2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 01:51:26 +00:00
ovs/lib/meta-flow.c
Simon Horman 3245502404 OXM: Allow masking of IPv6 Flow Label
Signed-off-by: Simon Horman <horms@verge.net.au>
Signed-off-by: Ben Pfaff <blp@nicira.com>
2012-07-19 08:49:06 -07:00

2255 lines
57 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2011, 2012 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "meta-flow.h"
#include <assert.h>
#include <errno.h>
#include <limits.h>
#include <netinet/icmp6.h>
#include <netinet/ip6.h>
#include "classifier.h"
#include "dynamic-string.h"
#include "ofp-errors.h"
#include "ofp-util.h"
#include "packets.h"
#include "random.h"
#include "shash.h"
#include "socket-util.h"
#include "unaligned.h"
#include "vlog.h"
VLOG_DEFINE_THIS_MODULE(meta_flow);
#define MF_FIELD_SIZES(MEMBER) \
sizeof ((union mf_value *)0)->MEMBER, \
8 * sizeof ((union mf_value *)0)->MEMBER
static const struct mf_field mf_fields[MFF_N_IDS] = {
/* ## -------- ## */
/* ## metadata ## */
/* ## -------- ## */
{
MFF_TUN_ID, "tun_id", NULL,
MF_FIELD_SIZES(be64),
MFM_FULLY, 0,
MFS_HEXADECIMAL,
MFP_NONE,
true,
NXM_NX_TUN_ID, "NXM_NX_TUN_ID",
NXM_NX_TUN_ID, "NXM_NX_TUN_ID",
}, {
MFF_METADATA, "metadata", NULL,
MF_FIELD_SIZES(be64),
MFM_FULLY, 0,
MFS_HEXADECIMAL,
MFP_NONE,
true,
OXM_OF_METADATA, "OXM_OF_METADATA",
OXM_OF_METADATA, "OXM_OF_METADATA",
}, {
MFF_IN_PORT, "in_port", NULL,
MF_FIELD_SIZES(be16),
MFM_NONE, FWW_IN_PORT,
MFS_OFP_PORT,
MFP_NONE,
false,
NXM_OF_IN_PORT, "NXM_OF_IN_PORT",
OXM_OF_IN_PORT, "OXM_OF_IN_PORT",
},
#define REGISTER(IDX) \
{ \
MFF_REG##IDX, "reg" #IDX, NULL, \
MF_FIELD_SIZES(be32), \
MFM_FULLY, 0, \
MFS_HEXADECIMAL, \
MFP_NONE, \
true, \
NXM_NX_REG(IDX), "NXM_NX_REG" #IDX, \
NXM_NX_REG(IDX), "NXM_NX_REG" #IDX, \
}
#if FLOW_N_REGS > 0
REGISTER(0),
#endif
#if FLOW_N_REGS > 1
REGISTER(1),
#endif
#if FLOW_N_REGS > 2
REGISTER(2),
#endif
#if FLOW_N_REGS > 3
REGISTER(3),
#endif
#if FLOW_N_REGS > 4
REGISTER(4),
#endif
#if FLOW_N_REGS > 5
REGISTER(5),
#endif
#if FLOW_N_REGS > 6
REGISTER(6),
#endif
#if FLOW_N_REGS > 7
REGISTER(7),
#endif
#if FLOW_N_REGS > 8
#error
#endif
/* ## -- ## */
/* ## L2 ## */
/* ## -- ## */
{
MFF_ETH_SRC, "eth_src", "dl_src",
MF_FIELD_SIZES(mac),
MFM_FULLY, 0,
MFS_ETHERNET,
MFP_NONE,
true,
NXM_OF_ETH_SRC, "NXM_OF_ETH_SRC",
OXM_OF_ETH_SRC, "OXM_OF_ETH_SRC",
}, {
MFF_ETH_DST, "eth_dst", "dl_dst",
MF_FIELD_SIZES(mac),
MFM_FULLY, 0,
MFS_ETHERNET,
MFP_NONE,
true,
NXM_OF_ETH_DST, "NXM_OF_ETH_DST",
OXM_OF_ETH_DST, "OXM_OF_ETH_DST",
}, {
MFF_ETH_TYPE, "eth_type", "dl_type",
MF_FIELD_SIZES(be16),
MFM_NONE, FWW_DL_TYPE,
MFS_HEXADECIMAL,
MFP_NONE,
false,
NXM_OF_ETH_TYPE, "NXM_OF_ETH_TYPE",
OXM_OF_ETH_TYPE, "OXM_OF_ETH_TYPE",
},
{
MFF_VLAN_TCI, "vlan_tci", NULL,
MF_FIELD_SIZES(be16),
MFM_FULLY, 0,
MFS_HEXADECIMAL,
MFP_NONE,
true,
NXM_OF_VLAN_TCI, "NXM_OF_VLAN_TCI",
NXM_OF_VLAN_TCI, "NXM_OF_VLAN_TCI",
}, {
MFF_VLAN_VID, "dl_vlan", NULL,
sizeof(ovs_be16), 12,
MFM_NONE, 0,
MFS_DECIMAL,
MFP_NONE,
true,
OXM_OF_VLAN_VID, "OXM_OF_VLAN_VID",
OXM_OF_VLAN_VID, "OXM_OF_VLAN_VID",
}, {
MFF_VLAN_PCP, "dl_vlan_pcp", NULL,
1, 3,
MFM_NONE, 0,
MFS_DECIMAL,
MFP_NONE,
true,
OXM_OF_VLAN_PCP, "OXM_OF_VLAN_PCP",
OXM_OF_VLAN_PCP, "OXM_OF_VLAN_PCP",
},
/* ## -- ## */
/* ## L3 ## */
/* ## -- ## */
{
MFF_IPV4_SRC, "ip_src", "nw_src",
MF_FIELD_SIZES(be32),
MFM_FULLY, 0,
MFS_IPV4,
MFP_IPV4,
true,
NXM_OF_IP_SRC, "NXM_OF_IP_SRC",
OXM_OF_IPV4_SRC, "OXM_OF_IPV4_SRC",
}, {
MFF_IPV4_DST, "ip_dst", "nw_dst",
MF_FIELD_SIZES(be32),
MFM_FULLY, 0,
MFS_IPV4,
MFP_IPV4,
true,
NXM_OF_IP_DST, "NXM_OF_IP_DST",
OXM_OF_IPV4_DST, "OXM_OF_IPV4_DST",
},
{
MFF_IPV6_SRC, "ipv6_src", NULL,
MF_FIELD_SIZES(ipv6),
MFM_FULLY, 0,
MFS_IPV6,
MFP_IPV6,
true,
NXM_NX_IPV6_SRC, "NXM_NX_IPV6_SRC",
OXM_OF_IPV6_SRC, "OXM_OF_IPV6_SRC",
}, {
MFF_IPV6_DST, "ipv6_dst", NULL,
MF_FIELD_SIZES(ipv6),
MFM_FULLY, 0,
MFS_IPV6,
MFP_IPV6,
true,
NXM_NX_IPV6_DST, "NXM_NX_IPV6_DST",
OXM_OF_IPV6_DST, "OXM_OF_IPV6_DST",
},
{
MFF_IPV6_LABEL, "ipv6_label", NULL,
4, 20,
MFM_FULLY, 0,
MFS_HEXADECIMAL,
MFP_IPV6,
false,
NXM_NX_IPV6_LABEL, "NXM_NX_IPV6_LABEL",
OXM_OF_IPV6_FLABEL, "OXM_OF_IPV6_FLABEL",
},
{
MFF_IP_PROTO, "nw_proto", NULL,
MF_FIELD_SIZES(u8),
MFM_NONE, FWW_NW_PROTO,
MFS_DECIMAL,
MFP_IP_ANY,
false,
NXM_OF_IP_PROTO, "NXM_OF_IP_PROTO",
OXM_OF_IP_PROTO, "OXM_OF_IP_PROTO",
}, {
MFF_IP_DSCP, "nw_tos", NULL,
MF_FIELD_SIZES(u8),
MFM_NONE, FWW_NW_DSCP,
MFS_DECIMAL,
MFP_IP_ANY,
true,
NXM_OF_IP_TOS, "NXM_OF_IP_TOS",
OXM_OF_IP_DSCP, "OXM_OF_IP_DSCP",
}, {
MFF_IP_ECN, "nw_ecn", NULL,
1, 2,
MFM_NONE, FWW_NW_ECN,
MFS_DECIMAL,
MFP_IP_ANY,
true,
NXM_NX_IP_ECN, "NXM_NX_IP_ECN",
OXM_OF_IP_ECN, "OXM_OF_IP_ECN",
}, {
MFF_IP_TTL, "nw_ttl", NULL,
MF_FIELD_SIZES(u8),
MFM_NONE, FWW_NW_TTL,
MFS_DECIMAL,
MFP_IP_ANY,
true,
NXM_NX_IP_TTL, "NXM_NX_IP_TTL",
NXM_NX_IP_TTL, "NXM_NX_IP_TTL",
}, {
MFF_IP_FRAG, "ip_frag", NULL,
1, 2,
MFM_FULLY, 0,
MFS_FRAG,
MFP_IP_ANY,
false,
NXM_NX_IP_FRAG, "NXM_NX_IP_FRAG",
NXM_NX_IP_FRAG, "NXM_NX_IP_FRAG",
},
{
MFF_ARP_OP, "arp_op", NULL,
MF_FIELD_SIZES(be16),
MFM_NONE, FWW_NW_PROTO,
MFS_DECIMAL,
MFP_ARP,
false,
NXM_OF_ARP_OP, "NXM_OF_ARP_OP",
OXM_OF_ARP_OP, "OXM_OF_ARP_OP",
}, {
MFF_ARP_SPA, "arp_spa", NULL,
MF_FIELD_SIZES(be32),
MFM_FULLY, 0,
MFS_IPV4,
MFP_ARP,
false,
NXM_OF_ARP_SPA, "NXM_OF_ARP_SPA",
OXM_OF_ARP_SPA, "OXM_OF_ARP_SPA",
}, {
MFF_ARP_TPA, "arp_tpa", NULL,
MF_FIELD_SIZES(be32),
MFM_FULLY, 0,
MFS_IPV4,
MFP_ARP,
false,
NXM_OF_ARP_TPA, "NXM_OF_ARP_TPA",
OXM_OF_ARP_TPA, "OXM_OF_ARP_TPA",
}, {
MFF_ARP_SHA, "arp_sha", NULL,
MF_FIELD_SIZES(mac),
MFM_NONE, FWW_ARP_SHA,
MFS_ETHERNET,
MFP_ARP,
false,
NXM_NX_ARP_SHA, "NXM_NX_ARP_SHA",
OXM_OF_ARP_SHA, "OXM_OF_ARP_SHA",
}, {
MFF_ARP_THA, "arp_tha", NULL,
MF_FIELD_SIZES(mac),
MFM_NONE, FWW_ARP_THA,
MFS_ETHERNET,
MFP_ARP,
false,
NXM_NX_ARP_THA, "NXM_NX_ARP_THA",
OXM_OF_ARP_THA, "OXM_OF_ARP_THA",
},
/* ## -- ## */
/* ## L4 ## */
/* ## -- ## */
{
MFF_TCP_SRC, "tcp_src", "tp_src",
MF_FIELD_SIZES(be16),
MFM_FULLY, 0,
MFS_DECIMAL,
MFP_TCP,
true,
NXM_OF_TCP_SRC, "NXM_OF_TCP_SRC",
OXM_OF_TCP_SRC, "OXM_OF_TCP_SRC",
}, {
MFF_TCP_DST, "tcp_dst", "tp_dst",
MF_FIELD_SIZES(be16),
MFM_FULLY, 0,
MFS_DECIMAL,
MFP_TCP,
true,
NXM_OF_TCP_DST, "NXM_OF_TCP_DST",
OXM_OF_TCP_DST, "OXM_OF_TCP_DST",
},
{
MFF_UDP_SRC, "udp_src", NULL,
MF_FIELD_SIZES(be16),
MFM_FULLY, 0,
MFS_DECIMAL,
MFP_UDP,
true,
NXM_OF_UDP_SRC, "NXM_OF_UDP_SRC",
OXM_OF_UDP_SRC, "OXM_OF_UDP_SRC",
}, {
MFF_UDP_DST, "udp_dst", NULL,
MF_FIELD_SIZES(be16),
MFM_FULLY, 0,
MFS_DECIMAL,
MFP_UDP,
true,
NXM_OF_UDP_DST, "NXM_OF_UDP_DST",
OXM_OF_UDP_DST, "OXM_OF_UDP_DST",
},
{
MFF_ICMPV4_TYPE, "icmp_type", NULL,
MF_FIELD_SIZES(u8),
MFM_NONE, 0,
MFS_DECIMAL,
MFP_ICMPV4,
false,
NXM_OF_ICMP_TYPE, "NXM_OF_ICMP_TYPE",
OXM_OF_ICMPV4_TYPE, "OXM_OF_ICMPV4_TYPE",
}, {
MFF_ICMPV4_CODE, "icmp_code", NULL,
MF_FIELD_SIZES(u8),
MFM_NONE, 0,
MFS_DECIMAL,
MFP_ICMPV4,
false,
NXM_OF_ICMP_CODE, "NXM_OF_ICMP_CODE",
OXM_OF_ICMPV4_CODE, "OXM_OF_ICMPV4_CODE",
},
{
MFF_ICMPV6_TYPE, "icmpv6_type", NULL,
MF_FIELD_SIZES(u8),
MFM_NONE, 0,
MFS_DECIMAL,
MFP_ICMPV6,
false,
NXM_NX_ICMPV6_TYPE, "NXM_NX_ICMPV6_TYPE",
OXM_OF_ICMPV6_TYPE, "OXM_OF_ICMPV6_TYPE",
}, {
MFF_ICMPV6_CODE, "icmpv6_code", NULL,
MF_FIELD_SIZES(u8),
MFM_NONE, 0,
MFS_DECIMAL,
MFP_ICMPV6,
false,
NXM_NX_ICMPV6_CODE, "NXM_NX_ICMPV6_CODE",
OXM_OF_ICMPV6_CODE, "OXM_OF_ICMPV6_CODE",
},
/* ## ---- ## */
/* ## L"5" ## */
/* ## ---- ## */
{
MFF_ND_TARGET, "nd_target", NULL,
MF_FIELD_SIZES(ipv6),
MFM_FULLY, 0,
MFS_IPV6,
MFP_ND,
false,
NXM_NX_ND_TARGET, "NXM_NX_ND_TARGET",
OXM_OF_IPV6_ND_TARGET, "OXM_OF_IPV6_ND_TARGET",
}, {
MFF_ND_SLL, "nd_sll", NULL,
MF_FIELD_SIZES(mac),
MFM_NONE, FWW_ARP_SHA,
MFS_ETHERNET,
MFP_ND_SOLICIT,
false,
NXM_NX_ND_SLL, "NXM_NX_ND_SLL",
OXM_OF_IPV6_ND_SLL, "OXM_OF_IPV6_ND_SLL",
}, {
MFF_ND_TLL, "nd_tll", NULL,
MF_FIELD_SIZES(mac),
MFM_NONE, FWW_ARP_THA,
MFS_ETHERNET,
MFP_ND_ADVERT,
false,
NXM_NX_ND_TLL, "NXM_NX_ND_TLL",
OXM_OF_IPV6_ND_TLL, "OXM_OF_IPV6_ND_TLL",
}
};
/* Maps an NXM or OXM header value to an mf_field. */
struct nxm_field {
struct hmap_node hmap_node; /* In 'all_fields' hmap. */
uint32_t header; /* NXM or OXM header value. */
const struct mf_field *mf;
};
/* Contains 'struct nxm_field's. */
static struct hmap all_fields = HMAP_INITIALIZER(&all_fields);
/* Rate limit for parse errors. These always indicate a bug in an OpenFlow
* controller and so there's not much point in showing a lot of them. */
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
const struct mf_field *mf_from_nxm_header__(uint32_t header);
/* Returns the field with the given 'id'. */
const struct mf_field *
mf_from_id(enum mf_field_id id)
{
assert((unsigned int) id < MFF_N_IDS);
return &mf_fields[id];
}
/* Returns the field with the given 'name', or a null pointer if no field has
* that name. */
const struct mf_field *
mf_from_name(const char *name)
{
static struct shash mf_by_name = SHASH_INITIALIZER(&mf_by_name);
if (shash_is_empty(&mf_by_name)) {
const struct mf_field *mf;
for (mf = mf_fields; mf < &mf_fields[MFF_N_IDS]; mf++) {
shash_add_once(&mf_by_name, mf->name, mf);
if (mf->extra_name) {
shash_add_once(&mf_by_name, mf->extra_name, mf);
}
}
}
return shash_find_data(&mf_by_name, name);
}
static void
add_nxm_field(uint32_t header, const struct mf_field *mf)
{
struct nxm_field *f;
f = xmalloc(sizeof *f);
hmap_insert(&all_fields, &f->hmap_node, hash_int(header, 0));
f->header = header;
f->mf = mf;
}
static void
nxm_init_add_field(const struct mf_field *mf, uint32_t header)
{
if (header) {
assert(!mf_from_nxm_header__(header));
add_nxm_field(header, mf);
if (mf->maskable != MFM_NONE) {
add_nxm_field(NXM_MAKE_WILD_HEADER(header), mf);
}
}
}
static void
nxm_init(void)
{
const struct mf_field *mf;
for (mf = mf_fields; mf < &mf_fields[MFF_N_IDS]; mf++) {
nxm_init_add_field(mf, mf->nxm_header);
if (mf->oxm_header != mf->nxm_header) {
nxm_init_add_field(mf, mf->oxm_header);
}
}
}
const struct mf_field *
mf_from_nxm_header(uint32_t header)
{
if (hmap_is_empty(&all_fields)) {
nxm_init();
}
return mf_from_nxm_header__(header);
}
const struct mf_field *
mf_from_nxm_header__(uint32_t header)
{
const struct nxm_field *f;
HMAP_FOR_EACH_IN_BUCKET (f, hmap_node, hash_int(header, 0), &all_fields) {
if (f->header == header) {
return f->mf;
}
}
return NULL;
}
/* Returns true if 'wc' wildcards all the bits in field 'mf', false if 'wc'
* specifies at least one bit in the field.
*
* The caller is responsible for ensuring that 'wc' corresponds to a flow that
* meets 'mf''s prerequisites. */
bool
mf_is_all_wild(const struct mf_field *mf, const struct flow_wildcards *wc)
{
switch (mf->id) {
case MFF_IN_PORT:
case MFF_ETH_TYPE:
case MFF_IP_PROTO:
case MFF_IP_DSCP:
case MFF_IP_ECN:
case MFF_IP_TTL:
case MFF_ARP_OP:
case MFF_ARP_SHA:
case MFF_ARP_THA:
case MFF_ND_SLL:
case MFF_ND_TLL:
assert(mf->fww_bit != 0);
return (wc->wildcards & mf->fww_bit) != 0;
case MFF_TUN_ID:
return !wc->tun_id_mask;
case MFF_METADATA:
return !wc->metadata_mask;
CASE_MFF_REGS:
return !wc->reg_masks[mf->id - MFF_REG0];
case MFF_ETH_SRC:
return eth_addr_is_zero(wc->dl_src_mask);
case MFF_ETH_DST:
return eth_addr_is_zero(wc->dl_dst_mask);
case MFF_VLAN_TCI:
return !wc->vlan_tci_mask;
case MFF_VLAN_VID:
return !(wc->vlan_tci_mask & htons(VLAN_VID_MASK));
case MFF_VLAN_PCP:
return !(wc->vlan_tci_mask & htons(VLAN_PCP_MASK));
case MFF_IPV4_SRC:
return !wc->nw_src_mask;
case MFF_IPV4_DST:
return !wc->nw_dst_mask;
case MFF_IPV6_SRC:
return ipv6_mask_is_any(&wc->ipv6_src_mask);
case MFF_IPV6_DST:
return ipv6_mask_is_any(&wc->ipv6_dst_mask);
case MFF_IPV6_LABEL:
return !wc->ipv6_label_mask;
case MFF_ND_TARGET:
return ipv6_mask_is_any(&wc->nd_target_mask);
case MFF_IP_FRAG:
return !(wc->nw_frag_mask & FLOW_NW_FRAG_MASK);
case MFF_ARP_SPA:
return !wc->nw_src_mask;
case MFF_ARP_TPA:
return !wc->nw_dst_mask;
case MFF_TCP_SRC:
case MFF_UDP_SRC:
case MFF_ICMPV4_TYPE:
case MFF_ICMPV6_TYPE:
return !wc->tp_src_mask;
case MFF_TCP_DST:
case MFF_UDP_DST:
case MFF_ICMPV4_CODE:
case MFF_ICMPV6_CODE:
return !wc->tp_dst_mask;
case MFF_N_IDS:
default:
NOT_REACHED();
}
}
/* Initializes 'mask' with the wildcard bit pattern for field 'mf' within 'wc'.
* Each bit in 'mask' will be set to 1 if the bit is significant for matching
* purposes, or to 0 if it is wildcarded.
*
* The caller is responsible for ensuring that 'wc' corresponds to a flow that
* meets 'mf''s prerequisites. */
void
mf_get_mask(const struct mf_field *mf, const struct flow_wildcards *wc,
union mf_value *mask)
{
switch (mf->id) {
case MFF_IN_PORT:
case MFF_ETH_TYPE:
case MFF_IP_PROTO:
case MFF_IP_DSCP:
case MFF_IP_ECN:
case MFF_IP_TTL:
case MFF_IPV6_LABEL:
case MFF_ARP_OP:
case MFF_ARP_SHA:
case MFF_ARP_THA:
case MFF_ND_SLL:
case MFF_ND_TLL:
assert(mf->fww_bit != 0);
memset(mask, wc->wildcards & mf->fww_bit ? 0x00 : 0xff, mf->n_bytes);
break;
case MFF_TUN_ID:
mask->be64 = wc->tun_id_mask;
break;
case MFF_METADATA:
mask->be64 = wc->metadata_mask;
break;
CASE_MFF_REGS:
mask->be32 = htonl(wc->reg_masks[mf->id - MFF_REG0]);
break;
case MFF_ETH_DST:
memcpy(mask->mac, wc->dl_dst_mask, ETH_ADDR_LEN);
break;
case MFF_ETH_SRC:
memcpy(mask->mac, wc->dl_src_mask, ETH_ADDR_LEN);
break;
case MFF_VLAN_TCI:
mask->be16 = wc->vlan_tci_mask;
break;
case MFF_VLAN_VID:
mask->be16 = wc->vlan_tci_mask & htons(VLAN_VID_MASK);
break;
case MFF_VLAN_PCP:
mask->u8 = vlan_tci_to_pcp(wc->vlan_tci_mask);
break;
case MFF_IPV4_SRC:
mask->be32 = wc->nw_src_mask;
break;
case MFF_IPV4_DST:
mask->be32 = wc->nw_dst_mask;
break;
case MFF_IPV6_SRC:
mask->ipv6 = wc->ipv6_src_mask;
break;
case MFF_IPV6_DST:
mask->ipv6 = wc->ipv6_dst_mask;
break;
case MFF_ND_TARGET:
mask->ipv6 = wc->nd_target_mask;
break;
case MFF_IP_FRAG:
mask->u8 = wc->nw_frag_mask & FLOW_NW_FRAG_MASK;
break;
case MFF_ARP_SPA:
mask->be32 = wc->nw_src_mask;
break;
case MFF_ARP_TPA:
mask->be32 = wc->nw_dst_mask;
break;
case MFF_TCP_SRC:
case MFF_UDP_SRC:
mask->be16 = wc->tp_src_mask;
break;
case MFF_TCP_DST:
case MFF_UDP_DST:
mask->be16 = wc->tp_dst_mask;
break;
case MFF_ICMPV4_TYPE:
case MFF_ICMPV6_TYPE:
mask->u8 = ntohs(wc->tp_src_mask);
break;
case MFF_ICMPV4_CODE:
case MFF_ICMPV6_CODE:
mask->u8 = ntohs(wc->tp_dst_mask);
break;
case MFF_N_IDS:
default:
NOT_REACHED();
}
}
/* Tests whether 'mask' is a valid wildcard bit pattern for 'mf'. Returns true
* if the mask is valid, false otherwise. */
bool
mf_is_mask_valid(const struct mf_field *mf, const union mf_value *mask)
{
switch (mf->maskable) {
case MFM_NONE:
return (is_all_zeros((const uint8_t *) mask, mf->n_bytes) ||
is_all_ones((const uint8_t *) mask, mf->n_bytes));
case MFM_FULLY:
return true;
}
NOT_REACHED();
}
static bool
is_ip_any(const struct flow *flow)
{
return (flow->dl_type == htons(ETH_TYPE_IP) ||
flow->dl_type == htons(ETH_TYPE_IPV6));
}
static bool
is_icmpv4(const struct flow *flow)
{
return (flow->dl_type == htons(ETH_TYPE_IP)
&& flow->nw_proto == IPPROTO_ICMP);
}
static bool
is_icmpv6(const struct flow *flow)
{
return (flow->dl_type == htons(ETH_TYPE_IPV6)
&& flow->nw_proto == IPPROTO_ICMPV6);
}
/* Returns true if 'flow' meets the prerequisites for 'mf', false otherwise. */
bool
mf_are_prereqs_ok(const struct mf_field *mf, const struct flow *flow)
{
switch (mf->prereqs) {
case MFP_NONE:
return true;
case MFP_ARP:
return flow->dl_type == htons(ETH_TYPE_ARP);
case MFP_IPV4:
return flow->dl_type == htons(ETH_TYPE_IP);
case MFP_IPV6:
return flow->dl_type == htons(ETH_TYPE_IPV6);
case MFP_IP_ANY:
return is_ip_any(flow);
case MFP_TCP:
return is_ip_any(flow) && flow->nw_proto == IPPROTO_TCP;
case MFP_UDP:
return is_ip_any(flow) && flow->nw_proto == IPPROTO_UDP;
case MFP_ICMPV4:
return is_icmpv4(flow);
case MFP_ICMPV6:
return is_icmpv6(flow);
case MFP_ND:
return (is_icmpv6(flow)
&& flow->tp_dst == htons(0)
&& (flow->tp_src == htons(ND_NEIGHBOR_SOLICIT) ||
flow->tp_src == htons(ND_NEIGHBOR_ADVERT)));
case MFP_ND_SOLICIT:
return (is_icmpv6(flow)
&& flow->tp_dst == htons(0)
&& (flow->tp_src == htons(ND_NEIGHBOR_SOLICIT)));
case MFP_ND_ADVERT:
return (is_icmpv6(flow)
&& flow->tp_dst == htons(0)
&& (flow->tp_src == htons(ND_NEIGHBOR_ADVERT)));
}
NOT_REACHED();
}
/* Returns true if 'value' may be a valid value *as part of a masked match*,
* false otherwise.
*
* A value is not rejected just because it is not valid for the field in
* question, but only if it doesn't make sense to test the bits in question at
* all. For example, the MFF_VLAN_TCI field will never have a nonzero value
* without the VLAN_CFI bit being set, but we can't reject those values because
* it is still legitimate to test just for those bits (see the documentation
* for NXM_OF_VLAN_TCI in nicira-ext.h). On the other hand, there is never a
* reason to set the low bit of MFF_IP_DSCP to 1, so we reject that. */
bool
mf_is_value_valid(const struct mf_field *mf, const union mf_value *value)
{
switch (mf->id) {
case MFF_TUN_ID:
case MFF_METADATA:
case MFF_IN_PORT:
CASE_MFF_REGS:
case MFF_ETH_SRC:
case MFF_ETH_DST:
case MFF_ETH_TYPE:
case MFF_VLAN_TCI:
case MFF_IPV4_SRC:
case MFF_IPV4_DST:
case MFF_IPV6_SRC:
case MFF_IPV6_DST:
case MFF_IP_PROTO:
case MFF_IP_TTL:
case MFF_ARP_SPA:
case MFF_ARP_TPA:
case MFF_ARP_SHA:
case MFF_ARP_THA:
case MFF_TCP_SRC:
case MFF_TCP_DST:
case MFF_UDP_SRC:
case MFF_UDP_DST:
case MFF_ICMPV4_TYPE:
case MFF_ICMPV4_CODE:
case MFF_ICMPV6_TYPE:
case MFF_ICMPV6_CODE:
case MFF_ND_TARGET:
case MFF_ND_SLL:
case MFF_ND_TLL:
return true;
case MFF_IP_DSCP:
return !(value->u8 & ~IP_DSCP_MASK);
case MFF_IP_ECN:
return !(value->u8 & ~IP_ECN_MASK);
case MFF_IP_FRAG:
return !(value->u8 & ~FLOW_NW_FRAG_MASK);
case MFF_ARP_OP:
return !(value->be16 & htons(0xff00));
case MFF_VLAN_VID:
return !(value->be16 & htons(VLAN_CFI | VLAN_PCP_MASK));
case MFF_VLAN_PCP:
return !(value->u8 & ~(VLAN_PCP_MASK >> VLAN_PCP_SHIFT));
case MFF_IPV6_LABEL:
return !(value->be32 & ~htonl(IPV6_LABEL_MASK));
case MFF_N_IDS:
default:
NOT_REACHED();
}
}
/* Copies the value of field 'mf' from 'flow' into 'value'. The caller is
* responsible for ensuring that 'flow' meets 'mf''s prerequisites. */
void
mf_get_value(const struct mf_field *mf, const struct flow *flow,
union mf_value *value)
{
switch (mf->id) {
case MFF_TUN_ID:
value->be64 = flow->tun_id;
break;
case MFF_METADATA:
value->be64 = flow->metadata;
break;
case MFF_IN_PORT:
value->be16 = htons(flow->in_port);
break;
CASE_MFF_REGS:
value->be32 = htonl(flow->regs[mf->id - MFF_REG0]);
break;
case MFF_ETH_SRC:
memcpy(value->mac, flow->dl_src, ETH_ADDR_LEN);
break;
case MFF_ETH_DST:
memcpy(value->mac, flow->dl_dst, ETH_ADDR_LEN);
break;
case MFF_ETH_TYPE:
value->be16 = flow->dl_type;
break;
case MFF_VLAN_TCI:
value->be16 = flow->vlan_tci;
break;
case MFF_VLAN_VID:
value->be16 = flow->vlan_tci & htons(VLAN_VID_MASK);
break;
case MFF_VLAN_PCP:
value->u8 = vlan_tci_to_pcp(flow->vlan_tci);
break;
case MFF_IPV4_SRC:
value->be32 = flow->nw_src;
break;
case MFF_IPV4_DST:
value->be32 = flow->nw_dst;
break;
case MFF_IPV6_SRC:
value->ipv6 = flow->ipv6_src;
break;
case MFF_IPV6_DST:
value->ipv6 = flow->ipv6_dst;
break;
case MFF_IPV6_LABEL:
value->be32 = flow->ipv6_label;
break;
case MFF_IP_PROTO:
value->u8 = flow->nw_proto;
break;
case MFF_IP_DSCP:
value->u8 = flow->nw_tos & IP_DSCP_MASK;
break;
case MFF_IP_ECN:
value->u8 = flow->nw_tos & IP_ECN_MASK;
break;
case MFF_IP_TTL:
value->u8 = flow->nw_ttl;
break;
case MFF_IP_FRAG:
value->u8 = flow->nw_frag;
break;
case MFF_ARP_OP:
value->be16 = htons(flow->nw_proto);
break;
case MFF_ARP_SPA:
value->be32 = flow->nw_src;
break;
case MFF_ARP_TPA:
value->be32 = flow->nw_dst;
break;
case MFF_ARP_SHA:
case MFF_ND_SLL:
memcpy(value->mac, flow->arp_sha, ETH_ADDR_LEN);
break;
case MFF_ARP_THA:
case MFF_ND_TLL:
memcpy(value->mac, flow->arp_tha, ETH_ADDR_LEN);
break;
case MFF_TCP_SRC:
case MFF_UDP_SRC:
value->be16 = flow->tp_src;
break;
case MFF_TCP_DST:
case MFF_UDP_DST:
value->be16 = flow->tp_dst;
break;
case MFF_ICMPV4_TYPE:
case MFF_ICMPV6_TYPE:
value->u8 = ntohs(flow->tp_src);
break;
case MFF_ICMPV4_CODE:
case MFF_ICMPV6_CODE:
value->u8 = ntohs(flow->tp_dst);
break;
case MFF_ND_TARGET:
value->ipv6 = flow->nd_target;
break;
case MFF_N_IDS:
default:
NOT_REACHED();
}
}
/* Makes 'rule' match field 'mf' exactly, with the value matched taken from
* 'value'. The caller is responsible for ensuring that 'rule' meets 'mf''s
* prerequisites. */
void
mf_set_value(const struct mf_field *mf,
const union mf_value *value, struct cls_rule *rule)
{
switch (mf->id) {
case MFF_TUN_ID:
cls_rule_set_tun_id(rule, value->be64);
break;
case MFF_METADATA:
cls_rule_set_metadata(rule, value->be64);
break;
case MFF_IN_PORT:
cls_rule_set_in_port(rule, ntohs(value->be16));
break;
CASE_MFF_REGS:
cls_rule_set_reg(rule, mf->id - MFF_REG0, ntohl(value->be32));
break;
case MFF_ETH_SRC:
cls_rule_set_dl_src(rule, value->mac);
break;
case MFF_ETH_DST:
cls_rule_set_dl_dst(rule, value->mac);
break;
case MFF_ETH_TYPE:
cls_rule_set_dl_type(rule, value->be16);
break;
case MFF_VLAN_TCI:
cls_rule_set_dl_tci(rule, value->be16);
break;
case MFF_VLAN_VID:
cls_rule_set_dl_vlan(rule, value->be16);
break;
case MFF_VLAN_PCP:
cls_rule_set_dl_vlan_pcp(rule, value->u8);
break;
case MFF_IPV4_SRC:
cls_rule_set_nw_src(rule, value->be32);
break;
case MFF_IPV4_DST:
cls_rule_set_nw_dst(rule, value->be32);
break;
case MFF_IPV6_SRC:
cls_rule_set_ipv6_src(rule, &value->ipv6);
break;
case MFF_IPV6_DST:
cls_rule_set_ipv6_dst(rule, &value->ipv6);
break;
case MFF_IPV6_LABEL:
cls_rule_set_ipv6_label(rule, value->be32);
break;
case MFF_IP_PROTO:
cls_rule_set_nw_proto(rule, value->u8);
break;
case MFF_IP_DSCP:
cls_rule_set_nw_dscp(rule, value->u8);
break;
case MFF_IP_ECN:
cls_rule_set_nw_ecn(rule, value->u8);
break;
case MFF_IP_TTL:
cls_rule_set_nw_ttl(rule, value->u8);
break;
case MFF_IP_FRAG:
cls_rule_set_nw_frag(rule, value->u8);
break;
case MFF_ARP_OP:
cls_rule_set_nw_proto(rule, ntohs(value->be16));
break;
case MFF_ARP_SPA:
cls_rule_set_nw_src(rule, value->be32);
break;
case MFF_ARP_TPA:
cls_rule_set_nw_dst(rule, value->be32);
break;
case MFF_ARP_SHA:
case MFF_ND_SLL:
cls_rule_set_arp_sha(rule, value->mac);
break;
case MFF_ARP_THA:
case MFF_ND_TLL:
cls_rule_set_arp_tha(rule, value->mac);
break;
case MFF_TCP_SRC:
case MFF_UDP_SRC:
cls_rule_set_tp_src(rule, value->be16);
break;
case MFF_TCP_DST:
case MFF_UDP_DST:
cls_rule_set_tp_dst(rule, value->be16);
break;
case MFF_ICMPV4_TYPE:
case MFF_ICMPV6_TYPE:
cls_rule_set_icmp_type(rule, value->u8);
break;
case MFF_ICMPV4_CODE:
case MFF_ICMPV6_CODE:
cls_rule_set_icmp_code(rule, value->u8);
break;
case MFF_ND_TARGET:
cls_rule_set_nd_target(rule, &value->ipv6);
break;
case MFF_N_IDS:
default:
NOT_REACHED();
}
}
/* Makes 'rule' match field 'mf' exactly, with the value matched taken from
* 'value'. The caller is responsible for ensuring that 'rule' meets 'mf''s
* prerequisites. */
void
mf_set_flow_value(const struct mf_field *mf,
const union mf_value *value, struct flow *flow)
{
switch (mf->id) {
case MFF_TUN_ID:
flow->tun_id = value->be64;
break;
case MFF_METADATA:
flow->metadata = value->be64;
break;
case MFF_IN_PORT:
flow->in_port = ntohs(value->be16);
break;
CASE_MFF_REGS:
flow->regs[mf->id - MFF_REG0] = ntohl(value->be32);
break;
case MFF_ETH_SRC:
memcpy(flow->dl_src, value->mac, ETH_ADDR_LEN);
break;
case MFF_ETH_DST:
memcpy(flow->dl_dst, value->mac, ETH_ADDR_LEN);
break;
case MFF_ETH_TYPE:
flow->dl_type = value->be16;
break;
case MFF_VLAN_TCI:
flow->vlan_tci = value->be16;
break;
case MFF_VLAN_VID:
flow_set_vlan_vid(flow, value->be16);
break;
case MFF_VLAN_PCP:
flow_set_vlan_pcp(flow, value->u8);
break;
case MFF_IPV4_SRC:
flow->nw_src = value->be32;
break;
case MFF_IPV4_DST:
flow->nw_dst = value->be32;
break;
case MFF_IPV6_SRC:
flow->ipv6_src = value->ipv6;
break;
case MFF_IPV6_DST:
flow->ipv6_dst = value->ipv6;
break;
case MFF_IPV6_LABEL:
flow->ipv6_label = value->be32 & ~htonl(IPV6_LABEL_MASK);
break;
case MFF_IP_PROTO:
flow->nw_proto = value->u8;
break;
case MFF_IP_DSCP:
flow->nw_tos &= ~IP_DSCP_MASK;
flow->nw_tos |= value->u8 & IP_DSCP_MASK;
break;
case MFF_IP_ECN:
flow->nw_tos &= ~IP_ECN_MASK;
flow->nw_tos |= value->u8 & IP_ECN_MASK;
break;
case MFF_IP_TTL:
flow->nw_ttl = value->u8;
break;
case MFF_IP_FRAG:
flow->nw_frag &= value->u8;
break;
case MFF_ARP_OP:
flow->nw_proto = ntohs(value->be16);
break;
case MFF_ARP_SPA:
flow->nw_src = value->be32;
break;
case MFF_ARP_TPA:
flow->nw_dst = value->be32;
break;
case MFF_ARP_SHA:
case MFF_ND_SLL:
memcpy(flow->arp_sha, value->mac, ETH_ADDR_LEN);
break;
case MFF_ARP_THA:
case MFF_ND_TLL:
memcpy(flow->arp_tha, value->mac, ETH_ADDR_LEN);
break;
case MFF_TCP_SRC:
case MFF_UDP_SRC:
flow->tp_src = value->be16;
break;
case MFF_TCP_DST:
case MFF_UDP_DST:
flow->tp_dst = value->be16;
break;
case MFF_ICMPV4_TYPE:
case MFF_ICMPV6_TYPE:
flow->tp_src = htons(value->u8);
break;
case MFF_ICMPV4_CODE:
case MFF_ICMPV6_CODE:
flow->tp_dst = htons(value->u8);
break;
case MFF_ND_TARGET:
flow->nd_target = value->ipv6;
break;
case MFF_N_IDS:
default:
NOT_REACHED();
}
}
/* Returns true if 'mf' has a zero value in 'flow', false if it is nonzero.
*
* The caller is responsible for ensuring that 'flow' meets 'mf''s
* prerequisites. */
bool
mf_is_zero(const struct mf_field *mf, const struct flow *flow)
{
union mf_value value;
mf_get_value(mf, flow, &value);
return is_all_zeros((const uint8_t *) &value, mf->n_bytes);
}
/* Makes 'rule' wildcard field 'mf'.
*
* The caller is responsible for ensuring that 'rule' meets 'mf''s
* prerequisites. */
void
mf_set_wild(const struct mf_field *mf, struct cls_rule *rule)
{
switch (mf->id) {
case MFF_TUN_ID:
cls_rule_set_tun_id_masked(rule, htonll(0), htonll(0));
break;
case MFF_METADATA:
cls_rule_set_metadata_masked(rule, htonll(0), htonll(0));
case MFF_IN_PORT:
rule->wc.wildcards |= FWW_IN_PORT;
rule->flow.in_port = 0;
break;
CASE_MFF_REGS:
cls_rule_set_reg_masked(rule, mf->id - MFF_REG0, 0, 0);
break;
case MFF_ETH_SRC:
memset(rule->flow.dl_src, 0, ETH_ADDR_LEN);
memset(rule->wc.dl_src_mask, 0, ETH_ADDR_LEN);
break;
case MFF_ETH_DST:
memset(rule->flow.dl_dst, 0, ETH_ADDR_LEN);
memset(rule->wc.dl_dst_mask, 0, ETH_ADDR_LEN);
break;
case MFF_ETH_TYPE:
rule->wc.wildcards |= FWW_DL_TYPE;
rule->flow.dl_type = htons(0);
break;
case MFF_VLAN_TCI:
cls_rule_set_dl_tci_masked(rule, htons(0), htons(0));
break;
case MFF_VLAN_VID:
cls_rule_set_any_vid(rule);
break;
case MFF_VLAN_PCP:
cls_rule_set_any_pcp(rule);
break;
case MFF_IPV4_SRC:
case MFF_ARP_SPA:
cls_rule_set_nw_src_masked(rule, htonl(0), htonl(0));
break;
case MFF_IPV4_DST:
case MFF_ARP_TPA:
cls_rule_set_nw_dst_masked(rule, htonl(0), htonl(0));
break;
case MFF_IPV6_SRC:
memset(&rule->wc.ipv6_src_mask, 0, sizeof rule->wc.ipv6_src_mask);
memset(&rule->flow.ipv6_src, 0, sizeof rule->flow.ipv6_src);
break;
case MFF_IPV6_DST:
memset(&rule->wc.ipv6_dst_mask, 0, sizeof rule->wc.ipv6_dst_mask);
memset(&rule->flow.ipv6_dst, 0, sizeof rule->flow.ipv6_dst);
break;
case MFF_IPV6_LABEL:
rule->wc.ipv6_label_mask = 0;
rule->flow.ipv6_label = 0;
break;
case MFF_IP_PROTO:
rule->wc.wildcards |= FWW_NW_PROTO;
rule->flow.nw_proto = 0;
break;
case MFF_IP_DSCP:
rule->wc.wildcards |= FWW_NW_DSCP;
rule->flow.nw_tos &= ~IP_DSCP_MASK;
break;
case MFF_IP_ECN:
rule->wc.wildcards |= FWW_NW_ECN;
rule->flow.nw_tos &= ~IP_ECN_MASK;
break;
case MFF_IP_TTL:
rule->wc.wildcards |= FWW_NW_TTL;
rule->flow.nw_ttl = 0;
break;
case MFF_IP_FRAG:
rule->wc.nw_frag_mask |= FLOW_NW_FRAG_MASK;
rule->flow.nw_frag &= ~FLOW_NW_FRAG_MASK;
break;
case MFF_ARP_OP:
rule->wc.wildcards |= FWW_NW_PROTO;
rule->flow.nw_proto = 0;
break;
case MFF_ARP_SHA:
case MFF_ND_SLL:
rule->wc.wildcards |= FWW_ARP_SHA;
memset(rule->flow.arp_sha, 0, sizeof rule->flow.arp_sha);
break;
case MFF_ARP_THA:
case MFF_ND_TLL:
rule->wc.wildcards |= FWW_ARP_THA;
memset(rule->flow.arp_tha, 0, sizeof rule->flow.arp_tha);
break;
case MFF_TCP_SRC:
case MFF_UDP_SRC:
case MFF_ICMPV4_TYPE:
case MFF_ICMPV6_TYPE:
rule->wc.tp_src_mask = htons(0);
rule->flow.tp_src = htons(0);
break;
case MFF_TCP_DST:
case MFF_UDP_DST:
case MFF_ICMPV4_CODE:
case MFF_ICMPV6_CODE:
rule->wc.tp_dst_mask = htons(0);
rule->flow.tp_dst = htons(0);
break;
case MFF_ND_TARGET:
memset(&rule->wc.nd_target_mask, 0, sizeof rule->wc.nd_target_mask);
memset(&rule->flow.nd_target, 0, sizeof rule->flow.nd_target);
break;
case MFF_N_IDS:
default:
NOT_REACHED();
}
}
/* Makes 'rule' match field 'mf' with the specified 'value' and 'mask'.
* 'value' specifies a value to match and 'mask' specifies a wildcard pattern,
* with a 1-bit indicating that the corresponding value bit must match and a
* 0-bit indicating a don't-care.
*
* If 'mask' is NULL or points to all-1-bits, then this call is equivalent to
* mf_set_value(mf, value, rule). If 'mask' points to all-0-bits, then this
* call is equivalent to mf_set_wild(mf, rule).
*
* 'mask' must be a valid mask for 'mf' (see mf_is_mask_valid()). The caller
* is responsible for ensuring that 'rule' meets 'mf''s prerequisites. */
void
mf_set(const struct mf_field *mf,
const union mf_value *value, const union mf_value *mask,
struct cls_rule *rule)
{
if (!mask || is_all_ones((const uint8_t *) mask, mf->n_bytes)) {
mf_set_value(mf, value, rule);
return;
} else if (is_all_zeros((const uint8_t *) mask, mf->n_bytes)) {
mf_set_wild(mf, rule);
return;
}
switch (mf->id) {
case MFF_IN_PORT:
case MFF_ETH_TYPE:
case MFF_VLAN_VID:
case MFF_VLAN_PCP:
case MFF_IP_PROTO:
case MFF_IP_TTL:
case MFF_IP_DSCP:
case MFF_IP_ECN:
case MFF_ARP_OP:
case MFF_ARP_SHA:
case MFF_ARP_THA:
case MFF_ICMPV4_TYPE:
case MFF_ICMPV4_CODE:
case MFF_ICMPV6_TYPE:
case MFF_ICMPV6_CODE:
case MFF_ND_SLL:
case MFF_ND_TLL:
NOT_REACHED();
case MFF_TUN_ID:
cls_rule_set_tun_id_masked(rule, value->be64, mask->be64);
break;
case MFF_METADATA:
cls_rule_set_metadata_masked(rule, value->be64, mask->be64);
break;
CASE_MFF_REGS:
cls_rule_set_reg_masked(rule, mf->id - MFF_REG0,
ntohl(value->be32), ntohl(mask->be32));
break;
case MFF_ETH_DST:
cls_rule_set_dl_dst_masked(rule, value->mac, mask->mac);
break;
case MFF_ETH_SRC:
cls_rule_set_dl_src_masked(rule, value->mac, mask->mac);
break;
case MFF_VLAN_TCI:
cls_rule_set_dl_tci_masked(rule, value->be16, mask->be16);
break;
case MFF_IPV4_SRC:
cls_rule_set_nw_src_masked(rule, value->be32, mask->be32);
break;
case MFF_IPV4_DST:
cls_rule_set_nw_dst_masked(rule, value->be32, mask->be32);
break;
case MFF_IPV6_SRC:
cls_rule_set_ipv6_src_masked(rule, &value->ipv6, &mask->ipv6);
break;
case MFF_IPV6_DST:
cls_rule_set_ipv6_dst_masked(rule, &value->ipv6, &mask->ipv6);
break;
case MFF_IPV6_LABEL:
if ((mask->be32 & htonl(IPV6_LABEL_MASK)) == htonl(IPV6_LABEL_MASK)) {
mf_set_value(mf, value, rule);
} else {
cls_rule_set_ipv6_label_masked(rule, value->be32, mask->be32);
}
break;
case MFF_ND_TARGET:
cls_rule_set_nd_target_masked(rule, &value->ipv6, &mask->ipv6);
break;
case MFF_IP_FRAG:
cls_rule_set_nw_frag_masked(rule, value->u8, mask->u8);
break;
case MFF_ARP_SPA:
cls_rule_set_nw_src_masked(rule, value->be32, mask->be32);
break;
case MFF_ARP_TPA:
cls_rule_set_nw_dst_masked(rule, value->be32, mask->be32);
break;
case MFF_TCP_SRC:
case MFF_UDP_SRC:
cls_rule_set_tp_src_masked(rule, value->be16, mask->be16);
break;
case MFF_TCP_DST:
case MFF_UDP_DST:
cls_rule_set_tp_dst_masked(rule, value->be16, mask->be16);
break;
case MFF_N_IDS:
default:
NOT_REACHED();
}
}
static enum ofperr
mf_check__(const struct mf_subfield *sf, const struct flow *flow,
const char *type)
{
if (!sf->field) {
VLOG_WARN_RL(&rl, "unknown %s field", type);
} else if (!sf->n_bits) {
VLOG_WARN_RL(&rl, "zero bit %s field %s", type, sf->field->name);
} else if (sf->ofs >= sf->field->n_bits) {
VLOG_WARN_RL(&rl, "bit offset %d exceeds %d-bit width of %s field %s",
sf->ofs, sf->field->n_bits, type, sf->field->name);
} else if (sf->ofs + sf->n_bits > sf->field->n_bits) {
VLOG_WARN_RL(&rl, "bit offset %d and width %d exceeds %d-bit width "
"of %s field %s", sf->ofs, sf->n_bits,
sf->field->n_bits, type, sf->field->name);
} else if (flow && !mf_are_prereqs_ok(sf->field, flow)) {
VLOG_WARN_RL(&rl, "%s field %s lacks correct prerequisites",
type, sf->field->name);
} else {
return 0;
}
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
/* Checks whether 'sf' is valid for reading a subfield out of 'flow'. Returns
* 0 if so, otherwise an OpenFlow error code (e.g. as returned by
* ofp_mkerr()). */
enum ofperr
mf_check_src(const struct mf_subfield *sf, const struct flow *flow)
{
return mf_check__(sf, flow, "source");
}
/* Checks whether 'sf' is valid for writing a subfield into 'flow'. Returns 0
* if so, otherwise an OpenFlow error code (e.g. as returned by
* ofp_mkerr()). */
enum ofperr
mf_check_dst(const struct mf_subfield *sf, const struct flow *flow)
{
int error = mf_check__(sf, flow, "destination");
if (!error && !sf->field->writable) {
VLOG_WARN_RL(&rl, "destination field %s is not writable",
sf->field->name);
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
return error;
}
/* Copies the value and wildcard bit pattern for 'mf' from 'rule' into the
* 'value' and 'mask', respectively. */
void
mf_get(const struct mf_field *mf, const struct cls_rule *rule,
union mf_value *value, union mf_value *mask)
{
mf_get_value(mf, &rule->flow, value);
mf_get_mask(mf, &rule->wc, mask);
}
/* Assigns a random value for field 'mf' to 'value'. */
void
mf_random_value(const struct mf_field *mf, union mf_value *value)
{
random_bytes(value, mf->n_bytes);
switch (mf->id) {
case MFF_TUN_ID:
case MFF_METADATA:
case MFF_IN_PORT:
CASE_MFF_REGS:
case MFF_ETH_SRC:
case MFF_ETH_DST:
case MFF_ETH_TYPE:
case MFF_VLAN_TCI:
case MFF_IPV4_SRC:
case MFF_IPV4_DST:
case MFF_IPV6_SRC:
case MFF_IPV6_DST:
case MFF_IP_PROTO:
case MFF_IP_TTL:
case MFF_ARP_SPA:
case MFF_ARP_TPA:
case MFF_ARP_SHA:
case MFF_ARP_THA:
case MFF_TCP_SRC:
case MFF_TCP_DST:
case MFF_UDP_SRC:
case MFF_UDP_DST:
case MFF_ICMPV4_TYPE:
case MFF_ICMPV4_CODE:
case MFF_ICMPV6_TYPE:
case MFF_ICMPV6_CODE:
case MFF_ND_TARGET:
case MFF_ND_SLL:
case MFF_ND_TLL:
break;
case MFF_IPV6_LABEL:
value->be32 &= ~htonl(IPV6_LABEL_MASK);
break;
case MFF_IP_DSCP:
value->u8 &= IP_DSCP_MASK;
break;
case MFF_IP_ECN:
value->u8 &= IP_ECN_MASK;
break;
case MFF_IP_FRAG:
value->u8 &= FLOW_NW_FRAG_MASK;
break;
case MFF_ARP_OP:
value->be16 &= htons(0xff);
break;
case MFF_VLAN_VID:
value->be16 &= htons(VLAN_VID_MASK);
break;
case MFF_VLAN_PCP:
value->u8 &= 0x07;
break;
case MFF_N_IDS:
default:
NOT_REACHED();
}
}
static char *
mf_from_integer_string(const struct mf_field *mf, const char *s,
uint8_t *valuep, uint8_t *maskp)
{
unsigned long long int integer, mask;
char *tail;
int i;
errno = 0;
integer = strtoull(s, &tail, 0);
if (errno || (*tail != '\0' && *tail != '/')) {
goto syntax_error;
}
if (*tail == '/') {
mask = strtoull(tail + 1, &tail, 0);
if (errno || *tail != '\0') {
goto syntax_error;
}
} else {
mask = ULLONG_MAX;
}
for (i = mf->n_bytes - 1; i >= 0; i--) {
valuep[i] = integer;
maskp[i] = mask;
integer >>= 8;
mask >>= 8;
}
if (integer) {
return xasprintf("%s: value too large for %u-byte field %s",
s, mf->n_bytes, mf->name);
}
return NULL;
syntax_error:
return xasprintf("%s: bad syntax for %s", s, mf->name);
}
static char *
mf_from_ethernet_string(const struct mf_field *mf, const char *s,
uint8_t mac[ETH_ADDR_LEN],
uint8_t mask[ETH_ADDR_LEN])
{
assert(mf->n_bytes == ETH_ADDR_LEN);
switch (sscanf(s, ETH_ADDR_SCAN_FMT"/"ETH_ADDR_SCAN_FMT,
ETH_ADDR_SCAN_ARGS(mac), ETH_ADDR_SCAN_ARGS(mask))){
case ETH_ADDR_SCAN_COUNT * 2:
return NULL;
case ETH_ADDR_SCAN_COUNT:
memset(mask, 0xff, ETH_ADDR_LEN);
return NULL;
default:
return xasprintf("%s: invalid Ethernet address", s);
}
}
static char *
mf_from_ipv4_string(const struct mf_field *mf, const char *s,
ovs_be32 *ip, ovs_be32 *mask)
{
int prefix;
assert(mf->n_bytes == sizeof *ip);
if (sscanf(s, IP_SCAN_FMT"/"IP_SCAN_FMT,
IP_SCAN_ARGS(ip), IP_SCAN_ARGS(mask)) == IP_SCAN_COUNT * 2) {
/* OK. */
} else if (sscanf(s, IP_SCAN_FMT"/%d",
IP_SCAN_ARGS(ip), &prefix) == IP_SCAN_COUNT + 1) {
if (prefix <= 0 || prefix > 32) {
return xasprintf("%s: network prefix bits not between 1 and "
"32", s);
} else if (prefix == 32) {
*mask = htonl(UINT32_MAX);
} else {
*mask = htonl(((1u << prefix) - 1) << (32 - prefix));
}
} else if (sscanf(s, IP_SCAN_FMT, IP_SCAN_ARGS(ip)) == IP_SCAN_COUNT) {
*mask = htonl(UINT32_MAX);
} else {
return xasprintf("%s: invalid IP address", s);
}
return NULL;
}
static char *
mf_from_ipv6_string(const struct mf_field *mf, const char *s,
struct in6_addr *value, struct in6_addr *mask)
{
char *str = xstrdup(s);
char *save_ptr = NULL;
const char *name, *netmask;
int retval;
assert(mf->n_bytes == sizeof *value);
name = strtok_r(str, "/", &save_ptr);
retval = name ? lookup_ipv6(name, value) : EINVAL;
if (retval) {
char *err;
err = xasprintf("%s: could not convert to IPv6 address", str);
free(str);
return err;
}
netmask = strtok_r(NULL, "/", &save_ptr);
if (netmask) {
if (inet_pton(AF_INET6, netmask, mask) != 1) {
int prefix = atoi(netmask);
if (prefix <= 0 || prefix > 128) {
free(str);
return xasprintf("%s: prefix bits not between 1 and 128", s);
} else {
*mask = ipv6_create_mask(prefix);
}
}
} else {
*mask = in6addr_exact;
}
free(str);
return NULL;
}
static char *
mf_from_ofp_port_string(const struct mf_field *mf, const char *s,
ovs_be16 *valuep, ovs_be16 *maskp)
{
uint16_t port;
assert(mf->n_bytes == sizeof(ovs_be16));
if (ofputil_port_from_string(s, &port)) {
*valuep = htons(port);
*maskp = htons(UINT16_MAX);
return NULL;
} else {
return mf_from_integer_string(mf, s,
(uint8_t *) valuep, (uint8_t *) maskp);
}
}
struct frag_handling {
const char *name;
uint8_t mask;
uint8_t value;
};
static const struct frag_handling all_frags[] = {
#define A FLOW_NW_FRAG_ANY
#define L FLOW_NW_FRAG_LATER
/* name mask value */
{ "no", A|L, 0 },
{ "first", A|L, A },
{ "later", A|L, A|L },
{ "no", A, 0 },
{ "yes", A, A },
{ "not_later", L, 0 },
{ "later", L, L },
#undef A
#undef L
};
static char *
mf_from_frag_string(const char *s, uint8_t *valuep, uint8_t *maskp)
{
const struct frag_handling *h;
for (h = all_frags; h < &all_frags[ARRAY_SIZE(all_frags)]; h++) {
if (!strcasecmp(s, h->name)) {
/* We force the upper bits of the mask on to make mf_parse_value()
* happy (otherwise it will never think it's an exact match.) */
*maskp = h->mask | ~FLOW_NW_FRAG_MASK;
*valuep = h->value;
return NULL;
}
}
return xasprintf("%s: unknown fragment type (valid types are \"no\", "
"\"yes\", \"first\", \"later\", \"not_first\"", s);
}
/* Parses 's', a string value for field 'mf', into 'value' and 'mask'. Returns
* NULL if successful, otherwise a malloc()'d string describing the error. */
char *
mf_parse(const struct mf_field *mf, const char *s,
union mf_value *value, union mf_value *mask)
{
if (!strcasecmp(s, "any") || !strcmp(s, "*")) {
memset(value, 0, mf->n_bytes);
memset(mask, 0, mf->n_bytes);
return NULL;
}
switch (mf->string) {
case MFS_DECIMAL:
case MFS_HEXADECIMAL:
return mf_from_integer_string(mf, s,
(uint8_t *) value, (uint8_t *) mask);
case MFS_ETHERNET:
return mf_from_ethernet_string(mf, s, value->mac, mask->mac);
case MFS_IPV4:
return mf_from_ipv4_string(mf, s, &value->be32, &mask->be32);
case MFS_IPV6:
return mf_from_ipv6_string(mf, s, &value->ipv6, &mask->ipv6);
case MFS_OFP_PORT:
return mf_from_ofp_port_string(mf, s, &value->be16, &mask->be16);
case MFS_FRAG:
return mf_from_frag_string(s, &value->u8, &mask->u8);
}
NOT_REACHED();
}
/* Parses 's', a string value for field 'mf', into 'value'. Returns NULL if
* successful, otherwise a malloc()'d string describing the error. */
char *
mf_parse_value(const struct mf_field *mf, const char *s, union mf_value *value)
{
union mf_value mask;
char *error;
error = mf_parse(mf, s, value, &mask);
if (error) {
return error;
}
if (!is_all_ones((const uint8_t *) &mask, mf->n_bytes)) {
return xasprintf("%s: wildcards not allowed here", s);
}
return NULL;
}
static void
mf_format_integer_string(const struct mf_field *mf, const uint8_t *valuep,
const uint8_t *maskp, struct ds *s)
{
unsigned long long int integer;
int i;
assert(mf->n_bytes <= 8);
integer = 0;
for (i = 0; i < mf->n_bytes; i++) {
integer = (integer << 8) | valuep[i];
}
if (mf->string == MFS_HEXADECIMAL) {
ds_put_format(s, "%#llx", integer);
} else {
ds_put_format(s, "%lld", integer);
}
if (maskp) {
unsigned long long int mask;
mask = 0;
for (i = 0; i < mf->n_bytes; i++) {
mask = (mask << 8) | maskp[i];
}
/* I guess we could write the mask in decimal for MFS_DECIMAL but I'm
* not sure that that a bit-mask written in decimal is ever easier to
* understand than the same bit-mask written in hexadecimal. */
ds_put_format(s, "/%#llx", mask);
}
}
static void
mf_format_frag_string(const uint8_t *valuep, const uint8_t *maskp,
struct ds *s)
{
const struct frag_handling *h;
uint8_t value = *valuep;
uint8_t mask = *maskp;
value &= mask;
mask &= FLOW_NW_FRAG_MASK;
for (h = all_frags; h < &all_frags[ARRAY_SIZE(all_frags)]; h++) {
if (value == h->value && mask == h->mask) {
ds_put_cstr(s, h->name);
return;
}
}
ds_put_cstr(s, "<error>");
}
/* Appends to 's' a string representation of field 'mf' whose value is in
* 'value' and 'mask'. 'mask' may be NULL to indicate an exact match. */
void
mf_format(const struct mf_field *mf,
const union mf_value *value, const union mf_value *mask,
struct ds *s)
{
if (mask) {
if (is_all_zeros((const uint8_t *) mask, mf->n_bytes)) {
ds_put_cstr(s, "ANY");
return;
} else if (is_all_ones((const uint8_t *) mask, mf->n_bytes)) {
mask = NULL;
}
}
switch (mf->string) {
case MFS_OFP_PORT:
if (!mask) {
ofputil_format_port(ntohs(value->be16), s);
break;
}
/* fall through */
case MFS_DECIMAL:
case MFS_HEXADECIMAL:
mf_format_integer_string(mf, (uint8_t *) value, (uint8_t *) mask, s);
break;
case MFS_ETHERNET:
eth_format_masked(value->mac, mask->mac, s);
break;
case MFS_IPV4:
ip_format_masked(value->be32, mask ? mask->be32 : htonl(UINT32_MAX),
s);
break;
case MFS_IPV6:
print_ipv6_masked(s, &value->ipv6, mask ? &mask->ipv6 : NULL);
break;
case MFS_FRAG:
mf_format_frag_string(&value->u8, &mask->u8, s);
break;
default:
NOT_REACHED();
}
}
/* Makes subfield 'sf' within 'rule' exactly match the 'sf->n_bits'
* least-significant bits in 'x'.
*/
void
mf_write_subfield(const struct mf_subfield *sf, const union mf_subvalue *x,
struct cls_rule *rule)
{
const struct mf_field *field = sf->field;
union mf_value value, mask;
mf_get(field, rule, &value, &mask);
bitwise_copy(x, sizeof *x, 0, &value, field->n_bytes, sf->ofs, sf->n_bits);
bitwise_one ( &mask, field->n_bytes, sf->ofs, sf->n_bits);
mf_set(field, &value, &mask, rule);
}
/* Initializes 'x' to the value of 'sf' within 'flow'. 'sf' must be valid for
* reading 'flow', e.g. as checked by mf_check_src(). */
void
mf_read_subfield(const struct mf_subfield *sf, const struct flow *flow,
union mf_subvalue *x)
{
union mf_value value;
mf_get_value(sf->field, flow, &value);
memset(x, 0, sizeof *x);
bitwise_copy(&value, sf->field->n_bytes, sf->ofs,
x, sizeof *x, 0,
sf->n_bits);
}
/* Returns the value of 'sf' within 'flow'. 'sf' must be valid for reading
* 'flow', e.g. as checked by mf_check_src() and sf->n_bits must be 64 or
* less. */
uint64_t
mf_get_subfield(const struct mf_subfield *sf, const struct flow *flow)
{
union mf_value value;
mf_get_value(sf->field, flow, &value);
return bitwise_get(&value, sf->field->n_bytes, sf->ofs, sf->n_bits);
}
/* Formats 'sf' into 's' in a format normally acceptable to
* mf_parse_subfield(). (It won't be acceptable if sf->field is NULL or if
* sf->field has no NXM name.) */
void
mf_format_subfield(const struct mf_subfield *sf, struct ds *s)
{
if (!sf->field) {
ds_put_cstr(s, "<unknown>");
} else if (sf->field->nxm_name) {
ds_put_cstr(s, sf->field->nxm_name);
} else if (sf->field->nxm_header) {
uint32_t header = sf->field->nxm_header;
ds_put_format(s, "%d:%d", NXM_VENDOR(header), NXM_FIELD(header));
} else {
ds_put_cstr(s, sf->field->name);
}
if (sf->field && sf->ofs == 0 && sf->n_bits == sf->field->n_bits) {
ds_put_cstr(s, "[]");
} else if (sf->n_bits == 1) {
ds_put_format(s, "[%d]", sf->ofs);
} else {
ds_put_format(s, "[%d..%d]", sf->ofs, sf->ofs + sf->n_bits - 1);
}
}
static const struct mf_field *
mf_parse_subfield_name(const char *name, int name_len, bool *wild)
{
int i;
*wild = name_len > 2 && !memcmp(&name[name_len - 2], "_W", 2);
if (*wild) {
name_len -= 2;
}
for (i = 0; i < MFF_N_IDS; i++) {
const struct mf_field *mf = mf_from_id(i);
if (mf->nxm_name
&& !strncmp(mf->nxm_name, name, name_len)
&& mf->nxm_name[name_len] == '\0') {
return mf;
}
if (mf->oxm_name
&& !strncmp(mf->oxm_name, name, name_len)
&& mf->oxm_name[name_len] == '\0') {
return mf;
}
}
return NULL;
}
/* Parses a subfield from the beginning of '*sp' into 'sf'. If successful,
* returns NULL and advances '*sp' to the first byte following the parsed
* string. On failure, returns a malloc()'d error message, does not modify
* '*sp', and does not properly initialize 'sf'.
*
* The syntax parsed from '*sp' takes the form "header[start..end]" where
* 'header' is the name of an NXM field and 'start' and 'end' are (inclusive)
* bit indexes. "..end" may be omitted to indicate a single bit. "start..end"
* may both be omitted (the [] are still required) to indicate an entire
* field. */
char *
mf_parse_subfield__(struct mf_subfield *sf, const char **sp)
{
const struct mf_field *field;
const char *name;
int start, end;
const char *s;
int name_len;
bool wild;
s = *sp;
name = s;
name_len = strcspn(s, "[");
if (s[name_len] != '[') {
return xasprintf("%s: missing [ looking for field name", *sp);
}
field = mf_parse_subfield_name(name, name_len, &wild);
if (!field) {
return xasprintf("%s: unknown field `%.*s'", *sp, name_len, s);
}
s += name_len;
if (sscanf(s, "[%d..%d]", &start, &end) == 2) {
/* Nothing to do. */
} else if (sscanf(s, "[%d]", &start) == 1) {
end = start;
} else if (!strncmp(s, "[]", 2)) {
start = 0;
end = field->n_bits - 1;
} else {
return xasprintf("%s: syntax error expecting [] or [<bit>] or "
"[<start>..<end>]", *sp);
}
s = strchr(s, ']') + 1;
if (start > end) {
return xasprintf("%s: starting bit %d is after ending bit %d",
*sp, start, end);
} else if (start >= field->n_bits) {
return xasprintf("%s: starting bit %d is not valid because field is "
"only %d bits wide", *sp, start, field->n_bits);
} else if (end >= field->n_bits){
return xasprintf("%s: ending bit %d is not valid because field is "
"only %d bits wide", *sp, end, field->n_bits);
}
sf->field = field;
sf->ofs = start;
sf->n_bits = end - start + 1;
*sp = s;
return NULL;
}
/* Parses a subfield from the beginning of 's' into 'sf'. Returns the first
* byte in 's' following the parsed string.
*
* Exits with an error message if 's' has incorrect syntax.
*
* The syntax parsed from 's' takes the form "header[start..end]" where
* 'header' is the name of an NXM field and 'start' and 'end' are (inclusive)
* bit indexes. "..end" may be omitted to indicate a single bit. "start..end"
* may both be omitted (the [] are still required) to indicate an entire
* field. */
const char *
mf_parse_subfield(struct mf_subfield *sf, const char *s)
{
char *msg = mf_parse_subfield__(sf, &s);
if (msg) {
ovs_fatal(0, "%s", msg);
}
return s;
}