2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/lib/flow.c
Harold Lim 428b2eddc9 Rename NOT_REACHED to OVS_NOT_REACHED
This allows other libraries to use util.h that has already
defined NOT_REACHED.

Signed-off-by: Harold Lim <haroldl@vmware.com>
Signed-off-by: Ben Pfaff <blp@nicira.com>
2013-12-17 13:16:39 -08:00

1717 lines
51 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include <sys/types.h>
#include "flow.h"
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <netinet/in.h>
#include <netinet/icmp6.h>
#include <netinet/ip6.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "byte-order.h"
#include "coverage.h"
#include "csum.h"
#include "dynamic-string.h"
#include "hash.h"
#include "jhash.h"
#include "match.h"
#include "ofpbuf.h"
#include "openflow/openflow.h"
#include "packets.h"
#include "random.h"
#include "unaligned.h"
COVERAGE_DEFINE(flow_extract);
COVERAGE_DEFINE(miniflow_malloc);
/* U32 indices for segmented flow classification. */
const uint8_t flow_segment_u32s[4] = {
FLOW_SEGMENT_1_ENDS_AT / 4,
FLOW_SEGMENT_2_ENDS_AT / 4,
FLOW_SEGMENT_3_ENDS_AT / 4,
FLOW_U32S
};
static struct arp_eth_header *
pull_arp(struct ofpbuf *packet)
{
return ofpbuf_try_pull(packet, ARP_ETH_HEADER_LEN);
}
static struct ip_header *
pull_ip(struct ofpbuf *packet)
{
if (packet->size >= IP_HEADER_LEN) {
struct ip_header *ip = packet->data;
int ip_len = IP_IHL(ip->ip_ihl_ver) * 4;
if (ip_len >= IP_HEADER_LEN && packet->size >= ip_len) {
return ofpbuf_pull(packet, ip_len);
}
}
return NULL;
}
static struct tcp_header *
pull_tcp(struct ofpbuf *packet)
{
if (packet->size >= TCP_HEADER_LEN) {
struct tcp_header *tcp = packet->data;
int tcp_len = TCP_OFFSET(tcp->tcp_ctl) * 4;
if (tcp_len >= TCP_HEADER_LEN && packet->size >= tcp_len) {
return ofpbuf_pull(packet, tcp_len);
}
}
return NULL;
}
static struct udp_header *
pull_udp(struct ofpbuf *packet)
{
return ofpbuf_try_pull(packet, UDP_HEADER_LEN);
}
static struct sctp_header *
pull_sctp(struct ofpbuf *packet)
{
return ofpbuf_try_pull(packet, SCTP_HEADER_LEN);
}
static struct icmp_header *
pull_icmp(struct ofpbuf *packet)
{
return ofpbuf_try_pull(packet, ICMP_HEADER_LEN);
}
static struct icmp6_hdr *
pull_icmpv6(struct ofpbuf *packet)
{
return ofpbuf_try_pull(packet, sizeof(struct icmp6_hdr));
}
static void
parse_mpls(struct ofpbuf *b, struct flow *flow)
{
struct mpls_hdr *mh;
bool top = true;
while ((mh = ofpbuf_try_pull(b, sizeof *mh))) {
if (top) {
top = false;
flow->mpls_lse = mh->mpls_lse;
}
if (mh->mpls_lse & htonl(MPLS_BOS_MASK)) {
break;
}
}
}
static void
parse_vlan(struct ofpbuf *b, struct flow *flow)
{
struct qtag_prefix {
ovs_be16 eth_type; /* ETH_TYPE_VLAN */
ovs_be16 tci;
};
if (b->size >= sizeof(struct qtag_prefix) + sizeof(ovs_be16)) {
struct qtag_prefix *qp = ofpbuf_pull(b, sizeof *qp);
flow->vlan_tci = qp->tci | htons(VLAN_CFI);
}
}
static ovs_be16
parse_ethertype(struct ofpbuf *b)
{
struct llc_snap_header *llc;
ovs_be16 proto;
proto = *(ovs_be16 *) ofpbuf_pull(b, sizeof proto);
if (ntohs(proto) >= ETH_TYPE_MIN) {
return proto;
}
if (b->size < sizeof *llc) {
return htons(FLOW_DL_TYPE_NONE);
}
llc = b->data;
if (llc->llc.llc_dsap != LLC_DSAP_SNAP
|| llc->llc.llc_ssap != LLC_SSAP_SNAP
|| llc->llc.llc_cntl != LLC_CNTL_SNAP
|| memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
sizeof llc->snap.snap_org)) {
return htons(FLOW_DL_TYPE_NONE);
}
ofpbuf_pull(b, sizeof *llc);
if (ntohs(llc->snap.snap_type) >= ETH_TYPE_MIN) {
return llc->snap.snap_type;
}
return htons(FLOW_DL_TYPE_NONE);
}
static int
parse_ipv6(struct ofpbuf *packet, struct flow *flow)
{
const struct ovs_16aligned_ip6_hdr *nh;
ovs_be32 tc_flow;
int nexthdr;
nh = ofpbuf_try_pull(packet, sizeof *nh);
if (!nh) {
return EINVAL;
}
nexthdr = nh->ip6_nxt;
memcpy(&flow->ipv6_src, &nh->ip6_src, sizeof flow->ipv6_src);
memcpy(&flow->ipv6_dst, &nh->ip6_dst, sizeof flow->ipv6_dst);
tc_flow = get_16aligned_be32(&nh->ip6_flow);
flow->nw_tos = ntohl(tc_flow) >> 20;
flow->ipv6_label = tc_flow & htonl(IPV6_LABEL_MASK);
flow->nw_ttl = nh->ip6_hlim;
flow->nw_proto = IPPROTO_NONE;
while (1) {
if ((nexthdr != IPPROTO_HOPOPTS)
&& (nexthdr != IPPROTO_ROUTING)
&& (nexthdr != IPPROTO_DSTOPTS)
&& (nexthdr != IPPROTO_AH)
&& (nexthdr != IPPROTO_FRAGMENT)) {
/* It's either a terminal header (e.g., TCP, UDP) or one we
* don't understand. In either case, we're done with the
* packet, so use it to fill in 'nw_proto'. */
break;
}
/* We only verify that at least 8 bytes of the next header are
* available, but many of these headers are longer. Ensure that
* accesses within the extension header are within those first 8
* bytes. All extension headers are required to be at least 8
* bytes. */
if (packet->size < 8) {
return EINVAL;
}
if ((nexthdr == IPPROTO_HOPOPTS)
|| (nexthdr == IPPROTO_ROUTING)
|| (nexthdr == IPPROTO_DSTOPTS)) {
/* These headers, while different, have the fields we care about
* in the same location and with the same interpretation. */
const struct ip6_ext *ext_hdr = packet->data;
nexthdr = ext_hdr->ip6e_nxt;
if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 1) * 8)) {
return EINVAL;
}
} else if (nexthdr == IPPROTO_AH) {
/* A standard AH definition isn't available, but the fields
* we care about are in the same location as the generic
* option header--only the header length is calculated
* differently. */
const struct ip6_ext *ext_hdr = packet->data;
nexthdr = ext_hdr->ip6e_nxt;
if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 2) * 4)) {
return EINVAL;
}
} else if (nexthdr == IPPROTO_FRAGMENT) {
const struct ovs_16aligned_ip6_frag *frag_hdr = packet->data;
nexthdr = frag_hdr->ip6f_nxt;
if (!ofpbuf_try_pull(packet, sizeof *frag_hdr)) {
return EINVAL;
}
/* We only process the first fragment. */
if (frag_hdr->ip6f_offlg != htons(0)) {
flow->nw_frag = FLOW_NW_FRAG_ANY;
if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) {
flow->nw_frag |= FLOW_NW_FRAG_LATER;
nexthdr = IPPROTO_FRAGMENT;
break;
}
}
}
}
flow->nw_proto = nexthdr;
return 0;
}
static void
parse_tcp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow)
{
const struct tcp_header *tcp = pull_tcp(b);
if (tcp) {
flow->tp_src = tcp->tcp_src;
flow->tp_dst = tcp->tcp_dst;
flow->tcp_flags = tcp->tcp_ctl & htons(0x0fff);
packet->l7 = b->data;
}
}
static void
parse_udp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow)
{
const struct udp_header *udp = pull_udp(b);
if (udp) {
flow->tp_src = udp->udp_src;
flow->tp_dst = udp->udp_dst;
packet->l7 = b->data;
}
}
static void
parse_sctp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow)
{
const struct sctp_header *sctp = pull_sctp(b);
if (sctp) {
flow->tp_src = sctp->sctp_src;
flow->tp_dst = sctp->sctp_dst;
packet->l7 = b->data;
}
}
static bool
parse_icmpv6(struct ofpbuf *b, struct flow *flow)
{
const struct icmp6_hdr *icmp = pull_icmpv6(b);
if (!icmp) {
return false;
}
/* The ICMPv6 type and code fields use the 16-bit transport port
* fields, so we need to store them in 16-bit network byte order. */
flow->tp_src = htons(icmp->icmp6_type);
flow->tp_dst = htons(icmp->icmp6_code);
if (icmp->icmp6_code == 0 &&
(icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
const struct in6_addr *nd_target;
nd_target = ofpbuf_try_pull(b, sizeof *nd_target);
if (!nd_target) {
return false;
}
flow->nd_target = *nd_target;
while (b->size >= 8) {
/* The minimum size of an option is 8 bytes, which also is
* the size of Ethernet link-layer options. */
const struct nd_opt_hdr *nd_opt = b->data;
int opt_len = nd_opt->nd_opt_len * 8;
if (!opt_len || opt_len > b->size) {
goto invalid;
}
/* Store the link layer address if the appropriate option is
* provided. It is considered an error if the same link
* layer option is specified twice. */
if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR
&& opt_len == 8) {
if (eth_addr_is_zero(flow->arp_sha)) {
memcpy(flow->arp_sha, nd_opt + 1, ETH_ADDR_LEN);
} else {
goto invalid;
}
} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR
&& opt_len == 8) {
if (eth_addr_is_zero(flow->arp_tha)) {
memcpy(flow->arp_tha, nd_opt + 1, ETH_ADDR_LEN);
} else {
goto invalid;
}
}
if (!ofpbuf_try_pull(b, opt_len)) {
goto invalid;
}
}
}
return true;
invalid:
memset(&flow->nd_target, 0, sizeof(flow->nd_target));
memset(flow->arp_sha, 0, sizeof(flow->arp_sha));
memset(flow->arp_tha, 0, sizeof(flow->arp_tha));
return false;
}
/* Initializes 'flow' members from 'packet', 'skb_priority', 'tnl', and
* 'in_port'.
*
* Initializes 'packet' header pointers as follows:
*
* - packet->l2 to the start of the Ethernet header.
*
* - packet->l2_5 to the start of the MPLS shim header.
*
* - packet->l3 to just past the Ethernet header, or just past the
* vlan_header if one is present, to the first byte of the payload of the
* Ethernet frame.
*
* - packet->l4 to just past the IPv4 header, if one is present and has a
* correct length, and otherwise NULL.
*
* - packet->l7 to just past the TCP/UDP/SCTP/ICMP header, if one is
* present and has a correct length, and otherwise NULL.
*/
void
flow_extract(struct ofpbuf *packet, uint32_t skb_priority, uint32_t pkt_mark,
const struct flow_tnl *tnl, const union flow_in_port *in_port,
struct flow *flow)
{
struct ofpbuf b = *packet;
struct eth_header *eth;
COVERAGE_INC(flow_extract);
memset(flow, 0, sizeof *flow);
if (tnl) {
ovs_assert(tnl != &flow->tunnel);
flow->tunnel = *tnl;
}
if (in_port) {
flow->in_port = *in_port;
}
flow->skb_priority = skb_priority;
flow->pkt_mark = pkt_mark;
packet->l2 = b.data;
packet->l2_5 = NULL;
packet->l3 = NULL;
packet->l4 = NULL;
packet->l7 = NULL;
if (b.size < sizeof *eth) {
return;
}
/* Link layer. */
eth = b.data;
memcpy(flow->dl_src, eth->eth_src, ETH_ADDR_LEN);
memcpy(flow->dl_dst, eth->eth_dst, ETH_ADDR_LEN);
/* dl_type, vlan_tci. */
ofpbuf_pull(&b, ETH_ADDR_LEN * 2);
if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
parse_vlan(&b, flow);
}
flow->dl_type = parse_ethertype(&b);
/* Parse mpls, copy l3 ttl. */
if (eth_type_mpls(flow->dl_type)) {
packet->l2_5 = b.data;
parse_mpls(&b, flow);
}
/* Network layer. */
packet->l3 = b.data;
if (flow->dl_type == htons(ETH_TYPE_IP)) {
const struct ip_header *nh = pull_ip(&b);
if (nh) {
packet->l4 = b.data;
flow->nw_src = get_16aligned_be32(&nh->ip_src);
flow->nw_dst = get_16aligned_be32(&nh->ip_dst);
flow->nw_proto = nh->ip_proto;
flow->nw_tos = nh->ip_tos;
if (IP_IS_FRAGMENT(nh->ip_frag_off)) {
flow->nw_frag = FLOW_NW_FRAG_ANY;
if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) {
flow->nw_frag |= FLOW_NW_FRAG_LATER;
}
}
flow->nw_ttl = nh->ip_ttl;
if (!(nh->ip_frag_off & htons(IP_FRAG_OFF_MASK))) {
if (flow->nw_proto == IPPROTO_TCP) {
parse_tcp(packet, &b, flow);
} else if (flow->nw_proto == IPPROTO_UDP) {
parse_udp(packet, &b, flow);
} else if (flow->nw_proto == IPPROTO_SCTP) {
parse_sctp(packet, &b, flow);
} else if (flow->nw_proto == IPPROTO_ICMP) {
const struct icmp_header *icmp = pull_icmp(&b);
if (icmp) {
flow->tp_src = htons(icmp->icmp_type);
flow->tp_dst = htons(icmp->icmp_code);
packet->l7 = b.data;
}
}
}
}
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
if (parse_ipv6(&b, flow)) {
return;
}
packet->l4 = b.data;
if (flow->nw_proto == IPPROTO_TCP) {
parse_tcp(packet, &b, flow);
} else if (flow->nw_proto == IPPROTO_UDP) {
parse_udp(packet, &b, flow);
} else if (flow->nw_proto == IPPROTO_SCTP) {
parse_sctp(packet, &b, flow);
} else if (flow->nw_proto == IPPROTO_ICMPV6) {
if (parse_icmpv6(&b, flow)) {
packet->l7 = b.data;
}
}
} else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
flow->dl_type == htons(ETH_TYPE_RARP)) {
const struct arp_eth_header *arp = pull_arp(&b);
if (arp && arp->ar_hrd == htons(1)
&& arp->ar_pro == htons(ETH_TYPE_IP)
&& arp->ar_hln == ETH_ADDR_LEN
&& arp->ar_pln == 4) {
/* We only match on the lower 8 bits of the opcode. */
if (ntohs(arp->ar_op) <= 0xff) {
flow->nw_proto = ntohs(arp->ar_op);
}
flow->nw_src = get_16aligned_be32(&arp->ar_spa);
flow->nw_dst = get_16aligned_be32(&arp->ar_tpa);
memcpy(flow->arp_sha, arp->ar_sha, ETH_ADDR_LEN);
memcpy(flow->arp_tha, arp->ar_tha, ETH_ADDR_LEN);
}
}
}
/* For every bit of a field that is wildcarded in 'wildcards', sets the
* corresponding bit in 'flow' to zero. */
void
flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards)
{
uint32_t *flow_u32 = (uint32_t *) flow;
const uint32_t *wc_u32 = (const uint32_t *) &wildcards->masks;
size_t i;
for (i = 0; i < FLOW_U32S; i++) {
flow_u32[i] &= wc_u32[i];
}
}
void
flow_unwildcard_tp_ports(const struct flow *flow, struct flow_wildcards *wc)
{
if (flow->nw_proto != IPPROTO_ICMP) {
memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
} else {
wc->masks.tp_src = htons(0xff);
wc->masks.tp_dst = htons(0xff);
}
}
/* Initializes 'fmd' with the metadata found in 'flow'. */
void
flow_get_metadata(const struct flow *flow, struct flow_metadata *fmd)
{
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 23);
fmd->tun_id = flow->tunnel.tun_id;
fmd->tun_src = flow->tunnel.ip_src;
fmd->tun_dst = flow->tunnel.ip_dst;
fmd->metadata = flow->metadata;
memcpy(fmd->regs, flow->regs, sizeof fmd->regs);
fmd->pkt_mark = flow->pkt_mark;
fmd->in_port = flow->in_port.ofp_port;
}
char *
flow_to_string(const struct flow *flow)
{
struct ds ds = DS_EMPTY_INITIALIZER;
flow_format(&ds, flow);
return ds_cstr(&ds);
}
const char *
flow_tun_flag_to_string(uint32_t flags)
{
switch (flags) {
case FLOW_TNL_F_DONT_FRAGMENT:
return "df";
case FLOW_TNL_F_CSUM:
return "csum";
case FLOW_TNL_F_KEY:
return "key";
default:
return NULL;
}
}
void
format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t),
uint32_t flags, char del)
{
uint32_t bad = 0;
if (!flags) {
return;
}
while (flags) {
uint32_t bit = rightmost_1bit(flags);
const char *s;
s = bit_to_string(bit);
if (s) {
ds_put_format(ds, "%s%c", s, del);
} else {
bad |= bit;
}
flags &= ~bit;
}
if (bad) {
ds_put_format(ds, "0x%"PRIx32"%c", bad, del);
}
ds_chomp(ds, del);
}
void
format_flags_masked(struct ds *ds, const char *name,
const char *(*bit_to_string)(uint32_t), uint32_t flags,
uint32_t mask)
{
if (name) {
ds_put_format(ds, "%s=", name);
}
while (mask) {
uint32_t bit = rightmost_1bit(mask);
const char *s = bit_to_string(bit);
ds_put_format(ds, "%s%s", (flags & bit) ? "+" : "-",
s ? s : "[Unknown]");
mask &= ~bit;
}
}
void
flow_format(struct ds *ds, const struct flow *flow)
{
struct match match;
match_wc_init(&match, flow);
match_format(&match, ds, OFP_DEFAULT_PRIORITY);
}
void
flow_print(FILE *stream, const struct flow *flow)
{
char *s = flow_to_string(flow);
fputs(s, stream);
free(s);
}
/* flow_wildcards functions. */
/* Initializes 'wc' as a set of wildcards that matches every packet. */
void
flow_wildcards_init_catchall(struct flow_wildcards *wc)
{
memset(&wc->masks, 0, sizeof wc->masks);
}
/* Clear the metadata and register wildcard masks. They are not packet
* header fields. */
void
flow_wildcards_clear_non_packet_fields(struct flow_wildcards *wc)
{
memset(&wc->masks.metadata, 0, sizeof wc->masks.metadata);
memset(&wc->masks.regs, 0, sizeof wc->masks.regs);
}
/* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or
* fields. */
bool
flow_wildcards_is_catchall(const struct flow_wildcards *wc)
{
const uint32_t *wc_u32 = (const uint32_t *) &wc->masks;
size_t i;
for (i = 0; i < FLOW_U32S; i++) {
if (wc_u32[i]) {
return false;
}
}
return true;
}
/* Sets 'dst' as the bitwise AND of wildcards in 'src1' and 'src2'.
* That is, a bit or a field is wildcarded in 'dst' if it is wildcarded
* in 'src1' or 'src2' or both. */
void
flow_wildcards_and(struct flow_wildcards *dst,
const struct flow_wildcards *src1,
const struct flow_wildcards *src2)
{
uint32_t *dst_u32 = (uint32_t *) &dst->masks;
const uint32_t *src1_u32 = (const uint32_t *) &src1->masks;
const uint32_t *src2_u32 = (const uint32_t *) &src2->masks;
size_t i;
for (i = 0; i < FLOW_U32S; i++) {
dst_u32[i] = src1_u32[i] & src2_u32[i];
}
}
/* Sets 'dst' as the bitwise OR of wildcards in 'src1' and 'src2'. That
* is, a bit or a field is wildcarded in 'dst' if it is neither
* wildcarded in 'src1' nor 'src2'. */
void
flow_wildcards_or(struct flow_wildcards *dst,
const struct flow_wildcards *src1,
const struct flow_wildcards *src2)
{
uint32_t *dst_u32 = (uint32_t *) &dst->masks;
const uint32_t *src1_u32 = (const uint32_t *) &src1->masks;
const uint32_t *src2_u32 = (const uint32_t *) &src2->masks;
size_t i;
for (i = 0; i < FLOW_U32S; i++) {
dst_u32[i] = src1_u32[i] | src2_u32[i];
}
}
/* Perform a bitwise OR of miniflow 'src' flow data with the equivalent
* fields in 'dst', storing the result in 'dst'. */
static void
flow_union_with_miniflow(struct flow *dst, const struct miniflow *src)
{
uint32_t *dst_u32 = (uint32_t *) dst;
const uint32_t *p = src->values;
uint64_t map;
for (map = src->map; map; map = zero_rightmost_1bit(map)) {
dst_u32[raw_ctz(map)] |= *p++;
}
}
/* Fold minimask 'mask''s wildcard mask into 'wc's wildcard mask. */
void
flow_wildcards_fold_minimask(struct flow_wildcards *wc,
const struct minimask *mask)
{
flow_union_with_miniflow(&wc->masks, &mask->masks);
}
inline uint64_t
miniflow_get_map_in_range(const struct miniflow *miniflow,
uint8_t start, uint8_t end, const uint32_t **data)
{
uint64_t map = miniflow->map;
uint32_t *p = miniflow->values;
if (start > 0) {
uint64_t msk = (UINT64_C(1) << start) - 1; /* 'start' LSBs set */
p += count_1bits(map & msk); /* Skip to start. */
map &= ~msk;
}
if (end < FLOW_U32S) {
uint64_t msk = (UINT64_C(1) << end) - 1; /* 'end' LSBs set */
map &= msk;
}
*data = p;
return map;
}
/* Fold minimask 'mask''s wildcard mask into 'wc's wildcard mask
* in range [start, end). */
void
flow_wildcards_fold_minimask_range(struct flow_wildcards *wc,
const struct minimask *mask,
uint8_t start, uint8_t end)
{
uint32_t *dst_u32 = (uint32_t *)&wc->masks;
const uint32_t *p;
uint64_t map = miniflow_get_map_in_range(&mask->masks, start, end, &p);
for (; map; map = zero_rightmost_1bit(map)) {
dst_u32[raw_ctz(map)] |= *p++;
}
}
/* Returns a hash of the wildcards in 'wc'. */
uint32_t
flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis)
{
return flow_hash(&wc->masks, basis);
}
/* Returns true if 'a' and 'b' represent the same wildcards, false if they are
* different. */
bool
flow_wildcards_equal(const struct flow_wildcards *a,
const struct flow_wildcards *b)
{
return flow_equal(&a->masks, &b->masks);
}
/* Returns true if at least one bit or field is wildcarded in 'a' but not in
* 'b', false otherwise. */
bool
flow_wildcards_has_extra(const struct flow_wildcards *a,
const struct flow_wildcards *b)
{
const uint32_t *a_u32 = (const uint32_t *) &a->masks;
const uint32_t *b_u32 = (const uint32_t *) &b->masks;
size_t i;
for (i = 0; i < FLOW_U32S; i++) {
if ((a_u32[i] & b_u32[i]) != b_u32[i]) {
return true;
}
}
return false;
}
/* Returns true if 'a' and 'b' are equal, except that 0-bits (wildcarded bits)
* in 'wc' do not need to be equal in 'a' and 'b'. */
bool
flow_equal_except(const struct flow *a, const struct flow *b,
const struct flow_wildcards *wc)
{
const uint32_t *a_u32 = (const uint32_t *) a;
const uint32_t *b_u32 = (const uint32_t *) b;
const uint32_t *wc_u32 = (const uint32_t *) &wc->masks;
size_t i;
for (i = 0; i < FLOW_U32S; i++) {
if ((a_u32[i] ^ b_u32[i]) & wc_u32[i]) {
return false;
}
}
return true;
}
/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
* (A 0-bit indicates a wildcard bit.) */
void
flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
{
wc->masks.regs[idx] = mask;
}
/* Hashes 'flow' based on its L2 through L4 protocol information. */
uint32_t
flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
{
struct {
union {
ovs_be32 ipv4_addr;
struct in6_addr ipv6_addr;
};
ovs_be16 eth_type;
ovs_be16 vlan_tci;
ovs_be16 tp_port;
uint8_t eth_addr[ETH_ADDR_LEN];
uint8_t ip_proto;
} fields;
int i;
memset(&fields, 0, sizeof fields);
for (i = 0; i < ETH_ADDR_LEN; i++) {
fields.eth_addr[i] = flow->dl_src[i] ^ flow->dl_dst[i];
}
fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK);
fields.eth_type = flow->dl_type;
/* UDP source and destination port are not taken into account because they
* will not necessarily be symmetric in a bidirectional flow. */
if (fields.eth_type == htons(ETH_TYPE_IP)) {
fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
fields.ip_proto = flow->nw_proto;
if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
fields.tp_port = flow->tp_src ^ flow->tp_dst;
}
} else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
const uint8_t *a = &flow->ipv6_src.s6_addr[0];
const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];
for (i=0; i<16; i++) {
ipv6_addr[i] = a[i] ^ b[i];
}
fields.ip_proto = flow->nw_proto;
if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
fields.tp_port = flow->tp_src ^ flow->tp_dst;
}
}
return jhash_bytes(&fields, sizeof fields, basis);
}
/* Initialize a flow with random fields that matter for nx_hash_fields. */
void
flow_random_hash_fields(struct flow *flow)
{
uint16_t rnd = random_uint16();
/* Initialize to all zeros. */
memset(flow, 0, sizeof *flow);
eth_addr_random(flow->dl_src);
eth_addr_random(flow->dl_dst);
flow->vlan_tci = (OVS_FORCE ovs_be16) (random_uint16() & VLAN_VID_MASK);
/* Make most of the random flows IPv4, some IPv6, and rest random. */
flow->dl_type = rnd < 0x8000 ? htons(ETH_TYPE_IP) :
rnd < 0xc000 ? htons(ETH_TYPE_IPV6) : (OVS_FORCE ovs_be16)rnd;
if (dl_type_is_ip_any(flow->dl_type)) {
if (flow->dl_type == htons(ETH_TYPE_IP)) {
flow->nw_src = (OVS_FORCE ovs_be32)random_uint32();
flow->nw_dst = (OVS_FORCE ovs_be32)random_uint32();
} else {
random_bytes(&flow->ipv6_src, sizeof flow->ipv6_src);
random_bytes(&flow->ipv6_dst, sizeof flow->ipv6_dst);
}
/* Make most of IP flows TCP, some UDP or SCTP, and rest random. */
rnd = random_uint16();
flow->nw_proto = rnd < 0x8000 ? IPPROTO_TCP :
rnd < 0xc000 ? IPPROTO_UDP :
rnd < 0xd000 ? IPPROTO_SCTP : (uint8_t)rnd;
if (flow->nw_proto == IPPROTO_TCP ||
flow->nw_proto == IPPROTO_UDP ||
flow->nw_proto == IPPROTO_SCTP) {
flow->tp_src = (OVS_FORCE ovs_be16)random_uint16();
flow->tp_dst = (OVS_FORCE ovs_be16)random_uint16();
}
}
}
/* Masks the fields in 'wc' that are used by the flow hash 'fields'. */
void
flow_mask_hash_fields(const struct flow *flow, struct flow_wildcards *wc,
enum nx_hash_fields fields)
{
switch (fields) {
case NX_HASH_FIELDS_ETH_SRC:
memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
break;
case NX_HASH_FIELDS_SYMMETRIC_L4:
memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
if (flow->dl_type == htons(ETH_TYPE_IP)) {
memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
}
if (is_ip_any(flow)) {
memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
flow_unwildcard_tp_ports(flow, wc);
}
wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
break;
default:
OVS_NOT_REACHED();
}
}
/* Hashes the portions of 'flow' designated by 'fields'. */
uint32_t
flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields,
uint16_t basis)
{
switch (fields) {
case NX_HASH_FIELDS_ETH_SRC:
return jhash_bytes(flow->dl_src, sizeof flow->dl_src, basis);
case NX_HASH_FIELDS_SYMMETRIC_L4:
return flow_hash_symmetric_l4(flow, basis);
}
OVS_NOT_REACHED();
}
/* Returns a string representation of 'fields'. */
const char *
flow_hash_fields_to_str(enum nx_hash_fields fields)
{
switch (fields) {
case NX_HASH_FIELDS_ETH_SRC: return "eth_src";
case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4";
default: return "<unknown>";
}
}
/* Returns true if the value of 'fields' is supported. Otherwise false. */
bool
flow_hash_fields_valid(enum nx_hash_fields fields)
{
return fields == NX_HASH_FIELDS_ETH_SRC
|| fields == NX_HASH_FIELDS_SYMMETRIC_L4;
}
/* Returns a hash value for the bits of 'flow' that are active based on
* 'wc', given 'basis'. */
uint32_t
flow_hash_in_wildcards(const struct flow *flow,
const struct flow_wildcards *wc, uint32_t basis)
{
const uint32_t *wc_u32 = (const uint32_t *) &wc->masks;
const uint32_t *flow_u32 = (const uint32_t *) flow;
uint32_t hash;
size_t i;
hash = basis;
for (i = 0; i < FLOW_U32S; i++) {
hash = mhash_add(hash, flow_u32[i] & wc_u32[i]);
}
return mhash_finish(hash, 4 * FLOW_U32S);
}
/* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
* OpenFlow 1.0 "dl_vlan" value:
*
* - If it is in the range 0...4095, 'flow->vlan_tci' is set to match
* that VLAN. Any existing PCP match is unchanged (it becomes 0 if
* 'flow' previously matched packets without a VLAN header).
*
* - If it is OFP_VLAN_NONE, 'flow->vlan_tci' is set to match a packet
* without a VLAN tag.
*
* - Other values of 'vid' should not be used. */
void
flow_set_dl_vlan(struct flow *flow, ovs_be16 vid)
{
if (vid == htons(OFP10_VLAN_NONE)) {
flow->vlan_tci = htons(0);
} else {
vid &= htons(VLAN_VID_MASK);
flow->vlan_tci &= ~htons(VLAN_VID_MASK);
flow->vlan_tci |= htons(VLAN_CFI) | vid;
}
}
/* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
* OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID
* plus CFI). */
void
flow_set_vlan_vid(struct flow *flow, ovs_be16 vid)
{
ovs_be16 mask = htons(VLAN_VID_MASK | VLAN_CFI);
flow->vlan_tci &= ~mask;
flow->vlan_tci |= vid & mask;
}
/* Sets the VLAN PCP that 'flow' matches to 'pcp', which should be in the
* range 0...7.
*
* This function has no effect on the VLAN ID that 'flow' matches.
*
* After calling this function, 'flow' will not match packets without a VLAN
* header. */
void
flow_set_vlan_pcp(struct flow *flow, uint8_t pcp)
{
pcp &= 0x07;
flow->vlan_tci &= ~htons(VLAN_PCP_MASK);
flow->vlan_tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
}
/* Sets the MPLS Label that 'flow' matches to 'label', which is interpreted
* as an OpenFlow 1.1 "mpls_label" value. */
void
flow_set_mpls_label(struct flow *flow, ovs_be32 label)
{
set_mpls_lse_label(&flow->mpls_lse, label);
}
/* Sets the MPLS TTL that 'flow' matches to 'ttl', which should be in the
* range 0...255. */
void
flow_set_mpls_ttl(struct flow *flow, uint8_t ttl)
{
set_mpls_lse_ttl(&flow->mpls_lse, ttl);
}
/* Sets the MPLS TC that 'flow' matches to 'tc', which should be in the
* range 0...7. */
void
flow_set_mpls_tc(struct flow *flow, uint8_t tc)
{
set_mpls_lse_tc(&flow->mpls_lse, tc);
}
/* Sets the MPLS BOS bit that 'flow' matches to which should be 0 or 1. */
void
flow_set_mpls_bos(struct flow *flow, uint8_t bos)
{
set_mpls_lse_bos(&flow->mpls_lse, bos);
}
static void
flow_compose_l4(struct ofpbuf *b, const struct flow *flow)
{
if (!(flow->nw_frag & FLOW_NW_FRAG_ANY)
|| !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
if (flow->nw_proto == IPPROTO_TCP) {
struct tcp_header *tcp;
tcp = ofpbuf_put_zeros(b, sizeof *tcp);
tcp->tcp_src = flow->tp_src;
tcp->tcp_dst = flow->tp_dst;
tcp->tcp_ctl = TCP_CTL(ntohs(flow->tcp_flags), 5);
b->l7 = ofpbuf_tail(b);
} else if (flow->nw_proto == IPPROTO_UDP) {
struct udp_header *udp;
udp = ofpbuf_put_zeros(b, sizeof *udp);
udp->udp_src = flow->tp_src;
udp->udp_dst = flow->tp_dst;
b->l7 = ofpbuf_tail(b);
} else if (flow->nw_proto == IPPROTO_SCTP) {
struct sctp_header *sctp;
sctp = ofpbuf_put_zeros(b, sizeof *sctp);
sctp->sctp_src = flow->tp_src;
sctp->sctp_dst = flow->tp_dst;
b->l7 = ofpbuf_tail(b);
} else if (flow->nw_proto == IPPROTO_ICMP) {
struct icmp_header *icmp;
icmp = ofpbuf_put_zeros(b, sizeof *icmp);
icmp->icmp_type = ntohs(flow->tp_src);
icmp->icmp_code = ntohs(flow->tp_dst);
icmp->icmp_csum = csum(icmp, ICMP_HEADER_LEN);
b->l7 = ofpbuf_tail(b);
} else if (flow->nw_proto == IPPROTO_ICMPV6) {
struct icmp6_hdr *icmp;
icmp = ofpbuf_put_zeros(b, sizeof *icmp);
icmp->icmp6_type = ntohs(flow->tp_src);
icmp->icmp6_code = ntohs(flow->tp_dst);
if (icmp->icmp6_code == 0 &&
(icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
struct in6_addr *nd_target;
struct nd_opt_hdr *nd_opt;
nd_target = ofpbuf_put_zeros(b, sizeof *nd_target);
*nd_target = flow->nd_target;
if (!eth_addr_is_zero(flow->arp_sha)) {
nd_opt = ofpbuf_put_zeros(b, 8);
nd_opt->nd_opt_len = 1;
nd_opt->nd_opt_type = ND_OPT_SOURCE_LINKADDR;
memcpy(nd_opt + 1, flow->arp_sha, ETH_ADDR_LEN);
}
if (!eth_addr_is_zero(flow->arp_tha)) {
nd_opt = ofpbuf_put_zeros(b, 8);
nd_opt->nd_opt_len = 1;
nd_opt->nd_opt_type = ND_OPT_TARGET_LINKADDR;
memcpy(nd_opt + 1, flow->arp_tha, ETH_ADDR_LEN);
}
}
icmp->icmp6_cksum = (OVS_FORCE uint16_t)
csum(icmp, (char *)ofpbuf_tail(b) - (char *)icmp);
b->l7 = ofpbuf_tail(b);
}
}
}
/* Puts into 'b' a packet that flow_extract() would parse as having the given
* 'flow'.
*
* (This is useful only for testing, obviously, and the packet isn't really
* valid. It hasn't got some checksums filled in, for one, and lots of fields
* are just zeroed.) */
void
flow_compose(struct ofpbuf *b, const struct flow *flow)
{
/* eth_compose() sets l3 pointer and makes sure it is 32-bit aligned. */
eth_compose(b, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0);
if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) {
struct eth_header *eth = b->l2;
eth->eth_type = htons(b->size);
return;
}
if (flow->vlan_tci & htons(VLAN_CFI)) {
eth_push_vlan(b, flow->vlan_tci);
}
if (flow->dl_type == htons(ETH_TYPE_IP)) {
struct ip_header *ip;
ip = ofpbuf_put_zeros(b, sizeof *ip);
ip->ip_ihl_ver = IP_IHL_VER(5, 4);
ip->ip_tos = flow->nw_tos;
ip->ip_ttl = flow->nw_ttl;
ip->ip_proto = flow->nw_proto;
put_16aligned_be32(&ip->ip_src, flow->nw_src);
put_16aligned_be32(&ip->ip_dst, flow->nw_dst);
if (flow->nw_frag & FLOW_NW_FRAG_ANY) {
ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS);
if (flow->nw_frag & FLOW_NW_FRAG_LATER) {
ip->ip_frag_off |= htons(100);
}
}
b->l4 = ofpbuf_tail(b);
flow_compose_l4(b, flow);
ip->ip_tot_len = htons((uint8_t *) b->data + b->size
- (uint8_t *) b->l3);
ip->ip_csum = csum(ip, sizeof *ip);
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
struct ovs_16aligned_ip6_hdr *nh;
nh = ofpbuf_put_zeros(b, sizeof *nh);
put_16aligned_be32(&nh->ip6_flow, htonl(6 << 28) |
htonl(flow->nw_tos << 20) | flow->ipv6_label);
nh->ip6_hlim = flow->nw_ttl;
nh->ip6_nxt = flow->nw_proto;
memcpy(&nh->ip6_src, &flow->ipv6_src, sizeof(nh->ip6_src));
memcpy(&nh->ip6_dst, &flow->ipv6_dst, sizeof(nh->ip6_dst));
b->l4 = ofpbuf_tail(b);
flow_compose_l4(b, flow);
nh->ip6_plen =
b->l7 ? htons((uint8_t *) b->l7 - (uint8_t *) b->l4) : htons(0);
} else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
flow->dl_type == htons(ETH_TYPE_RARP)) {
struct arp_eth_header *arp;
b->l3 = arp = ofpbuf_put_zeros(b, sizeof *arp);
arp->ar_hrd = htons(1);
arp->ar_pro = htons(ETH_TYPE_IP);
arp->ar_hln = ETH_ADDR_LEN;
arp->ar_pln = 4;
arp->ar_op = htons(flow->nw_proto);
if (flow->nw_proto == ARP_OP_REQUEST ||
flow->nw_proto == ARP_OP_REPLY) {
put_16aligned_be32(&arp->ar_spa, flow->nw_src);
put_16aligned_be32(&arp->ar_tpa, flow->nw_dst);
memcpy(arp->ar_sha, flow->arp_sha, ETH_ADDR_LEN);
memcpy(arp->ar_tha, flow->arp_tha, ETH_ADDR_LEN);
}
}
if (eth_type_mpls(flow->dl_type)) {
b->l2_5 = b->l3;
push_mpls(b, flow->dl_type, flow->mpls_lse);
}
}
/* Compressed flow. */
static int
miniflow_n_values(const struct miniflow *flow)
{
return count_1bits(flow->map);
}
static uint32_t *
miniflow_alloc_values(struct miniflow *flow, int n)
{
if (n <= MINI_N_INLINE) {
return flow->inline_values;
} else {
COVERAGE_INC(miniflow_malloc);
return xmalloc(n * sizeof *flow->values);
}
}
/* Completes an initialization of 'dst' as a miniflow copy of 'src' begun by
* the caller. The caller must have already initialized 'dst->map' properly
* to indicate the significant uint32_t elements of 'src'. 'n' must be the
* number of 1-bits in 'dst->map'.
*
* Normally the significant elements are the ones that are non-zero. However,
* when a miniflow is initialized from a (mini)mask, the values can be zeroes,
* so that the flow and mask always have the same maps.
*
* This function initializes 'dst->values' (either inline if possible or with
* malloc() otherwise) and copies the uint32_t elements of 'src' indicated by
* 'dst->map' into it. */
static void
miniflow_init__(struct miniflow *dst, const struct flow *src, int n)
{
const uint32_t *src_u32 = (const uint32_t *) src;
unsigned int ofs;
uint64_t map;
dst->values = miniflow_alloc_values(dst, n);
ofs = 0;
for (map = dst->map; map; map = zero_rightmost_1bit(map)) {
dst->values[ofs++] = src_u32[raw_ctz(map)];
}
}
/* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
* with miniflow_destroy(). */
void
miniflow_init(struct miniflow *dst, const struct flow *src)
{
const uint32_t *src_u32 = (const uint32_t *) src;
unsigned int i;
int n;
/* Initialize dst->map, counting the number of nonzero elements. */
n = 0;
dst->map = 0;
for (i = 0; i < FLOW_U32S; i++) {
if (src_u32[i]) {
dst->map |= UINT64_C(1) << i;
n++;
}
}
miniflow_init__(dst, src, n);
}
/* Initializes 'dst' as a copy of 'src', using 'mask->map' as 'dst''s map. The
* caller must eventually free 'dst' with miniflow_destroy(). */
void
miniflow_init_with_minimask(struct miniflow *dst, const struct flow *src,
const struct minimask *mask)
{
dst->map = mask->masks.map;
miniflow_init__(dst, src, miniflow_n_values(dst));
}
/* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
* with miniflow_destroy(). */
void
miniflow_clone(struct miniflow *dst, const struct miniflow *src)
{
int n = miniflow_n_values(src);
dst->map = src->map;
dst->values = miniflow_alloc_values(dst, n);
memcpy(dst->values, src->values, n * sizeof *dst->values);
}
/* Initializes 'dst' with the data in 'src', destroying 'src'.
* The caller must eventually free 'dst' with miniflow_destroy(). */
void
miniflow_move(struct miniflow *dst, struct miniflow *src)
{
if (src->values == src->inline_values) {
dst->values = dst->inline_values;
memcpy(dst->values, src->values,
miniflow_n_values(src) * sizeof *dst->values);
} else {
dst->values = src->values;
}
dst->map = src->map;
}
/* Frees any memory owned by 'flow'. Does not free the storage in which 'flow'
* itself resides; the caller is responsible for that. */
void
miniflow_destroy(struct miniflow *flow)
{
if (flow->values != flow->inline_values) {
free(flow->values);
}
}
/* Initializes 'dst' as a copy of 'src'. */
void
miniflow_expand(const struct miniflow *src, struct flow *dst)
{
memset(dst, 0, sizeof *dst);
flow_union_with_miniflow(dst, src);
}
static const uint32_t *
miniflow_get__(const struct miniflow *flow, unsigned int u32_ofs)
{
if (!(flow->map & (UINT64_C(1) << u32_ofs))) {
static const uint32_t zero = 0;
return &zero;
}
return flow->values +
count_1bits(flow->map & ((UINT64_C(1) << u32_ofs) - 1));
}
/* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'flow'
* were expanded into a "struct flow". */
uint32_t
miniflow_get(const struct miniflow *flow, unsigned int u32_ofs)
{
return *miniflow_get__(flow, u32_ofs);
}
/* Returns the ovs_be16 that would be at byte offset 'u8_ofs' if 'flow' were
* expanded into a "struct flow". */
static ovs_be16
miniflow_get_be16(const struct miniflow *flow, unsigned int u8_ofs)
{
const uint32_t *u32p = miniflow_get__(flow, u8_ofs / 4);
const ovs_be16 *be16p = (const ovs_be16 *) u32p;
return be16p[u8_ofs % 4 != 0];
}
/* Returns the VID within the vlan_tci member of the "struct flow" represented
* by 'flow'. */
uint16_t
miniflow_get_vid(const struct miniflow *flow)
{
ovs_be16 tci = miniflow_get_be16(flow, offsetof(struct flow, vlan_tci));
return vlan_tci_to_vid(tci);
}
/* Returns true if 'a' and 'b' are the same flow, false otherwise. */
bool
miniflow_equal(const struct miniflow *a, const struct miniflow *b)
{
const uint32_t *ap = a->values;
const uint32_t *bp = b->values;
const uint64_t a_map = a->map;
const uint64_t b_map = b->map;
uint64_t map;
if (a_map == b_map) {
for (map = a_map; map; map = zero_rightmost_1bit(map)) {
if (*ap++ != *bp++) {
return false;
}
}
} else {
for (map = a_map | b_map; map; map = zero_rightmost_1bit(map)) {
uint64_t bit = rightmost_1bit(map);
uint64_t a_value = a_map & bit ? *ap++ : 0;
uint64_t b_value = b_map & bit ? *bp++ : 0;
if (a_value != b_value) {
return false;
}
}
}
return true;
}
/* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
* in 'mask', false if they differ. */
bool
miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b,
const struct minimask *mask)
{
const uint32_t *p;
uint64_t map;
p = mask->masks.values;
for (map = mask->masks.map; map; map = zero_rightmost_1bit(map)) {
int ofs = raw_ctz(map);
if ((miniflow_get(a, ofs) ^ miniflow_get(b, ofs)) & *p) {
return false;
}
p++;
}
return true;
}
/* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
* in 'mask', false if they differ. */
bool
miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b,
const struct minimask *mask)
{
const uint32_t *b_u32 = (const uint32_t *) b;
const uint32_t *p;
uint64_t map;
p = mask->masks.values;
for (map = mask->masks.map; map; map = zero_rightmost_1bit(map)) {
int ofs = raw_ctz(map);
if ((miniflow_get(a, ofs) ^ b_u32[ofs]) & *p) {
return false;
}
p++;
}
return true;
}
/* Returns a hash value for 'flow', given 'basis'. */
uint32_t
miniflow_hash(const struct miniflow *flow, uint32_t basis)
{
const uint32_t *p = flow->values;
uint32_t hash = basis;
uint64_t hash_map = 0;
uint64_t map;
for (map = flow->map; map; map = zero_rightmost_1bit(map)) {
if (*p) {
hash = mhash_add(hash, *p);
hash_map |= rightmost_1bit(map);
}
p++;
}
hash = mhash_add(hash, hash_map);
hash = mhash_add(hash, hash_map >> 32);
return mhash_finish(hash, p - flow->values);
}
/* Returns a hash value for the bits of 'flow' where there are 1-bits in
* 'mask', given 'basis'.
*
* The hash values returned by this function are the same as those returned by
* flow_hash_in_minimask(), only the form of the arguments differ. */
uint32_t
miniflow_hash_in_minimask(const struct miniflow *flow,
const struct minimask *mask, uint32_t basis)
{
const uint32_t *p = mask->masks.values;
uint32_t hash;
uint64_t map;
hash = basis;
for (map = mask->masks.map; map; map = zero_rightmost_1bit(map)) {
if (*p) {
int ofs = raw_ctz(map);
hash = mhash_add(hash, miniflow_get(flow, ofs) & *p);
}
p++;
}
return mhash_finish(hash, (p - mask->masks.values) * 4);
}
/* Returns a hash value for the bits of 'flow' where there are 1-bits in
* 'mask', given 'basis'.
*
* The hash values returned by this function are the same as those returned by
* miniflow_hash_in_minimask(), only the form of the arguments differ. */
uint32_t
flow_hash_in_minimask(const struct flow *flow, const struct minimask *mask,
uint32_t basis)
{
const uint32_t *flow_u32 = (const uint32_t *)flow;
const uint32_t *p = mask->masks.values;
uint32_t hash;
uint64_t map;
hash = basis;
for (map = mask->masks.map; map; map = zero_rightmost_1bit(map)) {
if (*p) {
hash = mhash_add(hash, flow_u32[raw_ctz(map)] & *p);
}
p++;
}
return mhash_finish(hash, (p - mask->masks.values) * 4);
}
/* Returns a hash value for the bits of range [start, end) in 'flow',
* where there are 1-bits in 'mask', given 'hash'.
*
* The hash values returned by this function are the same as those returned by
* minimatch_hash_range(), only the form of the arguments differ. */
uint32_t
flow_hash_in_minimask_range(const struct flow *flow,
const struct minimask *mask,
uint8_t start, uint8_t end, uint32_t *basis)
{
const uint32_t *flow_u32 = (const uint32_t *)flow;
const uint32_t *p;
uint64_t map = miniflow_get_map_in_range(&mask->masks, start, end, &p);
uint32_t hash = *basis;
for (; map; map = zero_rightmost_1bit(map)) {
if (*p) {
hash = mhash_add(hash, flow_u32[raw_ctz(map)] & *p);
}
p++;
}
*basis = hash; /* Allow continuation from the unfinished value. */
return mhash_finish(hash, (p - mask->masks.values) * 4);
}
/* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
* with minimask_destroy(). */
void
minimask_init(struct minimask *mask, const struct flow_wildcards *wc)
{
miniflow_init(&mask->masks, &wc->masks);
}
/* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst'
* with minimask_destroy(). */
void
minimask_clone(struct minimask *dst, const struct minimask *src)
{
miniflow_clone(&dst->masks, &src->masks);
}
/* Initializes 'dst' with the data in 'src', destroying 'src'.
* The caller must eventually free 'dst' with minimask_destroy(). */
void
minimask_move(struct minimask *dst, struct minimask *src)
{
miniflow_move(&dst->masks, &src->masks);
}
/* Initializes 'dst_' as the bit-wise "and" of 'a_' and 'b_'.
*
* The caller must provide room for FLOW_U32S "uint32_t"s in 'storage', for use
* by 'dst_'. The caller must *not* free 'dst_' with minimask_destroy(). */
void
minimask_combine(struct minimask *dst_,
const struct minimask *a_, const struct minimask *b_,
uint32_t storage[FLOW_U32S])
{
struct miniflow *dst = &dst_->masks;
const struct miniflow *a = &a_->masks;
const struct miniflow *b = &b_->masks;
uint64_t map;
int n = 0;
dst->values = storage;
dst->map = 0;
for (map = a->map & b->map; map; map = zero_rightmost_1bit(map)) {
int ofs = raw_ctz(map);
uint32_t mask = miniflow_get(a, ofs) & miniflow_get(b, ofs);
if (mask) {
dst->map |= rightmost_1bit(map);
dst->values[n++] = mask;
}
}
}
/* Frees any memory owned by 'mask'. Does not free the storage in which 'mask'
* itself resides; the caller is responsible for that. */
void
minimask_destroy(struct minimask *mask)
{
miniflow_destroy(&mask->masks);
}
/* Initializes 'dst' as a copy of 'src'. */
void
minimask_expand(const struct minimask *mask, struct flow_wildcards *wc)
{
miniflow_expand(&mask->masks, &wc->masks);
}
/* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'mask'
* were expanded into a "struct flow_wildcards". */
uint32_t
minimask_get(const struct minimask *mask, unsigned int u32_ofs)
{
return miniflow_get(&mask->masks, u32_ofs);
}
/* Returns the VID mask within the vlan_tci member of the "struct
* flow_wildcards" represented by 'mask'. */
uint16_t
minimask_get_vid_mask(const struct minimask *mask)
{
return miniflow_get_vid(&mask->masks);
}
/* Returns true if 'a' and 'b' are the same flow mask, false otherwise. */
bool
minimask_equal(const struct minimask *a, const struct minimask *b)
{
return miniflow_equal(&a->masks, &b->masks);
}
/* Returns a hash value for 'mask', given 'basis'. */
uint32_t
minimask_hash(const struct minimask *mask, uint32_t basis)
{
return miniflow_hash(&mask->masks, basis);
}
/* Returns true if at least one bit is wildcarded in 'a_' but not in 'b_',
* false otherwise. */
bool
minimask_has_extra(const struct minimask *a_, const struct minimask *b_)
{
const struct miniflow *a = &a_->masks;
const struct miniflow *b = &b_->masks;
uint64_t map;
for (map = a->map | b->map; map; map = zero_rightmost_1bit(map)) {
int ofs = raw_ctz(map);
uint32_t a_u32 = miniflow_get(a, ofs);
uint32_t b_u32 = miniflow_get(b, ofs);
if ((a_u32 & b_u32) != b_u32) {
return true;
}
}
return false;
}
/* Returns true if 'mask' matches every packet, false if 'mask' fixes any bits
* or fields. */
bool
minimask_is_catchall(const struct minimask *mask_)
{
const struct miniflow *mask = &mask_->masks;
const uint32_t *p = mask->values;
uint64_t map;
for (map = mask->map; map; map = zero_rightmost_1bit(map)) {
if (*p++) {
return false;
}
}
return true;
}