2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-23 10:28:00 +00:00
ovs/lib/netlink-socket.c
Ben Pfaff 407556ac6c netlink-socket: Avoid forcing a reply for final message in a transaction.
Signed-off-by: Ben Pfaff <blp@nicira.com>
2012-04-18 20:28:41 -07:00

1176 lines
35 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2008, 2009, 2010, 2011, 2012 Nicira Networks.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "netlink-socket.h"
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
#include "coverage.h"
#include "dynamic-string.h"
#include "hash.h"
#include "hmap.h"
#include "netlink.h"
#include "netlink-protocol.h"
#include "ofpbuf.h"
#include "poll-loop.h"
#include "socket-util.h"
#include "stress.h"
#include "util.h"
#include "vlog.h"
VLOG_DEFINE_THIS_MODULE(netlink_socket);
COVERAGE_DEFINE(netlink_overflow);
COVERAGE_DEFINE(netlink_received);
COVERAGE_DEFINE(netlink_recv_jumbo);
COVERAGE_DEFINE(netlink_send);
COVERAGE_DEFINE(netlink_sent);
/* Linux header file confusion causes this to be undefined. */
#ifndef SOL_NETLINK
#define SOL_NETLINK 270
#endif
/* A single (bad) Netlink message can in theory dump out many, many log
* messages, so the burst size is set quite high here to avoid missing useful
* information. Also, at high logging levels we log *all* Netlink messages. */
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(60, 600);
static void log_nlmsg(const char *function, int error,
const void *message, size_t size, int protocol);
/* Netlink sockets. */
struct nl_sock
{
int fd;
uint32_t pid;
int protocol;
struct nl_dump *dump;
unsigned int rcvbuf; /* Receive buffer size (SO_RCVBUF). */
};
/* Compile-time limit on iovecs, so that we can allocate a maximum-size array
* of iovecs on the stack. */
#define MAX_IOVS 128
/* Maximum number of iovecs that may be passed to sendmsg, capped at a
* minimum of _XOPEN_IOV_MAX (16) and a maximum of MAX_IOVS.
*
* Initialized by nl_sock_create(). */
static int max_iovs;
static int nl_sock_cow__(struct nl_sock *);
/* Creates a new netlink socket for the given netlink 'protocol'
* (NETLINK_ROUTE, NETLINK_GENERIC, ...). Returns 0 and sets '*sockp' to the
* new socket if successful, otherwise returns a positive errno value. */
int
nl_sock_create(int protocol, struct nl_sock **sockp)
{
struct nl_sock *sock;
struct sockaddr_nl local, remote;
socklen_t local_size;
int rcvbuf;
int retval = 0;
if (!max_iovs) {
int save_errno = errno;
errno = 0;
max_iovs = sysconf(_SC_UIO_MAXIOV);
if (max_iovs < _XOPEN_IOV_MAX) {
if (max_iovs == -1 && errno) {
VLOG_WARN("sysconf(_SC_UIO_MAXIOV): %s", strerror(errno));
}
max_iovs = _XOPEN_IOV_MAX;
} else if (max_iovs > MAX_IOVS) {
max_iovs = MAX_IOVS;
}
errno = save_errno;
}
*sockp = NULL;
sock = malloc(sizeof *sock);
if (sock == NULL) {
return ENOMEM;
}
sock->fd = socket(AF_NETLINK, SOCK_RAW, protocol);
if (sock->fd < 0) {
VLOG_ERR("fcntl: %s", strerror(errno));
goto error;
}
sock->protocol = protocol;
sock->dump = NULL;
rcvbuf = 1024 * 1024;
if (setsockopt(sock->fd, SOL_SOCKET, SO_RCVBUFFORCE,
&rcvbuf, sizeof rcvbuf)) {
VLOG_WARN_RL(&rl, "setting %d-byte socket receive buffer failed (%s)",
rcvbuf, strerror(errno));
}
retval = get_socket_rcvbuf(sock->fd);
if (retval < 0) {
retval = -retval;
goto error;
}
sock->rcvbuf = retval;
/* Connect to kernel (pid 0) as remote address. */
memset(&remote, 0, sizeof remote);
remote.nl_family = AF_NETLINK;
remote.nl_pid = 0;
if (connect(sock->fd, (struct sockaddr *) &remote, sizeof remote) < 0) {
VLOG_ERR("connect(0): %s", strerror(errno));
goto error;
}
/* Obtain pid assigned by kernel. */
local_size = sizeof local;
if (getsockname(sock->fd, (struct sockaddr *) &local, &local_size) < 0) {
VLOG_ERR("getsockname: %s", strerror(errno));
goto error;
}
if (local_size < sizeof local || local.nl_family != AF_NETLINK) {
VLOG_ERR("getsockname returned bad Netlink name");
retval = EINVAL;
goto error;
}
sock->pid = local.nl_pid;
*sockp = sock;
return 0;
error:
if (retval == 0) {
retval = errno;
if (retval == 0) {
retval = EINVAL;
}
}
if (sock->fd >= 0) {
close(sock->fd);
}
free(sock);
return retval;
}
/* Creates a new netlink socket for the same protocol as 'src'. Returns 0 and
* sets '*sockp' to the new socket if successful, otherwise returns a positive
* errno value. */
int
nl_sock_clone(const struct nl_sock *src, struct nl_sock **sockp)
{
return nl_sock_create(src->protocol, sockp);
}
/* Destroys netlink socket 'sock'. */
void
nl_sock_destroy(struct nl_sock *sock)
{
if (sock) {
if (sock->dump) {
sock->dump = NULL;
} else {
close(sock->fd);
free(sock);
}
}
}
/* Tries to add 'sock' as a listener for 'multicast_group'. Returns 0 if
* successful, otherwise a positive errno value.
*
* A socket that is subscribed to a multicast group that receives asynchronous
* notifications must not be used for Netlink transactions or dumps, because
* transactions and dumps can cause notifications to be lost.
*
* Multicast group numbers are always positive.
*
* It is not an error to attempt to join a multicast group to which a socket
* already belongs. */
int
nl_sock_join_mcgroup(struct nl_sock *sock, unsigned int multicast_group)
{
int error = nl_sock_cow__(sock);
if (error) {
return error;
}
if (setsockopt(sock->fd, SOL_NETLINK, NETLINK_ADD_MEMBERSHIP,
&multicast_group, sizeof multicast_group) < 0) {
VLOG_WARN("could not join multicast group %u (%s)",
multicast_group, strerror(errno));
return errno;
}
return 0;
}
/* Tries to make 'sock' stop listening to 'multicast_group'. Returns 0 if
* successful, otherwise a positive errno value.
*
* Multicast group numbers are always positive.
*
* It is not an error to attempt to leave a multicast group to which a socket
* does not belong.
*
* On success, reading from 'sock' will still return any messages that were
* received on 'multicast_group' before the group was left. */
int
nl_sock_leave_mcgroup(struct nl_sock *sock, unsigned int multicast_group)
{
assert(!sock->dump);
if (setsockopt(sock->fd, SOL_NETLINK, NETLINK_DROP_MEMBERSHIP,
&multicast_group, sizeof multicast_group) < 0) {
VLOG_WARN("could not leave multicast group %u (%s)",
multicast_group, strerror(errno));
return errno;
}
return 0;
}
static int
nl_sock_send__(struct nl_sock *sock, const struct ofpbuf *msg, bool wait)
{
struct nlmsghdr *nlmsg = nl_msg_nlmsghdr(msg);
int error;
nlmsg->nlmsg_len = msg->size;
nlmsg->nlmsg_pid = sock->pid;
do {
int retval;
retval = send(sock->fd, msg->data, msg->size, wait ? 0 : MSG_DONTWAIT);
error = retval < 0 ? errno : 0;
} while (error == EINTR);
log_nlmsg(__func__, error, msg->data, msg->size, sock->protocol);
if (!error) {
COVERAGE_INC(netlink_sent);
}
return error;
}
/* Tries to send 'msg', which must contain a Netlink message, to the kernel on
* 'sock'. nlmsg_len in 'msg' will be finalized to match msg->size, and
* nlmsg_pid will be set to 'sock''s pid, before the message is sent.
*
* Returns 0 if successful, otherwise a positive errno value. If
* 'wait' is true, then the send will wait until buffer space is ready;
* otherwise, returns EAGAIN if the 'sock' send buffer is full. */
int
nl_sock_send(struct nl_sock *sock, const struct ofpbuf *msg, bool wait)
{
int error = nl_sock_cow__(sock);
if (error) {
return error;
}
return nl_sock_send__(sock, msg, wait);
}
/* This stress option is useful for testing that OVS properly tolerates
* -ENOBUFS on NetLink sockets. Such errors are unavoidable because they can
* occur if the kernel cannot temporarily allocate enough GFP_ATOMIC memory to
* reply to a request. They can also occur if messages arrive on a multicast
* channel faster than OVS can process them. */
STRESS_OPTION(
netlink_overflow, "simulate netlink socket receive buffer overflow",
5, 1, -1, 100);
static int
nl_sock_recv__(struct nl_sock *sock, struct ofpbuf **bufp, bool wait)
{
/* We can't accurately predict the size of the data to be received. Most
* received data will fit in a 2 kB buffer, so we allocate that much space.
* In case the data is actually bigger than that, we make available enough
* additional space to allow Netlink messages to be up to 64 kB long (a
* reasonable figure since that's the maximum length of a Netlink
* attribute). */
enum { MAX_SIZE = 65536 };
enum { HEAD_SIZE = 2048 };
enum { TAIL_SIZE = MAX_SIZE - HEAD_SIZE };
struct nlmsghdr *nlmsghdr;
uint8_t tail[TAIL_SIZE];
struct iovec iov[2];
struct ofpbuf *buf;
struct msghdr msg;
ssize_t retval;
*bufp = NULL;
buf = ofpbuf_new(HEAD_SIZE);
iov[0].iov_base = buf->data;
iov[0].iov_len = HEAD_SIZE;
iov[1].iov_base = tail;
iov[1].iov_len = TAIL_SIZE;
memset(&msg, 0, sizeof msg);
msg.msg_iov = iov;
msg.msg_iovlen = 2;
do {
retval = recvmsg(sock->fd, &msg, wait ? 0 : MSG_DONTWAIT);
} while (retval < 0 && errno == EINTR);
if (retval < 0) {
int error = errno;
if (error == ENOBUFS) {
/* Socket receive buffer overflow dropped one or more messages that
* the kernel tried to send to us. */
COVERAGE_INC(netlink_overflow);
}
ofpbuf_delete(buf);
return error;
}
if (msg.msg_flags & MSG_TRUNC) {
VLOG_ERR_RL(&rl, "truncated message (longer than %d bytes)", MAX_SIZE);
ofpbuf_delete(buf);
return E2BIG;
}
ofpbuf_put_uninit(buf, MIN(retval, HEAD_SIZE));
if (retval > HEAD_SIZE) {
COVERAGE_INC(netlink_recv_jumbo);
ofpbuf_put(buf, tail, retval - HEAD_SIZE);
}
nlmsghdr = buf->data;
if (retval < sizeof *nlmsghdr
|| nlmsghdr->nlmsg_len < sizeof *nlmsghdr
|| nlmsghdr->nlmsg_len > retval) {
VLOG_ERR_RL(&rl, "received invalid nlmsg (%zd bytes < %d)",
retval, NLMSG_HDRLEN);
ofpbuf_delete(buf);
return EPROTO;
}
if (STRESS(netlink_overflow)) {
ofpbuf_delete(buf);
return ENOBUFS;
}
*bufp = buf;
log_nlmsg(__func__, 0, buf->data, buf->size, sock->protocol);
COVERAGE_INC(netlink_received);
return 0;
}
/* Tries to receive a netlink message from the kernel on 'sock'. If
* successful, stores the received message into '*bufp' and returns 0. The
* caller is responsible for destroying the message with ofpbuf_delete(). On
* failure, returns a positive errno value and stores a null pointer into
* '*bufp'.
*
* If 'wait' is true, nl_sock_recv waits for a message to be ready; otherwise,
* returns EAGAIN if the 'sock' receive buffer is empty. */
int
nl_sock_recv(struct nl_sock *sock, struct ofpbuf **bufp, bool wait)
{
int error = nl_sock_cow__(sock);
if (error) {
return error;
}
return nl_sock_recv__(sock, bufp, wait);
}
static int
find_nl_transaction_by_seq(struct nl_transaction **transactions, size_t n,
uint32_t seq)
{
int i;
for (i = 0; i < n; i++) {
struct nl_transaction *t = transactions[i];
if (seq == nl_msg_nlmsghdr(t->request)->nlmsg_seq) {
return i;
}
}
return -1;
}
static void
nl_sock_record_errors__(struct nl_transaction **transactions, size_t n,
int error)
{
size_t i;
for (i = 0; i < n; i++) {
transactions[i]->error = error;
transactions[i]->reply = NULL;
}
}
static int
nl_sock_transact_multiple__(struct nl_sock *sock,
struct nl_transaction **transactions, size_t n,
size_t *done)
{
struct iovec iovs[MAX_IOVS];
struct msghdr msg;
int error;
int i;
*done = 0;
for (i = 0; i < n; i++) {
struct ofpbuf *request = transactions[i]->request;
struct nlmsghdr *nlmsg = nl_msg_nlmsghdr(request);
nlmsg->nlmsg_len = request->size;
nlmsg->nlmsg_pid = sock->pid;
iovs[i].iov_base = request->data;
iovs[i].iov_len = request->size;
}
memset(&msg, 0, sizeof msg);
msg.msg_iov = iovs;
msg.msg_iovlen = n;
do {
error = sendmsg(sock->fd, &msg, 0) < 0 ? errno : 0;
} while (error == EINTR);
for (i = 0; i < n; i++) {
struct ofpbuf *request = transactions[i]->request;
log_nlmsg(__func__, error, request->data, request->size,
sock->protocol);
}
if (!error) {
COVERAGE_ADD(netlink_sent, n);
}
if (error) {
return error;
}
while (n > 0) {
struct ofpbuf *reply;
error = nl_sock_recv__(sock, &reply, false);
if (error == EAGAIN) {
nl_sock_record_errors__(transactions, n, 0);
*done += n;
return 0;
} else if (error) {
return error;
}
i = find_nl_transaction_by_seq(transactions, n,
nl_msg_nlmsghdr(reply)->nlmsg_seq);
if (i < 0) {
VLOG_DBG_RL(&rl, "ignoring unexpected seq %#"PRIx32,
nl_msg_nlmsghdr(reply)->nlmsg_seq);
ofpbuf_delete(reply);
continue;
}
nl_sock_record_errors__(transactions, i, 0);
if (nl_msg_nlmsgerr(reply, &error)) {
transactions[i]->reply = NULL;
transactions[i]->error = error;
if (error) {
VLOG_DBG_RL(&rl, "received NAK error=%d (%s)",
error, strerror(error));
}
ofpbuf_delete(reply);
} else {
transactions[i]->reply = reply;
transactions[i]->error = 0;
}
*done += i + 1;
transactions += i + 1;
n -= i + 1;
}
return 0;
}
/* Sends the 'request' member of the 'n' transactions in 'transactions' to the
* kernel, in order, and waits for responses to all of them. Fills in the
* 'error' member of each transaction with 0 if it was successful, otherwise
* with a positive errno value. 'reply' will be NULL on error or if the
* transaction was successful but had no reply beyond an indication of success.
* For a successful transaction that did have a more detailed reply, 'reply'
* will be set to the reply message.
*
* The caller is responsible for destroying each request and reply, and the
* transactions array itself.
*
* Before sending each message, this function will finalize nlmsg_len in each
* 'request' to match the ofpbuf's size, and set nlmsg_pid to 'sock''s pid.
* NLM_F_ACK will be added to some requests' nlmsg_flags.
*
* Bare Netlink is an unreliable transport protocol. This function layers
* reliable delivery and reply semantics on top of bare Netlink. See
* nl_sock_transact() for some caveats.
*/
void
nl_sock_transact_multiple(struct nl_sock *sock,
struct nl_transaction **transactions, size_t n)
{
int max_batch_count;
int error;
if (!n) {
return;
}
error = nl_sock_cow__(sock);
if (error) {
nl_sock_record_errors__(transactions, n, error);
return;
}
/* In theory, every request could have a 64 kB reply. But the default and
* maximum socket rcvbuf size with typical Dom0 memory sizes both tend to
* be a bit below 128 kB, so that would only allow a single message in a
* "batch". So we assume that replies average (at most) 4 kB, which allows
* a good deal of batching.
*
* In practice, most of the requests that we batch either have no reply at
* all or a brief reply. */
max_batch_count = MAX(sock->rcvbuf / 4096, 1);
max_batch_count = MIN(max_batch_count, max_iovs);
while (n > 0) {
size_t count, bytes;
size_t done;
/* Batch up to 'max_batch_count' transactions. But cap it at about a
* page of requests total because big skbuffs are expensive to
* allocate in the kernel. */
#if defined(PAGESIZE)
enum { MAX_BATCH_BYTES = MAX(1, PAGESIZE - 512) };
#else
enum { MAX_BATCH_BYTES = 4096 - 512 };
#endif
bytes = transactions[0]->request->size;
for (count = 1; count < n && count < max_batch_count; count++) {
if (bytes + transactions[count]->request->size > MAX_BATCH_BYTES) {
break;
}
bytes += transactions[count]->request->size;
}
error = nl_sock_transact_multiple__(sock, transactions, count, &done);
transactions += done;
n -= done;
if (error == ENOBUFS) {
VLOG_DBG_RL(&rl, "receive buffer overflow, resending request");
} else if (error) {
VLOG_ERR_RL(&rl, "transaction error (%s)", strerror(error));
nl_sock_record_errors__(transactions, n, error);
}
}
}
/* Sends 'request' to the kernel via 'sock' and waits for a response. If
* successful, returns 0. On failure, returns a positive errno value.
*
* If 'replyp' is nonnull, then on success '*replyp' is set to the kernel's
* reply, which the caller is responsible for freeing with ofpbuf_delete(), and
* on failure '*replyp' is set to NULL. If 'replyp' is null, then the kernel's
* reply, if any, is discarded.
*
* nlmsg_len in 'msg' will be finalized to match msg->size, and nlmsg_pid will
* be set to 'sock''s pid, before the message is sent. NLM_F_ACK will be set
* in nlmsg_flags.
*
* The caller is responsible for destroying 'request'.
*
* Bare Netlink is an unreliable transport protocol. This function layers
* reliable delivery and reply semantics on top of bare Netlink.
*
* In Netlink, sending a request to the kernel is reliable enough, because the
* kernel will tell us if the message cannot be queued (and we will in that
* case put it on the transmit queue and wait until it can be delivered).
*
* Receiving the reply is the real problem: if the socket buffer is full when
* the kernel tries to send the reply, the reply will be dropped. However, the
* kernel sets a flag that a reply has been dropped. The next call to recv
* then returns ENOBUFS. We can then re-send the request.
*
* Caveats:
*
* 1. Netlink depends on sequence numbers to match up requests and
* replies. The sender of a request supplies a sequence number, and
* the reply echos back that sequence number.
*
* This is fine, but (1) some kernel netlink implementations are
* broken, in that they fail to echo sequence numbers and (2) this
* function will drop packets with non-matching sequence numbers, so
* that only a single request can be usefully transacted at a time.
*
* 2. Resending the request causes it to be re-executed, so the request
* needs to be idempotent.
*/
int
nl_sock_transact(struct nl_sock *sock, const struct ofpbuf *request,
struct ofpbuf **replyp)
{
struct nl_transaction *transactionp;
struct nl_transaction transaction;
transaction.request = (struct ofpbuf *) request;
transactionp = &transaction;
nl_sock_transact_multiple(sock, &transactionp, 1);
if (replyp) {
*replyp = transaction.reply;
} else {
ofpbuf_delete(transaction.reply);
}
return transaction.error;
}
/* Drain all the messages currently in 'sock''s receive queue. */
int
nl_sock_drain(struct nl_sock *sock)
{
int error = nl_sock_cow__(sock);
if (error) {
return error;
}
return drain_rcvbuf(sock->fd);
}
/* The client is attempting some operation on 'sock'. If 'sock' has an ongoing
* dump operation, then replace 'sock''s fd with a new socket and hand 'sock''s
* old fd over to the dump. */
static int
nl_sock_cow__(struct nl_sock *sock)
{
struct nl_sock *copy;
uint32_t tmp_pid;
int tmp_fd;
int error;
if (!sock->dump) {
return 0;
}
error = nl_sock_clone(sock, &copy);
if (error) {
return error;
}
tmp_fd = sock->fd;
sock->fd = copy->fd;
copy->fd = tmp_fd;
tmp_pid = sock->pid;
sock->pid = copy->pid;
copy->pid = tmp_pid;
sock->dump->sock = copy;
sock->dump = NULL;
return 0;
}
/* Starts a Netlink "dump" operation, by sending 'request' to the kernel via
* 'sock', and initializes 'dump' to reflect the state of the operation.
*
* nlmsg_len in 'msg' will be finalized to match msg->size, and nlmsg_pid will
* be set to 'sock''s pid, before the message is sent. NLM_F_DUMP and
* NLM_F_ACK will be set in nlmsg_flags.
*
* This Netlink socket library is designed to ensure that the dump is reliable
* and that it will not interfere with other operations on 'sock', including
* destroying or sending and receiving messages on 'sock'. One corner case is
* not handled:
*
* - If 'sock' has been used to send a request (e.g. with nl_sock_send())
* whose response has not yet been received (e.g. with nl_sock_recv()).
* This is unusual: usually nl_sock_transact() is used to send a message
* and receive its reply all in one go.
*
* This function provides no status indication. An error status for the entire
* dump operation is provided when it is completed by calling nl_dump_done().
*
* The caller is responsible for destroying 'request'.
*
* The new 'dump' is independent of 'sock'. 'sock' and 'dump' may be destroyed
* in either order.
*/
void
nl_dump_start(struct nl_dump *dump,
struct nl_sock *sock, const struct ofpbuf *request)
{
struct nlmsghdr *nlmsghdr = nl_msg_nlmsghdr(request);
nlmsghdr->nlmsg_flags |= NLM_F_DUMP | NLM_F_ACK;
dump->seq = nlmsghdr->nlmsg_seq;
dump->buffer = NULL;
if (sock->dump) {
/* 'sock' already has an ongoing dump. Clone the socket because
* Netlink only allows one dump at a time. */
dump->status = nl_sock_clone(sock, &dump->sock);
if (dump->status) {
return;
}
} else {
sock->dump = dump;
dump->sock = sock;
dump->status = 0;
}
dump->status = nl_sock_send__(sock, request, true);
}
/* Helper function for nl_dump_next(). */
static int
nl_dump_recv(struct nl_dump *dump, struct ofpbuf **bufferp)
{
struct nlmsghdr *nlmsghdr;
struct ofpbuf *buffer;
int retval;
retval = nl_sock_recv__(dump->sock, bufferp, true);
if (retval) {
return retval == EINTR ? EAGAIN : retval;
}
buffer = *bufferp;
nlmsghdr = nl_msg_nlmsghdr(buffer);
if (dump->seq != nlmsghdr->nlmsg_seq) {
VLOG_DBG_RL(&rl, "ignoring seq %#"PRIx32" != expected %#"PRIx32,
nlmsghdr->nlmsg_seq, dump->seq);
return EAGAIN;
}
if (nl_msg_nlmsgerr(buffer, &retval)) {
VLOG_INFO_RL(&rl, "netlink dump request error (%s)",
strerror(retval));
return retval && retval != EAGAIN ? retval : EPROTO;
}
return 0;
}
/* Attempts to retrieve another reply from 'dump', which must have been
* initialized with nl_dump_start().
*
* If successful, returns true and points 'reply->data' and 'reply->size' to
* the message that was retrieved. The caller must not modify 'reply' (because
* it points into the middle of a larger buffer).
*
* On failure, returns false and sets 'reply->data' to NULL and 'reply->size'
* to 0. Failure might indicate an actual error or merely the end of replies.
* An error status for the entire dump operation is provided when it is
* completed by calling nl_dump_done().
*/
bool
nl_dump_next(struct nl_dump *dump, struct ofpbuf *reply)
{
struct nlmsghdr *nlmsghdr;
reply->data = NULL;
reply->size = 0;
if (dump->status) {
return false;
}
if (dump->buffer && !dump->buffer->size) {
ofpbuf_delete(dump->buffer);
dump->buffer = NULL;
}
while (!dump->buffer) {
int retval = nl_dump_recv(dump, &dump->buffer);
if (retval) {
ofpbuf_delete(dump->buffer);
dump->buffer = NULL;
if (retval != EAGAIN) {
dump->status = retval;
return false;
}
}
}
nlmsghdr = nl_msg_next(dump->buffer, reply);
if (!nlmsghdr) {
VLOG_WARN_RL(&rl, "netlink dump reply contains message fragment");
dump->status = EPROTO;
return false;
} else if (nlmsghdr->nlmsg_type == NLMSG_DONE) {
dump->status = EOF;
return false;
}
return true;
}
/* Completes Netlink dump operation 'dump', which must have been initialized
* with nl_dump_start(). Returns 0 if the dump operation was error-free,
* otherwise a positive errno value describing the problem. */
int
nl_dump_done(struct nl_dump *dump)
{
/* Drain any remaining messages that the client didn't read. Otherwise the
* kernel will continue to queue them up and waste buffer space. */
while (!dump->status) {
struct ofpbuf reply;
if (!nl_dump_next(dump, &reply)) {
assert(dump->status);
}
}
if (dump->sock) {
if (dump->sock->dump) {
dump->sock->dump = NULL;
} else {
nl_sock_destroy(dump->sock);
}
}
ofpbuf_delete(dump->buffer);
return dump->status == EOF ? 0 : dump->status;
}
/* Causes poll_block() to wake up when any of the specified 'events' (which is
* a OR'd combination of POLLIN, POLLOUT, etc.) occur on 'sock'. */
void
nl_sock_wait(const struct nl_sock *sock, short int events)
{
poll_fd_wait(sock->fd, events);
}
/* Returns the underlying fd for 'sock', for use in "poll()"-like operations
* that can't use nl_sock_wait().
*
* It's a little tricky to use the returned fd correctly, because nl_sock does
* "copy on write" to allow a single nl_sock to be used for notifications,
* transactions, and dumps. If 'sock' is used only for notifications and
* transactions (and never for dump) then the usage is safe. */
int
nl_sock_fd(const struct nl_sock *sock)
{
return sock->fd;
}
/* Returns the PID associated with this socket. */
uint32_t
nl_sock_pid(const struct nl_sock *sock)
{
return sock->pid;
}
/* Miscellaneous. */
struct genl_family {
struct hmap_node hmap_node;
uint16_t id;
char *name;
};
static struct hmap genl_families = HMAP_INITIALIZER(&genl_families);
static const struct nl_policy family_policy[CTRL_ATTR_MAX + 1] = {
[CTRL_ATTR_FAMILY_ID] = {.type = NL_A_U16},
[CTRL_ATTR_MCAST_GROUPS] = {.type = NL_A_NESTED, .optional = true},
};
static struct genl_family *
find_genl_family_by_id(uint16_t id)
{
struct genl_family *family;
HMAP_FOR_EACH_IN_BUCKET (family, hmap_node, hash_int(id, 0),
&genl_families) {
if (family->id == id) {
return family;
}
}
return NULL;
}
static void
define_genl_family(uint16_t id, const char *name)
{
struct genl_family *family = find_genl_family_by_id(id);
if (family) {
if (!strcmp(family->name, name)) {
return;
}
free(family->name);
} else {
family = xmalloc(sizeof *family);
family->id = id;
hmap_insert(&genl_families, &family->hmap_node, hash_int(id, 0));
}
family->name = xstrdup(name);
}
static const char *
genl_family_to_name(uint16_t id)
{
if (id == GENL_ID_CTRL) {
return "control";
} else {
struct genl_family *family = find_genl_family_by_id(id);
return family ? family->name : "unknown";
}
}
static int
do_lookup_genl_family(const char *name, struct nlattr **attrs,
struct ofpbuf **replyp)
{
struct nl_sock *sock;
struct ofpbuf request, *reply;
int error;
*replyp = NULL;
error = nl_sock_create(NETLINK_GENERIC, &sock);
if (error) {
return error;
}
ofpbuf_init(&request, 0);
nl_msg_put_genlmsghdr(&request, 0, GENL_ID_CTRL, NLM_F_REQUEST,
CTRL_CMD_GETFAMILY, 1);
nl_msg_put_string(&request, CTRL_ATTR_FAMILY_NAME, name);
error = nl_sock_transact(sock, &request, &reply);
ofpbuf_uninit(&request);
if (error) {
nl_sock_destroy(sock);
return error;
}
if (!nl_policy_parse(reply, NLMSG_HDRLEN + GENL_HDRLEN,
family_policy, attrs, ARRAY_SIZE(family_policy))
|| nl_attr_get_u16(attrs[CTRL_ATTR_FAMILY_ID]) == 0) {
nl_sock_destroy(sock);
ofpbuf_delete(reply);
return EPROTO;
}
nl_sock_destroy(sock);
*replyp = reply;
return 0;
}
/* Finds the multicast group called 'group_name' in genl family 'family_name'.
* When successful, writes its result to 'multicast_group' and returns 0.
* Otherwise, clears 'multicast_group' and returns a positive error code.
*
* Some kernels do not support looking up a multicast group with this function.
* In this case, 'multicast_group' will be populated with 'fallback'. */
int
nl_lookup_genl_mcgroup(const char *family_name, const char *group_name,
unsigned int *multicast_group, unsigned int fallback)
{
struct nlattr *family_attrs[ARRAY_SIZE(family_policy)];
const struct nlattr *mc;
struct ofpbuf *reply;
unsigned int left;
int error;
*multicast_group = 0;
error = do_lookup_genl_family(family_name, family_attrs, &reply);
if (error) {
return error;
}
if (!family_attrs[CTRL_ATTR_MCAST_GROUPS]) {
*multicast_group = fallback;
VLOG_WARN("%s-%s: has no multicast group, using fallback %d",
family_name, group_name, *multicast_group);
error = 0;
goto exit;
}
NL_NESTED_FOR_EACH (mc, left, family_attrs[CTRL_ATTR_MCAST_GROUPS]) {
static const struct nl_policy mc_policy[] = {
[CTRL_ATTR_MCAST_GRP_ID] = {.type = NL_A_U32},
[CTRL_ATTR_MCAST_GRP_NAME] = {.type = NL_A_STRING},
};
struct nlattr *mc_attrs[ARRAY_SIZE(mc_policy)];
const char *mc_name;
if (!nl_parse_nested(mc, mc_policy, mc_attrs, ARRAY_SIZE(mc_policy))) {
error = EPROTO;
goto exit;
}
mc_name = nl_attr_get_string(mc_attrs[CTRL_ATTR_MCAST_GRP_NAME]);
if (!strcmp(group_name, mc_name)) {
*multicast_group =
nl_attr_get_u32(mc_attrs[CTRL_ATTR_MCAST_GRP_ID]);
error = 0;
goto exit;
}
}
error = EPROTO;
exit:
ofpbuf_delete(reply);
return error;
}
/* If '*number' is 0, translates the given Generic Netlink family 'name' to a
* number and stores it in '*number'. If successful, returns 0 and the caller
* may use '*number' as the family number. On failure, returns a positive
* errno value and '*number' caches the errno value. */
int
nl_lookup_genl_family(const char *name, int *number)
{
if (*number == 0) {
struct nlattr *attrs[ARRAY_SIZE(family_policy)];
struct ofpbuf *reply;
int error;
error = do_lookup_genl_family(name, attrs, &reply);
if (!error) {
*number = nl_attr_get_u16(attrs[CTRL_ATTR_FAMILY_ID]);
define_genl_family(*number, name);
} else {
*number = -error;
}
ofpbuf_delete(reply);
assert(*number != 0);
}
return *number > 0 ? 0 : -*number;
}
static void
nlmsghdr_to_string(const struct nlmsghdr *h, int protocol, struct ds *ds)
{
struct nlmsg_flag {
unsigned int bits;
const char *name;
};
static const struct nlmsg_flag flags[] = {
{ NLM_F_REQUEST, "REQUEST" },
{ NLM_F_MULTI, "MULTI" },
{ NLM_F_ACK, "ACK" },
{ NLM_F_ECHO, "ECHO" },
{ NLM_F_DUMP, "DUMP" },
{ NLM_F_ROOT, "ROOT" },
{ NLM_F_MATCH, "MATCH" },
{ NLM_F_ATOMIC, "ATOMIC" },
};
const struct nlmsg_flag *flag;
uint16_t flags_left;
ds_put_format(ds, "nl(len:%"PRIu32", type=%"PRIu16,
h->nlmsg_len, h->nlmsg_type);
if (h->nlmsg_type == NLMSG_NOOP) {
ds_put_cstr(ds, "(no-op)");
} else if (h->nlmsg_type == NLMSG_ERROR) {
ds_put_cstr(ds, "(error)");
} else if (h->nlmsg_type == NLMSG_DONE) {
ds_put_cstr(ds, "(done)");
} else if (h->nlmsg_type == NLMSG_OVERRUN) {
ds_put_cstr(ds, "(overrun)");
} else if (h->nlmsg_type < NLMSG_MIN_TYPE) {
ds_put_cstr(ds, "(reserved)");
} else if (protocol == NETLINK_GENERIC) {
ds_put_format(ds, "(%s)", genl_family_to_name(h->nlmsg_type));
} else {
ds_put_cstr(ds, "(family-defined)");
}
ds_put_format(ds, ", flags=%"PRIx16, h->nlmsg_flags);
flags_left = h->nlmsg_flags;
for (flag = flags; flag < &flags[ARRAY_SIZE(flags)]; flag++) {
if ((flags_left & flag->bits) == flag->bits) {
ds_put_format(ds, "[%s]", flag->name);
flags_left &= ~flag->bits;
}
}
if (flags_left) {
ds_put_format(ds, "[OTHER:%"PRIx16"]", flags_left);
}
ds_put_format(ds, ", seq=%"PRIx32", pid=%"PRIu32,
h->nlmsg_seq, h->nlmsg_pid);
}
static char *
nlmsg_to_string(const struct ofpbuf *buffer, int protocol)
{
struct ds ds = DS_EMPTY_INITIALIZER;
const struct nlmsghdr *h = ofpbuf_at(buffer, 0, NLMSG_HDRLEN);
if (h) {
nlmsghdr_to_string(h, protocol, &ds);
if (h->nlmsg_type == NLMSG_ERROR) {
const struct nlmsgerr *e;
e = ofpbuf_at(buffer, NLMSG_HDRLEN,
NLMSG_ALIGN(sizeof(struct nlmsgerr)));
if (e) {
ds_put_format(&ds, " error(%d", e->error);
if (e->error < 0) {
ds_put_format(&ds, "(%s)", strerror(-e->error));
}
ds_put_cstr(&ds, ", in-reply-to(");
nlmsghdr_to_string(&e->msg, protocol, &ds);
ds_put_cstr(&ds, "))");
} else {
ds_put_cstr(&ds, " error(truncated)");
}
} else if (h->nlmsg_type == NLMSG_DONE) {
int *error = ofpbuf_at(buffer, NLMSG_HDRLEN, sizeof *error);
if (error) {
ds_put_format(&ds, " done(%d", *error);
if (*error < 0) {
ds_put_format(&ds, "(%s)", strerror(-*error));
}
ds_put_cstr(&ds, ")");
} else {
ds_put_cstr(&ds, " done(truncated)");
}
} else if (protocol == NETLINK_GENERIC) {
struct genlmsghdr *genl = nl_msg_genlmsghdr(buffer);
if (genl) {
ds_put_format(&ds, ",genl(cmd=%"PRIu8",version=%"PRIu8")",
genl->cmd, genl->version);
}
}
} else {
ds_put_cstr(&ds, "nl(truncated)");
}
return ds.string;
}
static void
log_nlmsg(const char *function, int error,
const void *message, size_t size, int protocol)
{
struct ofpbuf buffer;
char *nlmsg;
if (!VLOG_IS_DBG_ENABLED()) {
return;
}
ofpbuf_use_const(&buffer, message, size);
nlmsg = nlmsg_to_string(&buffer, protocol);
VLOG_DBG_RL(&rl, "%s (%s): %s", function, strerror(error), nlmsg);
free(nlmsg);
}