mirror of
https://github.com/openvswitch/ovs
synced 2025-08-22 09:58:01 +00:00
Signed-off-by: Justin Pettit <jpettit@nicira.com> Acked-by: Jesse Gross <jesse@nicira.com>
1069 lines
32 KiB
C
1069 lines
32 KiB
C
/*
|
||
* Copyright (c) 2008, 2009, 2010, 2011 Nicira Networks.
|
||
*
|
||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
* you may not use this file except in compliance with the License.
|
||
* You may obtain a copy of the License at:
|
||
*
|
||
* http://www.apache.org/licenses/LICENSE-2.0
|
||
*
|
||
* Unless required by applicable law or agreed to in writing, software
|
||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
* See the License for the specific language governing permissions and
|
||
* limitations under the License.
|
||
*/
|
||
#include <config.h>
|
||
#include <sys/types.h>
|
||
#include "flow.h"
|
||
#include <assert.h>
|
||
#include <errno.h>
|
||
#include <inttypes.h>
|
||
#include <netinet/in.h>
|
||
#include <netinet/icmp6.h>
|
||
#include <netinet/ip6.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include "byte-order.h"
|
||
#include "coverage.h"
|
||
#include "dynamic-string.h"
|
||
#include "hash.h"
|
||
#include "ofpbuf.h"
|
||
#include "openflow/openflow.h"
|
||
#include "packets.h"
|
||
#include "unaligned.h"
|
||
#include "vlog.h"
|
||
|
||
VLOG_DEFINE_THIS_MODULE(flow);
|
||
|
||
COVERAGE_DEFINE(flow_extract);
|
||
|
||
static struct arp_eth_header *
|
||
pull_arp(struct ofpbuf *packet)
|
||
{
|
||
return ofpbuf_try_pull(packet, ARP_ETH_HEADER_LEN);
|
||
}
|
||
|
||
static struct ip_header *
|
||
pull_ip(struct ofpbuf *packet)
|
||
{
|
||
if (packet->size >= IP_HEADER_LEN) {
|
||
struct ip_header *ip = packet->data;
|
||
int ip_len = IP_IHL(ip->ip_ihl_ver) * 4;
|
||
if (ip_len >= IP_HEADER_LEN && packet->size >= ip_len) {
|
||
return ofpbuf_pull(packet, ip_len);
|
||
}
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
static struct tcp_header *
|
||
pull_tcp(struct ofpbuf *packet)
|
||
{
|
||
if (packet->size >= TCP_HEADER_LEN) {
|
||
struct tcp_header *tcp = packet->data;
|
||
int tcp_len = TCP_OFFSET(tcp->tcp_ctl) * 4;
|
||
if (tcp_len >= TCP_HEADER_LEN && packet->size >= tcp_len) {
|
||
return ofpbuf_pull(packet, tcp_len);
|
||
}
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
static struct udp_header *
|
||
pull_udp(struct ofpbuf *packet)
|
||
{
|
||
return ofpbuf_try_pull(packet, UDP_HEADER_LEN);
|
||
}
|
||
|
||
static struct icmp_header *
|
||
pull_icmp(struct ofpbuf *packet)
|
||
{
|
||
return ofpbuf_try_pull(packet, ICMP_HEADER_LEN);
|
||
}
|
||
|
||
static struct icmp6_hdr *
|
||
pull_icmpv6(struct ofpbuf *packet)
|
||
{
|
||
return ofpbuf_try_pull(packet, sizeof(struct icmp6_hdr));
|
||
}
|
||
|
||
static void
|
||
parse_vlan(struct ofpbuf *b, struct flow *flow)
|
||
{
|
||
struct qtag_prefix {
|
||
ovs_be16 eth_type; /* ETH_TYPE_VLAN */
|
||
ovs_be16 tci;
|
||
};
|
||
|
||
if (b->size >= sizeof(struct qtag_prefix) + sizeof(ovs_be16)) {
|
||
struct qtag_prefix *qp = ofpbuf_pull(b, sizeof *qp);
|
||
flow->vlan_tci = qp->tci | htons(VLAN_CFI);
|
||
}
|
||
}
|
||
|
||
static ovs_be16
|
||
parse_ethertype(struct ofpbuf *b)
|
||
{
|
||
struct llc_snap_header *llc;
|
||
ovs_be16 proto;
|
||
|
||
proto = *(ovs_be16 *) ofpbuf_pull(b, sizeof proto);
|
||
if (ntohs(proto) >= ETH_TYPE_MIN) {
|
||
return proto;
|
||
}
|
||
|
||
if (b->size < sizeof *llc) {
|
||
return htons(FLOW_DL_TYPE_NONE);
|
||
}
|
||
|
||
llc = b->data;
|
||
if (llc->llc.llc_dsap != LLC_DSAP_SNAP
|
||
|| llc->llc.llc_ssap != LLC_SSAP_SNAP
|
||
|| llc->llc.llc_cntl != LLC_CNTL_SNAP
|
||
|| memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
|
||
sizeof llc->snap.snap_org)) {
|
||
return htons(FLOW_DL_TYPE_NONE);
|
||
}
|
||
|
||
ofpbuf_pull(b, sizeof *llc);
|
||
return llc->snap.snap_type;
|
||
}
|
||
|
||
static int
|
||
parse_ipv6(struct ofpbuf *packet, struct flow *flow)
|
||
{
|
||
const struct ip6_hdr *nh;
|
||
ovs_be32 tc_flow;
|
||
int nexthdr;
|
||
|
||
nh = ofpbuf_try_pull(packet, sizeof *nh);
|
||
if (!nh) {
|
||
return EINVAL;
|
||
}
|
||
|
||
nexthdr = nh->ip6_nxt;
|
||
|
||
flow->ipv6_src = nh->ip6_src;
|
||
flow->ipv6_dst = nh->ip6_dst;
|
||
|
||
tc_flow = get_unaligned_be32(&nh->ip6_flow);
|
||
flow->tos = ntohl(tc_flow) >> 4;
|
||
flow->ipv6_label = tc_flow & htonl(IPV6_LABEL_MASK);
|
||
flow->nw_proto = IPPROTO_NONE;
|
||
|
||
while (1) {
|
||
if ((nexthdr != IPPROTO_HOPOPTS)
|
||
&& (nexthdr != IPPROTO_ROUTING)
|
||
&& (nexthdr != IPPROTO_DSTOPTS)
|
||
&& (nexthdr != IPPROTO_AH)
|
||
&& (nexthdr != IPPROTO_FRAGMENT)) {
|
||
/* It's either a terminal header (e.g., TCP, UDP) or one we
|
||
* don't understand. In either case, we're done with the
|
||
* packet, so use it to fill in 'nw_proto'. */
|
||
break;
|
||
}
|
||
|
||
/* We only verify that at least 8 bytes of the next header are
|
||
* available, but many of these headers are longer. Ensure that
|
||
* accesses within the extension header are within those first 8
|
||
* bytes. All extension headers are required to be at least 8
|
||
* bytes. */
|
||
if (packet->size < 8) {
|
||
return EINVAL;
|
||
}
|
||
|
||
if ((nexthdr == IPPROTO_HOPOPTS)
|
||
|| (nexthdr == IPPROTO_ROUTING)
|
||
|| (nexthdr == IPPROTO_DSTOPTS)) {
|
||
/* These headers, while different, have the fields we care about
|
||
* in the same location and with the same interpretation. */
|
||
const struct ip6_ext *ext_hdr = (struct ip6_ext *)packet->data;
|
||
nexthdr = ext_hdr->ip6e_nxt;
|
||
if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 1) * 8)) {
|
||
return EINVAL;
|
||
}
|
||
} else if (nexthdr == IPPROTO_AH) {
|
||
/* A standard AH definition isn't available, but the fields
|
||
* we care about are in the same location as the generic
|
||
* option header--only the header length is calculated
|
||
* differently. */
|
||
const struct ip6_ext *ext_hdr = (struct ip6_ext *)packet->data;
|
||
nexthdr = ext_hdr->ip6e_nxt;
|
||
if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 2) * 4)) {
|
||
return EINVAL;
|
||
}
|
||
} else if (nexthdr == IPPROTO_FRAGMENT) {
|
||
const struct ip6_frag *frag_hdr = (struct ip6_frag *)packet->data;
|
||
|
||
nexthdr = frag_hdr->ip6f_nxt;
|
||
if (!ofpbuf_try_pull(packet, sizeof *frag_hdr)) {
|
||
return EINVAL;
|
||
}
|
||
|
||
/* We only process the first fragment. */
|
||
flow->frag = FLOW_FRAG_ANY;
|
||
if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) {
|
||
flow->frag |= FLOW_FRAG_LATER;
|
||
nexthdr = IPPROTO_FRAGMENT;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
flow->nw_proto = nexthdr;
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
parse_tcp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow)
|
||
{
|
||
const struct tcp_header *tcp = pull_tcp(b);
|
||
if (tcp) {
|
||
flow->tp_src = tcp->tcp_src;
|
||
flow->tp_dst = tcp->tcp_dst;
|
||
packet->l7 = b->data;
|
||
}
|
||
}
|
||
|
||
static void
|
||
parse_udp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow)
|
||
{
|
||
const struct udp_header *udp = pull_udp(b);
|
||
if (udp) {
|
||
flow->tp_src = udp->udp_src;
|
||
flow->tp_dst = udp->udp_dst;
|
||
packet->l7 = b->data;
|
||
}
|
||
}
|
||
|
||
static bool
|
||
parse_icmpv6(struct ofpbuf *b, struct flow *flow)
|
||
{
|
||
const struct icmp6_hdr *icmp = pull_icmpv6(b);
|
||
|
||
if (!icmp) {
|
||
return false;
|
||
}
|
||
|
||
/* The ICMPv6 type and code fields use the 16-bit transport port
|
||
* fields, so we need to store them in 16-bit network byte order. */
|
||
flow->tp_src = htons(icmp->icmp6_type);
|
||
flow->tp_dst = htons(icmp->icmp6_code);
|
||
|
||
if (icmp->icmp6_code == 0 &&
|
||
(icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
|
||
icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
|
||
const struct in6_addr *nd_target;
|
||
|
||
nd_target = ofpbuf_try_pull(b, sizeof *nd_target);
|
||
if (!nd_target) {
|
||
return false;
|
||
}
|
||
flow->nd_target = *nd_target;
|
||
|
||
while (b->size >= 8) {
|
||
/* The minimum size of an option is 8 bytes, which also is
|
||
* the size of Ethernet link-layer options. */
|
||
const struct nd_opt_hdr *nd_opt = b->data;
|
||
int opt_len = nd_opt->nd_opt_len * 8;
|
||
|
||
if (!opt_len || opt_len > b->size) {
|
||
goto invalid;
|
||
}
|
||
|
||
/* Store the link layer address if the appropriate option is
|
||
* provided. It is considered an error if the same link
|
||
* layer option is specified twice. */
|
||
if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR
|
||
&& opt_len == 8) {
|
||
if (eth_addr_is_zero(flow->arp_sha)) {
|
||
memcpy(flow->arp_sha, nd_opt + 1, ETH_ADDR_LEN);
|
||
} else {
|
||
goto invalid;
|
||
}
|
||
} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR
|
||
&& opt_len == 8) {
|
||
if (eth_addr_is_zero(flow->arp_tha)) {
|
||
memcpy(flow->arp_tha, nd_opt + 1, ETH_ADDR_LEN);
|
||
} else {
|
||
goto invalid;
|
||
}
|
||
}
|
||
|
||
if (!ofpbuf_try_pull(b, opt_len)) {
|
||
goto invalid;
|
||
}
|
||
}
|
||
}
|
||
|
||
return true;
|
||
|
||
invalid:
|
||
memset(&flow->nd_target, 0, sizeof(flow->nd_target));
|
||
memset(flow->arp_sha, 0, sizeof(flow->arp_sha));
|
||
memset(flow->arp_tha, 0, sizeof(flow->arp_tha));
|
||
|
||
return false;
|
||
|
||
}
|
||
|
||
/* Initializes 'flow' members from 'packet', 'tun_id', and 'ofp_in_port'.
|
||
* Initializes 'packet' header pointers as follows:
|
||
*
|
||
* - packet->l2 to the start of the Ethernet header.
|
||
*
|
||
* - packet->l3 to just past the Ethernet header, or just past the
|
||
* vlan_header if one is present, to the first byte of the payload of the
|
||
* Ethernet frame.
|
||
*
|
||
* - packet->l4 to just past the IPv4 header, if one is present and has a
|
||
* correct length, and otherwise NULL.
|
||
*
|
||
* - packet->l7 to just past the TCP or UDP or ICMP header, if one is
|
||
* present and has a correct length, and otherwise NULL.
|
||
*/
|
||
void
|
||
flow_extract(struct ofpbuf *packet, uint32_t priority, ovs_be64 tun_id,
|
||
uint16_t ofp_in_port, struct flow *flow)
|
||
{
|
||
struct ofpbuf b = *packet;
|
||
struct eth_header *eth;
|
||
|
||
COVERAGE_INC(flow_extract);
|
||
|
||
memset(flow, 0, sizeof *flow);
|
||
flow->tun_id = tun_id;
|
||
flow->in_port = ofp_in_port;
|
||
flow->priority = priority;
|
||
|
||
packet->l2 = b.data;
|
||
packet->l3 = NULL;
|
||
packet->l4 = NULL;
|
||
packet->l7 = NULL;
|
||
|
||
if (b.size < sizeof *eth) {
|
||
return;
|
||
}
|
||
|
||
/* Link layer. */
|
||
eth = b.data;
|
||
memcpy(flow->dl_src, eth->eth_src, ETH_ADDR_LEN);
|
||
memcpy(flow->dl_dst, eth->eth_dst, ETH_ADDR_LEN);
|
||
|
||
/* dl_type, vlan_tci. */
|
||
ofpbuf_pull(&b, ETH_ADDR_LEN * 2);
|
||
if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
|
||
parse_vlan(&b, flow);
|
||
}
|
||
flow->dl_type = parse_ethertype(&b);
|
||
|
||
/* Network layer. */
|
||
packet->l3 = b.data;
|
||
if (flow->dl_type == htons(ETH_TYPE_IP)) {
|
||
const struct ip_header *nh = pull_ip(&b);
|
||
if (nh) {
|
||
packet->l4 = b.data;
|
||
|
||
flow->nw_src = get_unaligned_be32(&nh->ip_src);
|
||
flow->nw_dst = get_unaligned_be32(&nh->ip_dst);
|
||
flow->nw_proto = nh->ip_proto;
|
||
|
||
flow->tos = nh->ip_tos;
|
||
if (IP_IS_FRAGMENT(nh->ip_frag_off)) {
|
||
flow->frag = FLOW_FRAG_ANY;
|
||
if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) {
|
||
flow->frag |= FLOW_FRAG_LATER;
|
||
}
|
||
}
|
||
|
||
if (!(nh->ip_frag_off & htons(IP_FRAG_OFF_MASK))) {
|
||
if (flow->nw_proto == IPPROTO_TCP) {
|
||
parse_tcp(packet, &b, flow);
|
||
} else if (flow->nw_proto == IPPROTO_UDP) {
|
||
parse_udp(packet, &b, flow);
|
||
} else if (flow->nw_proto == IPPROTO_ICMP) {
|
||
const struct icmp_header *icmp = pull_icmp(&b);
|
||
if (icmp) {
|
||
flow->tp_src = htons(icmp->icmp_type);
|
||
flow->tp_dst = htons(icmp->icmp_code);
|
||
packet->l7 = b.data;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
|
||
if (parse_ipv6(&b, flow)) {
|
||
return;
|
||
}
|
||
|
||
packet->l4 = b.data;
|
||
if (flow->nw_proto == IPPROTO_TCP) {
|
||
parse_tcp(packet, &b, flow);
|
||
} else if (flow->nw_proto == IPPROTO_UDP) {
|
||
parse_udp(packet, &b, flow);
|
||
} else if (flow->nw_proto == IPPROTO_ICMPV6) {
|
||
if (parse_icmpv6(&b, flow)) {
|
||
packet->l7 = b.data;
|
||
}
|
||
}
|
||
} else if (flow->dl_type == htons(ETH_TYPE_ARP)) {
|
||
const struct arp_eth_header *arp = pull_arp(&b);
|
||
if (arp && arp->ar_hrd == htons(1)
|
||
&& arp->ar_pro == htons(ETH_TYPE_IP)
|
||
&& arp->ar_hln == ETH_ADDR_LEN
|
||
&& arp->ar_pln == 4) {
|
||
/* We only match on the lower 8 bits of the opcode. */
|
||
if (ntohs(arp->ar_op) <= 0xff) {
|
||
flow->nw_proto = ntohs(arp->ar_op);
|
||
}
|
||
|
||
if ((flow->nw_proto == ARP_OP_REQUEST)
|
||
|| (flow->nw_proto == ARP_OP_REPLY)) {
|
||
flow->nw_src = arp->ar_spa;
|
||
flow->nw_dst = arp->ar_tpa;
|
||
memcpy(flow->arp_sha, arp->ar_sha, ETH_ADDR_LEN);
|
||
memcpy(flow->arp_tha, arp->ar_tha, ETH_ADDR_LEN);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* For every bit of a field that is wildcarded in 'wildcards', sets the
|
||
* corresponding bit in 'flow' to zero. */
|
||
void
|
||
flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards)
|
||
{
|
||
const flow_wildcards_t wc = wildcards->wildcards;
|
||
int i;
|
||
|
||
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 5);
|
||
|
||
for (i = 0; i < FLOW_N_REGS; i++) {
|
||
flow->regs[i] &= wildcards->reg_masks[i];
|
||
}
|
||
flow->tun_id &= wildcards->tun_id_mask;
|
||
flow->nw_src &= wildcards->nw_src_mask;
|
||
flow->nw_dst &= wildcards->nw_dst_mask;
|
||
if (wc & FWW_IN_PORT) {
|
||
flow->in_port = 0;
|
||
}
|
||
flow->vlan_tci &= wildcards->vlan_tci_mask;
|
||
if (wc & FWW_DL_TYPE) {
|
||
flow->dl_type = 0;
|
||
}
|
||
if (wc & FWW_TP_SRC) {
|
||
flow->tp_src = 0;
|
||
}
|
||
if (wc & FWW_TP_DST) {
|
||
flow->tp_dst = 0;
|
||
}
|
||
if (wc & FWW_DL_SRC) {
|
||
memset(flow->dl_src, 0, sizeof flow->dl_src);
|
||
}
|
||
if (wc & FWW_DL_DST) {
|
||
flow->dl_dst[0] &= 0x01;
|
||
memset(&flow->dl_dst[1], 0, 5);
|
||
}
|
||
if (wc & FWW_ETH_MCAST) {
|
||
flow->dl_dst[0] &= 0xfe;
|
||
}
|
||
if (wc & FWW_NW_PROTO) {
|
||
flow->nw_proto = 0;
|
||
}
|
||
if (wc & FWW_IPV6_LABEL) {
|
||
flow->ipv6_label = htonl(0);
|
||
}
|
||
flow->tos &= wildcards->tos_mask;
|
||
flow->frag &= wildcards->frag_mask;
|
||
if (wc & FWW_ARP_SHA) {
|
||
memset(flow->arp_sha, 0, sizeof flow->arp_sha);
|
||
}
|
||
if (wc & FWW_ARP_THA) {
|
||
memset(flow->arp_tha, 0, sizeof flow->arp_tha);
|
||
}
|
||
flow->ipv6_src = ipv6_addr_bitand(&flow->ipv6_src,
|
||
&wildcards->ipv6_src_mask);
|
||
flow->ipv6_dst = ipv6_addr_bitand(&flow->ipv6_dst,
|
||
&wildcards->ipv6_dst_mask);
|
||
if (wc & FWW_ND_TARGET) {
|
||
memset(&flow->nd_target, 0, sizeof flow->nd_target);
|
||
}
|
||
flow->priority = 0;
|
||
}
|
||
|
||
char *
|
||
flow_to_string(const struct flow *flow)
|
||
{
|
||
struct ds ds = DS_EMPTY_INITIALIZER;
|
||
flow_format(&ds, flow);
|
||
return ds_cstr(&ds);
|
||
}
|
||
|
||
void
|
||
flow_format(struct ds *ds, const struct flow *flow)
|
||
{
|
||
ds_put_format(ds, "priority%"PRIu32
|
||
":tunnel%#"PRIx64
|
||
":in_port%04"PRIx16,
|
||
flow->priority,
|
||
ntohll(flow->tun_id),
|
||
flow->in_port);
|
||
|
||
ds_put_format(ds, ":tci(");
|
||
if (flow->vlan_tci) {
|
||
ds_put_format(ds, "vlan%"PRIu16",pcp%d",
|
||
vlan_tci_to_vid(flow->vlan_tci),
|
||
vlan_tci_to_pcp(flow->vlan_tci));
|
||
} else {
|
||
ds_put_char(ds, '0');
|
||
}
|
||
ds_put_format(ds, ") mac"ETH_ADDR_FMT"->"ETH_ADDR_FMT
|
||
" type%04"PRIx16,
|
||
ETH_ADDR_ARGS(flow->dl_src),
|
||
ETH_ADDR_ARGS(flow->dl_dst),
|
||
ntohs(flow->dl_type));
|
||
|
||
if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
|
||
ds_put_format(ds, " label%#"PRIx32" proto%"PRIu8" tos%#"PRIx8" ipv6",
|
||
ntohl(flow->ipv6_label), flow->nw_proto, flow->tos);
|
||
print_ipv6_addr(ds, &flow->ipv6_src);
|
||
ds_put_cstr(ds, "->");
|
||
print_ipv6_addr(ds, &flow->ipv6_dst);
|
||
|
||
} else {
|
||
ds_put_format(ds, " proto%"PRIu8" tos%#"PRIx8" ip"IP_FMT"->"IP_FMT,
|
||
flow->nw_proto, flow->tos,
|
||
IP_ARGS(&flow->nw_src),
|
||
IP_ARGS(&flow->nw_dst));
|
||
}
|
||
if (flow->frag) {
|
||
ds_put_format(ds, " frag(%s)",
|
||
flow->frag == FLOW_FRAG_ANY ? "first"
|
||
: flow->frag == (FLOW_FRAG_ANY | FLOW_FRAG_LATER)
|
||
? "later" : "<error>");
|
||
}
|
||
if (flow->tp_src || flow->tp_dst) {
|
||
ds_put_format(ds, " port%"PRIu16"->%"PRIu16,
|
||
ntohs(flow->tp_src), ntohs(flow->tp_dst));
|
||
}
|
||
if (!eth_addr_is_zero(flow->arp_sha) || !eth_addr_is_zero(flow->arp_tha)) {
|
||
ds_put_format(ds, " arp_ha"ETH_ADDR_FMT"->"ETH_ADDR_FMT,
|
||
ETH_ADDR_ARGS(flow->arp_sha),
|
||
ETH_ADDR_ARGS(flow->arp_tha));
|
||
}
|
||
}
|
||
|
||
void
|
||
flow_print(FILE *stream, const struct flow *flow)
|
||
{
|
||
char *s = flow_to_string(flow);
|
||
fputs(s, stream);
|
||
free(s);
|
||
}
|
||
|
||
/* flow_wildcards functions. */
|
||
|
||
/* Initializes 'wc' as a set of wildcards that matches every packet. */
|
||
void
|
||
flow_wildcards_init_catchall(struct flow_wildcards *wc)
|
||
{
|
||
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 5);
|
||
|
||
wc->wildcards = FWW_ALL;
|
||
wc->tun_id_mask = htonll(0);
|
||
wc->nw_src_mask = htonl(0);
|
||
wc->nw_dst_mask = htonl(0);
|
||
wc->ipv6_src_mask = in6addr_any;
|
||
wc->ipv6_dst_mask = in6addr_any;
|
||
memset(wc->reg_masks, 0, sizeof wc->reg_masks);
|
||
wc->vlan_tci_mask = htons(0);
|
||
wc->tos_mask = 0;
|
||
wc->frag_mask = 0;
|
||
memset(wc->zeros, 0, sizeof wc->zeros);
|
||
}
|
||
|
||
/* Initializes 'wc' as an exact-match set of wildcards; that is, 'wc' does not
|
||
* wildcard any bits or fields. */
|
||
void
|
||
flow_wildcards_init_exact(struct flow_wildcards *wc)
|
||
{
|
||
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 5);
|
||
|
||
wc->wildcards = 0;
|
||
wc->tun_id_mask = htonll(UINT64_MAX);
|
||
wc->nw_src_mask = htonl(UINT32_MAX);
|
||
wc->nw_dst_mask = htonl(UINT32_MAX);
|
||
wc->ipv6_src_mask = in6addr_exact;
|
||
wc->ipv6_dst_mask = in6addr_exact;
|
||
memset(wc->reg_masks, 0xff, sizeof wc->reg_masks);
|
||
wc->vlan_tci_mask = htons(UINT16_MAX);
|
||
wc->tos_mask = UINT8_MAX;
|
||
wc->frag_mask = UINT8_MAX;
|
||
memset(wc->zeros, 0, sizeof wc->zeros);
|
||
}
|
||
|
||
/* Returns true if 'wc' is exact-match, false if 'wc' wildcards any bits or
|
||
* fields. */
|
||
bool
|
||
flow_wildcards_is_exact(const struct flow_wildcards *wc)
|
||
{
|
||
int i;
|
||
|
||
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 5);
|
||
|
||
if (wc->wildcards
|
||
|| wc->tun_id_mask != htonll(UINT64_MAX)
|
||
|| wc->nw_src_mask != htonl(UINT32_MAX)
|
||
|| wc->nw_dst_mask != htonl(UINT32_MAX)
|
||
|| wc->vlan_tci_mask != htons(UINT16_MAX)
|
||
|| !ipv6_mask_is_exact(&wc->ipv6_src_mask)
|
||
|| !ipv6_mask_is_exact(&wc->ipv6_dst_mask)
|
||
|| wc->tos_mask != UINT8_MAX
|
||
|| wc->frag_mask != UINT8_MAX) {
|
||
return false;
|
||
}
|
||
|
||
for (i = 0; i < FLOW_N_REGS; i++) {
|
||
if (wc->reg_masks[i] != UINT32_MAX) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or
|
||
* fields. */
|
||
bool
|
||
flow_wildcards_is_catchall(const struct flow_wildcards *wc)
|
||
{
|
||
int i;
|
||
|
||
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 5);
|
||
|
||
if (wc->wildcards != FWW_ALL
|
||
|| wc->tun_id_mask != htonll(0)
|
||
|| wc->nw_src_mask != htonl(0)
|
||
|| wc->nw_dst_mask != htonl(0)
|
||
|| wc->vlan_tci_mask != htons(0)
|
||
|| !ipv6_mask_is_any(&wc->ipv6_src_mask)
|
||
|| !ipv6_mask_is_any(&wc->ipv6_dst_mask)
|
||
|| wc->tos_mask != 0
|
||
|| wc->frag_mask != 0) {
|
||
return false;
|
||
}
|
||
|
||
for (i = 0; i < FLOW_N_REGS; i++) {
|
||
if (wc->reg_masks[i] != 0) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Initializes 'dst' as the combination of wildcards in 'src1' and 'src2'.
|
||
* That is, a bit or a field is wildcarded in 'dst' if it is wildcarded in
|
||
* 'src1' or 'src2' or both. */
|
||
void
|
||
flow_wildcards_combine(struct flow_wildcards *dst,
|
||
const struct flow_wildcards *src1,
|
||
const struct flow_wildcards *src2)
|
||
{
|
||
int i;
|
||
|
||
dst->wildcards = src1->wildcards | src2->wildcards;
|
||
dst->tun_id_mask = src1->tun_id_mask & src2->tun_id_mask;
|
||
dst->nw_src_mask = src1->nw_src_mask & src2->nw_src_mask;
|
||
dst->nw_dst_mask = src1->nw_dst_mask & src2->nw_dst_mask;
|
||
dst->ipv6_src_mask = ipv6_addr_bitand(&src1->ipv6_src_mask,
|
||
&src2->ipv6_src_mask);
|
||
dst->ipv6_dst_mask = ipv6_addr_bitand(&src1->ipv6_dst_mask,
|
||
&src2->ipv6_dst_mask);
|
||
for (i = 0; i < FLOW_N_REGS; i++) {
|
||
dst->reg_masks[i] = src1->reg_masks[i] & src2->reg_masks[i];
|
||
}
|
||
dst->vlan_tci_mask = src1->vlan_tci_mask & src2->vlan_tci_mask;
|
||
}
|
||
|
||
/* Returns a hash of the wildcards in 'wc'. */
|
||
uint32_t
|
||
flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis)
|
||
{
|
||
/* If you change struct flow_wildcards and thereby trigger this
|
||
* assertion, please check that the new struct flow_wildcards has no holes
|
||
* in it before you update the assertion. */
|
||
BUILD_ASSERT_DECL(sizeof *wc == 60 + FLOW_N_REGS * 4);
|
||
return hash_bytes(wc, sizeof *wc, basis);
|
||
}
|
||
|
||
/* Returns true if 'a' and 'b' represent the same wildcards, false if they are
|
||
* different. */
|
||
bool
|
||
flow_wildcards_equal(const struct flow_wildcards *a,
|
||
const struct flow_wildcards *b)
|
||
{
|
||
int i;
|
||
|
||
if (a->wildcards != b->wildcards
|
||
|| a->tun_id_mask != b->tun_id_mask
|
||
|| a->nw_src_mask != b->nw_src_mask
|
||
|| a->nw_dst_mask != b->nw_dst_mask
|
||
|| a->vlan_tci_mask != b->vlan_tci_mask
|
||
|| !ipv6_addr_equals(&a->ipv6_src_mask, &b->ipv6_src_mask)
|
||
|| !ipv6_addr_equals(&a->ipv6_dst_mask, &b->ipv6_dst_mask)) {
|
||
return false;
|
||
}
|
||
|
||
for (i = 0; i < FLOW_N_REGS; i++) {
|
||
if (a->reg_masks[i] != b->reg_masks[i]) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Returns true if at least one bit or field is wildcarded in 'a' but not in
|
||
* 'b', false otherwise. */
|
||
bool
|
||
flow_wildcards_has_extra(const struct flow_wildcards *a,
|
||
const struct flow_wildcards *b)
|
||
{
|
||
int i;
|
||
struct in6_addr ipv6_masked;
|
||
|
||
for (i = 0; i < FLOW_N_REGS; i++) {
|
||
if ((a->reg_masks[i] & b->reg_masks[i]) != b->reg_masks[i]) {
|
||
return true;
|
||
}
|
||
}
|
||
|
||
ipv6_masked = ipv6_addr_bitand(&a->ipv6_src_mask, &b->ipv6_src_mask);
|
||
if (!ipv6_addr_equals(&ipv6_masked, &b->ipv6_src_mask)) {
|
||
return true;
|
||
}
|
||
|
||
ipv6_masked = ipv6_addr_bitand(&a->ipv6_dst_mask, &b->ipv6_dst_mask);
|
||
if (!ipv6_addr_equals(&ipv6_masked, &b->ipv6_dst_mask)) {
|
||
return true;
|
||
}
|
||
|
||
return (a->wildcards & ~b->wildcards
|
||
|| (a->tun_id_mask & b->tun_id_mask) != b->tun_id_mask
|
||
|| (a->nw_src_mask & b->nw_src_mask) != b->nw_src_mask
|
||
|| (a->nw_dst_mask & b->nw_dst_mask) != b->nw_dst_mask
|
||
|| (a->vlan_tci_mask & b->vlan_tci_mask) != b->vlan_tci_mask);
|
||
}
|
||
|
||
static bool
|
||
set_nw_mask(ovs_be32 *maskp, ovs_be32 mask)
|
||
{
|
||
if (ip_is_cidr(mask)) {
|
||
*maskp = mask;
|
||
return true;
|
||
} else {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Sets the IP (or ARP) source wildcard mask to CIDR 'mask' (consisting of N
|
||
* high-order 1-bit and 32-N low-order 0-bits). Returns true if successful,
|
||
* false if 'mask' is not a CIDR mask. */
|
||
bool
|
||
flow_wildcards_set_nw_src_mask(struct flow_wildcards *wc, ovs_be32 mask)
|
||
{
|
||
return set_nw_mask(&wc->nw_src_mask, mask);
|
||
}
|
||
|
||
/* Sets the IP (or ARP) destination wildcard mask to CIDR 'mask' (consisting of
|
||
* N high-order 1-bit and 32-N low-order 0-bits). Returns true if successful,
|
||
* false if 'mask' is not a CIDR mask. */
|
||
bool
|
||
flow_wildcards_set_nw_dst_mask(struct flow_wildcards *wc, ovs_be32 mask)
|
||
{
|
||
return set_nw_mask(&wc->nw_dst_mask, mask);
|
||
}
|
||
|
||
static bool
|
||
set_ipv6_mask(struct in6_addr *maskp, const struct in6_addr *mask)
|
||
{
|
||
if (ipv6_is_cidr(mask)) {
|
||
*maskp = *mask;
|
||
return true;
|
||
} else {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Sets the IPv6 source wildcard mask to CIDR 'mask' (consisting of N
|
||
* high-order 1-bit and 128-N low-order 0-bits). Returns true if successful,
|
||
* false if 'mask' is not a CIDR mask. */
|
||
bool
|
||
flow_wildcards_set_ipv6_src_mask(struct flow_wildcards *wc,
|
||
const struct in6_addr *mask)
|
||
{
|
||
return set_ipv6_mask(&wc->ipv6_src_mask, mask);
|
||
}
|
||
|
||
/* Sets the IPv6 destination wildcard mask to CIDR 'mask' (consisting of
|
||
* N high-order 1-bit and 128-N low-order 0-bits). Returns true if
|
||
* successful, false if 'mask' is not a CIDR mask. */
|
||
bool
|
||
flow_wildcards_set_ipv6_dst_mask(struct flow_wildcards *wc,
|
||
const struct in6_addr *mask)
|
||
{
|
||
return set_ipv6_mask(&wc->ipv6_dst_mask, mask);
|
||
}
|
||
|
||
/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
|
||
* (A 0-bit indicates a wildcard bit.) */
|
||
void
|
||
flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
|
||
{
|
||
wc->reg_masks[idx] = mask;
|
||
}
|
||
|
||
/* Returns the wildcard bitmask for the Ethernet destination address
|
||
* that 'wc' specifies. The bitmask has a 0 in each bit that is wildcarded
|
||
* and a 1 in each bit that must match. */
|
||
const uint8_t *
|
||
flow_wildcards_to_dl_dst_mask(flow_wildcards_t wc)
|
||
{
|
||
static const uint8_t no_wild[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
|
||
static const uint8_t addr_wild[] = {0x01, 0x00, 0x00, 0x00, 0x00, 0x00};
|
||
static const uint8_t mcast_wild[] = {0xfe, 0xff, 0xff, 0xff, 0xff, 0xff};
|
||
static const uint8_t all_wild[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
|
||
|
||
switch (wc & (FWW_DL_DST | FWW_ETH_MCAST)) {
|
||
case 0: return no_wild;
|
||
case FWW_DL_DST: return addr_wild;
|
||
case FWW_ETH_MCAST: return mcast_wild;
|
||
case FWW_DL_DST | FWW_ETH_MCAST: return all_wild;
|
||
}
|
||
NOT_REACHED();
|
||
}
|
||
|
||
/* Returns true if 'mask' is a valid wildcard bitmask for the Ethernet
|
||
* destination address. Valid bitmasks are either all-bits-0 or all-bits-1,
|
||
* except that the multicast bit may differ from the rest of the bits. So,
|
||
* there are four possible valid bitmasks:
|
||
*
|
||
* - 00:00:00:00:00:00
|
||
* - 01:00:00:00:00:00
|
||
* - fe:ff:ff:ff:ff:ff
|
||
* - ff:ff:ff:ff:ff:ff
|
||
*
|
||
* All other bitmasks are invalid. */
|
||
bool
|
||
flow_wildcards_is_dl_dst_mask_valid(const uint8_t mask[ETH_ADDR_LEN])
|
||
{
|
||
switch (mask[0]) {
|
||
case 0x00:
|
||
case 0x01:
|
||
return (mask[1] | mask[2] | mask[3] | mask[4] | mask[5]) == 0x00;
|
||
|
||
case 0xfe:
|
||
case 0xff:
|
||
return (mask[1] & mask[2] & mask[3] & mask[4] & mask[5]) == 0xff;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Returns 'wc' with the FWW_DL_DST and FWW_ETH_MCAST bits modified
|
||
* appropriately to match 'mask'.
|
||
*
|
||
* This function will assert-fail if 'mask' is invalid. Only 'mask' values
|
||
* accepted by flow_wildcards_is_dl_dst_mask_valid() are allowed. */
|
||
flow_wildcards_t
|
||
flow_wildcards_set_dl_dst_mask(flow_wildcards_t wc,
|
||
const uint8_t mask[ETH_ADDR_LEN])
|
||
{
|
||
assert(flow_wildcards_is_dl_dst_mask_valid(mask));
|
||
|
||
switch (mask[0]) {
|
||
case 0x00:
|
||
return wc | FWW_DL_DST | FWW_ETH_MCAST;
|
||
|
||
case 0x01:
|
||
return (wc | FWW_DL_DST) & ~FWW_ETH_MCAST;
|
||
|
||
case 0xfe:
|
||
return (wc & ~FWW_DL_DST) | FWW_ETH_MCAST;
|
||
|
||
case 0xff:
|
||
return wc & ~(FWW_DL_DST | FWW_ETH_MCAST);
|
||
|
||
default:
|
||
NOT_REACHED();
|
||
}
|
||
}
|
||
|
||
/* Hashes 'flow' based on its L2 through L4 protocol information. */
|
||
uint32_t
|
||
flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
|
||
{
|
||
struct {
|
||
union {
|
||
ovs_be32 ipv4_addr;
|
||
struct in6_addr ipv6_addr;
|
||
};
|
||
ovs_be16 eth_type;
|
||
ovs_be16 vlan_tci;
|
||
ovs_be16 tp_addr;
|
||
uint8_t eth_addr[ETH_ADDR_LEN];
|
||
uint8_t ip_proto;
|
||
} fields;
|
||
|
||
int i;
|
||
|
||
memset(&fields, 0, sizeof fields);
|
||
for (i = 0; i < ETH_ADDR_LEN; i++) {
|
||
fields.eth_addr[i] = flow->dl_src[i] ^ flow->dl_dst[i];
|
||
}
|
||
fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK);
|
||
fields.eth_type = flow->dl_type;
|
||
|
||
/* UDP source and destination port are not taken into account because they
|
||
* will not necessarily be symmetric in a bidirectional flow. */
|
||
if (fields.eth_type == htons(ETH_TYPE_IP)) {
|
||
fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
|
||
fields.ip_proto = flow->nw_proto;
|
||
if (fields.ip_proto == IPPROTO_TCP) {
|
||
fields.tp_addr = flow->tp_src ^ flow->tp_dst;
|
||
}
|
||
} else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
|
||
const uint8_t *a = &flow->ipv6_src.s6_addr[0];
|
||
const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
|
||
uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];
|
||
|
||
for (i=0; i<16; i++) {
|
||
ipv6_addr[i] = a[i] ^ b[i];
|
||
}
|
||
fields.ip_proto = flow->nw_proto;
|
||
if (fields.ip_proto == IPPROTO_TCP) {
|
||
fields.tp_addr = flow->tp_src ^ flow->tp_dst;
|
||
}
|
||
}
|
||
return hash_bytes(&fields, sizeof fields, basis);
|
||
}
|
||
|
||
/* Hashes the portions of 'flow' designated by 'fields'. */
|
||
uint32_t
|
||
flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields,
|
||
uint16_t basis)
|
||
{
|
||
switch (fields) {
|
||
|
||
case NX_HASH_FIELDS_ETH_SRC:
|
||
return hash_bytes(flow->dl_src, sizeof flow->dl_src, basis);
|
||
|
||
case NX_HASH_FIELDS_SYMMETRIC_L4:
|
||
return flow_hash_symmetric_l4(flow, basis);
|
||
}
|
||
|
||
NOT_REACHED();
|
||
}
|
||
|
||
/* Returns a string representation of 'fields'. */
|
||
const char *
|
||
flow_hash_fields_to_str(enum nx_hash_fields fields)
|
||
{
|
||
switch (fields) {
|
||
case NX_HASH_FIELDS_ETH_SRC: return "eth_src";
|
||
case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4";
|
||
default: return "<unknown>";
|
||
}
|
||
}
|
||
|
||
/* Returns true if the value of 'fields' is supported. Otherwise false. */
|
||
bool
|
||
flow_hash_fields_valid(enum nx_hash_fields fields)
|
||
{
|
||
return fields == NX_HASH_FIELDS_ETH_SRC
|
||
|| fields == NX_HASH_FIELDS_SYMMETRIC_L4;
|
||
}
|
||
|
||
/* Puts into 'b' a packet that flow_extract() would parse as having the given
|
||
* 'flow'.
|
||
*
|
||
* (This is useful only for testing, obviously, and the packet isn't really
|
||
* valid. It hasn't got any checksums filled in, for one, and lots of fields
|
||
* are just zeroed.) */
|
||
void
|
||
flow_compose(struct ofpbuf *b, const struct flow *flow)
|
||
{
|
||
eth_compose(b, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0);
|
||
if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) {
|
||
struct eth_header *eth = b->l2;
|
||
eth->eth_type = htons(b->size);
|
||
return;
|
||
}
|
||
|
||
if (flow->vlan_tci & htons(VLAN_CFI)) {
|
||
eth_push_vlan(b, flow->vlan_tci & ~htons(VLAN_CFI));
|
||
}
|
||
|
||
if (flow->dl_type == htons(ETH_TYPE_IP)) {
|
||
struct ip_header *ip;
|
||
|
||
b->l3 = ip = ofpbuf_put_zeros(b, sizeof *ip);
|
||
ip->ip_ihl_ver = IP_IHL_VER(5, 4);
|
||
ip->ip_tos = flow->tos;
|
||
ip->ip_proto = flow->nw_proto;
|
||
ip->ip_src = flow->nw_src;
|
||
ip->ip_dst = flow->nw_dst;
|
||
|
||
if (flow->frag & FLOW_FRAG_ANY) {
|
||
ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS);
|
||
if (flow->frag & FLOW_FRAG_LATER) {
|
||
ip->ip_frag_off |= htons(100);
|
||
}
|
||
}
|
||
if (!(flow->frag & FLOW_FRAG_ANY)
|
||
|| !(flow->frag & FLOW_FRAG_LATER)) {
|
||
if (flow->nw_proto == IPPROTO_TCP) {
|
||
struct tcp_header *tcp;
|
||
|
||
b->l4 = tcp = ofpbuf_put_zeros(b, sizeof *tcp);
|
||
tcp->tcp_src = flow->tp_src;
|
||
tcp->tcp_dst = flow->tp_dst;
|
||
} else if (flow->nw_proto == IPPROTO_UDP) {
|
||
struct udp_header *udp;
|
||
|
||
b->l4 = udp = ofpbuf_put_zeros(b, sizeof *udp);
|
||
udp->udp_src = flow->tp_src;
|
||
udp->udp_dst = flow->tp_dst;
|
||
} else if (flow->nw_proto == IPPROTO_ICMP) {
|
||
struct icmp_header *icmp;
|
||
|
||
b->l4 = icmp = ofpbuf_put_zeros(b, sizeof *icmp);
|
||
icmp->icmp_type = ntohs(flow->tp_src);
|
||
icmp->icmp_code = ntohs(flow->tp_dst);
|
||
}
|
||
}
|
||
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
|
||
/* XXX */
|
||
} else if (flow->dl_type == htons(ETH_TYPE_ARP)) {
|
||
struct arp_eth_header *arp;
|
||
|
||
b->l3 = arp = ofpbuf_put_zeros(b, sizeof *arp);
|
||
arp->ar_hrd = htons(1);
|
||
arp->ar_pro = htons(ETH_TYPE_IP);
|
||
arp->ar_hln = ETH_ADDR_LEN;
|
||
arp->ar_pln = 4;
|
||
arp->ar_op = htons(flow->nw_proto);
|
||
|
||
if (flow->nw_proto == ARP_OP_REQUEST ||
|
||
flow->nw_proto == ARP_OP_REPLY) {
|
||
arp->ar_spa = flow->nw_src;
|
||
arp->ar_tpa = flow->nw_dst;
|
||
memcpy(arp->ar_sha, flow->arp_sha, ETH_ADDR_LEN);
|
||
memcpy(arp->ar_tha, flow->arp_tha, ETH_ADDR_LEN);
|
||
}
|
||
}
|
||
}
|