2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-29 05:18:13 +00:00
ovs/lib/ofp-util.c
Simon Horman 3f192f2330 ofp-util: Reduce scope of variables in ofputil_encode_flow_mod()
Reduce scope of per-protocol variables in ofputil_encode_flow_mod()

These variables are only needed in one of the cases covered by the switch
statement and will increase in number as more cases (protocols) are
supported.

Signed-off-by: Simon Horman <horms@verge.net.au>
Signed-off-by: Ben Pfaff <blp@nicira.com>
2012-07-30 21:43:33 -07:00

3493 lines
112 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2008, 2009, 2010, 2011, 2012 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "ofp-print.h"
#include <errno.h>
#include <inttypes.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/icmp6.h>
#include <stdlib.h>
#include "autopath.h"
#include "bundle.h"
#include "byte-order.h"
#include "classifier.h"
#include "dynamic-string.h"
#include "learn.h"
#include "meta-flow.h"
#include "multipath.h"
#include "netdev.h"
#include "nx-match.h"
#include "ofp-actions.h"
#include "ofp-errors.h"
#include "ofp-msgs.h"
#include "ofp-util.h"
#include "ofpbuf.h"
#include "packets.h"
#include "random.h"
#include "unaligned.h"
#include "type-props.h"
#include "vlog.h"
VLOG_DEFINE_THIS_MODULE(ofp_util);
/* Rate limit for OpenFlow message parse errors. These always indicate a bug
* in the peer and so there's not much point in showing a lot of them. */
static struct vlog_rate_limit bad_ofmsg_rl = VLOG_RATE_LIMIT_INIT(1, 5);
/* Given the wildcard bit count in the least-significant 6 of 'wcbits', returns
* an IP netmask with a 1 in each bit that must match and a 0 in each bit that
* is wildcarded.
*
* The bits in 'wcbits' are in the format used in enum ofp_flow_wildcards: 0
* is exact match, 1 ignores the LSB, 2 ignores the 2 least-significant bits,
* ..., 32 and higher wildcard the entire field. This is the *opposite* of the
* usual convention where e.g. /24 indicates that 8 bits (not 24 bits) are
* wildcarded. */
ovs_be32
ofputil_wcbits_to_netmask(int wcbits)
{
wcbits &= 0x3f;
return wcbits < 32 ? htonl(~((1u << wcbits) - 1)) : 0;
}
/* Given the IP netmask 'netmask', returns the number of bits of the IP address
* that it wildcards, that is, the number of 0-bits in 'netmask', a number
* between 0 and 32 inclusive.
*
* If 'netmask' is not a CIDR netmask (see ip_is_cidr()), the return value will
* still be in the valid range but isn't otherwise meaningful. */
int
ofputil_netmask_to_wcbits(ovs_be32 netmask)
{
return 32 - ip_count_cidr_bits(netmask);
}
/* A list of the FWW_* and OFPFW10_ bits that have the same value, meaning, and
* name. */
#define WC_INVARIANT_LIST \
WC_INVARIANT_BIT(IN_PORT) \
WC_INVARIANT_BIT(DL_TYPE) \
WC_INVARIANT_BIT(NW_PROTO)
/* Verify that all of the invariant bits (as defined on WC_INVARIANT_LIST)
* actually have the same names and values. */
#define WC_INVARIANT_BIT(NAME) BUILD_ASSERT_DECL(FWW_##NAME == OFPFW10_##NAME);
WC_INVARIANT_LIST
#undef WC_INVARIANT_BIT
/* WC_INVARIANTS is the invariant bits (as defined on WC_INVARIANT_LIST) all
* OR'd together. */
static const flow_wildcards_t WC_INVARIANTS = 0
#define WC_INVARIANT_BIT(NAME) | FWW_##NAME
WC_INVARIANT_LIST
#undef WC_INVARIANT_BIT
;
/* Converts the OpenFlow 1.0 wildcards in 'ofpfw' (OFPFW10_*) into a
* flow_wildcards in 'wc' for use in struct cls_rule. It is the caller's
* responsibility to handle the special case where the flow match's dl_vlan is
* set to OFP_VLAN_NONE. */
void
ofputil_wildcard_from_ofpfw10(uint32_t ofpfw, struct flow_wildcards *wc)
{
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 14);
/* Initialize most of rule->wc. */
flow_wildcards_init_catchall(wc);
wc->wildcards = (OVS_FORCE flow_wildcards_t) ofpfw & WC_INVARIANTS;
/* Wildcard fields that aren't defined by ofp10_match or tun_id. */
wc->wildcards |= FWW_NW_ECN | FWW_NW_TTL;
if (ofpfw & OFPFW10_NW_TOS) {
/* OpenFlow 1.0 defines a TOS wildcard, but it's much later in
* the enum than we can use. */
wc->wildcards |= FWW_NW_DSCP;
}
wc->nw_src_mask = ofputil_wcbits_to_netmask(ofpfw >> OFPFW10_NW_SRC_SHIFT);
wc->nw_dst_mask = ofputil_wcbits_to_netmask(ofpfw >> OFPFW10_NW_DST_SHIFT);
if (!(ofpfw & OFPFW10_TP_SRC)) {
wc->tp_src_mask = htons(UINT16_MAX);
}
if (!(ofpfw & OFPFW10_TP_DST)) {
wc->tp_dst_mask = htons(UINT16_MAX);
}
if (!(ofpfw & OFPFW10_DL_SRC)) {
memset(wc->dl_src_mask, 0xff, ETH_ADDR_LEN);
}
if (!(ofpfw & OFPFW10_DL_DST)) {
memset(wc->dl_dst_mask, 0xff, ETH_ADDR_LEN);
}
/* VLAN TCI mask. */
if (!(ofpfw & OFPFW10_DL_VLAN_PCP)) {
wc->vlan_tci_mask |= htons(VLAN_PCP_MASK | VLAN_CFI);
}
if (!(ofpfw & OFPFW10_DL_VLAN)) {
wc->vlan_tci_mask |= htons(VLAN_VID_MASK | VLAN_CFI);
}
}
/* Converts the ofp10_match in 'match' into a cls_rule in 'rule', with the
* given 'priority'. */
void
ofputil_cls_rule_from_ofp10_match(const struct ofp10_match *match,
unsigned int priority, struct cls_rule *rule)
{
uint32_t ofpfw = ntohl(match->wildcards) & OFPFW10_ALL;
/* Initialize rule->priority, rule->wc. */
rule->priority = !ofpfw ? UINT16_MAX : priority;
ofputil_wildcard_from_ofpfw10(ofpfw, &rule->wc);
/* Initialize most of rule->flow. */
rule->flow.nw_src = match->nw_src;
rule->flow.nw_dst = match->nw_dst;
rule->flow.in_port = ntohs(match->in_port);
rule->flow.dl_type = ofputil_dl_type_from_openflow(match->dl_type);
rule->flow.tp_src = match->tp_src;
rule->flow.tp_dst = match->tp_dst;
memcpy(rule->flow.dl_src, match->dl_src, ETH_ADDR_LEN);
memcpy(rule->flow.dl_dst, match->dl_dst, ETH_ADDR_LEN);
rule->flow.nw_tos = match->nw_tos & IP_DSCP_MASK;
rule->flow.nw_proto = match->nw_proto;
/* Translate VLANs. */
if (!(ofpfw & OFPFW10_DL_VLAN) &&
match->dl_vlan == htons(OFP10_VLAN_NONE)) {
/* Match only packets without 802.1Q header.
*
* When OFPFW10_DL_VLAN_PCP is wildcarded, this is obviously correct.
*
* If OFPFW10_DL_VLAN_PCP is matched, the flow match is contradictory,
* because we can't have a specific PCP without an 802.1Q header.
* However, older versions of OVS treated this as matching packets
* withut an 802.1Q header, so we do here too. */
rule->flow.vlan_tci = htons(0);
rule->wc.vlan_tci_mask = htons(0xffff);
} else {
ovs_be16 vid, pcp, tci;
vid = match->dl_vlan & htons(VLAN_VID_MASK);
pcp = htons((match->dl_vlan_pcp << VLAN_PCP_SHIFT) & VLAN_PCP_MASK);
tci = vid | pcp | htons(VLAN_CFI);
rule->flow.vlan_tci = tci & rule->wc.vlan_tci_mask;
}
/* Clean up. */
cls_rule_zero_wildcarded_fields(rule);
}
/* Convert 'rule' into the OpenFlow 1.0 match structure 'match'. */
void
ofputil_cls_rule_to_ofp10_match(const struct cls_rule *rule,
struct ofp10_match *match)
{
const struct flow_wildcards *wc = &rule->wc;
uint32_t ofpfw;
/* Figure out most OpenFlow wildcards. */
ofpfw = (OVS_FORCE uint32_t) (wc->wildcards & WC_INVARIANTS);
ofpfw |= (ofputil_netmask_to_wcbits(wc->nw_src_mask)
<< OFPFW10_NW_SRC_SHIFT);
ofpfw |= (ofputil_netmask_to_wcbits(wc->nw_dst_mask)
<< OFPFW10_NW_DST_SHIFT);
if (wc->wildcards & FWW_NW_DSCP) {
ofpfw |= OFPFW10_NW_TOS;
}
if (!wc->tp_src_mask) {
ofpfw |= OFPFW10_TP_SRC;
}
if (!wc->tp_dst_mask) {
ofpfw |= OFPFW10_TP_DST;
}
if (eth_addr_is_zero(wc->dl_src_mask)) {
ofpfw |= OFPFW10_DL_SRC;
}
if (eth_addr_is_zero(wc->dl_dst_mask)) {
ofpfw |= OFPFW10_DL_DST;
}
/* Translate VLANs. */
match->dl_vlan = htons(0);
match->dl_vlan_pcp = 0;
if (rule->wc.vlan_tci_mask == htons(0)) {
ofpfw |= OFPFW10_DL_VLAN | OFPFW10_DL_VLAN_PCP;
} else if (rule->wc.vlan_tci_mask & htons(VLAN_CFI)
&& !(rule->flow.vlan_tci & htons(VLAN_CFI))) {
match->dl_vlan = htons(OFP10_VLAN_NONE);
ofpfw |= OFPFW10_DL_VLAN_PCP;
} else {
if (!(rule->wc.vlan_tci_mask & htons(VLAN_VID_MASK))) {
ofpfw |= OFPFW10_DL_VLAN;
} else {
match->dl_vlan = htons(vlan_tci_to_vid(rule->flow.vlan_tci));
}
if (!(rule->wc.vlan_tci_mask & htons(VLAN_PCP_MASK))) {
ofpfw |= OFPFW10_DL_VLAN_PCP;
} else {
match->dl_vlan_pcp = vlan_tci_to_pcp(rule->flow.vlan_tci);
}
}
/* Compose most of the match structure. */
match->wildcards = htonl(ofpfw);
match->in_port = htons(rule->flow.in_port);
memcpy(match->dl_src, rule->flow.dl_src, ETH_ADDR_LEN);
memcpy(match->dl_dst, rule->flow.dl_dst, ETH_ADDR_LEN);
match->dl_type = ofputil_dl_type_to_openflow(rule->flow.dl_type);
match->nw_src = rule->flow.nw_src;
match->nw_dst = rule->flow.nw_dst;
match->nw_tos = rule->flow.nw_tos & IP_DSCP_MASK;
match->nw_proto = rule->flow.nw_proto;
match->tp_src = rule->flow.tp_src;
match->tp_dst = rule->flow.tp_dst;
memset(match->pad1, '\0', sizeof match->pad1);
memset(match->pad2, '\0', sizeof match->pad2);
}
enum ofperr
ofputil_pull_ofp11_match(struct ofpbuf *buf, unsigned int priority,
struct cls_rule *rule)
{
struct ofp11_match_header *omh;
struct ofp11_match *om;
if (buf->size < sizeof(struct ofp11_match_header)) {
return OFPERR_OFPBMC_BAD_LEN;
}
omh = buf->data;
switch (ntohs(omh->type)) {
case OFPMT_STANDARD:
if (omh->length != htons(sizeof *om) || buf->size < sizeof *om) {
return OFPERR_OFPBMC_BAD_LEN;
}
om = ofpbuf_pull(buf, sizeof *om);
return ofputil_cls_rule_from_ofp11_match(om, priority, rule);
default:
return OFPERR_OFPBMC_BAD_TYPE;
}
}
/* Converts the ofp11_match in 'match' into a cls_rule in 'rule', with the
* given 'priority'. Returns 0 if successful, otherwise an OFPERR_* value. */
enum ofperr
ofputil_cls_rule_from_ofp11_match(const struct ofp11_match *match,
unsigned int priority,
struct cls_rule *rule)
{
uint16_t wc = ntohl(match->wildcards);
uint8_t dl_src_mask[ETH_ADDR_LEN];
uint8_t dl_dst_mask[ETH_ADDR_LEN];
bool ipv4, arp;
int i;
cls_rule_init_catchall(rule, priority);
if (!(wc & OFPFW11_IN_PORT)) {
uint16_t ofp_port;
enum ofperr error;
error = ofputil_port_from_ofp11(match->in_port, &ofp_port);
if (error) {
return OFPERR_OFPBMC_BAD_VALUE;
}
cls_rule_set_in_port(rule, ofp_port);
}
for (i = 0; i < ETH_ADDR_LEN; i++) {
dl_src_mask[i] = ~match->dl_src_mask[i];
}
cls_rule_set_dl_src_masked(rule, match->dl_src, dl_src_mask);
for (i = 0; i < ETH_ADDR_LEN; i++) {
dl_dst_mask[i] = ~match->dl_dst_mask[i];
}
cls_rule_set_dl_dst_masked(rule, match->dl_dst, dl_dst_mask);
if (!(wc & OFPFW11_DL_VLAN)) {
if (match->dl_vlan == htons(OFPVID11_NONE)) {
/* Match only packets without a VLAN tag. */
rule->flow.vlan_tci = htons(0);
rule->wc.vlan_tci_mask = htons(UINT16_MAX);
} else {
if (match->dl_vlan == htons(OFPVID11_ANY)) {
/* Match any packet with a VLAN tag regardless of VID. */
rule->flow.vlan_tci = htons(VLAN_CFI);
rule->wc.vlan_tci_mask = htons(VLAN_CFI);
} else if (ntohs(match->dl_vlan) < 4096) {
/* Match only packets with the specified VLAN VID. */
rule->flow.vlan_tci = htons(VLAN_CFI) | match->dl_vlan;
rule->wc.vlan_tci_mask = htons(VLAN_CFI | VLAN_VID_MASK);
} else {
/* Invalid VID. */
return OFPERR_OFPBMC_BAD_VALUE;
}
if (!(wc & OFPFW11_DL_VLAN_PCP)) {
if (match->dl_vlan_pcp <= 7) {
rule->flow.vlan_tci |= htons(match->dl_vlan_pcp
<< VLAN_PCP_SHIFT);
rule->wc.vlan_tci_mask |= htons(VLAN_PCP_MASK);
} else {
/* Invalid PCP. */
return OFPERR_OFPBMC_BAD_VALUE;
}
}
}
}
if (!(wc & OFPFW11_DL_TYPE)) {
cls_rule_set_dl_type(rule,
ofputil_dl_type_from_openflow(match->dl_type));
}
ipv4 = rule->flow.dl_type == htons(ETH_TYPE_IP);
arp = rule->flow.dl_type == htons(ETH_TYPE_ARP);
if (ipv4 && !(wc & OFPFW11_NW_TOS)) {
if (match->nw_tos & ~IP_DSCP_MASK) {
/* Invalid TOS. */
return OFPERR_OFPBMC_BAD_VALUE;
}
cls_rule_set_nw_dscp(rule, match->nw_tos);
}
if (ipv4 || arp) {
if (!(wc & OFPFW11_NW_PROTO)) {
cls_rule_set_nw_proto(rule, match->nw_proto);
}
cls_rule_set_nw_src_masked(rule, match->nw_src, ~match->nw_src_mask);
cls_rule_set_nw_dst_masked(rule, match->nw_dst, ~match->nw_dst_mask);
}
#define OFPFW11_TP_ALL (OFPFW11_TP_SRC | OFPFW11_TP_DST)
if (ipv4 && (wc & OFPFW11_TP_ALL) != OFPFW11_TP_ALL) {
switch (rule->flow.nw_proto) {
case IPPROTO_ICMP:
/* "A.2.3 Flow Match Structures" in OF1.1 says:
*
* The tp_src and tp_dst fields will be ignored unless the
* network protocol specified is as TCP, UDP or SCTP.
*
* but I'm pretty sure we should support ICMP too, otherwise
* that's a regression from OF1.0. */
if (!(wc & OFPFW11_TP_SRC)) {
uint16_t icmp_type = ntohs(match->tp_src);
if (icmp_type < 0x100) {
cls_rule_set_icmp_type(rule, icmp_type);
} else {
return OFPERR_OFPBMC_BAD_FIELD;
}
}
if (!(wc & OFPFW11_TP_DST)) {
uint16_t icmp_code = ntohs(match->tp_dst);
if (icmp_code < 0x100) {
cls_rule_set_icmp_code(rule, icmp_code);
} else {
return OFPERR_OFPBMC_BAD_FIELD;
}
}
break;
case IPPROTO_TCP:
case IPPROTO_UDP:
if (!(wc & (OFPFW11_TP_SRC))) {
cls_rule_set_tp_src(rule, match->tp_src);
}
if (!(wc & (OFPFW11_TP_DST))) {
cls_rule_set_tp_dst(rule, match->tp_dst);
}
break;
case IPPROTO_SCTP:
/* We don't support SCTP and it seems that we should tell the
* controller, since OF1.1 implementations are supposed to. */
return OFPERR_OFPBMC_BAD_FIELD;
default:
/* OF1.1 says explicitly to ignore this. */
break;
}
}
if (rule->flow.dl_type == htons(ETH_TYPE_MPLS) ||
rule->flow.dl_type == htons(ETH_TYPE_MPLS_MCAST)) {
enum { OFPFW11_MPLS_ALL = OFPFW11_MPLS_LABEL | OFPFW11_MPLS_TC };
if ((wc & OFPFW11_MPLS_ALL) != OFPFW11_MPLS_ALL) {
/* MPLS not supported. */
return OFPERR_OFPBMC_BAD_TAG;
}
}
if (match->metadata_mask != htonll(UINT64_MAX)) {
cls_rule_set_metadata_masked(rule, match->metadata,
~match->metadata_mask);
}
return 0;
}
/* Convert 'rule' into the OpenFlow 1.1 match structure 'match'. */
void
ofputil_cls_rule_to_ofp11_match(const struct cls_rule *rule,
struct ofp11_match *match)
{
uint32_t wc = 0;
int i;
memset(match, 0, sizeof *match);
match->omh.type = htons(OFPMT_STANDARD);
match->omh.length = htons(OFPMT11_STANDARD_LENGTH);
if (rule->wc.wildcards & FWW_IN_PORT) {
wc |= OFPFW11_IN_PORT;
} else {
match->in_port = ofputil_port_to_ofp11(rule->flow.in_port);
}
memcpy(match->dl_src, rule->flow.dl_src, ETH_ADDR_LEN);
for (i = 0; i < ETH_ADDR_LEN; i++) {
match->dl_src_mask[i] = ~rule->wc.dl_src_mask[i];
}
memcpy(match->dl_dst, rule->flow.dl_dst, ETH_ADDR_LEN);
for (i = 0; i < ETH_ADDR_LEN; i++) {
match->dl_dst_mask[i] = ~rule->wc.dl_dst_mask[i];
}
if (rule->wc.vlan_tci_mask == htons(0)) {
wc |= OFPFW11_DL_VLAN | OFPFW11_DL_VLAN_PCP;
} else if (rule->wc.vlan_tci_mask & htons(VLAN_CFI)
&& !(rule->flow.vlan_tci & htons(VLAN_CFI))) {
match->dl_vlan = htons(OFPVID11_NONE);
wc |= OFPFW11_DL_VLAN_PCP;
} else {
if (!(rule->wc.vlan_tci_mask & htons(VLAN_VID_MASK))) {
match->dl_vlan = htons(OFPVID11_ANY);
} else {
match->dl_vlan = htons(vlan_tci_to_vid(rule->flow.vlan_tci));
}
if (!(rule->wc.vlan_tci_mask & htons(VLAN_PCP_MASK))) {
wc |= OFPFW11_DL_VLAN_PCP;
} else {
match->dl_vlan_pcp = vlan_tci_to_pcp(rule->flow.vlan_tci);
}
}
if (rule->wc.wildcards & FWW_DL_TYPE) {
wc |= OFPFW11_DL_TYPE;
} else {
match->dl_type = ofputil_dl_type_to_openflow(rule->flow.dl_type);
}
if (rule->wc.wildcards & FWW_NW_DSCP) {
wc |= OFPFW11_NW_TOS;
} else {
match->nw_tos = rule->flow.nw_tos & IP_DSCP_MASK;
}
if (rule->wc.wildcards & FWW_NW_PROTO) {
wc |= OFPFW11_NW_PROTO;
} else {
match->nw_proto = rule->flow.nw_proto;
}
match->nw_src = rule->flow.nw_src;
match->nw_src_mask = ~rule->wc.nw_src_mask;
match->nw_dst = rule->flow.nw_dst;
match->nw_dst_mask = ~rule->wc.nw_dst_mask;
if (!rule->wc.tp_src_mask) {
wc |= OFPFW11_TP_SRC;
} else {
match->tp_src = rule->flow.tp_src;
}
if (!rule->wc.tp_dst_mask) {
wc |= OFPFW11_TP_DST;
} else {
match->tp_dst = rule->flow.tp_dst;
}
/* MPLS not supported. */
wc |= OFPFW11_MPLS_LABEL;
wc |= OFPFW11_MPLS_TC;
match->metadata = rule->flow.metadata;
match->metadata_mask = ~rule->wc.metadata_mask;
match->wildcards = htonl(wc);
}
/* Given a 'dl_type' value in the format used in struct flow, returns the
* corresponding 'dl_type' value for use in an ofp10_match or ofp11_match
* structure. */
ovs_be16
ofputil_dl_type_to_openflow(ovs_be16 flow_dl_type)
{
return (flow_dl_type == htons(FLOW_DL_TYPE_NONE)
? htons(OFP_DL_TYPE_NOT_ETH_TYPE)
: flow_dl_type);
}
/* Given a 'dl_type' value in the format used in an ofp10_match or ofp11_match
* structure, returns the corresponding 'dl_type' value for use in struct
* flow. */
ovs_be16
ofputil_dl_type_from_openflow(ovs_be16 ofp_dl_type)
{
return (ofp_dl_type == htons(OFP_DL_TYPE_NOT_ETH_TYPE)
? htons(FLOW_DL_TYPE_NONE)
: ofp_dl_type);
}
/* Protocols. */
struct proto_abbrev {
enum ofputil_protocol protocol;
const char *name;
};
/* Most users really don't care about some of the differences between
* protocols. These abbreviations help with that. */
static const struct proto_abbrev proto_abbrevs[] = {
{ OFPUTIL_P_ANY, "any" },
{ OFPUTIL_P_OF10_ANY, "OpenFlow10" },
{ OFPUTIL_P_NXM_ANY, "NXM" },
};
#define N_PROTO_ABBREVS ARRAY_SIZE(proto_abbrevs)
enum ofputil_protocol ofputil_flow_dump_protocols[] = {
OFPUTIL_P_NXM,
OFPUTIL_P_OF10,
};
size_t ofputil_n_flow_dump_protocols = ARRAY_SIZE(ofputil_flow_dump_protocols);
/* Returns the ofputil_protocol that is initially in effect on an OpenFlow
* connection that has negotiated the given 'version'. 'version' should
* normally be an 8-bit OpenFlow version identifier (e.g. 0x01 for OpenFlow
* 1.0, 0x02 for OpenFlow 1.1). Returns 0 if 'version' is not supported or
* outside the valid range. */
enum ofputil_protocol
ofputil_protocol_from_ofp_version(enum ofp_version version)
{
switch (version) {
case OFP10_VERSION:
return OFPUTIL_P_OF10;
case OFP12_VERSION:
return OFPUTIL_P_OF12;
case OFP11_VERSION:
default:
return 0;
}
}
/* Returns the OpenFlow protocol version number (e.g. OFP10_VERSION,
* OFP11_VERSION or OFP12_VERSION) that corresponds to 'protocol'. */
enum ofp_version
ofputil_protocol_to_ofp_version(enum ofputil_protocol protocol)
{
switch (protocol) {
case OFPUTIL_P_OF10:
case OFPUTIL_P_OF10_TID:
case OFPUTIL_P_NXM:
case OFPUTIL_P_NXM_TID:
return OFP10_VERSION;
case OFPUTIL_P_OF12:
return OFP12_VERSION;
}
NOT_REACHED();
}
/* Returns true if 'protocol' is a single OFPUTIL_P_* value, false
* otherwise. */
bool
ofputil_protocol_is_valid(enum ofputil_protocol protocol)
{
return protocol & OFPUTIL_P_ANY && is_pow2(protocol);
}
/* Returns the equivalent of 'protocol' with the Nicira flow_mod_table_id
* extension turned on or off if 'enable' is true or false, respectively.
*
* This extension is only useful for protocols whose "standard" version does
* not allow specific tables to be modified. In particular, this is true of
* OpenFlow 1.0. In later versions of OpenFlow, a flow_mod request always
* specifies a table ID and so there is no need for such an extension. When
* 'protocol' is such a protocol that doesn't need a flow_mod_table_id
* extension, this function just returns its 'protocol' argument unchanged
* regardless of the value of 'enable'. */
enum ofputil_protocol
ofputil_protocol_set_tid(enum ofputil_protocol protocol, bool enable)
{
switch (protocol) {
case OFPUTIL_P_OF10:
case OFPUTIL_P_OF10_TID:
return enable ? OFPUTIL_P_OF10_TID : OFPUTIL_P_OF10;
case OFPUTIL_P_NXM:
case OFPUTIL_P_NXM_TID:
return enable ? OFPUTIL_P_NXM_TID : OFPUTIL_P_NXM;
case OFPUTIL_P_OF12:
return OFPUTIL_P_OF12;
default:
NOT_REACHED();
}
}
/* Returns the "base" version of 'protocol'. That is, if 'protocol' includes
* some extension to a standard protocol version, the return value is the
* standard version of that protocol without any extension. If 'protocol' is a
* standard protocol version, returns 'protocol' unchanged. */
enum ofputil_protocol
ofputil_protocol_to_base(enum ofputil_protocol protocol)
{
return ofputil_protocol_set_tid(protocol, false);
}
/* Returns 'new_base' with any extensions taken from 'cur'. */
enum ofputil_protocol
ofputil_protocol_set_base(enum ofputil_protocol cur,
enum ofputil_protocol new_base)
{
bool tid = (cur & OFPUTIL_P_TID) != 0;
switch (new_base) {
case OFPUTIL_P_OF10:
case OFPUTIL_P_OF10_TID:
return ofputil_protocol_set_tid(OFPUTIL_P_OF10, tid);
case OFPUTIL_P_NXM:
case OFPUTIL_P_NXM_TID:
return ofputil_protocol_set_tid(OFPUTIL_P_NXM, tid);
case OFPUTIL_P_OF12:
return ofputil_protocol_set_tid(OFPUTIL_P_OF12, tid);
default:
NOT_REACHED();
}
}
/* Returns a string form of 'protocol', if a simple form exists (that is, if
* 'protocol' is either a single protocol or it is a combination of protocols
* that have a single abbreviation). Otherwise, returns NULL. */
const char *
ofputil_protocol_to_string(enum ofputil_protocol protocol)
{
const struct proto_abbrev *p;
/* Use a "switch" statement for single-bit names so that we get a compiler
* warning if we forget any. */
switch (protocol) {
case OFPUTIL_P_NXM:
return "NXM-table_id";
case OFPUTIL_P_NXM_TID:
return "NXM+table_id";
case OFPUTIL_P_OF10:
return "OpenFlow10-table_id";
case OFPUTIL_P_OF10_TID:
return "OpenFlow10+table_id";
case OFPUTIL_P_OF12:
return NULL;
}
/* Check abbreviations. */
for (p = proto_abbrevs; p < &proto_abbrevs[N_PROTO_ABBREVS]; p++) {
if (protocol == p->protocol) {
return p->name;
}
}
return NULL;
}
/* Returns a string that represents 'protocols'. The return value might be a
* comma-separated list if 'protocols' doesn't have a simple name. The return
* value is "none" if 'protocols' is 0.
*
* The caller must free the returned string (with free()). */
char *
ofputil_protocols_to_string(enum ofputil_protocol protocols)
{
struct ds s;
assert(!(protocols & ~OFPUTIL_P_ANY));
if (protocols == 0) {
return xstrdup("none");
}
ds_init(&s);
while (protocols) {
const struct proto_abbrev *p;
int i;
if (s.length) {
ds_put_char(&s, ',');
}
for (p = proto_abbrevs; p < &proto_abbrevs[N_PROTO_ABBREVS]; p++) {
if ((protocols & p->protocol) == p->protocol) {
ds_put_cstr(&s, p->name);
protocols &= ~p->protocol;
goto match;
}
}
for (i = 0; i < CHAR_BIT * sizeof(enum ofputil_protocol); i++) {
enum ofputil_protocol bit = 1u << i;
if (protocols & bit) {
ds_put_cstr(&s, ofputil_protocol_to_string(bit));
protocols &= ~bit;
goto match;
}
}
NOT_REACHED();
match: ;
}
return ds_steal_cstr(&s);
}
static enum ofputil_protocol
ofputil_protocol_from_string__(const char *s, size_t n)
{
const struct proto_abbrev *p;
int i;
for (i = 0; i < CHAR_BIT * sizeof(enum ofputil_protocol); i++) {
enum ofputil_protocol bit = 1u << i;
const char *name = ofputil_protocol_to_string(bit);
if (name && n == strlen(name) && !strncasecmp(s, name, n)) {
return bit;
}
}
for (p = proto_abbrevs; p < &proto_abbrevs[N_PROTO_ABBREVS]; p++) {
if (n == strlen(p->name) && !strncasecmp(s, p->name, n)) {
return p->protocol;
}
}
return 0;
}
/* Returns the nonempty set of protocols represented by 's', which can be a
* single protocol name or abbreviation or a comma-separated list of them.
*
* Aborts the program with an error message if 's' is invalid. */
enum ofputil_protocol
ofputil_protocols_from_string(const char *s)
{
const char *orig_s = s;
enum ofputil_protocol protocols;
protocols = 0;
while (*s) {
enum ofputil_protocol p;
size_t n;
n = strcspn(s, ",");
if (n == 0) {
s++;
continue;
}
p = ofputil_protocol_from_string__(s, n);
if (!p) {
ovs_fatal(0, "%.*s: unknown flow protocol", (int) n, s);
}
protocols |= p;
s += n;
}
if (!protocols) {
ovs_fatal(0, "%s: no flow protocol specified", orig_s);
}
return protocols;
}
bool
ofputil_packet_in_format_is_valid(enum nx_packet_in_format packet_in_format)
{
switch (packet_in_format) {
case NXPIF_OPENFLOW10:
case NXPIF_NXM:
return true;
}
return false;
}
const char *
ofputil_packet_in_format_to_string(enum nx_packet_in_format packet_in_format)
{
switch (packet_in_format) {
case NXPIF_OPENFLOW10:
return "openflow10";
case NXPIF_NXM:
return "nxm";
default:
NOT_REACHED();
}
}
int
ofputil_packet_in_format_from_string(const char *s)
{
return (!strcmp(s, "openflow10") ? NXPIF_OPENFLOW10
: !strcmp(s, "nxm") ? NXPIF_NXM
: -1);
}
static bool
regs_fully_wildcarded(const struct flow_wildcards *wc)
{
int i;
for (i = 0; i < FLOW_N_REGS; i++) {
if (wc->reg_masks[i] != 0) {
return false;
}
}
return true;
}
/* Returns a bit-mask of ofputil_protocols that can be used for sending 'rule'
* to a switch (e.g. to add or remove a flow). Only NXM can handle tunnel IDs,
* registers, or fixing the Ethernet multicast bit. Otherwise, it's better to
* use OpenFlow 1.0 protocol for backward compatibility. */
enum ofputil_protocol
ofputil_usable_protocols(const struct cls_rule *rule)
{
const struct flow_wildcards *wc = &rule->wc;
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 14);
/* NXM and OF1.1+ supports bitwise matching on ethernet addresses. */
if (!eth_mask_is_exact(wc->dl_src_mask)
&& !eth_addr_is_zero(wc->dl_src_mask)) {
return OFPUTIL_P_NXM_ANY;
}
if (!eth_mask_is_exact(wc->dl_dst_mask)
&& !eth_addr_is_zero(wc->dl_dst_mask)) {
return OFPUTIL_P_NXM_ANY;
}
/* NXM and OF1.1+ support matching metadata. */
if (wc->metadata_mask != htonll(0)) {
return OFPUTIL_P_NXM_ANY;
}
/* Only NXM supports matching ARP hardware addresses. */
if (!eth_addr_is_zero(wc->arp_sha_mask) ||
!eth_addr_is_zero(wc->arp_tha_mask)) {
return OFPUTIL_P_NXM_ANY;
}
/* Only NXM supports matching IPv6 traffic. */
if (!(wc->wildcards & FWW_DL_TYPE)
&& (rule->flow.dl_type == htons(ETH_TYPE_IPV6))) {
return OFPUTIL_P_NXM_ANY;
}
/* Only NXM supports matching registers. */
if (!regs_fully_wildcarded(wc)) {
return OFPUTIL_P_NXM_ANY;
}
/* Only NXM supports matching tun_id. */
if (wc->tun_id_mask != htonll(0)) {
return OFPUTIL_P_NXM_ANY;
}
/* Only NXM supports matching fragments. */
if (wc->nw_frag_mask) {
return OFPUTIL_P_NXM_ANY;
}
/* Only NXM supports matching IPv6 flow label. */
if (wc->ipv6_label_mask) {
return OFPUTIL_P_NXM_ANY;
}
/* Only NXM supports matching IP ECN bits. */
if (!(wc->wildcards & FWW_NW_ECN)) {
return OFPUTIL_P_NXM_ANY;
}
/* Only NXM supports matching IP TTL/hop limit. */
if (!(wc->wildcards & FWW_NW_TTL)) {
return OFPUTIL_P_NXM_ANY;
}
/* Only NXM supports non-CIDR IPv4 address masks. */
if (!ip_is_cidr(wc->nw_src_mask) || !ip_is_cidr(wc->nw_dst_mask)) {
return OFPUTIL_P_NXM_ANY;
}
/* Only NXM supports bitwise matching on transport port. */
if ((wc->tp_src_mask && wc->tp_src_mask != htons(UINT16_MAX)) ||
(wc->tp_dst_mask && wc->tp_dst_mask != htons(UINT16_MAX))) {
return OFPUTIL_P_NXM_ANY;
}
/* Other formats can express this rule. */
return OFPUTIL_P_ANY;
}
/* Returns an OpenFlow message that, sent on an OpenFlow connection whose
* protocol is 'current', at least partly transitions the protocol to 'want'.
* Stores in '*next' the protocol that will be in effect on the OpenFlow
* connection if the switch processes the returned message correctly. (If
* '*next != want' then the caller will have to iterate.)
*
* If 'current == want', returns NULL and stores 'current' in '*next'. */
struct ofpbuf *
ofputil_encode_set_protocol(enum ofputil_protocol current,
enum ofputil_protocol want,
enum ofputil_protocol *next)
{
enum ofputil_protocol cur_base, want_base;
bool cur_tid, want_tid;
cur_base = ofputil_protocol_to_base(current);
want_base = ofputil_protocol_to_base(want);
if (cur_base != want_base) {
*next = ofputil_protocol_set_base(current, want_base);
switch (want_base) {
case OFPUTIL_P_NXM:
return ofputil_encode_nx_set_flow_format(NXFF_NXM);
case OFPUTIL_P_OF10:
return ofputil_encode_nx_set_flow_format(NXFF_OPENFLOW10);
case OFPUTIL_P_OF12:
return ofputil_encode_nx_set_flow_format(NXFF_OPENFLOW12);
case OFPUTIL_P_OF10_TID:
case OFPUTIL_P_NXM_TID:
NOT_REACHED();
}
}
cur_tid = (current & OFPUTIL_P_TID) != 0;
want_tid = (want & OFPUTIL_P_TID) != 0;
if (cur_tid != want_tid) {
*next = ofputil_protocol_set_tid(current, want_tid);
return ofputil_make_flow_mod_table_id(want_tid);
}
assert(current == want);
*next = current;
return NULL;
}
/* Returns an NXT_SET_FLOW_FORMAT message that can be used to set the flow
* format to 'nxff'. */
struct ofpbuf *
ofputil_encode_nx_set_flow_format(enum nx_flow_format nxff)
{
struct nx_set_flow_format *sff;
struct ofpbuf *msg;
assert(ofputil_nx_flow_format_is_valid(nxff));
msg = ofpraw_alloc(OFPRAW_NXT_SET_FLOW_FORMAT, OFP10_VERSION, 0);
sff = ofpbuf_put_zeros(msg, sizeof *sff);
sff->format = htonl(nxff);
return msg;
}
/* Returns the base protocol if 'flow_format' is a valid NXFF_* value, false
* otherwise. */
enum ofputil_protocol
ofputil_nx_flow_format_to_protocol(enum nx_flow_format flow_format)
{
switch (flow_format) {
case NXFF_OPENFLOW10:
return OFPUTIL_P_OF10;
case NXFF_NXM:
return OFPUTIL_P_NXM;
case NXFF_OPENFLOW12:
return OFPUTIL_P_OF12;
default:
return 0;
}
}
/* Returns true if 'flow_format' is a valid NXFF_* value, false otherwise. */
bool
ofputil_nx_flow_format_is_valid(enum nx_flow_format flow_format)
{
return ofputil_nx_flow_format_to_protocol(flow_format) != 0;
}
/* Returns a string version of 'flow_format', which must be a valid NXFF_*
* value. */
const char *
ofputil_nx_flow_format_to_string(enum nx_flow_format flow_format)
{
switch (flow_format) {
case NXFF_OPENFLOW10:
return "openflow10";
case NXFF_NXM:
return "nxm";
case NXFF_OPENFLOW12:
return "openflow12";
default:
NOT_REACHED();
}
}
struct ofpbuf *
ofputil_make_set_packet_in_format(enum nx_packet_in_format packet_in_format)
{
struct nx_set_packet_in_format *spif;
struct ofpbuf *msg;
msg = ofpraw_alloc(OFPRAW_NXT_SET_PACKET_IN_FORMAT, OFP10_VERSION, 0);
spif = ofpbuf_put_zeros(msg, sizeof *spif);
spif->format = htonl(packet_in_format);
return msg;
}
/* Returns an OpenFlow message that can be used to turn the flow_mod_table_id
* extension on or off (according to 'flow_mod_table_id'). */
struct ofpbuf *
ofputil_make_flow_mod_table_id(bool flow_mod_table_id)
{
struct nx_flow_mod_table_id *nfmti;
struct ofpbuf *msg;
msg = ofpraw_alloc(OFPRAW_NXT_FLOW_MOD_TABLE_ID, OFP10_VERSION, 0);
nfmti = ofpbuf_put_zeros(msg, sizeof *nfmti);
nfmti->set = flow_mod_table_id;
return msg;
}
/* Converts an OFPT_FLOW_MOD or NXT_FLOW_MOD message 'oh' into an abstract
* flow_mod in 'fm'. Returns 0 if successful, otherwise an OpenFlow error
* code.
*
* Uses 'ofpacts' to store the abstract OFPACT_* version of 'oh''s actions.
* The caller must initialize 'ofpacts' and retains ownership of it.
* 'fm->ofpacts' will point into the 'ofpacts' buffer.
*
* Does not validate the flow_mod actions. The caller should do that, with
* ofpacts_check(). */
enum ofperr
ofputil_decode_flow_mod(struct ofputil_flow_mod *fm,
const struct ofp_header *oh,
enum ofputil_protocol protocol,
struct ofpbuf *ofpacts)
{
uint16_t command;
struct ofpbuf b;
enum ofpraw raw;
ofpbuf_use_const(&b, oh, ntohs(oh->length));
raw = ofpraw_pull_assert(&b);
if (raw == OFPRAW_OFPT11_FLOW_MOD) {
/* Standard OpenFlow 1.1 flow_mod. */
const struct ofp11_flow_mod *ofm;
enum ofperr error;
ofm = ofpbuf_pull(&b, sizeof *ofm);
error = ofputil_pull_ofp11_match(&b, ntohs(ofm->priority), &fm->cr);
if (error) {
return error;
}
error = ofpacts_pull_openflow11_instructions(&b, b.size, ofpacts);
if (error) {
return error;
}
/* Translate the message. */
if (ofm->command == OFPFC_ADD) {
fm->cookie = htonll(0);
fm->cookie_mask = htonll(0);
fm->new_cookie = ofm->cookie;
} else {
/* XXX */
fm->cookie = ofm->cookie;
fm->cookie_mask = ofm->cookie_mask;
fm->new_cookie = htonll(UINT64_MAX);
}
fm->command = ofm->command;
fm->table_id = ofm->table_id;
fm->idle_timeout = ntohs(ofm->idle_timeout);
fm->hard_timeout = ntohs(ofm->hard_timeout);
fm->buffer_id = ntohl(ofm->buffer_id);
error = ofputil_port_from_ofp11(ofm->out_port, &fm->out_port);
if (error) {
return error;
}
if (ofm->out_group != htonl(OFPG_ANY)) {
return OFPERR_NXFMFC_GROUPS_NOT_SUPPORTED;
}
fm->flags = ntohs(ofm->flags);
} else {
if (raw == OFPRAW_OFPT10_FLOW_MOD) {
/* Standard OpenFlow 1.0 flow_mod. */
const struct ofp10_flow_mod *ofm;
uint16_t priority;
enum ofperr error;
/* Get the ofp10_flow_mod. */
ofm = ofpbuf_pull(&b, sizeof *ofm);
/* Set priority based on original wildcards. Normally we'd allow
* ofputil_cls_rule_from_match() to do this for us, but
* ofputil_normalize_rule() can put wildcards where the original
* flow didn't have them. */
priority = ntohs(ofm->priority);
if (!(ofm->match.wildcards & htonl(OFPFW10_ALL))) {
priority = UINT16_MAX;
}
/* Translate the rule. */
ofputil_cls_rule_from_ofp10_match(&ofm->match, priority, &fm->cr);
ofputil_normalize_rule(&fm->cr);
/* Now get the actions. */
error = ofpacts_pull_openflow10(&b, b.size, ofpacts);
if (error) {
return error;
}
/* Translate the message. */
command = ntohs(ofm->command);
fm->cookie = htonll(0);
fm->cookie_mask = htonll(0);
fm->new_cookie = ofm->cookie;
fm->idle_timeout = ntohs(ofm->idle_timeout);
fm->hard_timeout = ntohs(ofm->hard_timeout);
fm->buffer_id = ntohl(ofm->buffer_id);
fm->out_port = ntohs(ofm->out_port);
fm->flags = ntohs(ofm->flags);
} else if (raw == OFPRAW_NXT_FLOW_MOD) {
/* Nicira extended flow_mod. */
const struct nx_flow_mod *nfm;
enum ofperr error;
/* Dissect the message. */
nfm = ofpbuf_pull(&b, sizeof *nfm);
error = nx_pull_match(&b, ntohs(nfm->match_len), ntohs(nfm->priority),
&fm->cr, &fm->cookie, &fm->cookie_mask);
if (error) {
return error;
}
error = ofpacts_pull_openflow10(&b, b.size, ofpacts);
if (error) {
return error;
}
/* Translate the message. */
command = ntohs(nfm->command);
if ((command & 0xff) == OFPFC_ADD && fm->cookie_mask) {
/* Flow additions may only set a new cookie, not match an
* existing cookie. */
return OFPERR_NXBRC_NXM_INVALID;
}
fm->new_cookie = nfm->cookie;
fm->idle_timeout = ntohs(nfm->idle_timeout);
fm->hard_timeout = ntohs(nfm->hard_timeout);
fm->buffer_id = ntohl(nfm->buffer_id);
fm->out_port = ntohs(nfm->out_port);
fm->flags = ntohs(nfm->flags);
} else {
NOT_REACHED();
}
if (protocol & OFPUTIL_P_TID) {
fm->command = command & 0xff;
fm->table_id = command >> 8;
} else {
fm->command = command;
fm->table_id = 0xff;
}
}
fm->ofpacts = ofpacts->data;
fm->ofpacts_len = ofpacts->size;
return 0;
}
/* Converts 'fm' into an OFPT_FLOW_MOD or NXT_FLOW_MOD message according to
* 'protocol' and returns the message. */
struct ofpbuf *
ofputil_encode_flow_mod(const struct ofputil_flow_mod *fm,
enum ofputil_protocol protocol)
{
struct ofpbuf *msg;
uint16_t command;
command = (protocol & OFPUTIL_P_TID
? (fm->command & 0xff) | (fm->table_id << 8)
: fm->command);
switch (protocol) {
case OFPUTIL_P_OF10:
case OFPUTIL_P_OF10_TID: {
struct ofp10_flow_mod *ofm;
msg = ofpraw_alloc(OFPRAW_OFPT10_FLOW_MOD, OFP10_VERSION,
fm->ofpacts_len);
ofm = ofpbuf_put_zeros(msg, sizeof *ofm);
ofputil_cls_rule_to_ofp10_match(&fm->cr, &ofm->match);
ofm->cookie = fm->new_cookie;
ofm->command = htons(command);
ofm->idle_timeout = htons(fm->idle_timeout);
ofm->hard_timeout = htons(fm->hard_timeout);
ofm->priority = htons(fm->cr.priority);
ofm->buffer_id = htonl(fm->buffer_id);
ofm->out_port = htons(fm->out_port);
ofm->flags = htons(fm->flags);
break;
}
case OFPUTIL_P_NXM:
case OFPUTIL_P_NXM_TID: {
struct nx_flow_mod *nfm;
int match_len;
msg = ofpraw_alloc(OFPRAW_NXT_FLOW_MOD, OFP10_VERSION,
NXM_TYPICAL_LEN + fm->ofpacts_len);
nfm = ofpbuf_put_zeros(msg, sizeof *nfm);
nfm->command = htons(command);
nfm->cookie = fm->new_cookie;
match_len = nx_put_match(msg, false, &fm->cr,
fm->cookie, fm->cookie_mask);
nfm = msg->l3;
nfm->idle_timeout = htons(fm->idle_timeout);
nfm->hard_timeout = htons(fm->hard_timeout);
nfm->priority = htons(fm->cr.priority);
nfm->buffer_id = htonl(fm->buffer_id);
nfm->out_port = htons(fm->out_port);
nfm->flags = htons(fm->flags);
nfm->match_len = htons(match_len);
break;
}
case OFPUTIL_P_OF12:
default:
NOT_REACHED();
}
if (fm->ofpacts) {
ofpacts_put_openflow10(fm->ofpacts, fm->ofpacts_len, msg);
}
ofpmsg_update_length(msg);
return msg;
}
/* Returns a bitmask with a 1-bit for each protocol that could be used to
* send all of the 'n_fm's flow table modification requests in 'fms', and a
* 0-bit for each protocol that is inadequate.
*
* (The return value will have at least one 1-bit.) */
enum ofputil_protocol
ofputil_flow_mod_usable_protocols(const struct ofputil_flow_mod *fms,
size_t n_fms)
{
enum ofputil_protocol usable_protocols;
size_t i;
usable_protocols = OFPUTIL_P_ANY;
for (i = 0; i < n_fms; i++) {
const struct ofputil_flow_mod *fm = &fms[i];
usable_protocols &= ofputil_usable_protocols(&fm->cr);
if (fm->table_id != 0xff) {
usable_protocols &= OFPUTIL_P_TID;
}
/* Matching of the cookie is only supported through NXM. */
if (fm->cookie_mask != htonll(0)) {
usable_protocols &= OFPUTIL_P_NXM_ANY;
}
}
assert(usable_protocols);
return usable_protocols;
}
static enum ofperr
ofputil_decode_ofpst_flow_request(struct ofputil_flow_stats_request *fsr,
const struct ofp10_flow_stats_request *ofsr,
bool aggregate)
{
fsr->aggregate = aggregate;
ofputil_cls_rule_from_ofp10_match(&ofsr->match, 0, &fsr->match);
fsr->out_port = ntohs(ofsr->out_port);
fsr->table_id = ofsr->table_id;
fsr->cookie = fsr->cookie_mask = htonll(0);
return 0;
}
static enum ofperr
ofputil_decode_nxst_flow_request(struct ofputil_flow_stats_request *fsr,
struct ofpbuf *b, bool aggregate)
{
const struct nx_flow_stats_request *nfsr;
enum ofperr error;
nfsr = ofpbuf_pull(b, sizeof *nfsr);
error = nx_pull_match(b, ntohs(nfsr->match_len), 0, &fsr->match,
&fsr->cookie, &fsr->cookie_mask);
if (error) {
return error;
}
if (b->size) {
return OFPERR_OFPBRC_BAD_LEN;
}
fsr->aggregate = aggregate;
fsr->out_port = ntohs(nfsr->out_port);
fsr->table_id = nfsr->table_id;
return 0;
}
/* Converts an OFPST_FLOW, OFPST_AGGREGATE, NXST_FLOW, or NXST_AGGREGATE
* request 'oh', into an abstract flow_stats_request in 'fsr'. Returns 0 if
* successful, otherwise an OpenFlow error code. */
enum ofperr
ofputil_decode_flow_stats_request(struct ofputil_flow_stats_request *fsr,
const struct ofp_header *oh)
{
enum ofpraw raw;
struct ofpbuf b;
ofpbuf_use_const(&b, oh, ntohs(oh->length));
raw = ofpraw_pull_assert(&b);
switch ((int) raw) {
case OFPRAW_OFPST_FLOW_REQUEST:
return ofputil_decode_ofpst_flow_request(fsr, b.data, false);
case OFPRAW_OFPST_AGGREGATE_REQUEST:
return ofputil_decode_ofpst_flow_request(fsr, b.data, true);
case OFPRAW_NXST_FLOW_REQUEST:
return ofputil_decode_nxst_flow_request(fsr, &b, false);
case OFPRAW_NXST_AGGREGATE_REQUEST:
return ofputil_decode_nxst_flow_request(fsr, &b, true);
default:
/* Hey, the caller lied. */
NOT_REACHED();
}
}
/* Converts abstract flow_stats_request 'fsr' into an OFPST_FLOW,
* OFPST_AGGREGATE, NXST_FLOW, or NXST_AGGREGATE request 'oh' according to
* 'protocol', and returns the message. */
struct ofpbuf *
ofputil_encode_flow_stats_request(const struct ofputil_flow_stats_request *fsr,
enum ofputil_protocol protocol)
{
struct ofpbuf *msg;
enum ofpraw raw;
switch (protocol) {
case OFPUTIL_P_OF10:
case OFPUTIL_P_OF10_TID: {
struct ofp10_flow_stats_request *ofsr;
raw = (fsr->aggregate
? OFPRAW_OFPST_AGGREGATE_REQUEST
: OFPRAW_OFPST_FLOW_REQUEST);
msg = ofpraw_alloc(raw, OFP10_VERSION, 0);
ofsr = ofpbuf_put_zeros(msg, sizeof *ofsr);
ofputil_cls_rule_to_ofp10_match(&fsr->match, &ofsr->match);
ofsr->table_id = fsr->table_id;
ofsr->out_port = htons(fsr->out_port);
break;
}
case OFPUTIL_P_NXM:
case OFPUTIL_P_NXM_TID: {
struct nx_flow_stats_request *nfsr;
int match_len;
raw = (fsr->aggregate
? OFPRAW_NXST_AGGREGATE_REQUEST
: OFPRAW_NXST_FLOW_REQUEST);
msg = ofpraw_alloc(raw, OFP10_VERSION, 0);
ofpbuf_put_zeros(msg, sizeof *nfsr);
match_len = nx_put_match(msg, false, &fsr->match,
fsr->cookie, fsr->cookie_mask);
nfsr = msg->l3;
nfsr->out_port = htons(fsr->out_port);
nfsr->match_len = htons(match_len);
nfsr->table_id = fsr->table_id;
break;
}
case OFPUTIL_P_OF12:
default:
NOT_REACHED();
}
return msg;
}
/* Returns a bitmask with a 1-bit for each protocol that could be used to
* accurately encode 'fsr', and a 0-bit for each protocol that is inadequate.
*
* (The return value will have at least one 1-bit.) */
enum ofputil_protocol
ofputil_flow_stats_request_usable_protocols(
const struct ofputil_flow_stats_request *fsr)
{
enum ofputil_protocol usable_protocols;
usable_protocols = ofputil_usable_protocols(&fsr->match);
if (fsr->cookie_mask != htonll(0)) {
usable_protocols &= OFPUTIL_P_NXM_ANY;
}
return usable_protocols;
}
/* Converts an OFPST_FLOW or NXST_FLOW reply in 'msg' into an abstract
* ofputil_flow_stats in 'fs'.
*
* Multiple OFPST_FLOW or NXST_FLOW replies can be packed into a single
* OpenFlow message. Calling this function multiple times for a single 'msg'
* iterates through the replies. The caller must initially leave 'msg''s layer
* pointers null and not modify them between calls.
*
* Most switches don't send the values needed to populate fs->idle_age and
* fs->hard_age, so those members will usually be set to 0. If the switch from
* which 'msg' originated is known to implement NXT_FLOW_AGE, then pass
* 'flow_age_extension' as true so that the contents of 'msg' determine the
* 'idle_age' and 'hard_age' members in 'fs'.
*
* Uses 'ofpacts' to store the abstract OFPACT_* version of the flow stats
* reply's actions. The caller must initialize 'ofpacts' and retains ownership
* of it. 'fs->ofpacts' will point into the 'ofpacts' buffer.
*
* Returns 0 if successful, EOF if no replies were left in this 'msg',
* otherwise a positive errno value. */
int
ofputil_decode_flow_stats_reply(struct ofputil_flow_stats *fs,
struct ofpbuf *msg,
bool flow_age_extension,
struct ofpbuf *ofpacts)
{
enum ofperr error;
enum ofpraw raw;
error = (msg->l2
? ofpraw_decode(&raw, msg->l2)
: ofpraw_pull(&raw, msg));
if (error) {
return error;
}
if (!msg->size) {
return EOF;
} else if (raw == OFPRAW_OFPST_FLOW_REPLY) {
const struct ofp10_flow_stats *ofs;
size_t length;
ofs = ofpbuf_try_pull(msg, sizeof *ofs);
if (!ofs) {
VLOG_WARN_RL(&bad_ofmsg_rl, "OFPST_FLOW reply has %zu leftover "
"bytes at end", msg->size);
return EINVAL;
}
length = ntohs(ofs->length);
if (length < sizeof *ofs) {
VLOG_WARN_RL(&bad_ofmsg_rl, "OFPST_FLOW reply claims invalid "
"length %zu", length);
return EINVAL;
}
if (ofpacts_pull_openflow10(msg, length - sizeof *ofs, ofpacts)) {
return EINVAL;
}
fs->cookie = get_32aligned_be64(&ofs->cookie);
ofputil_cls_rule_from_ofp10_match(&ofs->match, ntohs(ofs->priority),
&fs->rule);
fs->table_id = ofs->table_id;
fs->duration_sec = ntohl(ofs->duration_sec);
fs->duration_nsec = ntohl(ofs->duration_nsec);
fs->idle_timeout = ntohs(ofs->idle_timeout);
fs->hard_timeout = ntohs(ofs->hard_timeout);
fs->idle_age = -1;
fs->hard_age = -1;
fs->packet_count = ntohll(get_32aligned_be64(&ofs->packet_count));
fs->byte_count = ntohll(get_32aligned_be64(&ofs->byte_count));
} else if (raw == OFPRAW_NXST_FLOW_REPLY) {
const struct nx_flow_stats *nfs;
size_t match_len, actions_len, length;
nfs = ofpbuf_try_pull(msg, sizeof *nfs);
if (!nfs) {
VLOG_WARN_RL(&bad_ofmsg_rl, "NXST_FLOW reply has %zu leftover "
"bytes at end", msg->size);
return EINVAL;
}
length = ntohs(nfs->length);
match_len = ntohs(nfs->match_len);
if (length < sizeof *nfs + ROUND_UP(match_len, 8)) {
VLOG_WARN_RL(&bad_ofmsg_rl, "NXST_FLOW reply with match_len=%zu "
"claims invalid length %zu", match_len, length);
return EINVAL;
}
if (nx_pull_match(msg, match_len, ntohs(nfs->priority), &fs->rule,
NULL, NULL)) {
return EINVAL;
}
actions_len = length - sizeof *nfs - ROUND_UP(match_len, 8);
if (ofpacts_pull_openflow10(msg, actions_len, ofpacts)) {
return EINVAL;
}
fs->cookie = nfs->cookie;
fs->table_id = nfs->table_id;
fs->duration_sec = ntohl(nfs->duration_sec);
fs->duration_nsec = ntohl(nfs->duration_nsec);
fs->idle_timeout = ntohs(nfs->idle_timeout);
fs->hard_timeout = ntohs(nfs->hard_timeout);
fs->idle_age = -1;
fs->hard_age = -1;
if (flow_age_extension) {
if (nfs->idle_age) {
fs->idle_age = ntohs(nfs->idle_age) - 1;
}
if (nfs->hard_age) {
fs->hard_age = ntohs(nfs->hard_age) - 1;
}
}
fs->packet_count = ntohll(nfs->packet_count);
fs->byte_count = ntohll(nfs->byte_count);
} else {
NOT_REACHED();
}
fs->ofpacts = ofpacts->data;
fs->ofpacts_len = ofpacts->size;
return 0;
}
/* Returns 'count' unchanged except that UINT64_MAX becomes 0.
*
* We use this in situations where OVS internally uses UINT64_MAX to mean
* "value unknown" but OpenFlow 1.0 does not define any unknown value. */
static uint64_t
unknown_to_zero(uint64_t count)
{
return count != UINT64_MAX ? count : 0;
}
/* Appends an OFPST_FLOW or NXST_FLOW reply that contains the data in 'fs' to
* those already present in the list of ofpbufs in 'replies'. 'replies' should
* have been initialized with ofputil_start_stats_reply(). */
void
ofputil_append_flow_stats_reply(const struct ofputil_flow_stats *fs,
struct list *replies)
{
struct ofpbuf *reply = ofpbuf_from_list(list_back(replies));
size_t start_ofs = reply->size;
enum ofpraw raw;
ofpraw_decode_partial(&raw, reply->data, reply->size);
if (raw == OFPRAW_OFPST_FLOW_REPLY) {
struct ofp10_flow_stats *ofs;
ofpbuf_put_uninit(reply, sizeof *ofs);
ofpacts_put_openflow10(fs->ofpacts, fs->ofpacts_len, reply);
ofs = ofpbuf_at_assert(reply, start_ofs, sizeof *ofs);
ofs->length = htons(reply->size - start_ofs);
ofs->table_id = fs->table_id;
ofs->pad = 0;
ofputil_cls_rule_to_ofp10_match(&fs->rule, &ofs->match);
ofs->duration_sec = htonl(fs->duration_sec);
ofs->duration_nsec = htonl(fs->duration_nsec);
ofs->priority = htons(fs->rule.priority);
ofs->idle_timeout = htons(fs->idle_timeout);
ofs->hard_timeout = htons(fs->hard_timeout);
memset(ofs->pad2, 0, sizeof ofs->pad2);
put_32aligned_be64(&ofs->cookie, fs->cookie);
put_32aligned_be64(&ofs->packet_count,
htonll(unknown_to_zero(fs->packet_count)));
put_32aligned_be64(&ofs->byte_count,
htonll(unknown_to_zero(fs->byte_count)));
} else if (raw == OFPRAW_NXST_FLOW_REPLY) {
struct nx_flow_stats *nfs;
int match_len;
ofpbuf_put_uninit(reply, sizeof *nfs);
match_len = nx_put_match(reply, false, &fs->rule, 0, 0);
ofpacts_put_openflow10(fs->ofpacts, fs->ofpacts_len, reply);
nfs = ofpbuf_at_assert(reply, start_ofs, sizeof *nfs);
nfs->length = htons(reply->size - start_ofs);
nfs->table_id = fs->table_id;
nfs->pad = 0;
nfs->duration_sec = htonl(fs->duration_sec);
nfs->duration_nsec = htonl(fs->duration_nsec);
nfs->priority = htons(fs->rule.priority);
nfs->idle_timeout = htons(fs->idle_timeout);
nfs->hard_timeout = htons(fs->hard_timeout);
nfs->idle_age = htons(fs->idle_age < 0 ? 0
: fs->idle_age < UINT16_MAX ? fs->idle_age + 1
: UINT16_MAX);
nfs->hard_age = htons(fs->hard_age < 0 ? 0
: fs->hard_age < UINT16_MAX ? fs->hard_age + 1
: UINT16_MAX);
nfs->match_len = htons(match_len);
nfs->cookie = fs->cookie;
nfs->packet_count = htonll(fs->packet_count);
nfs->byte_count = htonll(fs->byte_count);
} else {
NOT_REACHED();
}
ofpmp_postappend(replies, start_ofs);
}
/* Converts abstract ofputil_aggregate_stats 'stats' into an OFPST_AGGREGATE or
* NXST_AGGREGATE reply matching 'request', and returns the message. */
struct ofpbuf *
ofputil_encode_aggregate_stats_reply(
const struct ofputil_aggregate_stats *stats,
const struct ofp_header *request)
{
struct ofp_aggregate_stats_reply *asr;
uint64_t packet_count;
uint64_t byte_count;
struct ofpbuf *msg;
enum ofpraw raw;
ofpraw_decode(&raw, request);
if (raw == OFPRAW_OFPST_AGGREGATE_REQUEST) {
packet_count = unknown_to_zero(stats->packet_count);
byte_count = unknown_to_zero(stats->byte_count);
} else {
packet_count = stats->packet_count;
byte_count = stats->byte_count;
}
msg = ofpraw_alloc_stats_reply(request, 0);
asr = ofpbuf_put_zeros(msg, sizeof *asr);
put_32aligned_be64(&asr->packet_count, htonll(packet_count));
put_32aligned_be64(&asr->byte_count, htonll(byte_count));
asr->flow_count = htonl(stats->flow_count);
return msg;
}
enum ofperr
ofputil_decode_aggregate_stats_reply(struct ofputil_aggregate_stats *stats,
const struct ofp_header *reply)
{
struct ofp_aggregate_stats_reply *asr;
struct ofpbuf msg;
ofpbuf_use_const(&msg, reply, ntohs(reply->length));
ofpraw_pull_assert(&msg);
asr = msg.l3;
stats->packet_count = ntohll(get_32aligned_be64(&asr->packet_count));
stats->byte_count = ntohll(get_32aligned_be64(&asr->byte_count));
stats->flow_count = ntohl(asr->flow_count);
return 0;
}
/* Converts an OFPT_FLOW_REMOVED or NXT_FLOW_REMOVED message 'oh' into an
* abstract ofputil_flow_removed in 'fr'. Returns 0 if successful, otherwise
* an OpenFlow error code. */
enum ofperr
ofputil_decode_flow_removed(struct ofputil_flow_removed *fr,
const struct ofp_header *oh)
{
enum ofpraw raw;
struct ofpbuf b;
ofpbuf_use_const(&b, oh, ntohs(oh->length));
raw = ofpraw_pull_assert(&b);
if (raw == OFPRAW_OFPT10_FLOW_REMOVED) {
const struct ofp_flow_removed *ofr;
ofr = ofpbuf_pull(&b, sizeof *ofr);
ofputil_cls_rule_from_ofp10_match(&ofr->match, ntohs(ofr->priority),
&fr->rule);
fr->cookie = ofr->cookie;
fr->reason = ofr->reason;
fr->duration_sec = ntohl(ofr->duration_sec);
fr->duration_nsec = ntohl(ofr->duration_nsec);
fr->idle_timeout = ntohs(ofr->idle_timeout);
fr->packet_count = ntohll(ofr->packet_count);
fr->byte_count = ntohll(ofr->byte_count);
} else if (raw == OFPRAW_NXT_FLOW_REMOVED) {
struct nx_flow_removed *nfr;
int error;
nfr = ofpbuf_pull(&b, sizeof *nfr);
error = nx_pull_match(&b, ntohs(nfr->match_len), ntohs(nfr->priority),
&fr->rule, NULL, NULL);
if (error) {
return error;
}
if (b.size) {
return OFPERR_OFPBRC_BAD_LEN;
}
fr->cookie = nfr->cookie;
fr->reason = nfr->reason;
fr->duration_sec = ntohl(nfr->duration_sec);
fr->duration_nsec = ntohl(nfr->duration_nsec);
fr->idle_timeout = ntohs(nfr->idle_timeout);
fr->packet_count = ntohll(nfr->packet_count);
fr->byte_count = ntohll(nfr->byte_count);
} else {
NOT_REACHED();
}
return 0;
}
/* Converts abstract ofputil_flow_removed 'fr' into an OFPT_FLOW_REMOVED or
* NXT_FLOW_REMOVED message 'oh' according to 'protocol', and returns the
* message. */
struct ofpbuf *
ofputil_encode_flow_removed(const struct ofputil_flow_removed *fr,
enum ofputil_protocol protocol)
{
struct ofpbuf *msg;
switch (protocol) {
case OFPUTIL_P_OF10:
case OFPUTIL_P_OF10_TID: {
struct ofp_flow_removed *ofr;
msg = ofpraw_alloc_xid(OFPRAW_OFPT10_FLOW_REMOVED, OFP10_VERSION,
htonl(0), 0);
ofr = ofpbuf_put_zeros(msg, sizeof *ofr);
ofputil_cls_rule_to_ofp10_match(&fr->rule, &ofr->match);
ofr->cookie = fr->cookie;
ofr->priority = htons(fr->rule.priority);
ofr->reason = fr->reason;
ofr->duration_sec = htonl(fr->duration_sec);
ofr->duration_nsec = htonl(fr->duration_nsec);
ofr->idle_timeout = htons(fr->idle_timeout);
ofr->packet_count = htonll(unknown_to_zero(fr->packet_count));
ofr->byte_count = htonll(unknown_to_zero(fr->byte_count));
break;
}
case OFPUTIL_P_NXM:
case OFPUTIL_P_NXM_TID: {
struct nx_flow_removed *nfr;
int match_len;
msg = ofpraw_alloc_xid(OFPRAW_NXT_FLOW_REMOVED, OFP10_VERSION,
htonl(0), NXM_TYPICAL_LEN);
nfr = ofpbuf_put_zeros(msg, sizeof *nfr);
match_len = nx_put_match(msg, false, &fr->rule, 0, 0);
nfr = msg->l3;
nfr->cookie = fr->cookie;
nfr->priority = htons(fr->rule.priority);
nfr->reason = fr->reason;
nfr->duration_sec = htonl(fr->duration_sec);
nfr->duration_nsec = htonl(fr->duration_nsec);
nfr->idle_timeout = htons(fr->idle_timeout);
nfr->match_len = htons(match_len);
nfr->packet_count = htonll(fr->packet_count);
nfr->byte_count = htonll(fr->byte_count);
break;
}
case OFPUTIL_P_OF12:
default:
NOT_REACHED();
}
return msg;
}
enum ofperr
ofputil_decode_packet_in(struct ofputil_packet_in *pin,
const struct ofp_header *oh)
{
enum ofpraw raw;
struct ofpbuf b;
memset(pin, 0, sizeof *pin);
ofpbuf_use_const(&b, oh, ntohs(oh->length));
raw = ofpraw_pull_assert(&b);
if (raw == OFPRAW_OFPT10_PACKET_IN) {
const struct ofp_packet_in *opi;
opi = ofpbuf_pull(&b, offsetof(struct ofp_packet_in, data));
pin->packet = opi->data;
pin->packet_len = b.size;
pin->fmd.in_port = ntohs(opi->in_port);
pin->reason = opi->reason;
pin->buffer_id = ntohl(opi->buffer_id);
pin->total_len = ntohs(opi->total_len);
} else if (raw == OFPRAW_NXT_PACKET_IN) {
const struct nx_packet_in *npi;
struct cls_rule rule;
int error;
npi = ofpbuf_pull(&b, sizeof *npi);
error = nx_pull_match_loose(&b, ntohs(npi->match_len), 0, &rule, NULL,
NULL);
if (error) {
return error;
}
if (!ofpbuf_try_pull(&b, 2)) {
return OFPERR_OFPBRC_BAD_LEN;
}
pin->packet = b.data;
pin->packet_len = b.size;
pin->reason = npi->reason;
pin->table_id = npi->table_id;
pin->cookie = npi->cookie;
pin->fmd.in_port = rule.flow.in_port;
pin->fmd.tun_id = rule.flow.tun_id;
pin->fmd.tun_id_mask = rule.wc.tun_id_mask;
pin->fmd.metadata = rule.flow.metadata;
pin->fmd.metadata_mask = rule.wc.metadata_mask;
memcpy(pin->fmd.regs, rule.flow.regs, sizeof pin->fmd.regs);
memcpy(pin->fmd.reg_masks, rule.wc.reg_masks,
sizeof pin->fmd.reg_masks);
pin->buffer_id = ntohl(npi->buffer_id);
pin->total_len = ntohs(npi->total_len);
} else {
NOT_REACHED();
}
return 0;
}
/* Converts abstract ofputil_packet_in 'pin' into a PACKET_IN message
* in the format specified by 'packet_in_format'. */
struct ofpbuf *
ofputil_encode_packet_in(const struct ofputil_packet_in *pin,
enum nx_packet_in_format packet_in_format)
{
size_t send_len = MIN(pin->send_len, pin->packet_len);
struct ofpbuf *packet;
/* Add OFPT_PACKET_IN. */
if (packet_in_format == NXPIF_OPENFLOW10) {
struct ofp_packet_in *opi;
packet = ofpraw_alloc_xid(OFPRAW_OFPT10_PACKET_IN, OFP10_VERSION,
htonl(0), send_len);
opi = ofpbuf_put_zeros(packet, offsetof(struct ofp_packet_in, data));
opi->total_len = htons(pin->total_len);
opi->in_port = htons(pin->fmd.in_port);
opi->reason = pin->reason;
opi->buffer_id = htonl(pin->buffer_id);
ofpbuf_put(packet, pin->packet, send_len);
} else if (packet_in_format == NXPIF_NXM) {
struct nx_packet_in *npi;
struct cls_rule rule;
size_t match_len;
size_t i;
cls_rule_init_catchall(&rule, 0);
cls_rule_set_tun_id_masked(&rule, pin->fmd.tun_id,
pin->fmd.tun_id_mask);
cls_rule_set_metadata_masked(&rule, pin->fmd.metadata,
pin->fmd.metadata_mask);
for (i = 0; i < FLOW_N_REGS; i++) {
cls_rule_set_reg_masked(&rule, i, pin->fmd.regs[i],
pin->fmd.reg_masks[i]);
}
cls_rule_set_in_port(&rule, pin->fmd.in_port);
/* The final argument is just an estimate of the space required. */
packet = ofpraw_alloc_xid(OFPRAW_NXT_PACKET_IN, OFP10_VERSION,
htonl(0), (sizeof(struct flow_metadata) * 2
+ 2 + send_len));
ofpbuf_put_zeros(packet, sizeof *npi);
match_len = nx_put_match(packet, false, &rule, 0, 0);
ofpbuf_put_zeros(packet, 2);
ofpbuf_put(packet, pin->packet, send_len);
npi = packet->l3;
npi->buffer_id = htonl(pin->buffer_id);
npi->total_len = htons(pin->total_len);
npi->reason = pin->reason;
npi->table_id = pin->table_id;
npi->cookie = pin->cookie;
npi->match_len = htons(match_len);
} else {
NOT_REACHED();
}
ofpmsg_update_length(packet);
return packet;
}
const char *
ofputil_packet_in_reason_to_string(enum ofp_packet_in_reason reason)
{
static char s[INT_STRLEN(int) + 1];
switch (reason) {
case OFPR_NO_MATCH:
return "no_match";
case OFPR_ACTION:
return "action";
case OFPR_INVALID_TTL:
return "invalid_ttl";
case OFPR_N_REASONS:
default:
sprintf(s, "%d", (int) reason);
return s;
}
}
bool
ofputil_packet_in_reason_from_string(const char *s,
enum ofp_packet_in_reason *reason)
{
int i;
for (i = 0; i < OFPR_N_REASONS; i++) {
if (!strcasecmp(s, ofputil_packet_in_reason_to_string(i))) {
*reason = i;
return true;
}
}
return false;
}
/* Converts an OFPT_PACKET_OUT in 'opo' into an abstract ofputil_packet_out in
* 'po'.
*
* Uses 'ofpacts' to store the abstract OFPACT_* version of the packet out
* message's actions. The caller must initialize 'ofpacts' and retains
* ownership of it. 'po->ofpacts' will point into the 'ofpacts' buffer.
*
* Returns 0 if successful, otherwise an OFPERR_* value. */
enum ofperr
ofputil_decode_packet_out(struct ofputil_packet_out *po,
const struct ofp_header *oh,
struct ofpbuf *ofpacts)
{
const struct ofp_packet_out *opo;
enum ofperr error;
enum ofpraw raw;
struct ofpbuf b;
ofpbuf_use_const(&b, oh, ntohs(oh->length));
raw = ofpraw_pull_assert(&b);
assert(raw == OFPRAW_OFPT10_PACKET_OUT);
opo = ofpbuf_pull(&b, sizeof *opo);
po->buffer_id = ntohl(opo->buffer_id);
po->in_port = ntohs(opo->in_port);
if (po->in_port >= OFPP_MAX && po->in_port != OFPP_LOCAL
&& po->in_port != OFPP_NONE && po->in_port != OFPP_CONTROLLER) {
VLOG_WARN_RL(&bad_ofmsg_rl, "packet-out has bad input port %#"PRIx16,
po->in_port);
return OFPERR_NXBRC_BAD_IN_PORT;
}
error = ofpacts_pull_openflow10(&b, ntohs(opo->actions_len), ofpacts);
if (error) {
return error;
}
po->ofpacts = ofpacts->data;
po->ofpacts_len = ofpacts->size;
if (po->buffer_id == UINT32_MAX) {
po->packet = b.data;
po->packet_len = b.size;
} else {
po->packet = NULL;
po->packet_len = 0;
}
return 0;
}
/* ofputil_phy_port */
/* NETDEV_F_* to and from OFPPF_* and OFPPF10_*. */
BUILD_ASSERT_DECL((int) NETDEV_F_10MB_HD == OFPPF_10MB_HD); /* bit 0 */
BUILD_ASSERT_DECL((int) NETDEV_F_10MB_FD == OFPPF_10MB_FD); /* bit 1 */
BUILD_ASSERT_DECL((int) NETDEV_F_100MB_HD == OFPPF_100MB_HD); /* bit 2 */
BUILD_ASSERT_DECL((int) NETDEV_F_100MB_FD == OFPPF_100MB_FD); /* bit 3 */
BUILD_ASSERT_DECL((int) NETDEV_F_1GB_HD == OFPPF_1GB_HD); /* bit 4 */
BUILD_ASSERT_DECL((int) NETDEV_F_1GB_FD == OFPPF_1GB_FD); /* bit 5 */
BUILD_ASSERT_DECL((int) NETDEV_F_10GB_FD == OFPPF_10GB_FD); /* bit 6 */
/* NETDEV_F_ bits 11...15 are OFPPF10_ bits 7...11: */
BUILD_ASSERT_DECL((int) NETDEV_F_COPPER == (OFPPF10_COPPER << 4));
BUILD_ASSERT_DECL((int) NETDEV_F_FIBER == (OFPPF10_FIBER << 4));
BUILD_ASSERT_DECL((int) NETDEV_F_AUTONEG == (OFPPF10_AUTONEG << 4));
BUILD_ASSERT_DECL((int) NETDEV_F_PAUSE == (OFPPF10_PAUSE << 4));
BUILD_ASSERT_DECL((int) NETDEV_F_PAUSE_ASYM == (OFPPF10_PAUSE_ASYM << 4));
static enum netdev_features
netdev_port_features_from_ofp10(ovs_be32 ofp10_)
{
uint32_t ofp10 = ntohl(ofp10_);
return (ofp10 & 0x7f) | ((ofp10 & 0xf80) << 4);
}
static ovs_be32
netdev_port_features_to_ofp10(enum netdev_features features)
{
return htonl((features & 0x7f) | ((features & 0xf800) >> 4));
}
BUILD_ASSERT_DECL((int) NETDEV_F_10MB_HD == OFPPF_10MB_HD); /* bit 0 */
BUILD_ASSERT_DECL((int) NETDEV_F_10MB_FD == OFPPF_10MB_FD); /* bit 1 */
BUILD_ASSERT_DECL((int) NETDEV_F_100MB_HD == OFPPF_100MB_HD); /* bit 2 */
BUILD_ASSERT_DECL((int) NETDEV_F_100MB_FD == OFPPF_100MB_FD); /* bit 3 */
BUILD_ASSERT_DECL((int) NETDEV_F_1GB_HD == OFPPF_1GB_HD); /* bit 4 */
BUILD_ASSERT_DECL((int) NETDEV_F_1GB_FD == OFPPF_1GB_FD); /* bit 5 */
BUILD_ASSERT_DECL((int) NETDEV_F_10GB_FD == OFPPF_10GB_FD); /* bit 6 */
BUILD_ASSERT_DECL((int) NETDEV_F_40GB_FD == OFPPF11_40GB_FD); /* bit 7 */
BUILD_ASSERT_DECL((int) NETDEV_F_100GB_FD == OFPPF11_100GB_FD); /* bit 8 */
BUILD_ASSERT_DECL((int) NETDEV_F_1TB_FD == OFPPF11_1TB_FD); /* bit 9 */
BUILD_ASSERT_DECL((int) NETDEV_F_OTHER == OFPPF11_OTHER); /* bit 10 */
BUILD_ASSERT_DECL((int) NETDEV_F_COPPER == OFPPF11_COPPER); /* bit 11 */
BUILD_ASSERT_DECL((int) NETDEV_F_FIBER == OFPPF11_FIBER); /* bit 12 */
BUILD_ASSERT_DECL((int) NETDEV_F_AUTONEG == OFPPF11_AUTONEG); /* bit 13 */
BUILD_ASSERT_DECL((int) NETDEV_F_PAUSE == OFPPF11_PAUSE); /* bit 14 */
BUILD_ASSERT_DECL((int) NETDEV_F_PAUSE_ASYM == OFPPF11_PAUSE_ASYM);/* bit 15 */
static enum netdev_features
netdev_port_features_from_ofp11(ovs_be32 ofp11)
{
return ntohl(ofp11) & 0xffff;
}
static ovs_be32
netdev_port_features_to_ofp11(enum netdev_features features)
{
return htonl(features & 0xffff);
}
static enum ofperr
ofputil_decode_ofp10_phy_port(struct ofputil_phy_port *pp,
const struct ofp10_phy_port *opp)
{
memset(pp, 0, sizeof *pp);
pp->port_no = ntohs(opp->port_no);
memcpy(pp->hw_addr, opp->hw_addr, OFP_ETH_ALEN);
ovs_strlcpy(pp->name, opp->name, OFP_MAX_PORT_NAME_LEN);
pp->config = ntohl(opp->config) & OFPPC10_ALL;
pp->state = ntohl(opp->state) & OFPPS10_ALL;
pp->curr = netdev_port_features_from_ofp10(opp->curr);
pp->advertised = netdev_port_features_from_ofp10(opp->advertised);
pp->supported = netdev_port_features_from_ofp10(opp->supported);
pp->peer = netdev_port_features_from_ofp10(opp->peer);
pp->curr_speed = netdev_features_to_bps(pp->curr) / 1000;
pp->max_speed = netdev_features_to_bps(pp->supported) / 1000;
return 0;
}
static enum ofperr
ofputil_decode_ofp11_port(struct ofputil_phy_port *pp,
const struct ofp11_port *op)
{
enum ofperr error;
memset(pp, 0, sizeof *pp);
error = ofputil_port_from_ofp11(op->port_no, &pp->port_no);
if (error) {
return error;
}
memcpy(pp->hw_addr, op->hw_addr, OFP_ETH_ALEN);
ovs_strlcpy(pp->name, op->name, OFP_MAX_PORT_NAME_LEN);
pp->config = ntohl(op->config) & OFPPC11_ALL;
pp->state = ntohl(op->state) & OFPPC11_ALL;
pp->curr = netdev_port_features_from_ofp11(op->curr);
pp->advertised = netdev_port_features_from_ofp11(op->advertised);
pp->supported = netdev_port_features_from_ofp11(op->supported);
pp->peer = netdev_port_features_from_ofp11(op->peer);
pp->curr_speed = ntohl(op->curr_speed);
pp->max_speed = ntohl(op->max_speed);
return 0;
}
static size_t
ofputil_get_phy_port_size(enum ofp_version ofp_version)
{
switch (ofp_version) {
case OFP10_VERSION:
return sizeof(struct ofp10_phy_port);
case OFP11_VERSION:
case OFP12_VERSION:
return sizeof(struct ofp11_port);
default:
NOT_REACHED();
}
}
static void
ofputil_encode_ofp10_phy_port(const struct ofputil_phy_port *pp,
struct ofp10_phy_port *opp)
{
memset(opp, 0, sizeof *opp);
opp->port_no = htons(pp->port_no);
memcpy(opp->hw_addr, pp->hw_addr, ETH_ADDR_LEN);
ovs_strlcpy(opp->name, pp->name, OFP_MAX_PORT_NAME_LEN);
opp->config = htonl(pp->config & OFPPC10_ALL);
opp->state = htonl(pp->state & OFPPS10_ALL);
opp->curr = netdev_port_features_to_ofp10(pp->curr);
opp->advertised = netdev_port_features_to_ofp10(pp->advertised);
opp->supported = netdev_port_features_to_ofp10(pp->supported);
opp->peer = netdev_port_features_to_ofp10(pp->peer);
}
static void
ofputil_encode_ofp11_port(const struct ofputil_phy_port *pp,
struct ofp11_port *op)
{
memset(op, 0, sizeof *op);
op->port_no = ofputil_port_to_ofp11(pp->port_no);
memcpy(op->hw_addr, pp->hw_addr, ETH_ADDR_LEN);
ovs_strlcpy(op->name, pp->name, OFP_MAX_PORT_NAME_LEN);
op->config = htonl(pp->config & OFPPC11_ALL);
op->state = htonl(pp->state & OFPPS11_ALL);
op->curr = netdev_port_features_to_ofp11(pp->curr);
op->advertised = netdev_port_features_to_ofp11(pp->advertised);
op->supported = netdev_port_features_to_ofp11(pp->supported);
op->peer = netdev_port_features_to_ofp11(pp->peer);
op->curr_speed = htonl(pp->curr_speed);
op->max_speed = htonl(pp->max_speed);
}
static void
ofputil_put_phy_port(enum ofp_version ofp_version,
const struct ofputil_phy_port *pp, struct ofpbuf *b)
{
switch (ofp_version) {
case OFP10_VERSION: {
struct ofp10_phy_port *opp;
if (b->size + sizeof *opp <= UINT16_MAX) {
opp = ofpbuf_put_uninit(b, sizeof *opp);
ofputil_encode_ofp10_phy_port(pp, opp);
}
break;
}
case OFP11_VERSION:
case OFP12_VERSION: {
struct ofp11_port *op;
if (b->size + sizeof *op <= UINT16_MAX) {
op = ofpbuf_put_uninit(b, sizeof *op);
ofputil_encode_ofp11_port(pp, op);
}
break;
}
default:
NOT_REACHED();
}
}
void
ofputil_append_port_desc_stats_reply(enum ofp_version ofp_version,
const struct ofputil_phy_port *pp,
struct list *replies)
{
switch (ofp_version) {
case OFP10_VERSION: {
struct ofp10_phy_port *opp;
opp = ofpmp_append(replies, sizeof *opp);
ofputil_encode_ofp10_phy_port(pp, opp);
break;
}
case OFP11_VERSION:
case OFP12_VERSION: {
struct ofp11_port *op;
op = ofpmp_append(replies, sizeof *op);
ofputil_encode_ofp11_port(pp, op);
break;
}
default:
NOT_REACHED();
}
}
/* ofputil_switch_features */
#define OFPC_COMMON (OFPC_FLOW_STATS | OFPC_TABLE_STATS | OFPC_PORT_STATS | \
OFPC_IP_REASM | OFPC_QUEUE_STATS | OFPC_ARP_MATCH_IP)
BUILD_ASSERT_DECL((int) OFPUTIL_C_FLOW_STATS == OFPC_FLOW_STATS);
BUILD_ASSERT_DECL((int) OFPUTIL_C_TABLE_STATS == OFPC_TABLE_STATS);
BUILD_ASSERT_DECL((int) OFPUTIL_C_PORT_STATS == OFPC_PORT_STATS);
BUILD_ASSERT_DECL((int) OFPUTIL_C_IP_REASM == OFPC_IP_REASM);
BUILD_ASSERT_DECL((int) OFPUTIL_C_QUEUE_STATS == OFPC_QUEUE_STATS);
BUILD_ASSERT_DECL((int) OFPUTIL_C_ARP_MATCH_IP == OFPC_ARP_MATCH_IP);
struct ofputil_action_bit_translation {
enum ofputil_action_bitmap ofputil_bit;
int of_bit;
};
static const struct ofputil_action_bit_translation of10_action_bits[] = {
{ OFPUTIL_A_OUTPUT, OFPAT10_OUTPUT },
{ OFPUTIL_A_SET_VLAN_VID, OFPAT10_SET_VLAN_VID },
{ OFPUTIL_A_SET_VLAN_PCP, OFPAT10_SET_VLAN_PCP },
{ OFPUTIL_A_STRIP_VLAN, OFPAT10_STRIP_VLAN },
{ OFPUTIL_A_SET_DL_SRC, OFPAT10_SET_DL_SRC },
{ OFPUTIL_A_SET_DL_DST, OFPAT10_SET_DL_DST },
{ OFPUTIL_A_SET_NW_SRC, OFPAT10_SET_NW_SRC },
{ OFPUTIL_A_SET_NW_DST, OFPAT10_SET_NW_DST },
{ OFPUTIL_A_SET_NW_TOS, OFPAT10_SET_NW_TOS },
{ OFPUTIL_A_SET_TP_SRC, OFPAT10_SET_TP_SRC },
{ OFPUTIL_A_SET_TP_DST, OFPAT10_SET_TP_DST },
{ OFPUTIL_A_ENQUEUE, OFPAT10_ENQUEUE },
{ 0, 0 },
};
static const struct ofputil_action_bit_translation of11_action_bits[] = {
{ OFPUTIL_A_OUTPUT, OFPAT11_OUTPUT },
{ OFPUTIL_A_SET_VLAN_VID, OFPAT11_SET_VLAN_VID },
{ OFPUTIL_A_SET_VLAN_PCP, OFPAT11_SET_VLAN_PCP },
{ OFPUTIL_A_SET_DL_SRC, OFPAT11_SET_DL_SRC },
{ OFPUTIL_A_SET_DL_DST, OFPAT11_SET_DL_DST },
{ OFPUTIL_A_SET_NW_SRC, OFPAT11_SET_NW_SRC },
{ OFPUTIL_A_SET_NW_DST, OFPAT11_SET_NW_DST },
{ OFPUTIL_A_SET_NW_TOS, OFPAT11_SET_NW_TOS },
{ OFPUTIL_A_SET_NW_ECN, OFPAT11_SET_NW_ECN },
{ OFPUTIL_A_SET_TP_SRC, OFPAT11_SET_TP_SRC },
{ OFPUTIL_A_SET_TP_DST, OFPAT11_SET_TP_DST },
{ OFPUTIL_A_COPY_TTL_OUT, OFPAT11_COPY_TTL_OUT },
{ OFPUTIL_A_COPY_TTL_IN, OFPAT11_COPY_TTL_IN },
{ OFPUTIL_A_SET_MPLS_LABEL, OFPAT11_SET_MPLS_LABEL },
{ OFPUTIL_A_SET_MPLS_TC, OFPAT11_SET_MPLS_TC },
{ OFPUTIL_A_SET_MPLS_TTL, OFPAT11_SET_MPLS_TTL },
{ OFPUTIL_A_DEC_MPLS_TTL, OFPAT11_DEC_MPLS_TTL },
{ OFPUTIL_A_PUSH_VLAN, OFPAT11_PUSH_VLAN },
{ OFPUTIL_A_POP_VLAN, OFPAT11_POP_VLAN },
{ OFPUTIL_A_PUSH_MPLS, OFPAT11_PUSH_MPLS },
{ OFPUTIL_A_POP_MPLS, OFPAT11_POP_MPLS },
{ OFPUTIL_A_SET_QUEUE, OFPAT11_SET_QUEUE },
{ OFPUTIL_A_GROUP, OFPAT11_GROUP },
{ OFPUTIL_A_SET_NW_TTL, OFPAT11_SET_NW_TTL },
{ OFPUTIL_A_DEC_NW_TTL, OFPAT11_DEC_NW_TTL },
{ 0, 0 },
};
static const struct ofputil_action_bit_translation of12_action_bits[] = {
{ OFPUTIL_A_OUTPUT, OFPAT12_OUTPUT },
{ OFPUTIL_A_COPY_TTL_OUT, OFPAT12_COPY_TTL_OUT },
{ OFPUTIL_A_COPY_TTL_IN, OFPAT12_COPY_TTL_IN },
{ OFPUTIL_A_SET_MPLS_TTL, OFPAT12_SET_MPLS_TTL },
{ OFPUTIL_A_DEC_MPLS_TTL, OFPAT12_DEC_MPLS_TTL },
{ OFPUTIL_A_PUSH_VLAN, OFPAT12_PUSH_VLAN },
{ OFPUTIL_A_POP_VLAN, OFPAT12_POP_VLAN },
{ OFPUTIL_A_PUSH_MPLS, OFPAT12_PUSH_MPLS },
{ OFPUTIL_A_POP_MPLS, OFPAT12_POP_MPLS },
{ OFPUTIL_A_SET_QUEUE, OFPAT12_SET_QUEUE },
{ OFPUTIL_A_GROUP, OFPAT12_GROUP },
{ OFPUTIL_A_SET_NW_TTL, OFPAT12_SET_NW_TTL },
{ OFPUTIL_A_DEC_NW_TTL, OFPAT12_DEC_NW_TTL },
{ 0, 0 },
};
static enum ofputil_action_bitmap
decode_action_bits(ovs_be32 of_actions,
const struct ofputil_action_bit_translation *x)
{
enum ofputil_action_bitmap ofputil_actions;
ofputil_actions = 0;
for (; x->ofputil_bit; x++) {
if (of_actions & htonl(1u << x->of_bit)) {
ofputil_actions |= x->ofputil_bit;
}
}
return ofputil_actions;
}
/* Decodes an OpenFlow 1.0 or 1.1 "switch_features" structure 'osf' into an
* abstract representation in '*features'. Initializes '*b' to iterate over
* the OpenFlow port structures following 'osf' with later calls to
* ofputil_pull_phy_port(). Returns 0 if successful, otherwise an
* OFPERR_* value. */
enum ofperr
ofputil_decode_switch_features(const struct ofp_header *oh,
struct ofputil_switch_features *features,
struct ofpbuf *b)
{
const struct ofp_switch_features *osf;
enum ofpraw raw;
ofpbuf_use_const(b, oh, ntohs(oh->length));
raw = ofpraw_pull_assert(b);
osf = ofpbuf_pull(b, sizeof *osf);
features->datapath_id = ntohll(osf->datapath_id);
features->n_buffers = ntohl(osf->n_buffers);
features->n_tables = osf->n_tables;
features->capabilities = ntohl(osf->capabilities) & OFPC_COMMON;
if (b->size % ofputil_get_phy_port_size(oh->version)) {
return OFPERR_OFPBRC_BAD_LEN;
}
if (raw == OFPRAW_OFPT10_FEATURES_REPLY) {
if (osf->capabilities & htonl(OFPC10_STP)) {
features->capabilities |= OFPUTIL_C_STP;
}
features->actions = decode_action_bits(osf->actions, of10_action_bits);
} else if (raw == OFPRAW_OFPT11_FEATURES_REPLY) {
if (osf->capabilities & htonl(OFPC11_GROUP_STATS)) {
features->capabilities |= OFPUTIL_C_GROUP_STATS;
}
switch ((enum ofp_version)oh->version) {
case OFP11_VERSION:
features->actions = decode_action_bits(htonl(UINT32_MAX),
of11_action_bits);
break;
case OFP12_VERSION:
features->actions = decode_action_bits(htonl(UINT32_MAX),
of12_action_bits);
break;
case OFP10_VERSION:
default:
NOT_REACHED();
}
} else {
return OFPERR_OFPBRC_BAD_VERSION;
}
return 0;
}
/* Returns true if the maximum number of ports are in 'oh'. */
static bool
max_ports_in_features(const struct ofp_header *oh)
{
size_t pp_size = ofputil_get_phy_port_size(oh->version);
return ntohs(oh->length) + pp_size > UINT16_MAX;
}
/* Given a buffer 'b' that contains a Features Reply message, checks if
* it contains the maximum number of ports that will fit. If so, it
* returns true and removes the ports from the message. The caller
* should then send an OFPST_PORT_DESC stats request to get the ports,
* since the switch may have more ports than could be represented in the
* Features Reply. Otherwise, returns false.
*/
bool
ofputil_switch_features_ports_trunc(struct ofpbuf *b)
{
struct ofp_header *oh = b->data;
if (max_ports_in_features(oh)) {
/* Remove all the ports. */
b->size = (sizeof(struct ofp_header)
+ sizeof(struct ofp_switch_features));
ofpmsg_update_length(b);
return true;
}
return false;
}
static ovs_be32
encode_action_bits(enum ofputil_action_bitmap ofputil_actions,
const struct ofputil_action_bit_translation *x)
{
uint32_t of_actions;
of_actions = 0;
for (; x->ofputil_bit; x++) {
if (ofputil_actions & x->ofputil_bit) {
of_actions |= 1 << x->of_bit;
}
}
return htonl(of_actions);
}
/* Returns a buffer owned by the caller that encodes 'features' in the format
* required by 'protocol' with the given 'xid'. The caller should append port
* information to the buffer with subsequent calls to
* ofputil_put_switch_features_port(). */
struct ofpbuf *
ofputil_encode_switch_features(const struct ofputil_switch_features *features,
enum ofputil_protocol protocol, ovs_be32 xid)
{
struct ofp_switch_features *osf;
struct ofpbuf *b;
enum ofp_version version;
enum ofpraw raw;
version = ofputil_protocol_to_ofp_version(protocol);
switch (version) {
case OFP10_VERSION:
raw = OFPRAW_OFPT10_FEATURES_REPLY;
break;
case OFP11_VERSION:
case OFP12_VERSION:
raw = OFPRAW_OFPT11_FEATURES_REPLY;
break;
default:
NOT_REACHED();
}
b = ofpraw_alloc_xid(raw, version, xid, 0);
osf = ofpbuf_put_zeros(b, sizeof *osf);
osf->datapath_id = htonll(features->datapath_id);
osf->n_buffers = htonl(features->n_buffers);
osf->n_tables = features->n_tables;
osf->capabilities = htonl(features->capabilities & OFPC_COMMON);
switch (version) {
case OFP10_VERSION:
if (features->capabilities & OFPUTIL_C_STP) {
osf->capabilities |= htonl(OFPC10_STP);
}
osf->actions = encode_action_bits(features->actions, of10_action_bits);
break;
case OFP11_VERSION:
case OFP12_VERSION:
if (features->capabilities & OFPUTIL_C_GROUP_STATS) {
osf->capabilities |= htonl(OFPC11_GROUP_STATS);
}
break;
default:
NOT_REACHED();
}
return b;
}
/* Encodes 'pp' into the format required by the switch_features message already
* in 'b', which should have been returned by ofputil_encode_switch_features(),
* and appends the encoded version to 'b'. */
void
ofputil_put_switch_features_port(const struct ofputil_phy_port *pp,
struct ofpbuf *b)
{
const struct ofp_header *oh = b->data;
ofputil_put_phy_port(oh->version, pp, b);
}
/* ofputil_port_status */
/* Decodes the OpenFlow "port status" message in '*ops' into an abstract form
* in '*ps'. Returns 0 if successful, otherwise an OFPERR_* value. */
enum ofperr
ofputil_decode_port_status(const struct ofp_header *oh,
struct ofputil_port_status *ps)
{
const struct ofp_port_status *ops;
struct ofpbuf b;
int retval;
ofpbuf_use_const(&b, oh, ntohs(oh->length));
ofpraw_pull_assert(&b);
ops = ofpbuf_pull(&b, sizeof *ops);
if (ops->reason != OFPPR_ADD &&
ops->reason != OFPPR_DELETE &&
ops->reason != OFPPR_MODIFY) {
return OFPERR_NXBRC_BAD_REASON;
}
ps->reason = ops->reason;
retval = ofputil_pull_phy_port(oh->version, &b, &ps->desc);
assert(retval != EOF);
return retval;
}
/* Converts the abstract form of a "port status" message in '*ps' into an
* OpenFlow message suitable for 'protocol', and returns that encoded form in
* a buffer owned by the caller. */
struct ofpbuf *
ofputil_encode_port_status(const struct ofputil_port_status *ps,
enum ofputil_protocol protocol)
{
struct ofp_port_status *ops;
struct ofpbuf *b;
enum ofp_version version;
enum ofpraw raw;
version = ofputil_protocol_to_ofp_version(protocol);
switch (version) {
case OFP10_VERSION:
raw = OFPRAW_OFPT10_PORT_STATUS;
break;
case OFP11_VERSION:
case OFP12_VERSION:
raw = OFPRAW_OFPT11_PORT_STATUS;
break;
default:
NOT_REACHED();
}
b = ofpraw_alloc_xid(raw, version, htonl(0), 0);
ops = ofpbuf_put_zeros(b, sizeof *ops);
ops->reason = ps->reason;
ofputil_put_phy_port(version, &ps->desc, b);
ofpmsg_update_length(b);
return b;
}
/* ofputil_port_mod */
/* Decodes the OpenFlow "port mod" message in '*oh' into an abstract form in
* '*pm'. Returns 0 if successful, otherwise an OFPERR_* value. */
enum ofperr
ofputil_decode_port_mod(const struct ofp_header *oh,
struct ofputil_port_mod *pm)
{
enum ofpraw raw;
struct ofpbuf b;
ofpbuf_use_const(&b, oh, ntohs(oh->length));
raw = ofpraw_pull_assert(&b);
if (raw == OFPRAW_OFPT10_PORT_MOD) {
const struct ofp10_port_mod *opm = b.data;
pm->port_no = ntohs(opm->port_no);
memcpy(pm->hw_addr, opm->hw_addr, ETH_ADDR_LEN);
pm->config = ntohl(opm->config) & OFPPC10_ALL;
pm->mask = ntohl(opm->mask) & OFPPC10_ALL;
pm->advertise = netdev_port_features_from_ofp10(opm->advertise);
} else if (raw == OFPRAW_OFPT11_PORT_MOD) {
const struct ofp11_port_mod *opm = b.data;
enum ofperr error;
error = ofputil_port_from_ofp11(opm->port_no, &pm->port_no);
if (error) {
return error;
}
memcpy(pm->hw_addr, opm->hw_addr, ETH_ADDR_LEN);
pm->config = ntohl(opm->config) & OFPPC11_ALL;
pm->mask = ntohl(opm->mask) & OFPPC11_ALL;
pm->advertise = netdev_port_features_from_ofp11(opm->advertise);
} else {
return OFPERR_OFPBRC_BAD_TYPE;
}
pm->config &= pm->mask;
return 0;
}
/* Converts the abstract form of a "port mod" message in '*pm' into an OpenFlow
* message suitable for 'protocol', and returns that encoded form in a buffer
* owned by the caller. */
struct ofpbuf *
ofputil_encode_port_mod(const struct ofputil_port_mod *pm,
enum ofputil_protocol protocol)
{
enum ofp_version ofp_version = ofputil_protocol_to_ofp_version(protocol);
struct ofpbuf *b;
switch (ofp_version) {
case OFP10_VERSION: {
struct ofp10_port_mod *opm;
b = ofpraw_alloc(OFPRAW_OFPT10_PORT_MOD, ofp_version, 0);
opm = ofpbuf_put_zeros(b, sizeof *opm);
opm->port_no = htons(pm->port_no);
memcpy(opm->hw_addr, pm->hw_addr, ETH_ADDR_LEN);
opm->config = htonl(pm->config & OFPPC10_ALL);
opm->mask = htonl(pm->mask & OFPPC10_ALL);
opm->advertise = netdev_port_features_to_ofp10(pm->advertise);
break;
}
case OFP11_VERSION: {
struct ofp11_port_mod *opm;
b = ofpraw_alloc(OFPRAW_OFPT11_PORT_MOD, ofp_version, 0);
opm = ofpbuf_put_zeros(b, sizeof *opm);
opm->port_no = htonl(pm->port_no);
memcpy(opm->hw_addr, pm->hw_addr, ETH_ADDR_LEN);
opm->config = htonl(pm->config & OFPPC11_ALL);
opm->mask = htonl(pm->mask & OFPPC11_ALL);
opm->advertise = netdev_port_features_to_ofp11(pm->advertise);
break;
}
case OFP12_VERSION:
default:
NOT_REACHED();
}
return b;
}
/* ofputil_flow_monitor_request */
/* Converts an NXST_FLOW_MONITOR request in 'msg' into an abstract
* ofputil_flow_monitor_request in 'rq'.
*
* Multiple NXST_FLOW_MONITOR requests can be packed into a single OpenFlow
* message. Calling this function multiple times for a single 'msg' iterates
* through the requests. The caller must initially leave 'msg''s layer
* pointers null and not modify them between calls.
*
* Returns 0 if successful, EOF if no requests were left in this 'msg',
* otherwise an OFPERR_* value. */
int
ofputil_decode_flow_monitor_request(struct ofputil_flow_monitor_request *rq,
struct ofpbuf *msg)
{
struct nx_flow_monitor_request *nfmr;
uint16_t flags;
if (!msg->l2) {
msg->l2 = msg->data;
ofpraw_pull_assert(msg);
}
if (!msg->size) {
return EOF;
}
nfmr = ofpbuf_try_pull(msg, sizeof *nfmr);
if (!nfmr) {
VLOG_WARN_RL(&bad_ofmsg_rl, "NXST_FLOW_MONITOR request has %zu "
"leftover bytes at end", msg->size);
return OFPERR_OFPBRC_BAD_LEN;
}
flags = ntohs(nfmr->flags);
if (!(flags & (NXFMF_ADD | NXFMF_DELETE | NXFMF_MODIFY))
|| flags & ~(NXFMF_INITIAL | NXFMF_ADD | NXFMF_DELETE
| NXFMF_MODIFY | NXFMF_ACTIONS | NXFMF_OWN)) {
VLOG_WARN_RL(&bad_ofmsg_rl, "NXST_FLOW_MONITOR has bad flags %#"PRIx16,
flags);
return OFPERR_NXBRC_FM_BAD_FLAGS;
}
if (!is_all_zeros(nfmr->zeros, sizeof nfmr->zeros)) {
return OFPERR_NXBRC_MUST_BE_ZERO;
}
rq->id = ntohl(nfmr->id);
rq->flags = flags;
rq->out_port = ntohs(nfmr->out_port);
rq->table_id = nfmr->table_id;
return nx_pull_match(msg, ntohs(nfmr->match_len), OFP_DEFAULT_PRIORITY,
&rq->match, NULL, NULL);
}
void
ofputil_append_flow_monitor_request(
const struct ofputil_flow_monitor_request *rq, struct ofpbuf *msg)
{
struct nx_flow_monitor_request *nfmr;
size_t start_ofs;
int match_len;
if (!msg->size) {
ofpraw_put(OFPRAW_NXST_FLOW_MONITOR_REQUEST, OFP10_VERSION, msg);
}
start_ofs = msg->size;
ofpbuf_put_zeros(msg, sizeof *nfmr);
match_len = nx_put_match(msg, false, &rq->match, htonll(0), htonll(0));
nfmr = ofpbuf_at_assert(msg, start_ofs, sizeof *nfmr);
nfmr->id = htonl(rq->id);
nfmr->flags = htons(rq->flags);
nfmr->out_port = htons(rq->out_port);
nfmr->match_len = htons(match_len);
nfmr->table_id = rq->table_id;
}
/* Converts an NXST_FLOW_MONITOR reply (also known as a flow update) in 'msg'
* into an abstract ofputil_flow_update in 'update'. The caller must have
* initialized update->match to point to space allocated for a cls_rule.
*
* Uses 'ofpacts' to store the abstract OFPACT_* version of the update's
* actions (except for NXFME_ABBREV, which never includes actions). The caller
* must initialize 'ofpacts' and retains ownership of it. 'update->ofpacts'
* will point into the 'ofpacts' buffer.
*
* Multiple flow updates can be packed into a single OpenFlow message. Calling
* this function multiple times for a single 'msg' iterates through the
* updates. The caller must initially leave 'msg''s layer pointers null and
* not modify them between calls.
*
* Returns 0 if successful, EOF if no updates were left in this 'msg',
* otherwise an OFPERR_* value. */
int
ofputil_decode_flow_update(struct ofputil_flow_update *update,
struct ofpbuf *msg, struct ofpbuf *ofpacts)
{
struct nx_flow_update_header *nfuh;
unsigned int length;
if (!msg->l2) {
msg->l2 = msg->data;
ofpraw_pull_assert(msg);
}
if (!msg->size) {
return EOF;
}
if (msg->size < sizeof(struct nx_flow_update_header)) {
goto bad_len;
}
nfuh = msg->data;
update->event = ntohs(nfuh->event);
length = ntohs(nfuh->length);
if (length > msg->size || length % 8) {
goto bad_len;
}
if (update->event == NXFME_ABBREV) {
struct nx_flow_update_abbrev *nfua;
if (length != sizeof *nfua) {
goto bad_len;
}
nfua = ofpbuf_pull(msg, sizeof *nfua);
update->xid = nfua->xid;
return 0;
} else if (update->event == NXFME_ADDED
|| update->event == NXFME_DELETED
|| update->event == NXFME_MODIFIED) {
struct nx_flow_update_full *nfuf;
unsigned int actions_len;
unsigned int match_len;
enum ofperr error;
if (length < sizeof *nfuf) {
goto bad_len;
}
nfuf = ofpbuf_pull(msg, sizeof *nfuf);
match_len = ntohs(nfuf->match_len);
if (sizeof *nfuf + match_len > length) {
goto bad_len;
}
update->reason = ntohs(nfuf->reason);
update->idle_timeout = ntohs(nfuf->idle_timeout);
update->hard_timeout = ntohs(nfuf->hard_timeout);
update->table_id = nfuf->table_id;
update->cookie = nfuf->cookie;
error = nx_pull_match(msg, match_len, ntohs(nfuf->priority),
update->match, NULL, NULL);
if (error) {
return error;
}
actions_len = length - sizeof *nfuf - ROUND_UP(match_len, 8);
error = ofpacts_pull_openflow10(msg, actions_len, ofpacts);
if (error) {
return error;
}
update->ofpacts = ofpacts->data;
update->ofpacts_len = ofpacts->size;
return 0;
} else {
VLOG_WARN_RL(&bad_ofmsg_rl,
"NXST_FLOW_MONITOR reply has bad event %"PRIu16,
ntohs(nfuh->event));
return OFPERR_OFPET_BAD_REQUEST;
}
bad_len:
VLOG_WARN_RL(&bad_ofmsg_rl, "NXST_FLOW_MONITOR reply has %zu "
"leftover bytes at end", msg->size);
return OFPERR_OFPBRC_BAD_LEN;
}
uint32_t
ofputil_decode_flow_monitor_cancel(const struct ofp_header *oh)
{
const struct nx_flow_monitor_cancel *cancel = ofpmsg_body(oh);
return ntohl(cancel->id);
}
struct ofpbuf *
ofputil_encode_flow_monitor_cancel(uint32_t id)
{
struct nx_flow_monitor_cancel *nfmc;
struct ofpbuf *msg;
msg = ofpraw_alloc(OFPRAW_NXT_FLOW_MONITOR_CANCEL, OFP10_VERSION, 0);
nfmc = ofpbuf_put_uninit(msg, sizeof *nfmc);
nfmc->id = htonl(id);
return msg;
}
void
ofputil_start_flow_update(struct list *replies)
{
struct ofpbuf *msg;
msg = ofpraw_alloc_xid(OFPRAW_NXST_FLOW_MONITOR_REPLY, OFP10_VERSION,
htonl(0), 1024);
list_init(replies);
list_push_back(replies, &msg->list_node);
}
void
ofputil_append_flow_update(const struct ofputil_flow_update *update,
struct list *replies)
{
struct nx_flow_update_header *nfuh;
struct ofpbuf *msg;
size_t start_ofs;
msg = ofpbuf_from_list(list_back(replies));
start_ofs = msg->size;
if (update->event == NXFME_ABBREV) {
struct nx_flow_update_abbrev *nfua;
nfua = ofpbuf_put_zeros(msg, sizeof *nfua);
nfua->xid = update->xid;
} else {
struct nx_flow_update_full *nfuf;
int match_len;
ofpbuf_put_zeros(msg, sizeof *nfuf);
match_len = nx_put_match(msg, false, update->match,
htonll(0), htonll(0));
ofpacts_put_openflow10(update->ofpacts, update->ofpacts_len, msg);
nfuf = ofpbuf_at_assert(msg, start_ofs, sizeof *nfuf);
nfuf->reason = htons(update->reason);
nfuf->priority = htons(update->match->priority);
nfuf->idle_timeout = htons(update->idle_timeout);
nfuf->hard_timeout = htons(update->hard_timeout);
nfuf->match_len = htons(match_len);
nfuf->table_id = update->table_id;
nfuf->cookie = update->cookie;
}
nfuh = ofpbuf_at_assert(msg, start_ofs, sizeof *nfuh);
nfuh->length = htons(msg->size - start_ofs);
nfuh->event = htons(update->event);
ofpmp_postappend(replies, start_ofs);
}
struct ofpbuf *
ofputil_encode_packet_out(const struct ofputil_packet_out *po)
{
struct ofp_packet_out *opo;
size_t actions_ofs;
struct ofpbuf *msg;
size_t size;
size = po->ofpacts_len;
if (po->buffer_id == UINT32_MAX) {
size += po->packet_len;
}
msg = ofpraw_alloc(OFPRAW_OFPT10_PACKET_OUT, OFP10_VERSION, size);
ofpbuf_put_zeros(msg, sizeof *opo);
actions_ofs = msg->size;
ofpacts_put_openflow10(po->ofpacts, po->ofpacts_len, msg);
opo = msg->l3;
opo->buffer_id = htonl(po->buffer_id);
opo->in_port = htons(po->in_port);
opo->actions_len = htons(msg->size - actions_ofs);
if (po->buffer_id == UINT32_MAX) {
ofpbuf_put(msg, po->packet, po->packet_len);
}
ofpmsg_update_length(msg);
return msg;
}
/* Creates and returns an OFPT_ECHO_REQUEST message with an empty payload. */
struct ofpbuf *
make_echo_request(void)
{
return ofpraw_alloc_xid(OFPRAW_OFPT_ECHO_REQUEST, OFP10_VERSION,
htonl(0), 0);
}
/* Creates and returns an OFPT_ECHO_REPLY message matching the
* OFPT_ECHO_REQUEST message in 'rq'. */
struct ofpbuf *
make_echo_reply(const struct ofp_header *rq)
{
struct ofpbuf rq_buf;
struct ofpbuf *reply;
ofpbuf_use_const(&rq_buf, rq, ntohs(rq->length));
ofpraw_pull_assert(&rq_buf);
reply = ofpraw_alloc_reply(OFPRAW_OFPT_ECHO_REPLY, rq, rq_buf.size);
ofpbuf_put(reply, rq_buf.data, rq_buf.size);
return reply;
}
struct ofpbuf *
ofputil_encode_barrier_request(void)
{
return ofpraw_alloc(OFPRAW_OFPT10_BARRIER_REQUEST, OFP10_VERSION, 0);
}
const char *
ofputil_frag_handling_to_string(enum ofp_config_flags flags)
{
switch (flags & OFPC_FRAG_MASK) {
case OFPC_FRAG_NORMAL: return "normal";
case OFPC_FRAG_DROP: return "drop";
case OFPC_FRAG_REASM: return "reassemble";
case OFPC_FRAG_NX_MATCH: return "nx-match";
}
NOT_REACHED();
}
bool
ofputil_frag_handling_from_string(const char *s, enum ofp_config_flags *flags)
{
if (!strcasecmp(s, "normal")) {
*flags = OFPC_FRAG_NORMAL;
} else if (!strcasecmp(s, "drop")) {
*flags = OFPC_FRAG_DROP;
} else if (!strcasecmp(s, "reassemble")) {
*flags = OFPC_FRAG_REASM;
} else if (!strcasecmp(s, "nx-match")) {
*flags = OFPC_FRAG_NX_MATCH;
} else {
return false;
}
return true;
}
/* Converts the OpenFlow 1.1+ port number 'ofp11_port' into an OpenFlow 1.0
* port number and stores the latter in '*ofp10_port', for the purpose of
* decoding OpenFlow 1.1+ protocol messages. Returns 0 if successful,
* otherwise an OFPERR_* number.
*
* See the definition of OFP11_MAX for an explanation of the mapping. */
enum ofperr
ofputil_port_from_ofp11(ovs_be32 ofp11_port, uint16_t *ofp10_port)
{
uint32_t ofp11_port_h = ntohl(ofp11_port);
if (ofp11_port_h < OFPP_MAX) {
*ofp10_port = ofp11_port_h;
return 0;
} else if (ofp11_port_h >= OFPP11_MAX) {
*ofp10_port = ofp11_port_h - OFPP11_OFFSET;
return 0;
} else {
VLOG_WARN_RL(&bad_ofmsg_rl, "port %"PRIu32" is outside the supported "
"range 0 through %d or 0x%"PRIx32" through 0x%"PRIx32,
ofp11_port_h, OFPP_MAX - 1,
(uint32_t) OFPP11_MAX, UINT32_MAX);
return OFPERR_OFPBAC_BAD_OUT_PORT;
}
}
/* Returns the OpenFlow 1.1+ port number equivalent to the OpenFlow 1.0 port
* number 'ofp10_port', for encoding OpenFlow 1.1+ protocol messages.
*
* See the definition of OFP11_MAX for an explanation of the mapping. */
ovs_be32
ofputil_port_to_ofp11(uint16_t ofp10_port)
{
return htonl(ofp10_port < OFPP_MAX
? ofp10_port
: ofp10_port + OFPP11_OFFSET);
}
/* Checks that 'port' is a valid output port for the OFPAT10_OUTPUT action, given
* that the switch will never have more than 'max_ports' ports. Returns 0 if
* 'port' is valid, otherwise an OpenFlow return code. */
enum ofperr
ofputil_check_output_port(uint16_t port, int max_ports)
{
switch (port) {
case OFPP_IN_PORT:
case OFPP_TABLE:
case OFPP_NORMAL:
case OFPP_FLOOD:
case OFPP_ALL:
case OFPP_CONTROLLER:
case OFPP_NONE:
case OFPP_LOCAL:
return 0;
default:
if (port < max_ports) {
return 0;
}
return OFPERR_OFPBAC_BAD_OUT_PORT;
}
}
#define OFPUTIL_NAMED_PORTS \
OFPUTIL_NAMED_PORT(IN_PORT) \
OFPUTIL_NAMED_PORT(TABLE) \
OFPUTIL_NAMED_PORT(NORMAL) \
OFPUTIL_NAMED_PORT(FLOOD) \
OFPUTIL_NAMED_PORT(ALL) \
OFPUTIL_NAMED_PORT(CONTROLLER) \
OFPUTIL_NAMED_PORT(LOCAL) \
OFPUTIL_NAMED_PORT(NONE)
/* Checks whether 's' is the string representation of an OpenFlow port number,
* either as an integer or a string name (e.g. "LOCAL"). If it is, stores the
* number in '*port' and returns true. Otherwise, returns false. */
bool
ofputil_port_from_string(const char *name, uint16_t *port)
{
struct pair {
const char *name;
uint16_t value;
};
static const struct pair pairs[] = {
#define OFPUTIL_NAMED_PORT(NAME) {#NAME, OFPP_##NAME},
OFPUTIL_NAMED_PORTS
#undef OFPUTIL_NAMED_PORT
};
static const int n_pairs = ARRAY_SIZE(pairs);
int i;
if (str_to_int(name, 0, &i) && i >= 0 && i < UINT16_MAX) {
*port = i;
return true;
}
for (i = 0; i < n_pairs; i++) {
if (!strcasecmp(name, pairs[i].name)) {
*port = pairs[i].value;
return true;
}
}
return false;
}
/* Appends to 's' a string representation of the OpenFlow port number 'port'.
* Most ports' string representation is just the port number, but for special
* ports, e.g. OFPP_LOCAL, it is the name, e.g. "LOCAL". */
void
ofputil_format_port(uint16_t port, struct ds *s)
{
const char *name;
switch (port) {
#define OFPUTIL_NAMED_PORT(NAME) case OFPP_##NAME: name = #NAME; break;
OFPUTIL_NAMED_PORTS
#undef OFPUTIL_NAMED_PORT
default:
ds_put_format(s, "%"PRIu16, port);
return;
}
ds_put_cstr(s, name);
}
/* Given a buffer 'b' that contains an array of OpenFlow ports of type
* 'ofp_version', tries to pull the first element from the array. If
* successful, initializes '*pp' with an abstract representation of the
* port and returns 0. If no ports remain to be decoded, returns EOF.
* On an error, returns a positive OFPERR_* value. */
int
ofputil_pull_phy_port(enum ofp_version ofp_version, struct ofpbuf *b,
struct ofputil_phy_port *pp)
{
switch (ofp_version) {
case OFP10_VERSION: {
const struct ofp10_phy_port *opp = ofpbuf_try_pull(b, sizeof *opp);
return opp ? ofputil_decode_ofp10_phy_port(pp, opp) : EOF;
}
case OFP11_VERSION:
case OFP12_VERSION: {
const struct ofp11_port *op = ofpbuf_try_pull(b, sizeof *op);
return op ? ofputil_decode_ofp11_port(pp, op) : EOF;
}
default:
NOT_REACHED();
}
}
/* Given a buffer 'b' that contains an array of OpenFlow ports of type
* 'ofp_version', returns the number of elements. */
size_t ofputil_count_phy_ports(uint8_t ofp_version, struct ofpbuf *b)
{
return b->size / ofputil_get_phy_port_size(ofp_version);
}
/* Returns the 'enum ofputil_action_code' corresponding to 'name' (e.g. if
* 'name' is "output" then the return value is OFPUTIL_OFPAT10_OUTPUT), or -1 if
* 'name' is not the name of any action.
*
* ofp-util.def lists the mapping from names to action. */
int
ofputil_action_code_from_name(const char *name)
{
static const char *names[OFPUTIL_N_ACTIONS] = {
NULL,
#define OFPAT10_ACTION(ENUM, STRUCT, NAME) NAME,
#define OFPAT11_ACTION(ENUM, STRUCT, NAME) NAME,
#define NXAST_ACTION(ENUM, STRUCT, EXTENSIBLE, NAME) NAME,
#include "ofp-util.def"
};
const char **p;
for (p = names; p < &names[ARRAY_SIZE(names)]; p++) {
if (*p && !strcasecmp(name, *p)) {
return p - names;
}
}
return -1;
}
/* Appends an action of the type specified by 'code' to 'buf' and returns the
* action. Initializes the parts of 'action' that identify it as having type
* <ENUM> and length 'sizeof *action' and zeros the rest. For actions that
* have variable length, the length used and cleared is that of struct
* <STRUCT>. */
void *
ofputil_put_action(enum ofputil_action_code code, struct ofpbuf *buf)
{
switch (code) {
case OFPUTIL_ACTION_INVALID:
NOT_REACHED();
#define OFPAT10_ACTION(ENUM, STRUCT, NAME) \
case OFPUTIL_##ENUM: return ofputil_put_##ENUM(buf);
#define OFPAT11_ACTION OFPAT10_ACTION
#define NXAST_ACTION(ENUM, STRUCT, EXTENSIBLE, NAME) \
case OFPUTIL_##ENUM: return ofputil_put_##ENUM(buf);
#include "ofp-util.def"
}
NOT_REACHED();
}
#define OFPAT10_ACTION(ENUM, STRUCT, NAME) \
void \
ofputil_init_##ENUM(struct STRUCT *s) \
{ \
memset(s, 0, sizeof *s); \
s->type = htons(ENUM); \
s->len = htons(sizeof *s); \
} \
\
struct STRUCT * \
ofputil_put_##ENUM(struct ofpbuf *buf) \
{ \
struct STRUCT *s = ofpbuf_put_uninit(buf, sizeof *s); \
ofputil_init_##ENUM(s); \
return s; \
}
#define OFPAT11_ACTION OFPAT10_ACTION
#define NXAST_ACTION(ENUM, STRUCT, EXTENSIBLE, NAME) \
void \
ofputil_init_##ENUM(struct STRUCT *s) \
{ \
memset(s, 0, sizeof *s); \
s->type = htons(OFPAT10_VENDOR); \
s->len = htons(sizeof *s); \
s->vendor = htonl(NX_VENDOR_ID); \
s->subtype = htons(ENUM); \
} \
\
struct STRUCT * \
ofputil_put_##ENUM(struct ofpbuf *buf) \
{ \
struct STRUCT *s = ofpbuf_put_uninit(buf, sizeof *s); \
ofputil_init_##ENUM(s); \
return s; \
}
#include "ofp-util.def"
/* "Normalizes" the wildcards in 'rule'. That means:
*
* 1. If the type of level N is known, then only the valid fields for that
* level may be specified. For example, ARP does not have a TOS field,
* so nw_tos must be wildcarded if 'rule' specifies an ARP flow.
* Similarly, IPv4 does not have any IPv6 addresses, so ipv6_src and
* ipv6_dst (and other fields) must be wildcarded if 'rule' specifies an
* IPv4 flow.
*
* 2. If the type of level N is not known (or not understood by Open
* vSwitch), then no fields at all for that level may be specified. For
* example, Open vSwitch does not understand SCTP, an L4 protocol, so the
* L4 fields tp_src and tp_dst must be wildcarded if 'rule' specifies an
* SCTP flow.
*/
void
ofputil_normalize_rule(struct cls_rule *rule)
{
enum {
MAY_NW_ADDR = 1 << 0, /* nw_src, nw_dst */
MAY_TP_ADDR = 1 << 1, /* tp_src, tp_dst */
MAY_NW_PROTO = 1 << 2, /* nw_proto */
MAY_IPVx = 1 << 3, /* tos, frag, ttl */
MAY_ARP_SHA = 1 << 4, /* arp_sha */
MAY_ARP_THA = 1 << 5, /* arp_tha */
MAY_IPV6 = 1 << 6, /* ipv6_src, ipv6_dst, ipv6_label */
MAY_ND_TARGET = 1 << 7 /* nd_target */
} may_match;
struct flow_wildcards wc;
/* Figure out what fields may be matched. */
if (rule->flow.dl_type == htons(ETH_TYPE_IP)) {
may_match = MAY_NW_PROTO | MAY_IPVx | MAY_NW_ADDR;
if (rule->flow.nw_proto == IPPROTO_TCP ||
rule->flow.nw_proto == IPPROTO_UDP ||
rule->flow.nw_proto == IPPROTO_ICMP) {
may_match |= MAY_TP_ADDR;
}
} else if (rule->flow.dl_type == htons(ETH_TYPE_IPV6)) {
may_match = MAY_NW_PROTO | MAY_IPVx | MAY_IPV6;
if (rule->flow.nw_proto == IPPROTO_TCP ||
rule->flow.nw_proto == IPPROTO_UDP) {
may_match |= MAY_TP_ADDR;
} else if (rule->flow.nw_proto == IPPROTO_ICMPV6) {
may_match |= MAY_TP_ADDR;
if (rule->flow.tp_src == htons(ND_NEIGHBOR_SOLICIT)) {
may_match |= MAY_ND_TARGET | MAY_ARP_SHA;
} else if (rule->flow.tp_src == htons(ND_NEIGHBOR_ADVERT)) {
may_match |= MAY_ND_TARGET | MAY_ARP_THA;
}
}
} else if (rule->flow.dl_type == htons(ETH_TYPE_ARP)) {
may_match = MAY_NW_PROTO | MAY_NW_ADDR | MAY_ARP_SHA | MAY_ARP_THA;
} else {
may_match = 0;
}
/* Clear the fields that may not be matched. */
wc = rule->wc;
if (!(may_match & MAY_NW_ADDR)) {
wc.nw_src_mask = wc.nw_dst_mask = htonl(0);
}
if (!(may_match & MAY_TP_ADDR)) {
wc.tp_src_mask = wc.tp_dst_mask = htons(0);
}
if (!(may_match & MAY_NW_PROTO)) {
wc.wildcards |= FWW_NW_PROTO;
}
if (!(may_match & MAY_IPVx)) {
wc.wildcards |= FWW_NW_DSCP;
wc.wildcards |= FWW_NW_ECN;
wc.wildcards |= FWW_NW_TTL;
}
if (!(may_match & MAY_ARP_SHA)) {
memset(wc.arp_sha_mask, 0, ETH_ADDR_LEN);
}
if (!(may_match & MAY_ARP_THA)) {
memset(wc.arp_tha_mask, 0, ETH_ADDR_LEN);
}
if (!(may_match & MAY_IPV6)) {
wc.ipv6_src_mask = wc.ipv6_dst_mask = in6addr_any;
wc.ipv6_label_mask = htonl(0);
}
if (!(may_match & MAY_ND_TARGET)) {
wc.nd_target_mask = in6addr_any;
}
/* Log any changes. */
if (!flow_wildcards_equal(&wc, &rule->wc)) {
bool log = !VLOG_DROP_INFO(&bad_ofmsg_rl);
char *pre = log ? cls_rule_to_string(rule) : NULL;
rule->wc = wc;
cls_rule_zero_wildcarded_fields(rule);
if (log) {
char *post = cls_rule_to_string(rule);
VLOG_INFO("normalization changed ofp_match, details:");
VLOG_INFO(" pre: %s", pre);
VLOG_INFO("post: %s", post);
free(pre);
free(post);
}
}
}
/* Parses a key or a key-value pair from '*stringp'.
*
* On success: Stores the key into '*keyp'. Stores the value, if present, into
* '*valuep', otherwise an empty string. Advances '*stringp' past the end of
* the key-value pair, preparing it for another call. '*keyp' and '*valuep'
* are substrings of '*stringp' created by replacing some of its bytes by null
* terminators. Returns true.
*
* If '*stringp' is just white space or commas, sets '*keyp' and '*valuep' to
* NULL and returns false. */
bool
ofputil_parse_key_value(char **stringp, char **keyp, char **valuep)
{
char *pos, *key, *value;
size_t key_len;
pos = *stringp;
pos += strspn(pos, ", \t\r\n");
if (*pos == '\0') {
*keyp = *valuep = NULL;
return false;
}
key = pos;
key_len = strcspn(pos, ":=(, \t\r\n");
if (key[key_len] == ':' || key[key_len] == '=') {
/* The value can be separated by a colon. */
size_t value_len;
value = key + key_len + 1;
value_len = strcspn(value, ", \t\r\n");
pos = value + value_len + (value[value_len] != '\0');
value[value_len] = '\0';
} else if (key[key_len] == '(') {
/* The value can be surrounded by balanced parentheses. The outermost
* set of parentheses is removed. */
int level = 1;
size_t value_len;
value = key + key_len + 1;
for (value_len = 0; level > 0; value_len++) {
switch (value[value_len]) {
case '\0':
level = 0;
break;
case '(':
level++;
break;
case ')':
level--;
break;
}
}
value[value_len - 1] = '\0';
pos = value + value_len;
} else {
/* There might be no value at all. */
value = key + key_len; /* Will become the empty string below. */
pos = key + key_len + (key[key_len] != '\0');
}
key[key_len] = '\0';
*stringp = pos;
*keyp = key;
*valuep = value;
return true;
}