the number of threads
* expected to hit the barrier. */
void
ovs_barrier_init(struct ovs_barrier *barrier, uint32_t size)
{
struct ovs_barrier_impl *impl;
impl = xmalloc(sizeof *impl);
impl->size = size;
atomic_count_init(&impl->count, 0);
impl->seq = seq_create();
ovs_refcount_init(&impl->refcnt);
ovsrcu_set(&barrier->impl, impl);
}
/* Destroys the 'barrier'. */
void
ovs_barrier_destroy(struct ovs_barrier *barrier)
{
struct ovs_barrier_impl *impl;
impl = ovsrcu_get(struct ovs_barrier_impl *, &barrier->impl);
ovsrcu_set(&barrier->impl, NULL);
ovs_barrier_impl_unref(impl);
}
/* Makes the calling thread block on the 'barrier' until all
* 'barrier->size' threads hit the barrier.
* ovs_barrier provides the necessary acquire-release semantics to make
* the effects of prior memory accesses of all the participating threads
* visible on return and to prevent the following memory accesses to be
* reordered before the ovs_barrier_block(). */
void
ovs_barrier_block(struct ovs_barrier *barrier)
{
struct ovs_barrier_impl *impl;
uint32_t orig;
uint64_t seq;
impl = ovsrcu_get(struct ovs_barrier_impl *, &barrier->impl);
ovs_barrier_impl_ref(impl);
seq = seq_read(impl->seq);
orig = atomic_count_inc(&impl->count);
if (orig + 1 == impl->size) {
atomic_count_set(&impl->count, 0);
/* seq_change() serves as a release barrier against the other threads,
* so the zeroed count is visible to them as they continue. */
seq_change(impl->seq);
} else {
/* To prevent thread from waking up by other event,
* keeps waiting for the change of 'barrier->seq'. */
while (seq == seq_read(impl->seq)) {
seq_wait(impl->seq, seq);
poll_block();
}
}
ovs_barrier_impl_unref(impl);
}
DEFINE_EXTERN_PER_THREAD_DATA(ovsthread_id, OVSTHREAD_ID_UNSET);
struct ovsthread_aux {
void *(*start)(void *);
void *arg;
char name[16];
};
unsigned int
ovsthread_id_init(void)
{
static atomic_count next_id = ATOMIC_COUNT_INIT(0);
ovs_assert(*ovsthread_id_get() == OVSTHREAD_ID_UNSET);
return *ovsthread_id_get() = atomic_count_inc(&next_id);
}
static void *
ovsthread_wrapper(void *aux_)
{
struct ovsthread_aux *auxp = aux_;
struct ovsthread_aux aux;
unsigned int id;
id = ovsthread_id_init();
aux = *auxp;
free(auxp);
/* The order of the following calls is important, because
* ovsrcu_quiesce_end() saves a copy of the thread name. */
char *subprogram_name = xasprintf("%s%u", aux.name, id);
set_subprogram_name(subprogram_name);
free(subprogram_name);
ovsrcu_quiesce_end();
return aux.start(aux.arg);
}
static void
set_min_stack_size(pthread_attr_t *attr, size_t min_stacksize)
{
size_t stacksize;
int error;
error = pthread_attr_getstacksize(attr, &stacksize);
if (error) {
VLOG_ABORT("pthread_attr_getstacksize failed: %s",
ovs_strerror(error));
}
if (stacksize < min_stacksize) {
error = pthread_attr_setstacksize(attr, min_stacksize);
if (error) {
VLOG_ABORT("pthread_attr_setstacksize failed: %s",
ovs_strerror(error));
}
}
}
/* Starts a thread that calls 'start(arg)'. Sets the thread's name to 'name'
* (suffixed by its ovsthread_id()). Returns the new thread's pthread_t. */
pthread_t
ovs_thread_create(const char *name, void *(*start)(void *), void *arg)
{
static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
struct ovsthread_aux *aux;
pthread_t thread;
int error;
forbid_forking("multiple threads exist");
if (ovsthread_once_start(&once)) {
/* The first call to this function has to happen in the main thread.
* Before the process becomes multithreaded we make sure that the
* main thread is considered non quiescent.
*
* For other threads this is done in ovs_thread_wrapper(), but the
* main thread has no such wrapper.
*
* There's no reason to call ovsrcu_quiesce_end() in subsequent
* invocations of this function and it might introduce problems
* for other threads. */
ovsrcu_quiesce_end();
ovsthread_once_done(&once);
}
multithreaded = true;
aux = xmalloc(sizeof *aux);
aux->start = start;
aux->arg = arg;
ovs_strlcpy(aux->name, name, sizeof aux->name);
/* Some small systems use a default stack size as small as 80 kB, but OVS
* requires approximately 384 kB according to the following analysis:
* https://mail.openvswitch.org/pipermail/ovs-dev/2016-January/308592.html
*
* We use 512 kB to give us some margin of error. */
pthread_attr_t attr;
pthread_attr_init(&attr);
set_min_stack_size(&attr, 512 * 1024);
error = pthread_create(&thread, &attr, ovsthread_wrapper, aux);
if (error) {
VLOG_ABORT("pthread_create failed: %s", ovs_strerror(error));
}
pthread_attr_destroy(&attr);
return thread;
}
bool
ovsthread_once_start__(struct ovsthread_once *once)
{
ovs_mutex_lock(&once->mutex);
/* Mutex synchronizes memory, so we get the current value of 'done'. */
if (!once->done) {
return true;
}
ovs_mutex_unlock(&once->mutex);
return false;
}
void
ovsthread_once_done(struct ovsthread_once *once)
{
/* We need release semantics here, so that the following store may not
* be moved ahead of any of the preceding initialization operations.
* A release atomic_thread_fence provides that prior memory accesses
* will not be reordered to take place after the following store. */
atomic_thread_fence(memory_order_release);
once->done = true;
ovs_mutex_unlock(&once->mutex);
}
bool
single_threaded(void)
{
return !multithreaded;
}
/* Asserts that the process has not yet created any threads (beyond the initial
* thread).
*
* ('where' is used in logging. Commonly one would use
* assert_single_threaded() to automatically provide the caller's source file
* and line number for 'where'.) */
void
assert_single_threaded_at(const char *where)
{
if (multithreaded) {
VLOG_FATAL("%s: attempted operation not allowed when multithreaded",
where);
}
}
#ifndef _WIN32
/* Forks the current process (checking that this is allowed). Aborts with
* VLOG_FATAL if fork() returns an error, and otherwise returns the value
* returned by fork().
*
* ('where' is used in logging. Commonly one would use xfork() to
* automatically provide the caller's source file and line number for
* 'where'.) */
pid_t
xfork_at(const char *where)
{
pid_t pid;
if (must_not_fork) {
VLOG_FATAL("%s: attempted to fork but forking not allowed (%s)",
where, must_not_fork);
}
pid = fork();
if (pid < 0) {
VLOG_FATAL("%s: fork failed (%s)", where, ovs_strerror(errno));
}
return pid;
}
#endif
/* Notes that the process must not call fork() from now on, for the specified
* 'reason'. (The process may still fork() if it execs itself immediately
* afterward.) */
void
forbid_forking(const char *reason)
{
ovs_assert(reason != NULL);
must_not_fork = reason;
}
/* Returns true if the process is allowed to fork, false otherwise. */
bool
may_fork(void)
{
return !must_not_fork;
}
/* ovsthread_stats. */
void
ovsthread_stats_init(struct ovsthread_stats *stats)
{
int i;
ovs_mutex_init(&stats->mutex);
for (i = 0; i < ARRAY_SIZE(stats->buckets); i++) {
stats->buckets[i] = NULL;
}
}
void
ovsthread_stats_destroy(struct ovsthread_stats *stats)
{
ovs_mutex_destroy(&stats->mutex);
}
void *
ovsthread_stats_bucket_get(struct ovsthread_stats *stats,
void *(*new_bucket)(void))
{
unsigned int idx = ovsthread_id_self() & (ARRAY_SIZE(stats->buckets) - 1);
void *bucket = stats->buckets[idx];
if (!bucket) {
ovs_mutex_lock(&stats->mutex);
bucket = stats->buckets[idx];
if (!bucket) {
bucket = stats->buckets[idx] = new_bucket();
}
ovs_mutex_unlock(&stats->mutex);
}
return bucket;
}
size_t
ovs_thread_stats_next_bucket(const struct ovsthread_stats *stats, size_t i)
{
for (; i < ARRAY_SIZE(stats->buckets); i++) {
if (stats->buckets[i]) {
break;
}
}
return i;
}
static int
count_cpu_cores__(void)
{
long int n_cores;
#ifndef _WIN32
n_cores = sysconf(_SC_NPROCESSORS_ONLN);
#else
SYSTEM_INFO sysinfo;
GetSystemInfo(&sysinfo);
n_cores = sysinfo.dwNumberOfProcessors;
#endif
#ifdef __linux__
if (n_cores > 0) {
cpu_set_t *set = CPU_ALLOC(n_cores);
if (set) {
size_t size = CPU_ALLOC_SIZE(n_cores);
if (!sched_getaffinity(0, size, set)) {
n_cores = CPU_COUNT_S(size, set);
}
CPU_FREE(set);
}
}
#endif
return n_cores > 0 ? n_cores : 0;
}
/* It's unlikely that the available cpus change several times per second and
* even if it does, it's not needed (or desired) to react to such changes so
* quickly. */
#define COUNT_CPU_UPDATE_TIME_MS 10000
static struct ovs_mutex cpu_cores_mutex = OVS_MUTEX_INITIALIZER;
/* Returns the current total number of cores available to this process, or 0
* if the number cannot be determined. */
int
count_cpu_cores(void)
{
static long long int last_updated = 0;
long long int now = time_msec();
static int cpu_cores;
ovs_mutex_lock(&cpu_cores_mutex);
if (!last_updated || now - last_updated >= COUNT_CPU_UPDATE_TIME_MS) {
last_updated = now;
cpu_cores = count_cpu_cores__();
}
ovs_mutex_unlock(&cpu_cores_mutex);
return cpu_cores;
}
/* Returns the total number of cores on the system, or 0 if the
* number cannot be determined. */
int
count_total_cores(void)
{
long int n_cores;
#ifndef _WIN32
n_cores = sysconf(_SC_NPROCESSORS_CONF);
#else
n_cores = 0;
errno = ENOTSUP;
#endif
return n_cores > 0 ? n_cores : 0;
}
/* Returns 'true' if current thread is PMD thread. */
bool
thread_is_pmd(void)
{
const char *name = get_subprogram_name();
return !strncmp(name, "pmd", 3);
}
/* ovsthread_key. */
#define L1_SIZE 1024
#define L2_SIZE 1024
#define MAX_KEYS (L1_SIZE * L2_SIZE)
/* A piece of thread-specific data. */
struct ovsthread_key {
struct ovs_list list_node; /* In 'inuse_keys' or 'free_keys'. */
void (*destructor)(void *); /* Called at thread exit. */
/* Indexes into the per-thread array in struct ovsthread_key_slots.
* This key's data is stored in p1[index / L2_SIZE][index % L2_SIZE]. */
unsigned int index;
};
/* Per-thread data structure. */
struct ovsthread_key_slots {
struct ovs_list list_node; /* In 'slots_list'. */
void **p1[L1_SIZE];
};
/* Contains "struct ovsthread_key_slots *". */
static pthread_key_t tsd_key;
/* Guards data structures below. */
static struct ovs_mutex key_mutex = OVS_MUTEX_INITIALIZER;
/* 'inuse_keys' holds "struct ovsthread_key"s that have been created and not
* yet destroyed.
*
* 'free_keys' holds "struct ovsthread_key"s that have been deleted and are
* ready for reuse. (We keep them around only to be able to easily locate
* free indexes.)
*
* Together, 'inuse_keys' and 'free_keys' hold an ovsthread_key for every index
* from 0 to n_keys - 1, inclusive. */
static struct ovs_list inuse_keys OVS_GUARDED_BY(key_mutex)
= OVS_LIST_INITIALIZER(&inuse_keys);
static struct ovs_list free_keys OVS_GUARDED_BY(key_mutex)
= OVS_LIST_INITIALIZER(&free_keys);
static unsigned int n_keys OVS_GUARDED_BY(key_mutex);
/* All existing struct ovsthread_key_slots. */
static struct ovs_list slots_list OVS_GUARDED_BY(key_mutex)
= OVS_LIST_INITIALIZER(&slots_list);
static void *
clear_slot(struct ovsthread_key_slots *slots, unsigned int index)
{
void **p2 = slots->p1[index / L2_SIZE];
if (p2) {
void **valuep = &p2[index % L2_SIZE];
void *value = *valuep;
*valuep = NULL;
return value;
} else {
return NULL;
}
}
static void
ovsthread_key_destruct__(void *slots_)
{
struct ovsthread_key_slots *slots = slots_;
struct ovsthread_key *key;
unsigned int n;
int i;
ovs_mutex_lock(&key_mutex);
ovs_list_remove(&slots->list_node);
LIST_FOR_EACH (key, list_node, &inuse_keys) {
void *value = clear_slot(slots, key->index);
if (value && key->destructor) {
key->destructor(value);
}
}
n = n_keys;
ovs_mutex_unlock(&key_mutex);
for (i = 0; i < DIV_ROUND_UP(n, L2_SIZE); i++) {
free(slots->p1[i]);
}
free(slots);
}
/* Cancels the callback to ovsthread_key_destruct__().
*
* Cancelling the call to the destructor during the main thread exit
* is needed while using pthreads-win32 library in Windows. It has been
* observed that in pthreads-win32, a call to the destructor during
* main thread exit causes undefined behavior. */
static void
ovsthread_cancel_ovsthread_key_destruct__(void *aux OVS_UNUSED)
{
pthread_setspecific(tsd_key, NULL);
}
/* Initializes '*keyp' as a thread-specific data key. The data items are
* initially null in all threads.
*
* If a thread exits with non-null data, then 'destructor', if nonnull, will be
* called passing the final data value as its argument. 'destructor' must not
* call any thread-specific data functions in this API.
*
* This function is similar to xpthread_key_create(). */
void
ovsthread_key_create(ovsthread_key_t *keyp, void (*destructor)(void *))
{
static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
struct ovsthread_key *key;
if (ovsthread_once_start(&once)) {
xpthread_key_create(&tsd_key, ovsthread_key_destruct__);
fatal_signal_add_hook(ovsthread_cancel_ovsthread_key_destruct__,
NULL, NULL, true);
ovsthread_once_done(&once);
}
ovs_mutex_lock(&key_mutex);
if (ovs_list_is_empty(&free_keys)) {
key = xmalloc(sizeof *key);
key->index = n_keys++;
if (key->index >= MAX_KEYS) {
abort();
}
} else {
key = CONTAINER_OF(ovs_list_pop_back(&free_keys),
struct ovsthread_key, list_node);
}
ovs_list_push_back(&inuse_keys, &key->list_node);
key->destructor = destructor;
ovs_mutex_unlock(&key_mutex);
*keyp = key;
}
/* Frees 'key'. The destructor supplied to ovsthread_key_create(), if any, is
* not called.
*
* This function is similar to xpthread_key_delete(). */
void
ovsthread_key_delete(ovsthread_key_t key)
{
struct ovsthread_key_slots *slots;
ovs_mutex_lock(&key_mutex);
/* Move 'key' from 'inuse_keys' to 'free_keys'. */
ovs_list_remove(&key->list_node);
ovs_list_push_back(&free_keys, &key->list_node);
/* Clear this slot in all threads. */
LIST_FOR_EACH (slots, list_node, &slots_list) {
clear_slot(slots, key->index);
}
ovs_mutex_unlock(&key_mutex);
}
static void **
ovsthread_key_lookup__(const struct ovsthread_key *key)
{
struct ovsthread_key_slots *slots;
void **p2;
slots = pthread_getspecific(tsd_key);
if (!slots) {
slots = xzalloc(sizeof *slots);
ovs_mutex_lock(&key_mutex);
pthread_setspecific(tsd_key, slots);
ovs_list_push_back(&slots_list, &slots->list_node);
ovs_mutex_unlock(&key_mutex);
}
p2 = slots->p1[key->index / L2_SIZE];
if (!p2) {
p2 = xzalloc(L2_SIZE * sizeof *p2);
slots->p1[key->index / L2_SIZE] = p2;
}
return &p2[key->index % L2_SIZE];
}
/* Sets the value of thread-specific data item 'key', in the current thread, to
* 'value'.
*
* This function is similar to pthread_setspecific(). */
void
ovsthread_setspecific(ovsthread_key_t key, const void *value)
{
*ovsthread_key_lookup__(key) = CONST_CAST(void *, value);
}
/* Returns the value of thread-specific data item 'key' in the current thread.
*
* This function is similar to pthread_getspecific(). */
void *
ovsthread_getspecific(ovsthread_key_t key)
{
return *ovsthread_key_lookup__(key);
}
#endif