2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/lib/flow.c
Jan Scheurich 3d2fbd70bd userspace: Add support for NSH MD1 match fields
This patch adds support for NSH packet header fields to the OVS
control plane and the userspace datapath. Initially we support the
fields of the NSH base header as defined in
https://www.ietf.org/id/draft-ietf-sfc-nsh-13.txt
and the fixed context headers specified for metadata format MD1.
The variable length MD2 format is parsed but the TLV context headers
are not yet available for matching.

The NSH fields are modelled as experimenter fields with the dedicated
experimenter class 0x005ad650 proposed for NSH in ONF. The following
fields are defined:

NXOXM code            ofctl name    Size      Comment
=====================================================================
NXOXM_NSH_FLAGS       nsh_flags       8       Bits 2-9 of 1st NSH word
(0x005ad650,1)
NXOXM_NSH_MDTYPE      nsh_mdtype      8       Bits 16-23
(0x005ad650,2)
NXOXM_NSH_NEXTPROTO   nsh_np          8       Bits 24-31
(0x005ad650,3)
NXOXM_NSH_SPI         nsh_spi         24      Bits 0-23 of 2nd NSH word
(0x005ad650,4)
NXOXM_NSH_SI          nsh_si          8       Bits 24-31
(0x005ad650,5)
NXOXM_NSH_C1          nsh_c1          32      Maskable, nsh_mdtype==1
(0x005ad650,6)
NXOXM_NSH_C2          nsh_c2          32      Maskable, nsh_mdtype==1
(0x005ad650,7)
NXOXM_NSH_C3          nsh_c3          32      Maskable, nsh_mdtype==1
(0x005ad650,8)
NXOXM_NSH_C4          nsh_c4          32      Maskable, nsh_mdtype==1
(0x005ad650,9)

Co-authored-by: Johnson Li <johnson.li@intel.com>
Signed-off-by: Yi Yang <yi.y.yang@intel.com>
Signed-off-by: Jan Scheurich <jan.scheurich@ericsson.com>
Signed-off-by: Ben Pfaff <blp@ovn.org>
2017-08-07 11:26:09 -07:00

3258 lines
108 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2017 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include <sys/types.h>
#include "flow.h"
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <netinet/in.h>
#include <netinet/icmp6.h>
#include <netinet/ip6.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "byte-order.h"
#include "colors.h"
#include "coverage.h"
#include "csum.h"
#include "openvswitch/dynamic-string.h"
#include "hash.h"
#include "jhash.h"
#include "openvswitch/match.h"
#include "dp-packet.h"
#include "openflow/openflow.h"
#include "packets.h"
#include "odp-util.h"
#include "random.h"
#include "unaligned.h"
#include "util.h"
#include "openvswitch/nsh.h"
COVERAGE_DEFINE(flow_extract);
COVERAGE_DEFINE(miniflow_malloc);
/* U64 indices for segmented flow classification. */
const uint8_t flow_segment_u64s[4] = {
FLOW_SEGMENT_1_ENDS_AT / sizeof(uint64_t),
FLOW_SEGMENT_2_ENDS_AT / sizeof(uint64_t),
FLOW_SEGMENT_3_ENDS_AT / sizeof(uint64_t),
FLOW_U64S
};
int flow_vlan_limit = FLOW_MAX_VLAN_HEADERS;
/* Asserts that field 'f1' follows immediately after 'f0' in struct flow,
* without any intervening padding. */
#define ASSERT_SEQUENTIAL(f0, f1) \
BUILD_ASSERT_DECL(offsetof(struct flow, f0) \
+ MEMBER_SIZEOF(struct flow, f0) \
== offsetof(struct flow, f1))
/* Asserts that fields 'f0' and 'f1' are in the same 32-bit aligned word within
* struct flow. */
#define ASSERT_SAME_WORD(f0, f1) \
BUILD_ASSERT_DECL(offsetof(struct flow, f0) / 4 \
== offsetof(struct flow, f1) / 4)
/* Asserts that 'f0' and 'f1' are both sequential and within the same 32-bit
* aligned word in struct flow. */
#define ASSERT_SEQUENTIAL_SAME_WORD(f0, f1) \
ASSERT_SEQUENTIAL(f0, f1); \
ASSERT_SAME_WORD(f0, f1)
/* miniflow_extract() assumes the following to be true to optimize the
* extraction process. */
ASSERT_SEQUENTIAL_SAME_WORD(nw_frag, nw_tos);
ASSERT_SEQUENTIAL_SAME_WORD(nw_tos, nw_ttl);
ASSERT_SEQUENTIAL_SAME_WORD(nw_ttl, nw_proto);
/* TCP flags in the middle of a BE64, zeroes in the other half. */
BUILD_ASSERT_DECL(offsetof(struct flow, tcp_flags) % 8 == 4);
#if WORDS_BIGENDIAN
#define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl) \
<< 16)
#else
#define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl))
#endif
ASSERT_SEQUENTIAL_SAME_WORD(tp_src, tp_dst);
/* Removes 'size' bytes from the head end of '*datap', of size '*sizep', which
* must contain at least 'size' bytes of data. Returns the first byte of data
* removed. */
static inline const void *
data_pull(const void **datap, size_t *sizep, size_t size)
{
const char *data = *datap;
*datap = data + size;
*sizep -= size;
return data;
}
/* If '*datap' has at least 'size' bytes of data, removes that many bytes from
* the head end of '*datap' and returns the first byte removed. Otherwise,
* returns a null pointer without modifying '*datap'. */
static inline const void *
data_try_pull(const void **datap, size_t *sizep, size_t size)
{
return OVS_LIKELY(*sizep >= size) ? data_pull(datap, sizep, size) : NULL;
}
/* Context for pushing data to a miniflow. */
struct mf_ctx {
struct flowmap map;
uint64_t *data;
uint64_t * const end;
};
/* miniflow_push_* macros allow filling in a miniflow data values in order.
* Assertions are needed only when the layout of the struct flow is modified.
* 'ofs' is a compile-time constant, which allows most of the code be optimized
* away. Some GCC versions gave warnings on ALWAYS_INLINE, so these are
* defined as macros. */
#if (FLOW_WC_SEQ != 40)
#define MINIFLOW_ASSERT(X) ovs_assert(X)
BUILD_MESSAGE("FLOW_WC_SEQ changed: miniflow_extract() will have runtime "
"assertions enabled. Consider updating FLOW_WC_SEQ after "
"testing")
#else
#define MINIFLOW_ASSERT(X)
#endif
/* True if 'IDX' and higher bits are not set. */
#define ASSERT_FLOWMAP_NOT_SET(FM, IDX) \
{ \
MINIFLOW_ASSERT(!((FM)->bits[(IDX) / MAP_T_BITS] & \
(MAP_MAX << ((IDX) % MAP_T_BITS)))); \
for (size_t i = (IDX) / MAP_T_BITS + 1; i < FLOWMAP_UNITS; i++) { \
MINIFLOW_ASSERT(!(FM)->bits[i]); \
} \
}
#define miniflow_set_map(MF, OFS) \
{ \
ASSERT_FLOWMAP_NOT_SET(&MF.map, (OFS)); \
flowmap_set(&MF.map, (OFS), 1); \
}
#define miniflow_assert_in_map(MF, OFS) \
MINIFLOW_ASSERT(flowmap_is_set(&MF.map, (OFS))); \
ASSERT_FLOWMAP_NOT_SET(&MF.map, (OFS) + 1)
#define miniflow_push_uint64_(MF, OFS, VALUE) \
{ \
MINIFLOW_ASSERT(MF.data < MF.end && (OFS) % 8 == 0); \
*MF.data++ = VALUE; \
miniflow_set_map(MF, OFS / 8); \
}
#define miniflow_push_be64_(MF, OFS, VALUE) \
miniflow_push_uint64_(MF, OFS, (OVS_FORCE uint64_t)(VALUE))
#define miniflow_push_uint32_(MF, OFS, VALUE) \
{ \
MINIFLOW_ASSERT(MF.data < MF.end); \
\
if ((OFS) % 8 == 0) { \
miniflow_set_map(MF, OFS / 8); \
*(uint32_t *)MF.data = VALUE; \
} else if ((OFS) % 8 == 4) { \
miniflow_assert_in_map(MF, OFS / 8); \
*((uint32_t *)MF.data + 1) = VALUE; \
MF.data++; \
} \
}
#define miniflow_push_be32_(MF, OFS, VALUE) \
miniflow_push_uint32_(MF, OFS, (OVS_FORCE uint32_t)(VALUE))
#define miniflow_push_uint16_(MF, OFS, VALUE) \
{ \
MINIFLOW_ASSERT(MF.data < MF.end); \
\
if ((OFS) % 8 == 0) { \
miniflow_set_map(MF, OFS / 8); \
*(uint16_t *)MF.data = VALUE; \
} else if ((OFS) % 8 == 2) { \
miniflow_assert_in_map(MF, OFS / 8); \
*((uint16_t *)MF.data + 1) = VALUE; \
} else if ((OFS) % 8 == 4) { \
miniflow_assert_in_map(MF, OFS / 8); \
*((uint16_t *)MF.data + 2) = VALUE; \
} else if ((OFS) % 8 == 6) { \
miniflow_assert_in_map(MF, OFS / 8); \
*((uint16_t *)MF.data + 3) = VALUE; \
MF.data++; \
} \
}
#define miniflow_push_uint8_(MF, OFS, VALUE) \
{ \
MINIFLOW_ASSERT(MF.data < MF.end); \
\
if ((OFS) % 8 == 0) { \
miniflow_set_map(MF, OFS / 8); \
*(uint8_t *)MF.data = VALUE; \
} else if ((OFS) % 8 == 7) { \
miniflow_assert_in_map(MF, OFS / 8); \
*((uint8_t *)MF.data + 7) = VALUE; \
MF.data++; \
} else { \
miniflow_assert_in_map(MF, OFS / 8); \
*((uint8_t *)MF.data + ((OFS) % 8)) = VALUE; \
} \
}
#define miniflow_pad_to_64_(MF, OFS) \
{ \
MINIFLOW_ASSERT((OFS) % 8 != 0); \
miniflow_assert_in_map(MF, OFS / 8); \
\
memset((uint8_t *)MF.data + (OFS) % 8, 0, 8 - (OFS) % 8); \
MF.data++; \
}
#define miniflow_pad_from_64_(MF, OFS) \
{ \
MINIFLOW_ASSERT(MF.data < MF.end); \
\
MINIFLOW_ASSERT((OFS) % 8 != 0); \
miniflow_set_map(MF, OFS / 8); \
\
memset((uint8_t *)MF.data, 0, (OFS) % 8); \
}
#define miniflow_push_be16_(MF, OFS, VALUE) \
miniflow_push_uint16_(MF, OFS, (OVS_FORCE uint16_t)VALUE);
#define miniflow_push_be8_(MF, OFS, VALUE) \
miniflow_push_uint8_(MF, OFS, (OVS_FORCE uint8_t)VALUE);
#define miniflow_set_maps(MF, OFS, N_WORDS) \
{ \
size_t ofs = (OFS); \
size_t n_words = (N_WORDS); \
\
MINIFLOW_ASSERT(n_words && MF.data + n_words <= MF.end); \
ASSERT_FLOWMAP_NOT_SET(&MF.map, ofs); \
flowmap_set(&MF.map, ofs, n_words); \
}
/* Data at 'valuep' may be unaligned. */
#define miniflow_push_words_(MF, OFS, VALUEP, N_WORDS) \
{ \
MINIFLOW_ASSERT((OFS) % 8 == 0); \
miniflow_set_maps(MF, (OFS) / 8, (N_WORDS)); \
memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof *MF.data); \
MF.data += (N_WORDS); \
}
/* Push 32-bit words padded to 64-bits. */
#define miniflow_push_words_32_(MF, OFS, VALUEP, N_WORDS) \
{ \
miniflow_set_maps(MF, (OFS) / 8, DIV_ROUND_UP(N_WORDS, 2)); \
memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof(uint32_t)); \
MF.data += DIV_ROUND_UP(N_WORDS, 2); \
if ((N_WORDS) & 1) { \
*((uint32_t *)MF.data - 1) = 0; \
} \
}
/* Data at 'valuep' may be unaligned. */
/* MACs start 64-aligned, and must be followed by other data or padding. */
#define miniflow_push_macs_(MF, OFS, VALUEP) \
{ \
miniflow_set_maps(MF, (OFS) / 8, 2); \
memcpy(MF.data, (VALUEP), 2 * ETH_ADDR_LEN); \
MF.data += 1; /* First word only. */ \
}
#define miniflow_push_uint32(MF, FIELD, VALUE) \
miniflow_push_uint32_(MF, offsetof(struct flow, FIELD), VALUE)
#define miniflow_push_be32(MF, FIELD, VALUE) \
miniflow_push_be32_(MF, offsetof(struct flow, FIELD), VALUE)
#define miniflow_push_uint16(MF, FIELD, VALUE) \
miniflow_push_uint16_(MF, offsetof(struct flow, FIELD), VALUE)
#define miniflow_push_be16(MF, FIELD, VALUE) \
miniflow_push_be16_(MF, offsetof(struct flow, FIELD), VALUE)
#define miniflow_push_uint8(MF, FIELD, VALUE) \
miniflow_push_uint8_(MF, offsetof(struct flow, FIELD), VALUE)
#define miniflow_pad_to_64(MF, FIELD) \
miniflow_pad_to_64_(MF, OFFSETOFEND(struct flow, FIELD))
#define miniflow_pad_from_64(MF, FIELD) \
miniflow_pad_from_64_(MF, offsetof(struct flow, FIELD))
#define miniflow_push_words(MF, FIELD, VALUEP, N_WORDS) \
miniflow_push_words_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS)
#define miniflow_push_words_32(MF, FIELD, VALUEP, N_WORDS) \
miniflow_push_words_32_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS)
#define miniflow_push_macs(MF, FIELD, VALUEP) \
miniflow_push_macs_(MF, offsetof(struct flow, FIELD), VALUEP)
/* Return the pointer to the miniflow data when called BEFORE the corresponding
* push. */
#define miniflow_pointer(MF, FIELD) \
(void *)((uint8_t *)MF.data + ((offsetof(struct flow, FIELD)) % 8))
/* Pulls the MPLS headers at '*datap' and returns the count of them. */
static inline int
parse_mpls(const void **datap, size_t *sizep)
{
const struct mpls_hdr *mh;
int count = 0;
while ((mh = data_try_pull(datap, sizep, sizeof *mh))) {
count++;
if (mh->mpls_lse.lo & htons(1 << MPLS_BOS_SHIFT)) {
break;
}
}
return MIN(count, FLOW_MAX_MPLS_LABELS);
}
/* passed vlan_hdrs arg must be at least size FLOW_MAX_VLAN_HEADERS. */
static inline ALWAYS_INLINE size_t
parse_vlan(const void **datap, size_t *sizep, union flow_vlan_hdr *vlan_hdrs)
{
const ovs_be16 *eth_type;
memset(vlan_hdrs, 0, sizeof(union flow_vlan_hdr) * FLOW_MAX_VLAN_HEADERS);
data_pull(datap, sizep, ETH_ADDR_LEN * 2);
eth_type = *datap;
size_t n;
for (n = 0; eth_type_vlan(*eth_type) && n < flow_vlan_limit; n++) {
if (OVS_UNLIKELY(*sizep < sizeof(ovs_be32) + sizeof(ovs_be16))) {
break;
}
const ovs_16aligned_be32 *qp = data_pull(datap, sizep, sizeof *qp);
vlan_hdrs[n].qtag = get_16aligned_be32(qp);
vlan_hdrs[n].tci |= htons(VLAN_CFI);
eth_type = *datap;
}
return n;
}
static inline ALWAYS_INLINE ovs_be16
parse_ethertype(const void **datap, size_t *sizep)
{
const struct llc_snap_header *llc;
ovs_be16 proto;
proto = *(ovs_be16 *) data_pull(datap, sizep, sizeof proto);
if (OVS_LIKELY(ntohs(proto) >= ETH_TYPE_MIN)) {
return proto;
}
if (OVS_UNLIKELY(*sizep < sizeof *llc)) {
return htons(FLOW_DL_TYPE_NONE);
}
llc = *datap;
if (OVS_UNLIKELY(llc->llc.llc_dsap != LLC_DSAP_SNAP
|| llc->llc.llc_ssap != LLC_SSAP_SNAP
|| llc->llc.llc_cntl != LLC_CNTL_SNAP
|| memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
sizeof llc->snap.snap_org))) {
return htons(FLOW_DL_TYPE_NONE);
}
data_pull(datap, sizep, sizeof *llc);
if (OVS_LIKELY(ntohs(llc->snap.snap_type) >= ETH_TYPE_MIN)) {
return llc->snap.snap_type;
}
return htons(FLOW_DL_TYPE_NONE);
}
/* Returns 'true' if the packet is an ND packet. In that case the '*nd_target'
* and 'arp_buf[]' are filled in. If the packet is not an ND pacet, 'false' is
* returned and no values are filled in on '*nd_target' or 'arp_buf[]'. */
static inline bool
parse_icmpv6(const void **datap, size_t *sizep, const struct icmp6_hdr *icmp,
const struct in6_addr **nd_target,
struct eth_addr arp_buf[2])
{
if (icmp->icmp6_code != 0 ||
(icmp->icmp6_type != ND_NEIGHBOR_SOLICIT &&
icmp->icmp6_type != ND_NEIGHBOR_ADVERT)) {
return false;
}
arp_buf[0] = eth_addr_zero;
arp_buf[1] = eth_addr_zero;
*nd_target = data_try_pull(datap, sizep, sizeof **nd_target);
if (OVS_UNLIKELY(!*nd_target)) {
return true;
}
while (*sizep >= 8) {
/* The minimum size of an option is 8 bytes, which also is
* the size of Ethernet link-layer options. */
const struct ovs_nd_lla_opt *lla_opt = *datap;
int opt_len = lla_opt->len * ND_LLA_OPT_LEN;
if (!opt_len || opt_len > *sizep) {
return true;
}
/* Store the link layer address if the appropriate option is
* provided. It is considered an error if the same link
* layer option is specified twice. */
if (lla_opt->type == ND_OPT_SOURCE_LINKADDR && opt_len == 8) {
if (OVS_LIKELY(eth_addr_is_zero(arp_buf[0]))) {
arp_buf[0] = lla_opt->mac;
} else {
goto invalid;
}
} else if (lla_opt->type == ND_OPT_TARGET_LINKADDR && opt_len == 8) {
if (OVS_LIKELY(eth_addr_is_zero(arp_buf[1]))) {
arp_buf[1] = lla_opt->mac;
} else {
goto invalid;
}
}
if (OVS_UNLIKELY(!data_try_pull(datap, sizep, opt_len))) {
return true;
}
}
return true;
invalid:
*nd_target = NULL;
arp_buf[0] = eth_addr_zero;
arp_buf[1] = eth_addr_zero;
return true;
}
static inline bool
parse_ipv6_ext_hdrs__(const void **datap, size_t *sizep, uint8_t *nw_proto,
uint8_t *nw_frag)
{
while (1) {
if (OVS_LIKELY((*nw_proto != IPPROTO_HOPOPTS)
&& (*nw_proto != IPPROTO_ROUTING)
&& (*nw_proto != IPPROTO_DSTOPTS)
&& (*nw_proto != IPPROTO_AH)
&& (*nw_proto != IPPROTO_FRAGMENT))) {
/* It's either a terminal header (e.g., TCP, UDP) or one we
* don't understand. In either case, we're done with the
* packet, so use it to fill in 'nw_proto'. */
return true;
}
/* We only verify that at least 8 bytes of the next header are
* available, but many of these headers are longer. Ensure that
* accesses within the extension header are within those first 8
* bytes. All extension headers are required to be at least 8
* bytes. */
if (OVS_UNLIKELY(*sizep < 8)) {
return false;
}
if ((*nw_proto == IPPROTO_HOPOPTS)
|| (*nw_proto == IPPROTO_ROUTING)
|| (*nw_proto == IPPROTO_DSTOPTS)) {
/* These headers, while different, have the fields we care
* about in the same location and with the same
* interpretation. */
const struct ip6_ext *ext_hdr = *datap;
*nw_proto = ext_hdr->ip6e_nxt;
if (OVS_UNLIKELY(!data_try_pull(datap, sizep,
(ext_hdr->ip6e_len + 1) * 8))) {
return false;
}
} else if (*nw_proto == IPPROTO_AH) {
/* A standard AH definition isn't available, but the fields
* we care about are in the same location as the generic
* option header--only the header length is calculated
* differently. */
const struct ip6_ext *ext_hdr = *datap;
*nw_proto = ext_hdr->ip6e_nxt;
if (OVS_UNLIKELY(!data_try_pull(datap, sizep,
(ext_hdr->ip6e_len + 2) * 4))) {
return false;
}
} else if (*nw_proto == IPPROTO_FRAGMENT) {
const struct ovs_16aligned_ip6_frag *frag_hdr = *datap;
*nw_proto = frag_hdr->ip6f_nxt;
if (!data_try_pull(datap, sizep, sizeof *frag_hdr)) {
return false;
}
/* We only process the first fragment. */
if (frag_hdr->ip6f_offlg != htons(0)) {
*nw_frag = FLOW_NW_FRAG_ANY;
if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) {
*nw_frag |= FLOW_NW_FRAG_LATER;
*nw_proto = IPPROTO_FRAGMENT;
return true;
}
}
}
}
}
bool
parse_ipv6_ext_hdrs(const void **datap, size_t *sizep, uint8_t *nw_proto,
uint8_t *nw_frag)
{
return parse_ipv6_ext_hdrs__(datap, sizep, nw_proto, nw_frag);
}
bool
parse_nsh(const void **datap, size_t *sizep, struct flow_nsh *key)
{
const struct nsh_hdr *nsh = (const struct nsh_hdr *) *datap;
uint16_t ver_flags_len;
uint8_t version, length, flags;
uint32_t path_hdr;
/* Check if it is long enough for NSH header, doesn't support
* MD type 2 yet
*/
if (OVS_UNLIKELY(*sizep < NSH_M_TYPE1_LEN)) {
return false;
}
memset(key, 0, sizeof(struct flow_nsh));
ver_flags_len = ntohs(nsh->ver_flags_len);
version = (ver_flags_len & NSH_VER_MASK) >> NSH_VER_SHIFT;
flags = (ver_flags_len & NSH_FLAGS_MASK) >> NSH_FLAGS_SHIFT;
/* NSH header length is in 4 byte words. */
length = ((ver_flags_len & NSH_LEN_MASK) >> NSH_LEN_SHIFT) << 2;
if (version != 0) {
return false;
}
if (length != NSH_M_TYPE1_LEN) {
return false;
}
key->flags = flags;
key->mdtype = nsh->md_type;
key->np = nsh->next_proto;
path_hdr = ntohl(get_16aligned_be32(&nsh->path_hdr));
key->si = (path_hdr & NSH_SI_MASK) >> NSH_SI_SHIFT;
key->spi = htonl((path_hdr & NSH_SPI_MASK) >> NSH_SPI_SHIFT);
switch (key->mdtype) {
case NSH_M_TYPE1:
for (size_t i = 0; i < 4; i++) {
key->c[i] = get_16aligned_be32(&nsh->md1.c[i]);
}
break;
case NSH_M_TYPE2:
/* Don't support MD type 2 yet, so return false */
default:
return false;
}
data_pull(datap, sizep, length);
return true;
}
/* Initializes 'flow' members from 'packet' and 'md', taking the packet type
* into account.
*
* Initializes the layer offsets as follows:
*
* - packet->l2_5_ofs to the
* * the start of the MPLS shim header. Can be zero, if the
* packet is of type (OFPHTN_ETHERTYPE, ETH_TYPE_MPLS).
* * UINT16_MAX when there is no MPLS shim header.
*
* - packet->l3_ofs is set to
* * zero if the packet_type is in name space OFPHTN_ETHERTYPE
* and there is no MPLS shim header.
* * just past the Ethernet header, or just past the vlan_header if
* one is present, to the first byte of the payload of the
* Ethernet frame if the packet type is Ethernet and there is
* no MPLS shim header.
* * just past the MPLS label stack to the first byte of the MPLS
* payload if there is at least one MPLS shim header.
* * UINT16_MAX if the packet type is Ethernet and the frame is
* too short to contain an Ethernet header.
*
* - packet->l4_ofs is set to just past the IPv4 or IPv6 header, if one is
* present and the packet has at least the content used for the fields
* of interest for the flow, otherwise UINT16_MAX.
*/
void
flow_extract(struct dp_packet *packet, struct flow *flow)
{
struct {
struct miniflow mf;
uint64_t buf[FLOW_U64S];
} m;
COVERAGE_INC(flow_extract);
miniflow_extract(packet, &m.mf);
miniflow_expand(&m.mf, flow);
}
/* Caller is responsible for initializing 'dst' with enough storage for
* FLOW_U64S * 8 bytes. */
void
miniflow_extract(struct dp_packet *packet, struct miniflow *dst)
{
const struct pkt_metadata *md = &packet->md;
const void *data = dp_packet_data(packet);
size_t size = dp_packet_size(packet);
ovs_be32 packet_type = packet->packet_type;
uint64_t *values = miniflow_values(dst);
struct mf_ctx mf = { FLOWMAP_EMPTY_INITIALIZER, values,
values + FLOW_U64S };
const char *frame;
ovs_be16 dl_type = OVS_BE16_MAX;
uint8_t nw_frag, nw_tos, nw_ttl, nw_proto;
uint8_t *ct_nw_proto_p = NULL;
ovs_be16 ct_tp_src = 0, ct_tp_dst = 0;
/* Metadata. */
if (flow_tnl_dst_is_set(&md->tunnel)) {
miniflow_push_words(mf, tunnel, &md->tunnel,
offsetof(struct flow_tnl, metadata) /
sizeof(uint64_t));
if (!(md->tunnel.flags & FLOW_TNL_F_UDPIF)) {
if (md->tunnel.metadata.present.map) {
miniflow_push_words(mf, tunnel.metadata, &md->tunnel.metadata,
sizeof md->tunnel.metadata /
sizeof(uint64_t));
}
} else {
if (md->tunnel.metadata.present.len) {
miniflow_push_words(mf, tunnel.metadata.present,
&md->tunnel.metadata.present, 1);
miniflow_push_words(mf, tunnel.metadata.opts.gnv,
md->tunnel.metadata.opts.gnv,
DIV_ROUND_UP(md->tunnel.metadata.present.len,
sizeof(uint64_t)));
}
}
}
if (md->skb_priority || md->pkt_mark) {
miniflow_push_uint32(mf, skb_priority, md->skb_priority);
miniflow_push_uint32(mf, pkt_mark, md->pkt_mark);
}
miniflow_push_uint32(mf, dp_hash, md->dp_hash);
miniflow_push_uint32(mf, in_port, odp_to_u32(md->in_port.odp_port));
if (md->ct_state) {
miniflow_push_uint32(mf, recirc_id, md->recirc_id);
miniflow_push_uint8(mf, ct_state, md->ct_state);
ct_nw_proto_p = miniflow_pointer(mf, ct_nw_proto);
miniflow_push_uint8(mf, ct_nw_proto, 0);
miniflow_push_uint16(mf, ct_zone, md->ct_zone);
} else if (md->recirc_id) {
miniflow_push_uint32(mf, recirc_id, md->recirc_id);
miniflow_pad_to_64(mf, recirc_id);
}
if (md->ct_state) {
miniflow_push_uint32(mf, ct_mark, md->ct_mark);
miniflow_push_be32(mf, packet_type, packet_type);
if (!ovs_u128_is_zero(md->ct_label)) {
miniflow_push_words(mf, ct_label, &md->ct_label,
sizeof md->ct_label / sizeof(uint64_t));
}
} else {
miniflow_pad_from_64(mf, packet_type);
miniflow_push_be32(mf, packet_type, packet_type);
}
/* Initialize packet's layer pointer and offsets. */
frame = data;
dp_packet_reset_offsets(packet);
if (packet_type == htonl(PT_ETH)) {
/* Must have full Ethernet header to proceed. */
if (OVS_UNLIKELY(size < sizeof(struct eth_header))) {
goto out;
} else {
/* Link layer. */
ASSERT_SEQUENTIAL(dl_dst, dl_src);
miniflow_push_macs(mf, dl_dst, data);
/* VLAN */
union flow_vlan_hdr vlans[FLOW_MAX_VLAN_HEADERS];
size_t num_vlans = parse_vlan(&data, &size, vlans);
dl_type = parse_ethertype(&data, &size);
miniflow_push_be16(mf, dl_type, dl_type);
miniflow_pad_to_64(mf, dl_type);
if (num_vlans > 0) {
miniflow_push_words_32(mf, vlans, vlans, num_vlans);
}
}
} else {
/* Take dl_type from packet_type. */
dl_type = pt_ns_type_be(packet_type);
miniflow_pad_from_64(mf, dl_type);
miniflow_push_be16(mf, dl_type, dl_type);
/* Do not push vlan_tci, pad instead */
miniflow_pad_to_64(mf, dl_type);
}
/* Parse mpls. */
if (OVS_UNLIKELY(eth_type_mpls(dl_type))) {
int count;
const void *mpls = data;
packet->l2_5_ofs = (char *)data - frame;
count = parse_mpls(&data, &size);
miniflow_push_words_32(mf, mpls_lse, mpls, count);
}
/* Network layer. */
packet->l3_ofs = (char *)data - frame;
nw_frag = 0;
if (OVS_LIKELY(dl_type == htons(ETH_TYPE_IP))) {
const struct ip_header *nh = data;
int ip_len;
uint16_t tot_len;
if (OVS_UNLIKELY(size < IP_HEADER_LEN)) {
goto out;
}
ip_len = IP_IHL(nh->ip_ihl_ver) * 4;
if (OVS_UNLIKELY(ip_len < IP_HEADER_LEN)) {
goto out;
}
if (OVS_UNLIKELY(size < ip_len)) {
goto out;
}
tot_len = ntohs(nh->ip_tot_len);
if (OVS_UNLIKELY(tot_len > size || ip_len > tot_len)) {
goto out;
}
if (OVS_UNLIKELY(size - tot_len > UINT8_MAX)) {
goto out;
}
dp_packet_set_l2_pad_size(packet, size - tot_len);
size = tot_len; /* Never pull padding. */
/* Push both source and destination address at once. */
miniflow_push_words(mf, nw_src, &nh->ip_src, 1);
if (ct_nw_proto_p && !md->ct_orig_tuple_ipv6) {
*ct_nw_proto_p = md->ct_orig_tuple.ipv4.ipv4_proto;
if (*ct_nw_proto_p) {
miniflow_push_words(mf, ct_nw_src,
&md->ct_orig_tuple.ipv4.ipv4_src, 1);
ct_tp_src = md->ct_orig_tuple.ipv4.src_port;
ct_tp_dst = md->ct_orig_tuple.ipv4.dst_port;
}
}
miniflow_push_be32(mf, ipv6_label, 0); /* Padding for IPv4. */
nw_tos = nh->ip_tos;
nw_ttl = nh->ip_ttl;
nw_proto = nh->ip_proto;
if (OVS_UNLIKELY(IP_IS_FRAGMENT(nh->ip_frag_off))) {
nw_frag = FLOW_NW_FRAG_ANY;
if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) {
nw_frag |= FLOW_NW_FRAG_LATER;
}
}
data_pull(&data, &size, ip_len);
} else if (dl_type == htons(ETH_TYPE_IPV6)) {
const struct ovs_16aligned_ip6_hdr *nh;
ovs_be32 tc_flow;
uint16_t plen;
if (OVS_UNLIKELY(size < sizeof *nh)) {
goto out;
}
nh = data_pull(&data, &size, sizeof *nh);
plen = ntohs(nh->ip6_plen);
if (OVS_UNLIKELY(plen > size)) {
goto out;
}
/* Jumbo Payload option not supported yet. */
if (OVS_UNLIKELY(size - plen > UINT8_MAX)) {
goto out;
}
dp_packet_set_l2_pad_size(packet, size - plen);
size = plen; /* Never pull padding. */
miniflow_push_words(mf, ipv6_src, &nh->ip6_src,
sizeof nh->ip6_src / 8);
miniflow_push_words(mf, ipv6_dst, &nh->ip6_dst,
sizeof nh->ip6_dst / 8);
if (ct_nw_proto_p && md->ct_orig_tuple_ipv6) {
*ct_nw_proto_p = md->ct_orig_tuple.ipv6.ipv6_proto;
if (*ct_nw_proto_p) {
miniflow_push_words(mf, ct_ipv6_src,
&md->ct_orig_tuple.ipv6.ipv6_src,
2 *
sizeof md->ct_orig_tuple.ipv6.ipv6_src / 8);
ct_tp_src = md->ct_orig_tuple.ipv6.src_port;
ct_tp_dst = md->ct_orig_tuple.ipv6.dst_port;
}
}
tc_flow = get_16aligned_be32(&nh->ip6_flow);
{
ovs_be32 label = tc_flow & htonl(IPV6_LABEL_MASK);
miniflow_push_be32(mf, ipv6_label, label);
}
nw_tos = ntohl(tc_flow) >> 20;
nw_ttl = nh->ip6_hlim;
nw_proto = nh->ip6_nxt;
if (!parse_ipv6_ext_hdrs__(&data, &size, &nw_proto, &nw_frag)) {
goto out;
}
} else {
if (dl_type == htons(ETH_TYPE_ARP) ||
dl_type == htons(ETH_TYPE_RARP)) {
struct eth_addr arp_buf[2];
const struct arp_eth_header *arp = (const struct arp_eth_header *)
data_try_pull(&data, &size, ARP_ETH_HEADER_LEN);
if (OVS_LIKELY(arp) && OVS_LIKELY(arp->ar_hrd == htons(1))
&& OVS_LIKELY(arp->ar_pro == htons(ETH_TYPE_IP))
&& OVS_LIKELY(arp->ar_hln == ETH_ADDR_LEN)
&& OVS_LIKELY(arp->ar_pln == 4)) {
miniflow_push_be32(mf, nw_src,
get_16aligned_be32(&arp->ar_spa));
miniflow_push_be32(mf, nw_dst,
get_16aligned_be32(&arp->ar_tpa));
/* We only match on the lower 8 bits of the opcode. */
if (OVS_LIKELY(ntohs(arp->ar_op) <= 0xff)) {
miniflow_push_be32(mf, ipv6_label, 0); /* Pad with ARP. */
miniflow_push_be32(mf, nw_frag, htonl(ntohs(arp->ar_op)));
}
/* Must be adjacent. */
ASSERT_SEQUENTIAL(arp_sha, arp_tha);
arp_buf[0] = arp->ar_sha;
arp_buf[1] = arp->ar_tha;
miniflow_push_macs(mf, arp_sha, arp_buf);
miniflow_pad_to_64(mf, arp_tha);
}
} else if (dl_type == htons(ETH_TYPE_NSH)) {
struct flow_nsh nsh;
if (OVS_LIKELY(parse_nsh(&data, &size, &nsh))) {
if (nsh.mdtype == NSH_M_TYPE1) {
miniflow_push_words(mf, nsh, &nsh,
sizeof(struct flow_nsh) /
sizeof(uint64_t));
}
else if (nsh.mdtype == NSH_M_TYPE2) {
/* parse_nsh has stopped it from arriving here for
* MD type 2, will add MD type 2 support code here later
*/
}
}
}
goto out;
}
packet->l4_ofs = (char *)data - frame;
miniflow_push_be32(mf, nw_frag,
bytes_to_be32(nw_frag, nw_tos, nw_ttl, nw_proto));
if (OVS_LIKELY(!(nw_frag & FLOW_NW_FRAG_LATER))) {
if (OVS_LIKELY(nw_proto == IPPROTO_TCP)) {
if (OVS_LIKELY(size >= TCP_HEADER_LEN)) {
const struct tcp_header *tcp = data;
miniflow_push_be32(mf, arp_tha.ea[2], 0);
miniflow_push_be32(mf, tcp_flags,
TCP_FLAGS_BE32(tcp->tcp_ctl));
miniflow_push_be16(mf, tp_src, tcp->tcp_src);
miniflow_push_be16(mf, tp_dst, tcp->tcp_dst);
miniflow_push_be16(mf, ct_tp_src, ct_tp_src);
miniflow_push_be16(mf, ct_tp_dst, ct_tp_dst);
}
} else if (OVS_LIKELY(nw_proto == IPPROTO_UDP)) {
if (OVS_LIKELY(size >= UDP_HEADER_LEN)) {
const struct udp_header *udp = data;
miniflow_push_be16(mf, tp_src, udp->udp_src);
miniflow_push_be16(mf, tp_dst, udp->udp_dst);
miniflow_push_be16(mf, ct_tp_src, ct_tp_src);
miniflow_push_be16(mf, ct_tp_dst, ct_tp_dst);
}
} else if (OVS_LIKELY(nw_proto == IPPROTO_SCTP)) {
if (OVS_LIKELY(size >= SCTP_HEADER_LEN)) {
const struct sctp_header *sctp = data;
miniflow_push_be16(mf, tp_src, sctp->sctp_src);
miniflow_push_be16(mf, tp_dst, sctp->sctp_dst);
miniflow_push_be16(mf, ct_tp_src, ct_tp_src);
miniflow_push_be16(mf, ct_tp_dst, ct_tp_dst);
}
} else if (OVS_LIKELY(nw_proto == IPPROTO_ICMP)) {
if (OVS_LIKELY(size >= ICMP_HEADER_LEN)) {
const struct icmp_header *icmp = data;
miniflow_push_be16(mf, tp_src, htons(icmp->icmp_type));
miniflow_push_be16(mf, tp_dst, htons(icmp->icmp_code));
miniflow_push_be16(mf, ct_tp_src, ct_tp_src);
miniflow_push_be16(mf, ct_tp_dst, ct_tp_dst);
}
} else if (OVS_LIKELY(nw_proto == IPPROTO_IGMP)) {
if (OVS_LIKELY(size >= IGMP_HEADER_LEN)) {
const struct igmp_header *igmp = data;
miniflow_push_be16(mf, tp_src, htons(igmp->igmp_type));
miniflow_push_be16(mf, tp_dst, htons(igmp->igmp_code));
miniflow_push_be16(mf, ct_tp_src, ct_tp_src);
miniflow_push_be16(mf, ct_tp_dst, ct_tp_dst);
miniflow_push_be32(mf, igmp_group_ip4,
get_16aligned_be32(&igmp->group));
miniflow_pad_to_64(mf, igmp_group_ip4);
}
} else if (OVS_LIKELY(nw_proto == IPPROTO_ICMPV6)) {
if (OVS_LIKELY(size >= sizeof(struct icmp6_hdr))) {
const struct in6_addr *nd_target;
struct eth_addr arp_buf[2];
const struct icmp6_hdr *icmp = data_pull(&data, &size,
sizeof *icmp);
if (parse_icmpv6(&data, &size, icmp, &nd_target, arp_buf)) {
if (nd_target) {
miniflow_push_words(mf, nd_target, nd_target,
sizeof *nd_target / sizeof(uint64_t));
}
miniflow_push_macs(mf, arp_sha, arp_buf);
miniflow_pad_to_64(mf, arp_tha);
miniflow_push_be16(mf, tp_src, htons(icmp->icmp6_type));
miniflow_push_be16(mf, tp_dst, htons(icmp->icmp6_code));
miniflow_pad_to_64(mf, tp_dst);
} else {
/* ICMPv6 but not ND. */
miniflow_push_be16(mf, tp_src, htons(icmp->icmp6_type));
miniflow_push_be16(mf, tp_dst, htons(icmp->icmp6_code));
miniflow_push_be16(mf, ct_tp_src, ct_tp_src);
miniflow_push_be16(mf, ct_tp_dst, ct_tp_dst);
}
}
}
}
out:
dst->map = mf.map;
}
ovs_be16
parse_dl_type(const struct eth_header *data_, size_t size)
{
const void *data = data_;
union flow_vlan_hdr vlans[FLOW_MAX_VLAN_HEADERS];
parse_vlan(&data, &size, vlans);
return parse_ethertype(&data, &size);
}
/* For every bit of a field that is wildcarded in 'wildcards', sets the
* corresponding bit in 'flow' to zero. */
void
flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards)
{
uint64_t *flow_u64 = (uint64_t *) flow;
const uint64_t *wc_u64 = (const uint64_t *) &wildcards->masks;
size_t i;
for (i = 0; i < FLOW_U64S; i++) {
flow_u64[i] &= wc_u64[i];
}
}
void
flow_unwildcard_tp_ports(const struct flow *flow, struct flow_wildcards *wc)
{
if (flow->nw_proto != IPPROTO_ICMP) {
memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
} else {
wc->masks.tp_src = htons(0xff);
wc->masks.tp_dst = htons(0xff);
}
}
/* Initializes 'flow_metadata' with the metadata found in 'flow'. */
void
flow_get_metadata(const struct flow *flow, struct match *flow_metadata)
{
int i;
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 40);
match_init_catchall(flow_metadata);
if (flow->tunnel.tun_id != htonll(0)) {
match_set_tun_id(flow_metadata, flow->tunnel.tun_id);
}
if (flow->tunnel.flags & FLOW_TNL_PUB_F_MASK) {
match_set_tun_flags(flow_metadata,
flow->tunnel.flags & FLOW_TNL_PUB_F_MASK);
}
if (flow->tunnel.ip_src) {
match_set_tun_src(flow_metadata, flow->tunnel.ip_src);
}
if (flow->tunnel.ip_dst) {
match_set_tun_dst(flow_metadata, flow->tunnel.ip_dst);
}
if (ipv6_addr_is_set(&flow->tunnel.ipv6_src)) {
match_set_tun_ipv6_src(flow_metadata, &flow->tunnel.ipv6_src);
}
if (ipv6_addr_is_set(&flow->tunnel.ipv6_dst)) {
match_set_tun_ipv6_dst(flow_metadata, &flow->tunnel.ipv6_dst);
}
if (flow->tunnel.gbp_id != htons(0)) {
match_set_tun_gbp_id(flow_metadata, flow->tunnel.gbp_id);
}
if (flow->tunnel.gbp_flags) {
match_set_tun_gbp_flags(flow_metadata, flow->tunnel.gbp_flags);
}
tun_metadata_get_fmd(&flow->tunnel, flow_metadata);
if (flow->metadata != htonll(0)) {
match_set_metadata(flow_metadata, flow->metadata);
}
for (i = 0; i < FLOW_N_REGS; i++) {
if (flow->regs[i]) {
match_set_reg(flow_metadata, i, flow->regs[i]);
}
}
if (flow->pkt_mark != 0) {
match_set_pkt_mark(flow_metadata, flow->pkt_mark);
}
match_set_in_port(flow_metadata, flow->in_port.ofp_port);
if (flow->packet_type != htonl(PT_ETH)) {
match_set_packet_type(flow_metadata, flow->packet_type);
}
if (flow->ct_state != 0) {
match_set_ct_state(flow_metadata, flow->ct_state);
if (is_ct_valid(flow, NULL, NULL) && flow->ct_nw_proto != 0) {
if (flow->dl_type == htons(ETH_TYPE_IP)) {
match_set_ct_nw_src(flow_metadata, flow->ct_nw_src);
match_set_ct_nw_dst(flow_metadata, flow->ct_nw_dst);
match_set_ct_nw_proto(flow_metadata, flow->ct_nw_proto);
match_set_ct_tp_src(flow_metadata, flow->ct_tp_src);
match_set_ct_tp_dst(flow_metadata, flow->ct_tp_dst);
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
match_set_ct_ipv6_src(flow_metadata, &flow->ct_ipv6_src);
match_set_ct_ipv6_dst(flow_metadata, &flow->ct_ipv6_dst);
match_set_ct_nw_proto(flow_metadata, flow->ct_nw_proto);
match_set_ct_tp_src(flow_metadata, flow->ct_tp_src);
match_set_ct_tp_dst(flow_metadata, flow->ct_tp_dst);
}
}
}
if (flow->ct_zone != 0) {
match_set_ct_zone(flow_metadata, flow->ct_zone);
}
if (flow->ct_mark != 0) {
match_set_ct_mark(flow_metadata, flow->ct_mark);
}
if (!ovs_u128_is_zero(flow->ct_label)) {
match_set_ct_label(flow_metadata, flow->ct_label);
}
}
const char *
ct_state_to_string(uint32_t state)
{
switch (state) {
#define CS_STATE(ENUM, INDEX, NAME) case CS_##ENUM: return NAME;
CS_STATES
#undef CS_STATE
default:
return NULL;
}
}
uint32_t
ct_state_from_string(const char *s)
{
#define CS_STATE(ENUM, INDEX, NAME) \
if (!strcmp(s, NAME)) { \
return CS_##ENUM; \
}
CS_STATES
#undef CS_STATE
return 0;
}
/* Parses conntrack state from 'state_str'. If it is parsed successfully,
* stores the parsed ct_state in 'ct_state', and returns true. Otherwise,
* returns false, and reports error message in 'ds'. */
bool
parse_ct_state(const char *state_str, uint32_t default_state,
uint32_t *ct_state, struct ds *ds)
{
uint32_t state = default_state;
char *state_s = xstrdup(state_str);
char *save_ptr = NULL;
for (char *cs = strtok_r(state_s, ", ", &save_ptr); cs;
cs = strtok_r(NULL, ", ", &save_ptr)) {
uint32_t bit = ct_state_from_string(cs);
if (!bit) {
ds_put_format(ds, "%s: unknown connection tracking state flag",
cs);
return false;
}
state |= bit;
}
*ct_state = state;
free(state_s);
return true;
}
/* Checks the given conntrack state 'state' according to the constraints
* listed in ovs-fields (7). Returns true if it is valid. Otherwise, returns
* false, and reports error in 'ds'. */
bool
validate_ct_state(uint32_t state, struct ds *ds)
{
bool valid_ct_state = true;
struct ds d_str = DS_EMPTY_INITIALIZER;
format_flags(&d_str, ct_state_to_string, state, '|');
if (state && !(state & CS_TRACKED)) {
ds_put_format(ds, "%s: invalid connection state: "
"If \"trk\" is unset, no other flags are set\n",
ds_cstr(&d_str));
valid_ct_state = false;
}
if (state & CS_INVALID && state & ~(CS_TRACKED | CS_INVALID)) {
ds_put_format(ds, "%s: invalid connection state: "
"when \"inv\" is set, only \"trk\" may also be set\n",
ds_cstr(&d_str));
valid_ct_state = false;
}
if (state & CS_NEW && state & CS_ESTABLISHED) {
ds_put_format(ds, "%s: invalid connection state: "
"\"new\" and \"est\" are mutually exclusive\n",
ds_cstr(&d_str));
valid_ct_state = false;
}
if (state & CS_NEW && state & CS_REPLY_DIR) {
ds_put_format(ds, "%s: invalid connection state: "
"\"new\" and \"rpy\" are mutually exclusive\n",
ds_cstr(&d_str));
valid_ct_state = false;
}
ds_destroy(&d_str);
return valid_ct_state;
}
/* Clears the fields in 'flow' associated with connection tracking. */
void
flow_clear_conntrack(struct flow *flow)
{
flow->ct_state = 0;
flow->ct_zone = 0;
flow->ct_mark = 0;
flow->ct_label = OVS_U128_ZERO;
flow->ct_nw_proto = 0;
flow->ct_tp_src = 0;
flow->ct_tp_dst = 0;
if (flow->dl_type == htons(ETH_TYPE_IP)) {
flow->ct_nw_src = 0;
flow->ct_nw_dst = 0;
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
memset(&flow->ct_ipv6_src, 0, sizeof flow->ct_ipv6_src);
memset(&flow->ct_ipv6_dst, 0, sizeof flow->ct_ipv6_dst);
}
}
char *
flow_to_string(const struct flow *flow,
const struct ofputil_port_map *port_map)
{
struct ds ds = DS_EMPTY_INITIALIZER;
flow_format(&ds, flow, port_map);
return ds_cstr(&ds);
}
const char *
flow_tun_flag_to_string(uint32_t flags)
{
switch (flags) {
case FLOW_TNL_F_DONT_FRAGMENT:
return "df";
case FLOW_TNL_F_CSUM:
return "csum";
case FLOW_TNL_F_KEY:
return "key";
case FLOW_TNL_F_OAM:
return "oam";
default:
return NULL;
}
}
void
format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t),
uint32_t flags, char del)
{
uint32_t bad = 0;
if (!flags) {
ds_put_char(ds, '0');
return;
}
while (flags) {
uint32_t bit = rightmost_1bit(flags);
const char *s;
s = bit_to_string(bit);
if (s) {
ds_put_format(ds, "%s%c", s, del);
} else {
bad |= bit;
}
flags &= ~bit;
}
if (bad) {
ds_put_format(ds, "0x%"PRIx32"%c", bad, del);
}
ds_chomp(ds, del);
}
void
format_flags_masked(struct ds *ds, const char *name,
const char *(*bit_to_string)(uint32_t), uint32_t flags,
uint32_t mask, uint32_t max_mask)
{
if (name) {
ds_put_format(ds, "%s%s=%s", colors.param, name, colors.end);
}
if (mask == max_mask) {
format_flags(ds, bit_to_string, flags, '|');
return;
}
if (!mask) {
ds_put_cstr(ds, "0/0");
return;
}
while (mask) {
uint32_t bit = rightmost_1bit(mask);
const char *s = bit_to_string(bit);
ds_put_format(ds, "%s%s", (flags & bit) ? "+" : "-",
s ? s : "[Unknown]");
mask &= ~bit;
}
}
static void
put_u16_masked(struct ds *s, uint16_t value, uint16_t mask)
{
if (!mask) {
ds_put_char(s, '*');
} else {
if (value > 9) {
ds_put_format(s, "0x%"PRIx16, value);
} else {
ds_put_format(s, "%"PRIu16, value);
}
if (mask != UINT16_MAX) {
ds_put_format(s, "/0x%"PRIx16, mask);
}
}
}
void
format_packet_type_masked(struct ds *s, ovs_be32 value, ovs_be32 mask)
{
if (value == htonl(PT_ETH) && mask == OVS_BE32_MAX) {
ds_put_cstr(s, "eth");
} else {
ds_put_cstr(s, "packet_type=(");
put_u16_masked(s, pt_ns(value), pt_ns(mask));
ds_put_char(s, ',');
put_u16_masked(s, pt_ns_type(value), pt_ns_type(mask));
ds_put_char(s, ')');
}
}
/* Scans a string 's' of flags to determine their numerical value and
* returns the number of characters parsed using 'bit_to_string' to
* lookup flag names. Scanning continues until the character 'end' is
* reached.
*
* In the event of a failure, a negative error code will be returned. In
* addition, if 'res_string' is non-NULL then a descriptive string will
* be returned incorporating the identifying string 'field_name'. This
* error string must be freed by the caller.
*
* Upon success, the flag values will be stored in 'res_flags' and
* optionally 'res_mask', if it is non-NULL (if it is NULL then any masks
* present in the original string will be considered an error). The
* caller may restrict the acceptable set of values through the mask
* 'allowed'. */
int
parse_flags(const char *s, const char *(*bit_to_string)(uint32_t),
char end, const char *field_name, char **res_string,
uint32_t *res_flags, uint32_t allowed, uint32_t *res_mask)
{
uint32_t result = 0;
int n;
/* Parse masked flags in numeric format? */
if (res_mask && ovs_scan(s, "%"SCNi32"/%"SCNi32"%n",
res_flags, res_mask, &n) && n > 0) {
if (*res_flags & ~allowed || *res_mask & ~allowed) {
goto unknown;
}
return n;
}
n = 0;
if (res_mask && (*s == '+' || *s == '-')) {
uint32_t flags = 0, mask = 0;
/* Parse masked flags. */
while (s[0] != end) {
bool set;
uint32_t bit;
size_t len;
if (s[0] == '+') {
set = true;
} else if (s[0] == '-') {
set = false;
} else {
if (res_string) {
*res_string = xasprintf("%s: %s must be preceded by '+' "
"(for SET) or '-' (NOT SET)", s,
field_name);
}
return -EINVAL;
}
s++;
n++;
for (bit = 1; bit; bit <<= 1) {
const char *fname = bit_to_string(bit);
if (!fname) {
continue;
}
len = strlen(fname);
if (strncmp(s, fname, len) ||
(s[len] != '+' && s[len] != '-' && s[len] != end)) {
continue;
}
if (mask & bit) {
/* bit already set. */
if (res_string) {
*res_string = xasprintf("%s: Each %s flag can be "
"specified only once", s,
field_name);
}
return -EINVAL;
}
if (!(bit & allowed)) {
goto unknown;
}
if (set) {
flags |= bit;
}
mask |= bit;
break;
}
if (!bit) {
goto unknown;
}
s += len;
n += len;
}
*res_flags = flags;
*res_mask = mask;
return n;
}
/* Parse unmasked flags. If a flag is present, it is set, otherwise
* it is not set. */
while (s[n] != end) {
unsigned long long int flags;
uint32_t bit;
int n0;
if (ovs_scan(&s[n], "%lli%n", &flags, &n0)) {
if (flags & ~allowed) {
goto unknown;
}
n += n0 + (s[n + n0] == '|');
result |= flags;
continue;
}
for (bit = 1; bit; bit <<= 1) {
const char *name = bit_to_string(bit);
size_t len;
if (!name) {
continue;
}
len = strlen(name);
if (!strncmp(s + n, name, len) &&
(s[n + len] == '|' || s[n + len] == end)) {
if (!(bit & allowed)) {
goto unknown;
}
result |= bit;
n += len + (s[n + len] == '|');
break;
}
}
if (!bit) {
goto unknown;
}
}
*res_flags = result;
if (res_mask) {
*res_mask = UINT32_MAX;
}
if (res_string) {
*res_string = NULL;
}
return n;
unknown:
if (res_string) {
*res_string = xasprintf("%s: unknown %s flag(s)", s, field_name);
}
return -EINVAL;
}
void
flow_format(struct ds *ds,
const struct flow *flow, const struct ofputil_port_map *port_map)
{
struct match match;
struct flow_wildcards *wc = &match.wc;
match_wc_init(&match, flow);
/* As this function is most often used for formatting a packet in a
* packet-in message, skip formatting the packet context fields that are
* all-zeroes to make the print-out easier on the eyes. This means that a
* missing context field implies a zero value for that field. This is
* similar to OpenFlow encoding of these fields, as the specification
* states that all-zeroes context fields should not be encoded in the
* packet-in messages. */
if (!flow->in_port.ofp_port) {
WC_UNMASK_FIELD(wc, in_port);
}
if (!flow->skb_priority) {
WC_UNMASK_FIELD(wc, skb_priority);
}
if (!flow->pkt_mark) {
WC_UNMASK_FIELD(wc, pkt_mark);
}
if (!flow->recirc_id) {
WC_UNMASK_FIELD(wc, recirc_id);
}
if (!flow->dp_hash) {
WC_UNMASK_FIELD(wc, dp_hash);
}
if (!flow->ct_state) {
WC_UNMASK_FIELD(wc, ct_state);
}
if (!flow->ct_zone) {
WC_UNMASK_FIELD(wc, ct_zone);
}
if (!flow->ct_mark) {
WC_UNMASK_FIELD(wc, ct_mark);
}
if (ovs_u128_is_zero(flow->ct_label)) {
WC_UNMASK_FIELD(wc, ct_label);
}
if (!is_ct_valid(flow, &match.wc, NULL) || !flow->ct_nw_proto) {
WC_UNMASK_FIELD(wc, ct_nw_proto);
WC_UNMASK_FIELD(wc, ct_tp_src);
WC_UNMASK_FIELD(wc, ct_tp_dst);
if (flow->dl_type == htons(ETH_TYPE_IP)) {
WC_UNMASK_FIELD(wc, ct_nw_src);
WC_UNMASK_FIELD(wc, ct_nw_dst);
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
WC_UNMASK_FIELD(wc, ct_ipv6_src);
WC_UNMASK_FIELD(wc, ct_ipv6_dst);
}
}
for (int i = 0; i < FLOW_N_REGS; i++) {
if (!flow->regs[i]) {
WC_UNMASK_FIELD(wc, regs[i]);
}
}
if (!flow->metadata) {
WC_UNMASK_FIELD(wc, metadata);
}
match_format(&match, port_map, ds, OFP_DEFAULT_PRIORITY);
}
void
flow_print(FILE *stream,
const struct flow *flow, const struct ofputil_port_map *port_map)
{
char *s = flow_to_string(flow, port_map);
fputs(s, stream);
free(s);
}
/* flow_wildcards functions. */
/* Initializes 'wc' as a set of wildcards that matches every packet. */
void
flow_wildcards_init_catchall(struct flow_wildcards *wc)
{
memset(&wc->masks, 0, sizeof wc->masks);
}
/* Converts a flow into flow wildcards. It sets the wildcard masks based on
* the packet headers extracted to 'flow'. It will not set the mask for fields
* that do not make sense for the packet type. OpenFlow-only metadata is
* wildcarded, but other metadata is unconditionally exact-matched. */
void
flow_wildcards_init_for_packet(struct flow_wildcards *wc,
const struct flow *flow)
{
ovs_be16 dl_type = OVS_BE16_MAX;
memset(&wc->masks, 0x0, sizeof wc->masks);
/* Update this function whenever struct flow changes. */
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 40);
if (flow_tnl_dst_is_set(&flow->tunnel)) {
if (flow->tunnel.flags & FLOW_TNL_F_KEY) {
WC_MASK_FIELD(wc, tunnel.tun_id);
}
WC_MASK_FIELD(wc, tunnel.ip_src);
WC_MASK_FIELD(wc, tunnel.ip_dst);
WC_MASK_FIELD(wc, tunnel.ipv6_src);
WC_MASK_FIELD(wc, tunnel.ipv6_dst);
WC_MASK_FIELD(wc, tunnel.flags);
WC_MASK_FIELD(wc, tunnel.ip_tos);
WC_MASK_FIELD(wc, tunnel.ip_ttl);
WC_MASK_FIELD(wc, tunnel.tp_src);
WC_MASK_FIELD(wc, tunnel.tp_dst);
WC_MASK_FIELD(wc, tunnel.gbp_id);
WC_MASK_FIELD(wc, tunnel.gbp_flags);
if (!(flow->tunnel.flags & FLOW_TNL_F_UDPIF)) {
if (flow->tunnel.metadata.present.map) {
wc->masks.tunnel.metadata.present.map =
flow->tunnel.metadata.present.map;
WC_MASK_FIELD(wc, tunnel.metadata.opts.u8);
WC_MASK_FIELD(wc, tunnel.metadata.tab);
}
} else {
WC_MASK_FIELD(wc, tunnel.metadata.present.len);
memset(wc->masks.tunnel.metadata.opts.gnv, 0xff,
flow->tunnel.metadata.present.len);
}
} else if (flow->tunnel.tun_id) {
WC_MASK_FIELD(wc, tunnel.tun_id);
}
/* metadata, regs, and conj_id wildcarded. */
WC_MASK_FIELD(wc, skb_priority);
WC_MASK_FIELD(wc, pkt_mark);
WC_MASK_FIELD(wc, ct_state);
WC_MASK_FIELD(wc, ct_zone);
WC_MASK_FIELD(wc, ct_mark);
WC_MASK_FIELD(wc, ct_label);
WC_MASK_FIELD(wc, recirc_id);
WC_MASK_FIELD(wc, dp_hash);
WC_MASK_FIELD(wc, in_port);
/* actset_output wildcarded. */
WC_MASK_FIELD(wc, packet_type);
if (flow->packet_type == htonl(PT_ETH)) {
WC_MASK_FIELD(wc, dl_dst);
WC_MASK_FIELD(wc, dl_src);
WC_MASK_FIELD(wc, dl_type);
/* No need to set mask of inner VLANs that don't exist. */
for (int i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) {
/* Always show the first zero VLAN. */
WC_MASK_FIELD(wc, vlans[i]);
if (flow->vlans[i].tci == htons(0)) {
break;
}
}
dl_type = flow->dl_type;
} else {
dl_type = pt_ns_type_be(flow->packet_type);
}
if (dl_type == htons(ETH_TYPE_IP)) {
WC_MASK_FIELD(wc, nw_src);
WC_MASK_FIELD(wc, nw_dst);
WC_MASK_FIELD(wc, ct_nw_src);
WC_MASK_FIELD(wc, ct_nw_dst);
} else if (dl_type == htons(ETH_TYPE_IPV6)) {
WC_MASK_FIELD(wc, ipv6_src);
WC_MASK_FIELD(wc, ipv6_dst);
WC_MASK_FIELD(wc, ipv6_label);
if (is_nd(flow, wc)) {
WC_MASK_FIELD(wc, arp_sha);
WC_MASK_FIELD(wc, arp_tha);
WC_MASK_FIELD(wc, nd_target);
} else {
WC_MASK_FIELD(wc, ct_ipv6_src);
WC_MASK_FIELD(wc, ct_ipv6_dst);
}
} else if (dl_type == htons(ETH_TYPE_ARP) ||
dl_type == htons(ETH_TYPE_RARP)) {
WC_MASK_FIELD(wc, nw_src);
WC_MASK_FIELD(wc, nw_dst);
WC_MASK_FIELD(wc, nw_proto);
WC_MASK_FIELD(wc, arp_sha);
WC_MASK_FIELD(wc, arp_tha);
return;
} else if (eth_type_mpls(dl_type)) {
for (int i = 0; i < FLOW_MAX_MPLS_LABELS; i++) {
WC_MASK_FIELD(wc, mpls_lse[i]);
if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
break;
}
}
return;
} else if (flow->dl_type == htons(ETH_TYPE_NSH)) {
WC_MASK_FIELD(wc, nsh.flags);
WC_MASK_FIELD(wc, nsh.mdtype);
WC_MASK_FIELD(wc, nsh.np);
WC_MASK_FIELD(wc, nsh.spi);
WC_MASK_FIELD(wc, nsh.si);
WC_MASK_FIELD(wc, nsh.c);
} else {
return; /* Unknown ethertype. */
}
/* IPv4 or IPv6. */
WC_MASK_FIELD(wc, nw_frag);
WC_MASK_FIELD(wc, nw_tos);
WC_MASK_FIELD(wc, nw_ttl);
WC_MASK_FIELD(wc, nw_proto);
WC_MASK_FIELD(wc, ct_nw_proto);
WC_MASK_FIELD(wc, ct_tp_src);
WC_MASK_FIELD(wc, ct_tp_dst);
/* No transport layer header in later fragments. */
if (!(flow->nw_frag & FLOW_NW_FRAG_LATER) &&
(flow->nw_proto == IPPROTO_ICMP ||
flow->nw_proto == IPPROTO_ICMPV6 ||
flow->nw_proto == IPPROTO_TCP ||
flow->nw_proto == IPPROTO_UDP ||
flow->nw_proto == IPPROTO_SCTP ||
flow->nw_proto == IPPROTO_IGMP)) {
WC_MASK_FIELD(wc, tp_src);
WC_MASK_FIELD(wc, tp_dst);
if (flow->nw_proto == IPPROTO_TCP) {
WC_MASK_FIELD(wc, tcp_flags);
} else if (flow->nw_proto == IPPROTO_IGMP) {
WC_MASK_FIELD(wc, igmp_group_ip4);
}
}
}
/* Return a map of possible fields for a packet of the same type as 'flow'.
* Including extra bits in the returned mask is not wrong, it is just less
* optimal.
*
* This is a less precise version of flow_wildcards_init_for_packet() above. */
void
flow_wc_map(const struct flow *flow, struct flowmap *map)
{
/* Update this function whenever struct flow changes. */
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 40);
flowmap_init(map);
if (flow_tnl_dst_is_set(&flow->tunnel)) {
FLOWMAP_SET__(map, tunnel, offsetof(struct flow_tnl, metadata));
if (!(flow->tunnel.flags & FLOW_TNL_F_UDPIF)) {
if (flow->tunnel.metadata.present.map) {
FLOWMAP_SET(map, tunnel.metadata);
}
} else {
FLOWMAP_SET(map, tunnel.metadata.present.len);
FLOWMAP_SET__(map, tunnel.metadata.opts.gnv,
flow->tunnel.metadata.present.len);
}
}
/* Metadata fields that can appear on packet input. */
FLOWMAP_SET(map, skb_priority);
FLOWMAP_SET(map, pkt_mark);
FLOWMAP_SET(map, recirc_id);
FLOWMAP_SET(map, dp_hash);
FLOWMAP_SET(map, in_port);
FLOWMAP_SET(map, dl_dst);
FLOWMAP_SET(map, dl_src);
FLOWMAP_SET(map, dl_type);
FLOWMAP_SET(map, vlans);
FLOWMAP_SET(map, ct_state);
FLOWMAP_SET(map, ct_zone);
FLOWMAP_SET(map, ct_mark);
FLOWMAP_SET(map, ct_label);
FLOWMAP_SET(map, packet_type);
/* Ethertype-dependent fields. */
if (OVS_LIKELY(flow->dl_type == htons(ETH_TYPE_IP))) {
FLOWMAP_SET(map, nw_src);
FLOWMAP_SET(map, nw_dst);
FLOWMAP_SET(map, nw_proto);
FLOWMAP_SET(map, nw_frag);
FLOWMAP_SET(map, nw_tos);
FLOWMAP_SET(map, nw_ttl);
FLOWMAP_SET(map, tp_src);
FLOWMAP_SET(map, tp_dst);
FLOWMAP_SET(map, ct_nw_proto);
FLOWMAP_SET(map, ct_nw_src);
FLOWMAP_SET(map, ct_nw_dst);
FLOWMAP_SET(map, ct_tp_src);
FLOWMAP_SET(map, ct_tp_dst);
if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_IGMP)) {
FLOWMAP_SET(map, igmp_group_ip4);
} else {
FLOWMAP_SET(map, tcp_flags);
}
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
FLOWMAP_SET(map, ipv6_src);
FLOWMAP_SET(map, ipv6_dst);
FLOWMAP_SET(map, ipv6_label);
FLOWMAP_SET(map, nw_proto);
FLOWMAP_SET(map, nw_frag);
FLOWMAP_SET(map, nw_tos);
FLOWMAP_SET(map, nw_ttl);
FLOWMAP_SET(map, tp_src);
FLOWMAP_SET(map, tp_dst);
if (OVS_UNLIKELY(is_nd(flow, NULL))) {
FLOWMAP_SET(map, nd_target);
FLOWMAP_SET(map, arp_sha);
FLOWMAP_SET(map, arp_tha);
} else {
FLOWMAP_SET(map, ct_nw_proto);
FLOWMAP_SET(map, ct_ipv6_src);
FLOWMAP_SET(map, ct_ipv6_dst);
FLOWMAP_SET(map, ct_tp_src);
FLOWMAP_SET(map, ct_tp_dst);
FLOWMAP_SET(map, tcp_flags);
}
} else if (eth_type_mpls(flow->dl_type)) {
FLOWMAP_SET(map, mpls_lse);
} else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
flow->dl_type == htons(ETH_TYPE_RARP)) {
FLOWMAP_SET(map, nw_src);
FLOWMAP_SET(map, nw_dst);
FLOWMAP_SET(map, nw_proto);
FLOWMAP_SET(map, arp_sha);
FLOWMAP_SET(map, arp_tha);
} else if (flow->dl_type == htons(ETH_TYPE_NSH)) {
FLOWMAP_SET(map, nsh.flags);
FLOWMAP_SET(map, nsh.mdtype);
FLOWMAP_SET(map, nsh.np);
FLOWMAP_SET(map, nsh.spi);
FLOWMAP_SET(map, nsh.si);
FLOWMAP_SET(map, nsh.c);
}
}
/* Clear the metadata and register wildcard masks. They are not packet
* header fields. */
void
flow_wildcards_clear_non_packet_fields(struct flow_wildcards *wc)
{
/* Update this function whenever struct flow changes. */
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 40);
memset(&wc->masks.metadata, 0, sizeof wc->masks.metadata);
memset(&wc->masks.regs, 0, sizeof wc->masks.regs);
wc->masks.actset_output = 0;
wc->masks.conj_id = 0;
}
/* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or
* fields. */
bool
flow_wildcards_is_catchall(const struct flow_wildcards *wc)
{
const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
size_t i;
for (i = 0; i < FLOW_U64S; i++) {
if (wc_u64[i]) {
return false;
}
}
return true;
}
/* Sets 'dst' as the bitwise AND of wildcards in 'src1' and 'src2'.
* That is, a bit or a field is wildcarded in 'dst' if it is wildcarded
* in 'src1' or 'src2' or both. */
void
flow_wildcards_and(struct flow_wildcards *dst,
const struct flow_wildcards *src1,
const struct flow_wildcards *src2)
{
uint64_t *dst_u64 = (uint64_t *) &dst->masks;
const uint64_t *src1_u64 = (const uint64_t *) &src1->masks;
const uint64_t *src2_u64 = (const uint64_t *) &src2->masks;
size_t i;
for (i = 0; i < FLOW_U64S; i++) {
dst_u64[i] = src1_u64[i] & src2_u64[i];
}
}
/* Sets 'dst' as the bitwise OR of wildcards in 'src1' and 'src2'. That
* is, a bit or a field is wildcarded in 'dst' if it is neither
* wildcarded in 'src1' nor 'src2'. */
void
flow_wildcards_or(struct flow_wildcards *dst,
const struct flow_wildcards *src1,
const struct flow_wildcards *src2)
{
uint64_t *dst_u64 = (uint64_t *) &dst->masks;
const uint64_t *src1_u64 = (const uint64_t *) &src1->masks;
const uint64_t *src2_u64 = (const uint64_t *) &src2->masks;
size_t i;
for (i = 0; i < FLOW_U64S; i++) {
dst_u64[i] = src1_u64[i] | src2_u64[i];
}
}
/* Returns a hash of the wildcards in 'wc'. */
uint32_t
flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis)
{
return flow_hash(&wc->masks, basis);
}
/* Returns true if 'a' and 'b' represent the same wildcards, false if they are
* different. */
bool
flow_wildcards_equal(const struct flow_wildcards *a,
const struct flow_wildcards *b)
{
return flow_equal(&a->masks, &b->masks);
}
/* Returns true if at least one bit or field is wildcarded in 'a' but not in
* 'b', false otherwise. */
bool
flow_wildcards_has_extra(const struct flow_wildcards *a,
const struct flow_wildcards *b)
{
const uint64_t *a_u64 = (const uint64_t *) &a->masks;
const uint64_t *b_u64 = (const uint64_t *) &b->masks;
size_t i;
for (i = 0; i < FLOW_U64S; i++) {
if ((a_u64[i] & b_u64[i]) != b_u64[i]) {
return true;
}
}
return false;
}
/* Returns true if 'a' and 'b' are equal, except that 0-bits (wildcarded bits)
* in 'wc' do not need to be equal in 'a' and 'b'. */
bool
flow_equal_except(const struct flow *a, const struct flow *b,
const struct flow_wildcards *wc)
{
const uint64_t *a_u64 = (const uint64_t *) a;
const uint64_t *b_u64 = (const uint64_t *) b;
const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
size_t i;
for (i = 0; i < FLOW_U64S; i++) {
if ((a_u64[i] ^ b_u64[i]) & wc_u64[i]) {
return false;
}
}
return true;
}
/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
* (A 0-bit indicates a wildcard bit.) */
void
flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
{
wc->masks.regs[idx] = mask;
}
/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
* (A 0-bit indicates a wildcard bit.) */
void
flow_wildcards_set_xreg_mask(struct flow_wildcards *wc, int idx, uint64_t mask)
{
flow_set_xreg(&wc->masks, idx, mask);
}
/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
* (A 0-bit indicates a wildcard bit.) */
void
flow_wildcards_set_xxreg_mask(struct flow_wildcards *wc, int idx,
ovs_u128 mask)
{
flow_set_xxreg(&wc->masks, idx, mask);
}
/* Calculates the 5-tuple hash from the given miniflow.
* This returns the same value as flow_hash_5tuple for the corresponding
* flow. */
uint32_t
miniflow_hash_5tuple(const struct miniflow *flow, uint32_t basis)
{
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 40);
uint32_t hash = basis;
if (flow) {
ovs_be16 dl_type = MINIFLOW_GET_BE16(flow, dl_type);
uint8_t nw_proto;
if (dl_type == htons(ETH_TYPE_IPV6)) {
struct flowmap map = FLOWMAP_EMPTY_INITIALIZER;
uint64_t value;
FLOWMAP_SET(&map, ipv6_src);
FLOWMAP_SET(&map, ipv6_dst);
MINIFLOW_FOR_EACH_IN_FLOWMAP(value, flow, map) {
hash = hash_add64(hash, value);
}
} else if (dl_type == htons(ETH_TYPE_IP)
|| dl_type == htons(ETH_TYPE_ARP)) {
hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_src));
hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_dst));
} else {
goto out;
}
nw_proto = MINIFLOW_GET_U8(flow, nw_proto);
hash = hash_add(hash, nw_proto);
if (nw_proto != IPPROTO_TCP && nw_proto != IPPROTO_UDP
&& nw_proto != IPPROTO_SCTP && nw_proto != IPPROTO_ICMP
&& nw_proto != IPPROTO_ICMPV6) {
goto out;
}
/* Add both ports at once. */
hash = hash_add(hash, MINIFLOW_GET_U32(flow, tp_src));
}
out:
return hash_finish(hash, 42);
}
ASSERT_SEQUENTIAL_SAME_WORD(tp_src, tp_dst);
ASSERT_SEQUENTIAL(ipv6_src, ipv6_dst);
/* Calculates the 5-tuple hash from the given flow. */
uint32_t
flow_hash_5tuple(const struct flow *flow, uint32_t basis)
{
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 40);
uint32_t hash = basis;
if (flow) {
if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
const uint64_t *flow_u64 = (const uint64_t *)flow;
int ofs = offsetof(struct flow, ipv6_src) / 8;
int end = ofs + 2 * sizeof flow->ipv6_src / 8;
for (;ofs < end; ofs++) {
hash = hash_add64(hash, flow_u64[ofs]);
}
} else if (flow->dl_type == htons(ETH_TYPE_IP)
|| flow->dl_type == htons(ETH_TYPE_ARP)) {
hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_src);
hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_dst);
} else {
goto out;
}
hash = hash_add(hash, flow->nw_proto);
if (flow->nw_proto != IPPROTO_TCP && flow->nw_proto != IPPROTO_UDP
&& flow->nw_proto != IPPROTO_SCTP && flow->nw_proto != IPPROTO_ICMP
&& flow->nw_proto != IPPROTO_ICMPV6) {
goto out;
}
/* Add both ports at once. */
hash = hash_add(hash,
((const uint32_t *)flow)[offsetof(struct flow, tp_src)
/ sizeof(uint32_t)]);
}
out:
return hash_finish(hash, 42); /* Arbitrary number. */
}
/* Hashes 'flow' based on its L2 through L4 protocol information. */
uint32_t
flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
{
struct {
union {
ovs_be32 ipv4_addr;
struct in6_addr ipv6_addr;
};
ovs_be16 eth_type;
ovs_be16 vlan_tci;
ovs_be16 tp_port;
struct eth_addr eth_addr;
uint8_t ip_proto;
} fields;
int i;
memset(&fields, 0, sizeof fields);
for (i = 0; i < ARRAY_SIZE(fields.eth_addr.be16); i++) {
fields.eth_addr.be16[i] = flow->dl_src.be16[i] ^ flow->dl_dst.be16[i];
}
for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) {
fields.vlan_tci ^= flow->vlans[i].tci & htons(VLAN_VID_MASK);
}
fields.eth_type = flow->dl_type;
/* UDP source and destination port are not taken into account because they
* will not necessarily be symmetric in a bidirectional flow. */
if (fields.eth_type == htons(ETH_TYPE_IP)) {
fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
fields.ip_proto = flow->nw_proto;
if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
fields.tp_port = flow->tp_src ^ flow->tp_dst;
}
} else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
const uint8_t *a = &flow->ipv6_src.s6_addr[0];
const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];
for (i=0; i<16; i++) {
ipv6_addr[i] = a[i] ^ b[i];
}
fields.ip_proto = flow->nw_proto;
if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
fields.tp_port = flow->tp_src ^ flow->tp_dst;
}
}
return jhash_bytes(&fields, sizeof fields, basis);
}
/* Hashes 'flow' based on its L3 through L4 protocol information */
uint32_t
flow_hash_symmetric_l3l4(const struct flow *flow, uint32_t basis,
bool inc_udp_ports)
{
uint32_t hash = basis;
/* UDP source and destination port are also taken into account. */
if (flow->dl_type == htons(ETH_TYPE_IP)) {
hash = hash_add(hash,
(OVS_FORCE uint32_t) (flow->nw_src ^ flow->nw_dst));
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
/* IPv6 addresses are 64-bit aligned inside struct flow. */
const uint64_t *a = ALIGNED_CAST(uint64_t *, flow->ipv6_src.s6_addr);
const uint64_t *b = ALIGNED_CAST(uint64_t *, flow->ipv6_dst.s6_addr);
for (int i = 0; i < sizeof flow->ipv6_src / sizeof *a; i++) {
hash = hash_add64(hash, a[i] ^ b[i]);
}
} else {
/* Cannot hash non-IP flows */
return 0;
}
hash = hash_add(hash, flow->nw_proto);
if (flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_SCTP ||
(inc_udp_ports && flow->nw_proto == IPPROTO_UDP)) {
hash = hash_add(hash,
(OVS_FORCE uint16_t) (flow->tp_src ^ flow->tp_dst));
}
return hash_finish(hash, basis);
}
/* Initialize a flow with random fields that matter for nx_hash_fields. */
void
flow_random_hash_fields(struct flow *flow)
{
uint16_t rnd = random_uint16();
int i;
/* Initialize to all zeros. */
memset(flow, 0, sizeof *flow);
eth_addr_random(&flow->dl_src);
eth_addr_random(&flow->dl_dst);
for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) {
uint16_t vlan = random_uint16() & VLAN_VID_MASK;
flow->vlans[i].tpid = htons(ETH_TYPE_VLAN_8021Q);
flow->vlans[i].tci = htons(vlan | VLAN_CFI);
}
/* Make most of the random flows IPv4, some IPv6, and rest random. */
flow->dl_type = rnd < 0x8000 ? htons(ETH_TYPE_IP) :
rnd < 0xc000 ? htons(ETH_TYPE_IPV6) : (OVS_FORCE ovs_be16)rnd;
if (dl_type_is_ip_any(flow->dl_type)) {
if (flow->dl_type == htons(ETH_TYPE_IP)) {
flow->nw_src = (OVS_FORCE ovs_be32)random_uint32();
flow->nw_dst = (OVS_FORCE ovs_be32)random_uint32();
} else {
random_bytes(&flow->ipv6_src, sizeof flow->ipv6_src);
random_bytes(&flow->ipv6_dst, sizeof flow->ipv6_dst);
}
/* Make most of IP flows TCP, some UDP or SCTP, and rest random. */
rnd = random_uint16();
flow->nw_proto = rnd < 0x8000 ? IPPROTO_TCP :
rnd < 0xc000 ? IPPROTO_UDP :
rnd < 0xd000 ? IPPROTO_SCTP : (uint8_t)rnd;
if (flow->nw_proto == IPPROTO_TCP ||
flow->nw_proto == IPPROTO_UDP ||
flow->nw_proto == IPPROTO_SCTP) {
flow->tp_src = (OVS_FORCE ovs_be16)random_uint16();
flow->tp_dst = (OVS_FORCE ovs_be16)random_uint16();
}
}
}
/* Masks the fields in 'wc' that are used by the flow hash 'fields'. */
void
flow_mask_hash_fields(const struct flow *flow, struct flow_wildcards *wc,
enum nx_hash_fields fields)
{
int i;
switch (fields) {
case NX_HASH_FIELDS_ETH_SRC:
memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
break;
case NX_HASH_FIELDS_SYMMETRIC_L4:
memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
if (flow->dl_type == htons(ETH_TYPE_IP)) {
memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
}
if (is_ip_any(flow)) {
memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
flow_unwildcard_tp_ports(flow, wc);
}
for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) {
wc->masks.vlans[i].tci |= htons(VLAN_VID_MASK | VLAN_CFI);
}
break;
case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP:
if (is_ip_any(flow) && flow->nw_proto == IPPROTO_UDP) {
memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
}
/* fall through */
case NX_HASH_FIELDS_SYMMETRIC_L3L4:
if (flow->dl_type == htons(ETH_TYPE_IP)) {
memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
} else {
break; /* non-IP flow */
}
memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
if (flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_SCTP) {
memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
}
break;
case NX_HASH_FIELDS_NW_SRC:
if (flow->dl_type == htons(ETH_TYPE_IP)) {
memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
}
break;
case NX_HASH_FIELDS_NW_DST:
if (flow->dl_type == htons(ETH_TYPE_IP)) {
memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
}
break;
default:
OVS_NOT_REACHED();
}
}
/* Hashes the portions of 'flow' designated by 'fields'. */
uint32_t
flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields,
uint16_t basis)
{
switch (fields) {
case NX_HASH_FIELDS_ETH_SRC:
return jhash_bytes(&flow->dl_src, sizeof flow->dl_src, basis);
case NX_HASH_FIELDS_SYMMETRIC_L4:
return flow_hash_symmetric_l4(flow, basis);
case NX_HASH_FIELDS_SYMMETRIC_L3L4:
return flow_hash_symmetric_l3l4(flow, basis, false);
case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP:
return flow_hash_symmetric_l3l4(flow, basis, true);
case NX_HASH_FIELDS_NW_SRC:
if (flow->dl_type == htons(ETH_TYPE_IP)) {
return jhash_bytes(&flow->nw_src, sizeof flow->nw_src, basis);
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
return jhash_bytes(&flow->ipv6_src, sizeof flow->ipv6_src, basis);
} else {
return basis;
}
case NX_HASH_FIELDS_NW_DST:
if (flow->dl_type == htons(ETH_TYPE_IP)) {
return jhash_bytes(&flow->nw_dst, sizeof flow->nw_dst, basis);
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
return jhash_bytes(&flow->ipv6_dst, sizeof flow->ipv6_dst, basis);
} else {
return basis;
}
}
OVS_NOT_REACHED();
}
/* Returns a string representation of 'fields'. */
const char *
flow_hash_fields_to_str(enum nx_hash_fields fields)
{
switch (fields) {
case NX_HASH_FIELDS_ETH_SRC: return "eth_src";
case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4";
case NX_HASH_FIELDS_SYMMETRIC_L3L4: return "symmetric_l3l4";
case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP: return "symmetric_l3l4+udp";
case NX_HASH_FIELDS_NW_SRC: return "nw_src";
case NX_HASH_FIELDS_NW_DST: return "nw_dst";
default: return "<unknown>";
}
}
/* Returns true if the value of 'fields' is supported. Otherwise false. */
bool
flow_hash_fields_valid(enum nx_hash_fields fields)
{
return fields == NX_HASH_FIELDS_ETH_SRC
|| fields == NX_HASH_FIELDS_SYMMETRIC_L4
|| fields == NX_HASH_FIELDS_SYMMETRIC_L3L4
|| fields == NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP
|| fields == NX_HASH_FIELDS_NW_SRC
|| fields == NX_HASH_FIELDS_NW_DST;
}
/* Returns a hash value for the bits of 'flow' that are active based on
* 'wc', given 'basis'. */
uint32_t
flow_hash_in_wildcards(const struct flow *flow,
const struct flow_wildcards *wc, uint32_t basis)
{
const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
const uint64_t *flow_u64 = (const uint64_t *) flow;
uint32_t hash;
size_t i;
hash = basis;
for (i = 0; i < FLOW_U64S; i++) {
hash = hash_add64(hash, flow_u64[i] & wc_u64[i]);
}
return hash_finish(hash, 8 * FLOW_U64S);
}
/* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
* OpenFlow 1.0 "dl_vlan" value:
*
* - If it is in the range 0...4095, 'flow->vlans[0].tci' is set to match
* that VLAN. Any existing PCP match is unchanged (it becomes 0 if
* 'flow' previously matched packets without a VLAN header).
*
* - If it is OFP_VLAN_NONE, 'flow->vlan_tci' is set to match a packet
* without a VLAN tag.
*
* - Other values of 'vid' should not be used. */
void
flow_set_dl_vlan(struct flow *flow, ovs_be16 vid)
{
if (vid == htons(OFP10_VLAN_NONE)) {
flow->vlans[0].tci = htons(0);
} else {
vid &= htons(VLAN_VID_MASK);
flow->vlans[0].tci &= ~htons(VLAN_VID_MASK);
flow->vlans[0].tci |= htons(VLAN_CFI) | vid;
}
}
/* Sets the VLAN header TPID, which must be either ETH_TYPE_VLAN_8021Q or
* ETH_TYPE_VLAN_8021AD. */
void
flow_fix_vlan_tpid(struct flow *flow)
{
if (flow->vlans[0].tpid == htons(0) && flow->vlans[0].tci != 0) {
flow->vlans[0].tpid = htons(ETH_TYPE_VLAN_8021Q);
}
}
/* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
* OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID
* plus CFI). */
void
flow_set_vlan_vid(struct flow *flow, ovs_be16 vid)
{
ovs_be16 mask = htons(VLAN_VID_MASK | VLAN_CFI);
flow->vlans[0].tci &= ~mask;
flow->vlans[0].tci |= vid & mask;
}
/* Sets the VLAN PCP that 'flow' matches to 'pcp', which should be in the
* range 0...7.
*
* This function has no effect on the VLAN ID that 'flow' matches.
*
* After calling this function, 'flow' will not match packets without a VLAN
* header. */
void
flow_set_vlan_pcp(struct flow *flow, uint8_t pcp)
{
pcp &= 0x07;
flow->vlans[0].tci &= ~htons(VLAN_PCP_MASK);
flow->vlans[0].tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
}
/* Counts the number of VLAN headers. */
int
flow_count_vlan_headers(const struct flow *flow)
{
int i;
for (i = 0; i < FLOW_MAX_VLAN_HEADERS; i++) {
if (!(flow->vlans[i].tci & htons(VLAN_CFI))) {
break;
}
}
return i;
}
/* Given '*p_an' and '*p_bn' pointing to one past the last VLAN header of
* 'a' and 'b' respectively, skip common VLANs so that they point to the
* first different VLAN counting from bottom. */
void
flow_skip_common_vlan_headers(const struct flow *a, int *p_an,
const struct flow *b, int *p_bn)
{
int an = *p_an, bn = *p_bn;
for (an--, bn--; an >= 0 && bn >= 0; an--, bn--) {
if (a->vlans[an].qtag != b->vlans[bn].qtag) {
break;
}
}
*p_an = an;
*p_bn = bn;
}
void
flow_pop_vlan(struct flow *flow, struct flow_wildcards *wc)
{
int n = flow_count_vlan_headers(flow);
if (n > 1) {
if (wc) {
memset(&wc->masks.vlans[1], 0xff,
sizeof(union flow_vlan_hdr) * (n - 1));
}
memmove(&flow->vlans[0], &flow->vlans[1],
sizeof(union flow_vlan_hdr) * (n - 1));
}
if (n > 0) {
memset(&flow->vlans[n - 1], 0, sizeof(union flow_vlan_hdr));
}
}
void
flow_push_vlan_uninit(struct flow *flow, struct flow_wildcards *wc)
{
if (wc) {
int n = flow_count_vlan_headers(flow);
if (n) {
memset(wc->masks.vlans, 0xff, sizeof(union flow_vlan_hdr) * n);
}
}
memmove(&flow->vlans[1], &flow->vlans[0],
sizeof(union flow_vlan_hdr) * (FLOW_MAX_VLAN_HEADERS - 1));
memset(&flow->vlans[0], 0, sizeof(union flow_vlan_hdr));
}
/* Returns the number of MPLS LSEs present in 'flow'
*
* Returns 0 if the 'dl_type' of 'flow' is not an MPLS ethernet type.
* Otherwise traverses 'flow''s MPLS label stack stopping at the
* first entry that has the BoS bit set. If no such entry exists then
* the maximum number of LSEs that can be stored in 'flow' is returned.
*/
int
flow_count_mpls_labels(const struct flow *flow, struct flow_wildcards *wc)
{
/* dl_type is always masked. */
if (eth_type_mpls(flow->dl_type)) {
int i;
int cnt;
cnt = 0;
for (i = 0; i < FLOW_MAX_MPLS_LABELS; i++) {
if (wc) {
wc->masks.mpls_lse[i] |= htonl(MPLS_BOS_MASK);
}
if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
return i + 1;
}
if (flow->mpls_lse[i]) {
cnt++;
}
}
return cnt;
} else {
return 0;
}
}
/* Returns the number consecutive of MPLS LSEs, starting at the
* innermost LSE, that are common in 'a' and 'b'.
*
* 'an' must be flow_count_mpls_labels(a).
* 'bn' must be flow_count_mpls_labels(b).
*/
int
flow_count_common_mpls_labels(const struct flow *a, int an,
const struct flow *b, int bn,
struct flow_wildcards *wc)
{
int min_n = MIN(an, bn);
if (min_n == 0) {
return 0;
} else {
int common_n = 0;
int a_last = an - 1;
int b_last = bn - 1;
int i;
for (i = 0; i < min_n; i++) {
if (wc) {
wc->masks.mpls_lse[a_last - i] = OVS_BE32_MAX;
wc->masks.mpls_lse[b_last - i] = OVS_BE32_MAX;
}
if (a->mpls_lse[a_last - i] != b->mpls_lse[b_last - i]) {
break;
} else {
common_n++;
}
}
return common_n;
}
}
/* Adds a new outermost MPLS label to 'flow' and changes 'flow''s Ethernet type
* to 'mpls_eth_type', which must be an MPLS Ethertype.
*
* If the new label is the first MPLS label in 'flow', it is generated as;
*
* - label: 2, if 'flow' is IPv6, otherwise 0.
*
* - TTL: IPv4 or IPv6 TTL, if present and nonzero, otherwise 64.
*
* - TC: IPv4 or IPv6 TOS, if present, otherwise 0.
*
* - BoS: 1.
*
* If the new label is the second or later label MPLS label in 'flow', it is
* generated as;
*
* - label: Copied from outer label.
*
* - TTL: Copied from outer label.
*
* - TC: Copied from outer label.
*
* - BoS: 0.
*
* 'n' must be flow_count_mpls_labels(flow). 'n' must be less than
* FLOW_MAX_MPLS_LABELS (because otherwise flow->mpls_lse[] would overflow).
*/
void
flow_push_mpls(struct flow *flow, int n, ovs_be16 mpls_eth_type,
struct flow_wildcards *wc, bool clear_flow_L3)
{
ovs_assert(eth_type_mpls(mpls_eth_type));
ovs_assert(n < FLOW_MAX_MPLS_LABELS);
if (n) {
int i;
if (wc) {
memset(&wc->masks.mpls_lse, 0xff, sizeof *wc->masks.mpls_lse * n);
}
for (i = n; i >= 1; i--) {
flow->mpls_lse[i] = flow->mpls_lse[i - 1];
}
flow->mpls_lse[0] = (flow->mpls_lse[1] & htonl(~MPLS_BOS_MASK));
} else {
int label = 0; /* IPv4 Explicit Null. */
int tc = 0;
int ttl = 64;
if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
label = 2;
}
if (is_ip_any(flow)) {
tc = (flow->nw_tos & IP_DSCP_MASK) >> 2;
if (wc) {
wc->masks.nw_tos |= IP_DSCP_MASK;
wc->masks.nw_ttl = 0xff;
}
if (flow->nw_ttl) {
ttl = flow->nw_ttl;
}
}
flow->mpls_lse[0] = set_mpls_lse_values(ttl, tc, 1, htonl(label));
if (clear_flow_L3) {
/* Clear all L3 and L4 fields and dp_hash. */
BUILD_ASSERT(FLOW_WC_SEQ == 40);
memset((char *) flow + FLOW_SEGMENT_2_ENDS_AT, 0,
sizeof(struct flow) - FLOW_SEGMENT_2_ENDS_AT);
flow->dp_hash = 0;
}
}
flow->dl_type = mpls_eth_type;
}
/* Tries to remove the outermost MPLS label from 'flow'. Returns true if
* successful, false otherwise. On success, sets 'flow''s Ethernet type to
* 'eth_type'.
*
* 'n' must be flow_count_mpls_labels(flow). */
bool
flow_pop_mpls(struct flow *flow, int n, ovs_be16 eth_type,
struct flow_wildcards *wc)
{
int i;
if (n == 0) {
/* Nothing to pop. */
return false;
} else if (n == FLOW_MAX_MPLS_LABELS) {
if (wc) {
wc->masks.mpls_lse[n - 1] |= htonl(MPLS_BOS_MASK);
}
if (!(flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK))) {
/* Can't pop because don't know what to fill in mpls_lse[n - 1]. */
return false;
}
}
if (wc) {
memset(&wc->masks.mpls_lse[1], 0xff,
sizeof *wc->masks.mpls_lse * (n - 1));
}
for (i = 1; i < n; i++) {
flow->mpls_lse[i - 1] = flow->mpls_lse[i];
}
flow->mpls_lse[n - 1] = 0;
flow->dl_type = eth_type;
return true;
}
/* Sets the MPLS Label that 'flow' matches to 'label', which is interpreted
* as an OpenFlow 1.1 "mpls_label" value. */
void
flow_set_mpls_label(struct flow *flow, int idx, ovs_be32 label)
{
set_mpls_lse_label(&flow->mpls_lse[idx], label);
}
/* Sets the MPLS TTL that 'flow' matches to 'ttl', which should be in the
* range 0...255. */
void
flow_set_mpls_ttl(struct flow *flow, int idx, uint8_t ttl)
{
set_mpls_lse_ttl(&flow->mpls_lse[idx], ttl);
}
/* Sets the MPLS TC that 'flow' matches to 'tc', which should be in the
* range 0...7. */
void
flow_set_mpls_tc(struct flow *flow, int idx, uint8_t tc)
{
set_mpls_lse_tc(&flow->mpls_lse[idx], tc);
}
/* Sets the MPLS BOS bit that 'flow' matches to which should be 0 or 1. */
void
flow_set_mpls_bos(struct flow *flow, int idx, uint8_t bos)
{
set_mpls_lse_bos(&flow->mpls_lse[idx], bos);
}
/* Sets the entire MPLS LSE. */
void
flow_set_mpls_lse(struct flow *flow, int idx, ovs_be32 lse)
{
flow->mpls_lse[idx] = lse;
}
static size_t
flow_compose_l4(struct dp_packet *p, const struct flow *flow)
{
size_t l4_len = 0;
if (!(flow->nw_frag & FLOW_NW_FRAG_ANY)
|| !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
if (flow->nw_proto == IPPROTO_TCP) {
struct tcp_header *tcp;
l4_len = sizeof *tcp;
tcp = dp_packet_put_zeros(p, l4_len);
tcp->tcp_src = flow->tp_src;
tcp->tcp_dst = flow->tp_dst;
tcp->tcp_ctl = TCP_CTL(ntohs(flow->tcp_flags), 5);
} else if (flow->nw_proto == IPPROTO_UDP) {
struct udp_header *udp;
l4_len = sizeof *udp;
udp = dp_packet_put_zeros(p, l4_len);
udp->udp_src = flow->tp_src;
udp->udp_dst = flow->tp_dst;
udp->udp_len = htons(l4_len);
} else if (flow->nw_proto == IPPROTO_SCTP) {
struct sctp_header *sctp;
l4_len = sizeof *sctp;
sctp = dp_packet_put_zeros(p, l4_len);
sctp->sctp_src = flow->tp_src;
sctp->sctp_dst = flow->tp_dst;
} else if (flow->nw_proto == IPPROTO_ICMP) {
struct icmp_header *icmp;
l4_len = sizeof *icmp;
icmp = dp_packet_put_zeros(p, l4_len);
icmp->icmp_type = ntohs(flow->tp_src);
icmp->icmp_code = ntohs(flow->tp_dst);
} else if (flow->nw_proto == IPPROTO_IGMP) {
struct igmp_header *igmp;
l4_len = sizeof *igmp;
igmp = dp_packet_put_zeros(p, l4_len);
igmp->igmp_type = ntohs(flow->tp_src);
igmp->igmp_code = ntohs(flow->tp_dst);
put_16aligned_be32(&igmp->group, flow->igmp_group_ip4);
} else if (flow->nw_proto == IPPROTO_ICMPV6) {
struct icmp6_hdr *icmp;
l4_len = sizeof *icmp;
icmp = dp_packet_put_zeros(p, l4_len);
icmp->icmp6_type = ntohs(flow->tp_src);
icmp->icmp6_code = ntohs(flow->tp_dst);
if (icmp->icmp6_code == 0 &&
(icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
struct in6_addr *nd_target;
struct ovs_nd_lla_opt *lla_opt;
l4_len += sizeof *nd_target;
nd_target = dp_packet_put_zeros(p, sizeof *nd_target);
*nd_target = flow->nd_target;
if (!eth_addr_is_zero(flow->arp_sha)) {
l4_len += 8;
lla_opt = dp_packet_put_zeros(p, 8);
lla_opt->len = 1;
lla_opt->type = ND_OPT_SOURCE_LINKADDR;
lla_opt->mac = flow->arp_sha;
}
if (!eth_addr_is_zero(flow->arp_tha)) {
l4_len += 8;
lla_opt = dp_packet_put_zeros(p, 8);
lla_opt->len = 1;
lla_opt->type = ND_OPT_TARGET_LINKADDR;
lla_opt->mac = flow->arp_tha;
}
}
}
}
return l4_len;
}
static void
flow_compose_l4_csum(struct dp_packet *p, const struct flow *flow,
uint32_t pseudo_hdr_csum)
{
size_t l4_len = (char *) dp_packet_tail(p) - (char *) dp_packet_l4(p);
if (!(flow->nw_frag & FLOW_NW_FRAG_ANY)
|| !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
if (flow->nw_proto == IPPROTO_TCP) {
struct tcp_header *tcp = dp_packet_l4(p);
tcp->tcp_csum = 0;
tcp->tcp_csum = csum_finish(csum_continue(pseudo_hdr_csum,
tcp, l4_len));
} else if (flow->nw_proto == IPPROTO_UDP) {
struct udp_header *udp = dp_packet_l4(p);
udp->udp_csum = 0;
udp->udp_csum = csum_finish(csum_continue(pseudo_hdr_csum,
udp, l4_len));
} else if (flow->nw_proto == IPPROTO_ICMP) {
struct icmp_header *icmp = dp_packet_l4(p);
icmp->icmp_csum = 0;
icmp->icmp_csum = csum(icmp, l4_len);
} else if (flow->nw_proto == IPPROTO_IGMP) {
struct igmp_header *igmp = dp_packet_l4(p);
igmp->igmp_csum = 0;
igmp->igmp_csum = csum(igmp, l4_len);
} else if (flow->nw_proto == IPPROTO_ICMPV6) {
struct icmp6_hdr *icmp = dp_packet_l4(p);
icmp->icmp6_cksum = 0;
icmp->icmp6_cksum = (OVS_FORCE uint16_t)
csum_finish(csum_continue(pseudo_hdr_csum, icmp, l4_len));
}
}
}
/* Increase the size of packet composed by 'flow_compose_minimal'
* up to 'size' bytes. Fixes all the required packet headers like
* ip/udp lengths and l3/l4 checksums.
*
* 'size' needs to be larger then the current packet size. */
static void
packet_expand(struct dp_packet *p, const struct flow *flow, size_t size)
{
size_t extra_size;
ovs_assert(size > dp_packet_size(p));
extra_size = size - dp_packet_size(p);
dp_packet_put_zeros(p, extra_size);
if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) {
struct eth_header *eth = dp_packet_eth(p);
eth->eth_type = htons(dp_packet_size(p));
} else if (dl_type_is_ip_any(flow->dl_type)) {
uint32_t pseudo_hdr_csum;
size_t l4_len = (char *) dp_packet_tail(p) - (char *) dp_packet_l4(p);
if (flow->dl_type == htons(ETH_TYPE_IP)) {
struct ip_header *ip = dp_packet_l3(p);
ip->ip_tot_len = htons(p->l4_ofs - p->l3_ofs + l4_len);
ip->ip_csum = 0;
ip->ip_csum = csum(ip, sizeof *ip);
pseudo_hdr_csum = packet_csum_pseudoheader(ip);
} else { /* ETH_TYPE_IPV6 */
struct ovs_16aligned_ip6_hdr *nh = dp_packet_l3(p);
nh->ip6_plen = htons(l4_len);
pseudo_hdr_csum = packet_csum_pseudoheader6(nh);
}
if ((!(flow->nw_frag & FLOW_NW_FRAG_ANY)
|| !(flow->nw_frag & FLOW_NW_FRAG_LATER))
&& flow->nw_proto == IPPROTO_UDP) {
struct udp_header *udp = dp_packet_l4(p);
udp->udp_len = htons(l4_len + extra_size);
}
flow_compose_l4_csum(p, flow, pseudo_hdr_csum);
}
}
/* Puts into 'p' a packet that flow_extract() would parse as having the given
* 'flow'.
*
* (This is useful only for testing, obviously, and the packet isn't really
* valid. Lots of fields are just zeroed.)
*
* The created packet has minimal packet size, just big enough to hold
* the packet header fields. */
static void
flow_compose_minimal(struct dp_packet *p, const struct flow *flow)
{
uint32_t pseudo_hdr_csum;
size_t l4_len;
/* eth_compose() sets l3 pointer and makes sure it is 32-bit aligned. */
eth_compose(p, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0);
if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) {
struct eth_header *eth = dp_packet_eth(p);
eth->eth_type = htons(dp_packet_size(p));
return;
}
for (int encaps = FLOW_MAX_VLAN_HEADERS - 1; encaps >= 0; encaps--) {
if (flow->vlans[encaps].tci & htons(VLAN_CFI)) {
eth_push_vlan(p, flow->vlans[encaps].tpid,
flow->vlans[encaps].tci);
}
}
if (flow->dl_type == htons(ETH_TYPE_IP)) {
struct ip_header *ip;
ip = dp_packet_put_zeros(p, sizeof *ip);
ip->ip_ihl_ver = IP_IHL_VER(5, 4);
ip->ip_tos = flow->nw_tos;
ip->ip_ttl = flow->nw_ttl;
ip->ip_proto = flow->nw_proto;
put_16aligned_be32(&ip->ip_src, flow->nw_src);
put_16aligned_be32(&ip->ip_dst, flow->nw_dst);
if (flow->nw_frag & FLOW_NW_FRAG_ANY) {
ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS);
if (flow->nw_frag & FLOW_NW_FRAG_LATER) {
ip->ip_frag_off |= htons(100);
}
}
dp_packet_set_l4(p, dp_packet_tail(p));
l4_len = flow_compose_l4(p, flow);
ip = dp_packet_l3(p);
ip->ip_tot_len = htons(p->l4_ofs - p->l3_ofs + l4_len);
/* Checksum has already been zeroed by put_zeros call. */
ip->ip_csum = csum(ip, sizeof *ip);
pseudo_hdr_csum = packet_csum_pseudoheader(ip);
flow_compose_l4_csum(p, flow, pseudo_hdr_csum);
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
struct ovs_16aligned_ip6_hdr *nh;
nh = dp_packet_put_zeros(p, sizeof *nh);
put_16aligned_be32(&nh->ip6_flow, htonl(6 << 28) |
htonl(flow->nw_tos << 20) | flow->ipv6_label);
nh->ip6_hlim = flow->nw_ttl;
nh->ip6_nxt = flow->nw_proto;
memcpy(&nh->ip6_src, &flow->ipv6_src, sizeof(nh->ip6_src));
memcpy(&nh->ip6_dst, &flow->ipv6_dst, sizeof(nh->ip6_dst));
dp_packet_set_l4(p, dp_packet_tail(p));
l4_len = flow_compose_l4(p, flow);
nh = dp_packet_l3(p);
nh->ip6_plen = htons(l4_len);
pseudo_hdr_csum = packet_csum_pseudoheader6(nh);
flow_compose_l4_csum(p, flow, pseudo_hdr_csum);
} else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
flow->dl_type == htons(ETH_TYPE_RARP)) {
struct arp_eth_header *arp;
arp = dp_packet_put_zeros(p, sizeof *arp);
dp_packet_set_l3(p, arp);
arp->ar_hrd = htons(1);
arp->ar_pro = htons(ETH_TYPE_IP);
arp->ar_hln = ETH_ADDR_LEN;
arp->ar_pln = 4;
arp->ar_op = htons(flow->nw_proto);
if (flow->nw_proto == ARP_OP_REQUEST ||
flow->nw_proto == ARP_OP_REPLY) {
put_16aligned_be32(&arp->ar_spa, flow->nw_src);
put_16aligned_be32(&arp->ar_tpa, flow->nw_dst);
arp->ar_sha = flow->arp_sha;
arp->ar_tha = flow->arp_tha;
}
}
if (eth_type_mpls(flow->dl_type)) {
int n;
p->l2_5_ofs = p->l3_ofs;
for (n = 1; n < FLOW_MAX_MPLS_LABELS; n++) {
if (flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK)) {
break;
}
}
while (n > 0) {
push_mpls(p, flow->dl_type, flow->mpls_lse[--n]);
}
}
}
/* Puts into 'p' a Ethernet frame of size 'size' that flow_extract() would
* parse as having the given 'flow'.
*
* When 'size' is zero, 'p' is a minimal size packet that only big enough
* to contains all packet headers.
*
* When 'size' is larger than the minimal packet size, the packet will
* be expended to 'size' with the payload set to zero.
*
* Return 'true' if the packet is successfully created. 'false' otherwise.
* Note, when 'size' is set to zero, this function always returns true. */
bool
flow_compose(struct dp_packet *p, const struct flow *flow, size_t size)
{
flow_compose_minimal(p, flow);
if (size && size < dp_packet_size(p)) {
return false;
}
if (size > dp_packet_size(p)) {
packet_expand(p, flow, size);
}
return true;
}
/* Compressed flow. */
/* Completes an initialization of 'dst' as a miniflow copy of 'src' begun by
* the caller. The caller must have already computed 'dst->map' properly to
* indicate the significant uint64_t elements of 'src'.
*
* Normally the significant elements are the ones that are non-zero. However,
* when a miniflow is initialized from a (mini)mask, the values can be zeroes,
* so that the flow and mask always have the same maps. */
void
miniflow_init(struct miniflow *dst, const struct flow *src)
{
uint64_t *dst_u64 = miniflow_values(dst);
size_t idx;
FLOWMAP_FOR_EACH_INDEX(idx, dst->map) {
*dst_u64++ = flow_u64_value(src, idx);
}
}
/* Initialize the maps of 'flow' from 'src'. */
void
miniflow_map_init(struct miniflow *flow, const struct flow *src)
{
/* Initialize map, counting the number of nonzero elements. */
flowmap_init(&flow->map);
for (size_t i = 0; i < FLOW_U64S; i++) {
if (flow_u64_value(src, i)) {
flowmap_set(&flow->map, i, 1);
}
}
}
/* Allocates 'n' count of miniflows, consecutive in memory, initializing the
* map of each from 'src'.
* Returns the size of the miniflow data. */
size_t
miniflow_alloc(struct miniflow *dsts[], size_t n, const struct miniflow *src)
{
size_t n_values = miniflow_n_values(src);
size_t data_size = MINIFLOW_VALUES_SIZE(n_values);
struct miniflow *dst = xmalloc(n * (sizeof *src + data_size));
size_t i;
COVERAGE_INC(miniflow_malloc);
for (i = 0; i < n; i++) {
*dst = *src; /* Copy maps. */
dsts[i] = dst;
dst += 1; /* Just past the maps. */
dst = (struct miniflow *)((uint64_t *)dst + n_values); /* Skip data. */
}
return data_size;
}
/* Returns a miniflow copy of 'src'. The caller must eventually free() the
* returned miniflow. */
struct miniflow *
miniflow_create(const struct flow *src)
{
struct miniflow tmp;
struct miniflow *dst;
miniflow_map_init(&tmp, src);
miniflow_alloc(&dst, 1, &tmp);
miniflow_init(dst, src);
return dst;
}
/* Initializes 'dst' as a copy of 'src'. The caller must have allocated
* 'dst' to have inline space for 'n_values' data in 'src'. */
void
miniflow_clone(struct miniflow *dst, const struct miniflow *src,
size_t n_values)
{
*dst = *src; /* Copy maps. */
memcpy(miniflow_values(dst), miniflow_get_values(src),
MINIFLOW_VALUES_SIZE(n_values));
}
/* Initializes 'dst' as a copy of 'src'. */
void
miniflow_expand(const struct miniflow *src, struct flow *dst)
{
memset(dst, 0, sizeof *dst);
flow_union_with_miniflow(dst, src);
}
/* Returns true if 'a' and 'b' are equal miniflows, false otherwise. */
bool
miniflow_equal(const struct miniflow *a, const struct miniflow *b)
{
const uint64_t *ap = miniflow_get_values(a);
const uint64_t *bp = miniflow_get_values(b);
/* This is mostly called after a matching hash, so it is highly likely that
* the maps are equal as well. */
if (OVS_LIKELY(flowmap_equal(a->map, b->map))) {
return !memcmp(ap, bp, miniflow_n_values(a) * sizeof *ap);
} else {
size_t idx;
FLOWMAP_FOR_EACH_INDEX (idx, flowmap_or(a->map, b->map)) {
if ((flowmap_is_set(&a->map, idx) ? *ap++ : 0)
!= (flowmap_is_set(&b->map, idx) ? *bp++ : 0)) {
return false;
}
}
}
return true;
}
/* Returns false if 'a' and 'b' differ at the places where there are 1-bits
* in 'mask', true otherwise. */
bool
miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b,
const struct minimask *mask)
{
const uint64_t *p = miniflow_get_values(&mask->masks);
size_t idx;
FLOWMAP_FOR_EACH_INDEX(idx, mask->masks.map) {
if ((miniflow_get(a, idx) ^ miniflow_get(b, idx)) & *p++) {
return false;
}
}
return true;
}
/* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
* in 'mask', false if they differ. */
bool
miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b,
const struct minimask *mask)
{
const uint64_t *p = miniflow_get_values(&mask->masks);
size_t idx;
FLOWMAP_FOR_EACH_INDEX(idx, mask->masks.map) {
if ((miniflow_get(a, idx) ^ flow_u64_value(b, idx)) & *p++) {
return false;
}
}
return true;
}
void
minimask_init(struct minimask *mask, const struct flow_wildcards *wc)
{
miniflow_init(&mask->masks, &wc->masks);
}
/* Returns a minimask copy of 'wc'. The caller must eventually free the
* returned minimask with free(). */
struct minimask *
minimask_create(const struct flow_wildcards *wc)
{
return (struct minimask *)miniflow_create(&wc->masks);
}
/* Initializes 'dst_' as the bit-wise "and" of 'a_' and 'b_'.
*
* The caller must provide room for FLOW_U64S "uint64_t"s in 'storage', which
* must follow '*dst_' in memory, for use by 'dst_'. The caller must *not*
* free 'dst_' free(). */
void
minimask_combine(struct minimask *dst_,
const struct minimask *a_, const struct minimask *b_,
uint64_t storage[FLOW_U64S])
{
struct miniflow *dst = &dst_->masks;
uint64_t *dst_values = storage;
const struct miniflow *a = &a_->masks;
const struct miniflow *b = &b_->masks;
size_t idx;
flowmap_init(&dst->map);
FLOWMAP_FOR_EACH_INDEX(idx, flowmap_and(a->map, b->map)) {
/* Both 'a' and 'b' have non-zero data at 'idx'. */
uint64_t mask = *miniflow_get__(a, idx) & *miniflow_get__(b, idx);
if (mask) {
flowmap_set(&dst->map, idx, 1);
*dst_values++ = mask;
}
}
}
/* Initializes 'wc' as a copy of 'mask'. */
void
minimask_expand(const struct minimask *mask, struct flow_wildcards *wc)
{
miniflow_expand(&mask->masks, &wc->masks);
}
/* Returns true if 'a' and 'b' are the same flow mask, false otherwise.
* Minimasks may not have zero data values, so for the minimasks to be the
* same, they need to have the same map and the same data values. */
bool
minimask_equal(const struct minimask *a, const struct minimask *b)
{
return !memcmp(a, b, sizeof *a
+ MINIFLOW_VALUES_SIZE(miniflow_n_values(&a->masks)));
}
/* Returns true if at least one bit matched by 'b' is wildcarded by 'a',
* false otherwise. */
bool
minimask_has_extra(const struct minimask *a, const struct minimask *b)
{
const uint64_t *bp = miniflow_get_values(&b->masks);
size_t idx;
FLOWMAP_FOR_EACH_INDEX(idx, b->masks.map) {
uint64_t b_u64 = *bp++;
/* 'b_u64' is non-zero, check if the data in 'a' is either zero
* or misses some of the bits in 'b_u64'. */
if (!MINIFLOW_IN_MAP(&a->masks, idx)
|| ((*miniflow_get__(&a->masks, idx) & b_u64) != b_u64)) {
return true; /* 'a' wildcards some bits 'b' doesn't. */
}
}
return false;
}
void
flow_limit_vlans(int vlan_limit)
{
if (vlan_limit <= 0) {
flow_vlan_limit = FLOW_MAX_VLAN_HEADERS;
} else {
flow_vlan_limit = MIN(vlan_limit, FLOW_MAX_VLAN_HEADERS);
}
}