2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/lib/packets.h
Mike Pattrick 614029aac0 conntrack: Allow inner NAT of related fragments.
Currently conntrack will refuse to extract metadata from fragmented
IPv4 packets. Usually the fragments would be processed by the ipf
module, but this isn't the case for ICMP related packets. The current
handling will result in these being incorrectly processed.

This patch checks for a frag offset instead of just frag flags, which is
similar to how conntrack handles fragments in the kernel.

Reported-at: https://issues.redhat.com/browse/FDP-136
Reported-by: Ales Musil <amusil@redhat.com>
Fixes: a489b16854b5 ("conntrack: New userspace connection tracker.")
Signed-off-by: Mike Pattrick <mkp@redhat.com>
Signed-off-by: Aaron Conole <aconole@redhat.com>
2025-06-13 14:06:07 -04:00

1717 lines
53 KiB
C

/*
* Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef PACKETS_H
#define PACKETS_H 1
#include <inttypes.h>
#include <sys/types.h>
#include <stdint.h>
#include <string.h>
#include "compiler.h"
#include "openvswitch/geneve.h"
#include "openvswitch/packets.h"
#include "openvswitch/types.h"
#include "openvswitch/nsh.h"
#include "odp-netlink.h"
#include "random.h"
#include "hash.h"
#include "tun-metadata.h"
#include "unaligned.h"
#include "util.h"
#include "timeval.h"
struct dp_packet;
struct conn;
struct ds;
/* Purely internal to OVS userspace. These flags should never be exposed to
* the outside world and so aren't included in the flags mask. */
/* Tunnel information is in userspace datapath format. */
#define FLOW_TNL_F_UDPIF (1 << 4)
static inline bool ipv6_addr_is_set(const struct in6_addr *addr);
static inline bool
flow_tnl_dst_is_set(const struct flow_tnl *tnl)
{
return tnl->ip_dst || ipv6_addr_is_set(&tnl->ipv6_dst);
}
static inline bool
flow_tnl_src_is_set(const struct flow_tnl *tnl)
{
return tnl->ip_src || ipv6_addr_is_set(&tnl->ipv6_src);
}
struct in6_addr flow_tnl_dst(const struct flow_tnl *tnl);
struct in6_addr flow_tnl_src(const struct flow_tnl *tnl);
/* Returns an offset to 'src' covering all the meaningful fields in 'src'. */
static inline size_t
flow_tnl_size(const struct flow_tnl *src)
{
if (!flow_tnl_dst_is_set(src)) {
/* Covers ip_dst and ipv6_dst only. */
return offsetof(struct flow_tnl, ip_src);
}
if (src->flags & FLOW_TNL_F_UDPIF) {
/* Datapath format, cover all options we have. */
return offsetof(struct flow_tnl, metadata.opts)
+ src->metadata.present.len;
}
if (!src->metadata.present.map) {
/* No TLVs, opts is irrelevant. */
return offsetof(struct flow_tnl, metadata.opts);
}
/* Have decoded TLVs, opts is relevant. */
return sizeof *src;
}
/* Copy flow_tnl, but avoid copying unused portions of tun_metadata. Unused
* data in 'dst' is NOT cleared, so this must not be used in cases where the
* uninitialized portion may be hashed over. */
static inline void
flow_tnl_copy__(struct flow_tnl *dst, const struct flow_tnl *src)
{
memcpy(dst, src, flow_tnl_size(src));
}
static inline bool
flow_tnl_equal(const struct flow_tnl *a, const struct flow_tnl *b)
{
size_t a_size = flow_tnl_size(a);
return a_size == flow_tnl_size(b) && !memcmp(a, b, a_size);
}
/* Datapath packet metadata */
struct pkt_metadata {
PADDED_MEMBERS_CACHELINE_MARKER(CACHE_LINE_SIZE, cacheline0,
uint32_t recirc_id; /* Recirculation id carried with the
recirculating packets. 0 for packets
received from the wire. */
uint32_t dp_hash; /* hash value computed by the recirculation
action. */
uint32_t skb_priority; /* Packet priority for QoS. */
uint32_t pkt_mark; /* Packet mark. */
uint8_t ct_state; /* Connection state. */
bool ct_orig_tuple_ipv6;
uint16_t ct_zone; /* Connection zone. */
uint32_t ct_mark; /* Connection mark. */
ovs_u128 ct_label; /* Connection label. */
union flow_in_port in_port; /* Input port. */
odp_port_t orig_in_port; /* Originating in_port for tunneled packets */
struct conn *conn; /* Cached conntrack connection. */
bool reply; /* True if reply direction. */
bool icmp_related; /* True if ICMP related. */
);
PADDED_MEMBERS_CACHELINE_MARKER(CACHE_LINE_SIZE, cacheline1,
union { /* Populated only for non-zero 'ct_state'. */
struct ovs_key_ct_tuple_ipv4 ipv4;
struct ovs_key_ct_tuple_ipv6 ipv6; /* Used only if */
} ct_orig_tuple; /* 'ct_orig_tuple_ipv6' is set */
);
PADDED_MEMBERS_CACHELINE_MARKER(CACHE_LINE_SIZE, cacheline2,
struct flow_tnl tunnel; /* Encapsulating tunnel parameters. Note that
* if 'ip_dst' == 0, the rest of the fields may
* be uninitialized. */
);
};
BUILD_ASSERT_DECL(offsetof(struct pkt_metadata, cacheline0) == 0);
BUILD_ASSERT_DECL(offsetof(struct pkt_metadata, cacheline1) ==
CACHE_LINE_SIZE);
BUILD_ASSERT_DECL(offsetof(struct pkt_metadata, cacheline2) ==
2 * CACHE_LINE_SIZE);
static inline void
pkt_metadata_init_tnl(struct pkt_metadata *md)
{
odp_port_t orig_in_port;
/* Zero up through the tunnel metadata options. The length and table
* are before this and as long as they are empty, the options won't
* be looked at. Keep the orig_in_port field. */
orig_in_port = md->in_port.odp_port;
memset(md, 0, offsetof(struct pkt_metadata, tunnel.metadata.opts));
md->orig_in_port = orig_in_port;
}
static inline void
pkt_metadata_init_conn(struct pkt_metadata *md)
{
md->conn = NULL;
}
static inline void
pkt_metadata_init(struct pkt_metadata *md, odp_port_t port)
{
/* This is called for every packet in userspace datapath and affects
* performance if all the metadata is initialized. Hence, fields should
* only be zeroed out when necessary.
*
* Initialize only till ct_state. Once the ct_state is zeroed out rest
* of ct fields will not be looked at unless ct_state != 0.
*/
memset(md, 0, offsetof(struct pkt_metadata, ct_orig_tuple_ipv6));
/* It can be expensive to zero out all of the tunnel metadata. However,
* we can just zero out ip_dst and the rest of the data will never be
* looked at. */
md->tunnel.ip_dst = 0;
md->tunnel.ipv6_dst = in6addr_any;
md->in_port.odp_port = port;
md->orig_in_port = port;
md->conn = NULL;
}
/* This function prefetches the cachelines touched by pkt_metadata_init()
* and pkt_metadata_init_tnl(). For performance reasons the two functions
* should be kept in sync. */
static inline void
pkt_metadata_prefetch_init(struct pkt_metadata *md)
{
/* Prefetch cacheline0 as members till ct_state and odp_port will
* be initialized later in pkt_metadata_init(). */
OVS_PREFETCH(md->cacheline0);
/* Prefetch cacheline1 as members of this cacheline will be zeroed out
* in pkt_metadata_init_tnl(). */
OVS_PREFETCH(md->cacheline1);
/* Prefetch cachline2 as ip_dst & ipv6_dst fields will be initialized. */
OVS_PREFETCH(md->cacheline2);
}
bool dpid_from_string(const char *s, uint64_t *dpidp);
#define ETH_ADDR_LEN 6
static const struct eth_addr eth_addr_broadcast OVS_UNUSED
= ETH_ADDR_C(ff,ff,ff,ff,ff,ff);
static const struct eth_addr eth_addr_exact OVS_UNUSED
= ETH_ADDR_C(ff,ff,ff,ff,ff,ff);
static const struct eth_addr eth_addr_zero OVS_UNUSED
= ETH_ADDR_C(00,00,00,00,00,00);
static const struct eth_addr64 eth_addr64_zero OVS_UNUSED
= ETH_ADDR64_C(00,00,00,00,00,00,00,00);
static const struct eth_addr eth_addr_stp OVS_UNUSED
= ETH_ADDR_C(01,80,c2,00,00,00);
static const struct eth_addr eth_addr_lacp OVS_UNUSED
= ETH_ADDR_C(01,80,c2,00,00,02);
static const struct eth_addr eth_addr_bfd OVS_UNUSED
= ETH_ADDR_C(00,23,20,00,00,01);
static inline bool eth_addr_is_broadcast(const struct eth_addr a)
{
return (a.be16[0] & a.be16[1] & a.be16[2]) == htons(0xffff);
}
static inline bool eth_addr_is_multicast(const struct eth_addr a)
{
return a.ea[0] & 1;
}
static inline bool eth_addr_is_local(const struct eth_addr a)
{
/* Local if it is either a locally administered address or a Nicira random
* address. */
return a.ea[0] & 2
|| (a.be16[0] == htons(0x0023)
&& (a.be16[1] & htons(0xff80)) == htons(0x2080));
}
static inline bool eth_addr_is_zero(const struct eth_addr a)
{
return !(a.be16[0] | a.be16[1] | a.be16[2]);
}
static inline bool eth_addr64_is_zero(const struct eth_addr64 a)
{
return !(a.be16[0] | a.be16[1] | a.be16[2] | a.be16[3]);
}
static inline int eth_mask_is_exact(const struct eth_addr a)
{
return (a.be16[0] & a.be16[1] & a.be16[2]) == htons(0xffff);
}
static inline int eth_addr_compare_3way(const struct eth_addr a,
const struct eth_addr b)
{
return memcmp(&a, &b, sizeof a);
}
static inline int eth_addr64_compare_3way(const struct eth_addr64 a,
const struct eth_addr64 b)
{
return memcmp(&a, &b, sizeof a);
}
static inline bool eth_addr_equals(const struct eth_addr a,
const struct eth_addr b)
{
return !eth_addr_compare_3way(a, b);
}
static inline bool eth_addr64_equals(const struct eth_addr64 a,
const struct eth_addr64 b)
{
return !eth_addr64_compare_3way(a, b);
}
static inline bool eth_addr_equal_except(const struct eth_addr a,
const struct eth_addr b,
const struct eth_addr mask)
{
return !(((a.be16[0] ^ b.be16[0]) & mask.be16[0])
|| ((a.be16[1] ^ b.be16[1]) & mask.be16[1])
|| ((a.be16[2] ^ b.be16[2]) & mask.be16[2]));
}
uint64_t eth_addr_to_uint64(const struct eth_addr ea);
static inline uint64_t eth_addr_vlan_to_uint64(const struct eth_addr ea,
uint16_t vlan)
{
return (((uint64_t)vlan << 48) | eth_addr_to_uint64(ea));
}
void eth_addr_from_uint64(uint64_t x, struct eth_addr *ea);
static inline struct eth_addr eth_addr_invert(const struct eth_addr src)
{
struct eth_addr dst;
for (int i = 0; i < ARRAY_SIZE(src.be16); i++) {
dst.be16[i] = ~src.be16[i];
}
return dst;
}
void eth_addr_mark_random(struct eth_addr *ea);
static inline void eth_addr_random(struct eth_addr *ea)
{
random_bytes((uint8_t *)ea, sizeof *ea);
eth_addr_mark_random(ea);
}
static inline void eth_addr_nicira_random(struct eth_addr *ea)
{
eth_addr_random(ea);
/* Set the OUI to the Nicira one. */
ea->ea[0] = 0x00;
ea->ea[1] = 0x23;
ea->ea[2] = 0x20;
/* Set the top bit to indicate random Nicira address. */
ea->ea[3] |= 0x80;
}
static inline uint32_t hash_mac(const struct eth_addr ea,
const uint16_t vlan, const uint32_t basis)
{
return hash_uint64_basis(eth_addr_vlan_to_uint64(ea, vlan), basis);
}
bool eth_addr_is_reserved(const struct eth_addr);
bool eth_addr_from_string(const char *, struct eth_addr *);
void compose_rarp(struct dp_packet *, const struct eth_addr);
void eth_push_vlan(struct dp_packet *, ovs_be16 tpid, ovs_be16 tci);
void eth_pop_vlan(struct dp_packet *);
const char *eth_from_hex(const char *hex, struct dp_packet **packetp);
void eth_format_masked(const struct eth_addr ea,
const struct eth_addr *mask, struct ds *s);
void set_mpls_lse(struct dp_packet *, ovs_be32 label);
void push_mpls(struct dp_packet *packet, ovs_be16 ethtype, ovs_be32 lse);
void pop_mpls(struct dp_packet *, ovs_be16 ethtype);
void set_mpls_lse_ttl(ovs_be32 *lse, uint8_t ttl);
void set_mpls_lse_tc(ovs_be32 *lse, uint8_t tc);
void set_mpls_lse_label(ovs_be32 *lse, ovs_be32 label);
void set_mpls_lse_bos(ovs_be32 *lse, uint8_t bos);
ovs_be32 set_mpls_lse_values(uint8_t ttl, uint8_t tc, uint8_t bos,
ovs_be32 label);
void add_mpls(struct dp_packet *packet, ovs_be16 ethtype, ovs_be32 lse,
bool l3_encap);
/* Example:
*
* struct eth_addr mac;
* [...]
* printf("The Ethernet address is "ETH_ADDR_FMT"\n", ETH_ADDR_ARGS(mac));
*
*/
#define ETH_ADDR_FMT \
"%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8
#define ETH_ADDR_ARGS(EA) ETH_ADDR_BYTES_ARGS((EA).ea)
#define ETH_ADDR_BYTES_ARGS(EAB) \
(EAB)[0], (EAB)[1], (EAB)[2], (EAB)[3], (EAB)[4], (EAB)[5]
#define ETH_ADDR_STRLEN 17
/* Example:
*
* struct eth_addr64 eui64;
* [...]
* printf("The EUI-64 address is "ETH_ADDR64_FMT"\n", ETH_ADDR64_ARGS(mac));
*
*/
#define ETH_ADDR64_FMT \
"%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8":" \
"%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8
#define ETH_ADDR64_ARGS(EA) ETH_ADDR64_BYTES_ARGS((EA).ea64)
#define ETH_ADDR64_BYTES_ARGS(EAB) \
(EAB)[0], (EAB)[1], (EAB)[2], (EAB)[3], \
(EAB)[4], (EAB)[5], (EAB)[6], (EAB)[7]
#define ETH_ADDR64_STRLEN 23
/* Example:
*
* char *string = "1 00:11:22:33:44:55 2";
* struct eth_addr mac;
* int a, b;
*
* if (ovs_scan(string, "%d"ETH_ADDR_SCAN_FMT"%d",
* &a, ETH_ADDR_SCAN_ARGS(mac), &b)) {
* ...
* }
*/
#define ETH_ADDR_SCAN_FMT "%"SCNx8":%"SCNx8":%"SCNx8":%"SCNx8":%"SCNx8":%"SCNx8
#define ETH_ADDR_SCAN_ARGS(EA) \
&(EA).ea[0], &(EA).ea[1], &(EA).ea[2], &(EA).ea[3], &(EA).ea[4], &(EA).ea[5]
#define ETH_TYPE_IP 0x0800
#define ETH_TYPE_ARP 0x0806
#define ETH_TYPE_TEB 0x6558
#define ETH_TYPE_VLAN_8021Q 0x8100
#define ETH_TYPE_VLAN ETH_TYPE_VLAN_8021Q
#define ETH_TYPE_VLAN_8021AD 0x88a8
#define ETH_TYPE_IPV6 0x86dd
#define ETH_TYPE_LACP 0x8809
#define ETH_TYPE_RARP 0x8035
#define ETH_TYPE_MPLS 0x8847
#define ETH_TYPE_MPLS_MCAST 0x8848
#define ETH_TYPE_NSH 0x894f
#define ETH_TYPE_ERSPAN1 0x88be /* version 1 type II */
#define ETH_TYPE_ERSPAN2 0x22eb /* version 2 type III */
static inline bool eth_type_mpls(ovs_be16 eth_type)
{
return eth_type == htons(ETH_TYPE_MPLS) ||
eth_type == htons(ETH_TYPE_MPLS_MCAST);
}
static inline bool eth_type_vlan(ovs_be16 eth_type)
{
return eth_type == htons(ETH_TYPE_VLAN_8021Q) ||
eth_type == htons(ETH_TYPE_VLAN_8021AD);
}
/* Minimum value for an Ethernet type. Values below this are IEEE 802.2 frame
* lengths. */
#define ETH_TYPE_MIN 0x600
#define ETH_HEADER_LEN 14
#define ETH_PAYLOAD_MIN 46
#define ETH_PAYLOAD_MAX 1500
#define ETH_TOTAL_MIN (ETH_HEADER_LEN + ETH_PAYLOAD_MIN)
#define ETH_TOTAL_MAX (ETH_HEADER_LEN + ETH_PAYLOAD_MAX)
#define ETH_VLAN_TOTAL_MAX (ETH_HEADER_LEN + VLAN_HEADER_LEN + ETH_PAYLOAD_MAX)
struct eth_header {
struct eth_addr eth_dst;
struct eth_addr eth_src;
ovs_be16 eth_type;
};
BUILD_ASSERT_DECL(ETH_HEADER_LEN == sizeof(struct eth_header));
void push_eth(struct dp_packet *packet, const struct eth_addr *dst,
const struct eth_addr *src);
void pop_eth(struct dp_packet *packet);
void push_nsh(struct dp_packet *packet, const struct nsh_hdr *nsh_hdr_src);
bool pop_nsh(struct dp_packet *packet);
#define LLC_DSAP_SNAP 0xaa
#define LLC_SSAP_SNAP 0xaa
#define LLC_CNTL_SNAP 3
#define LLC_HEADER_LEN 3
struct llc_header {
uint8_t llc_dsap;
uint8_t llc_ssap;
uint8_t llc_cntl;
};
BUILD_ASSERT_DECL(LLC_HEADER_LEN == sizeof(struct llc_header));
/* LLC field values used for STP frames. */
#define STP_LLC_SSAP 0x42
#define STP_LLC_DSAP 0x42
#define STP_LLC_CNTL 0x03
#define SNAP_ORG_ETHERNET "\0\0" /* The compiler adds a null byte, so
sizeof(SNAP_ORG_ETHERNET) == 3. */
#define SNAP_HEADER_LEN 5
OVS_PACKED(
struct snap_header {
uint8_t snap_org[3];
ovs_be16 snap_type;
});
BUILD_ASSERT_DECL(SNAP_HEADER_LEN == sizeof(struct snap_header));
#define LLC_SNAP_HEADER_LEN (LLC_HEADER_LEN + SNAP_HEADER_LEN)
OVS_PACKED(
struct llc_snap_header {
struct llc_header llc;
struct snap_header snap;
});
BUILD_ASSERT_DECL(LLC_SNAP_HEADER_LEN == sizeof(struct llc_snap_header));
#define VLAN_VID_MASK 0x0fff
#define VLAN_VID_SHIFT 0
#define VLAN_PCP_MASK 0xe000
#define VLAN_PCP_SHIFT 13
#define VLAN_CFI 0x1000
#define VLAN_CFI_SHIFT 12
/* Given the vlan_tci field from an 802.1Q header, in network byte order,
* returns the VLAN ID in host byte order. */
static inline uint16_t
vlan_tci_to_vid(ovs_be16 vlan_tci)
{
return (ntohs(vlan_tci) & VLAN_VID_MASK) >> VLAN_VID_SHIFT;
}
/* Given the vlan_tci field from an 802.1Q header, in network byte order,
* returns the priority code point (PCP) in host byte order. */
static inline int
vlan_tci_to_pcp(ovs_be16 vlan_tci)
{
return (ntohs(vlan_tci) & VLAN_PCP_MASK) >> VLAN_PCP_SHIFT;
}
/* Given the vlan_tci field from an 802.1Q header, in network byte order,
* returns the Canonical Format Indicator (CFI). */
static inline int
vlan_tci_to_cfi(ovs_be16 vlan_tci)
{
return (vlan_tci & htons(VLAN_CFI)) != 0;
}
#define VLAN_HEADER_LEN 4
struct vlan_header {
ovs_be16 vlan_tci; /* Lowest 12 bits are VLAN ID. */
ovs_be16 vlan_next_type;
};
BUILD_ASSERT_DECL(VLAN_HEADER_LEN == sizeof(struct vlan_header));
#define VLAN_ETH_HEADER_LEN (ETH_HEADER_LEN + VLAN_HEADER_LEN)
struct vlan_eth_header {
struct eth_addr veth_dst;
struct eth_addr veth_src;
ovs_be16 veth_type; /* Always htons(ETH_TYPE_VLAN). */
ovs_be16 veth_tci; /* Lowest 12 bits are VLAN ID. */
ovs_be16 veth_next_type;
};
BUILD_ASSERT_DECL(VLAN_ETH_HEADER_LEN == sizeof(struct vlan_eth_header));
/* MPLS related definitions */
#define MPLS_TTL_MASK 0x000000ff
#define MPLS_TTL_SHIFT 0
#define MPLS_BOS_MASK 0x00000100
#define MPLS_BOS_SHIFT 8
#define MPLS_TC_MASK 0x00000e00
#define MPLS_TC_SHIFT 9
#define MPLS_LABEL_MASK 0xfffff000
#define MPLS_LABEL_SHIFT 12
#define MPLS_HLEN 4
struct mpls_hdr {
ovs_16aligned_be32 mpls_lse;
};
BUILD_ASSERT_DECL(MPLS_HLEN == sizeof(struct mpls_hdr));
/* Given a mpls label stack entry in network byte order
* return mpls label in host byte order */
static inline uint32_t
mpls_lse_to_label(ovs_be32 mpls_lse)
{
return (ntohl(mpls_lse) & MPLS_LABEL_MASK) >> MPLS_LABEL_SHIFT;
}
/* Given a mpls label stack entry in network byte order
* return mpls tc */
static inline uint8_t
mpls_lse_to_tc(ovs_be32 mpls_lse)
{
return (ntohl(mpls_lse) & MPLS_TC_MASK) >> MPLS_TC_SHIFT;
}
/* Given a mpls label stack entry in network byte order
* return mpls ttl */
static inline uint8_t
mpls_lse_to_ttl(ovs_be32 mpls_lse)
{
return (ntohl(mpls_lse) & MPLS_TTL_MASK) >> MPLS_TTL_SHIFT;
}
/* Set label in mpls lse. */
static inline void
flow_set_mpls_lse_label(ovs_be32 *mpls_lse, uint32_t label)
{
*mpls_lse &= ~htonl(MPLS_LABEL_MASK);
*mpls_lse |= htonl(label << MPLS_LABEL_SHIFT);
}
/* Set TC in mpls lse. */
static inline void
flow_set_mpls_lse_tc(ovs_be32 *mpls_lse, uint8_t tc)
{
*mpls_lse &= ~htonl(MPLS_TC_MASK);
*mpls_lse |= htonl((tc & 0x7) << MPLS_TC_SHIFT);
}
/* Set BOS in mpls lse. */
static inline void
flow_set_mpls_lse_bos(ovs_be32 *mpls_lse, uint8_t bos)
{
*mpls_lse &= ~htonl(MPLS_BOS_MASK);
*mpls_lse |= htonl((bos & 0x1) << MPLS_BOS_SHIFT);
}
/* Set TTL in mpls lse. */
static inline void
flow_set_mpls_lse_ttl(ovs_be32 *mpls_lse, uint8_t ttl)
{
*mpls_lse &= ~htonl(MPLS_TTL_MASK);
*mpls_lse |= htonl(ttl << MPLS_TTL_SHIFT);
}
/* Given a mpls label stack entry in network byte order
* return mpls BoS bit */
static inline uint8_t
mpls_lse_to_bos(ovs_be32 mpls_lse)
{
return (mpls_lse & htonl(MPLS_BOS_MASK)) != 0;
}
#define IP_FMT "%"PRIu32".%"PRIu32".%"PRIu32".%"PRIu32
#define IP_ARGS(ip) \
ntohl(ip) >> 24, \
(ntohl(ip) >> 16) & 0xff, \
(ntohl(ip) >> 8) & 0xff, \
ntohl(ip) & 0xff
/* Example:
*
* char *string = "1 33.44.55.66 2";
* ovs_be32 ip;
* int a, b;
*
* if (ovs_scan(string, "%d"IP_SCAN_FMT"%d", &a, IP_SCAN_ARGS(&ip), &b)) {
* ...
* }
*/
#define IP_SCAN_FMT "%"SCNu8".%"SCNu8".%"SCNu8".%"SCNu8
#define IP_SCAN_ARGS(ip) \
((void) (ovs_be32) *(ip), &((uint8_t *) ip)[0]), \
&((uint8_t *) ip)[1], \
&((uint8_t *) ip)[2], \
&((uint8_t *) ip)[3]
#define IP_PORT_SCAN_FMT "%"SCNu8".%"SCNu8".%"SCNu8".%"SCNu8":%"SCNu16
#define IP_PORT_SCAN_ARGS(ip, port) \
((void) (ovs_be32) *(ip), &((uint8_t *) ip)[0]), \
&((uint8_t *) ip)[1], \
&((uint8_t *) ip)[2], \
&((uint8_t *) ip)[3], \
((void) (ovs_be16) *(port), (uint16_t *) port)
/* Returns true if 'netmask' is a CIDR netmask, that is, if it consists of N
* high-order 1-bits and 32-N low-order 0-bits. */
static inline bool
ip_is_cidr(ovs_be32 netmask)
{
uint32_t x = ~ntohl(netmask);
return !(x & (x + 1));
}
static inline bool
ip_is_multicast(ovs_be32 ip)
{
return (ip & htonl(0xf0000000)) == htonl(0xe0000000);
}
static inline bool
ip_is_local_multicast(ovs_be32 ip)
{
return (ip & htonl(0xffffff00)) == htonl(0xe0000000);
}
int ip_count_cidr_bits(ovs_be32 netmask);
void ip_format_masked(ovs_be32 ip, ovs_be32 mask, struct ds *);
bool ip_parse(const char *s, ovs_be32 *ip);
char *ip_parse_port(const char *s, ovs_be32 *ip, ovs_be16 *port)
OVS_WARN_UNUSED_RESULT;
char *ip_parse_masked(const char *s, ovs_be32 *ip, ovs_be32 *mask)
OVS_WARN_UNUSED_RESULT;
char *ip_parse_cidr(const char *s, ovs_be32 *ip, unsigned int *plen)
OVS_WARN_UNUSED_RESULT;
char *ip_parse_masked_len(const char *s, int *n, ovs_be32 *ip, ovs_be32 *mask)
OVS_WARN_UNUSED_RESULT;
char *ip_parse_cidr_len(const char *s, int *n, ovs_be32 *ip,
unsigned int *plen)
OVS_WARN_UNUSED_RESULT;
#define IP_VER(ip_ihl_ver) ((ip_ihl_ver) >> 4)
#define IP_IHL(ip_ihl_ver) ((ip_ihl_ver) & 15)
#define IP_IHL_VER(ihl, ver) (((ver) << 4) | (ihl))
#ifndef IPPROTO_SCTP
#define IPPROTO_SCTP 132
#endif
#ifndef IPPROTO_DCCP
#define IPPROTO_DCCP 33
#endif
#ifndef IPPROTO_IGMP
#define IPPROTO_IGMP 2
#endif
#ifndef IPPROTO_IPIP
#define IPPROTO_IPIP 4
#endif
#ifndef IPPROTO_UDPLITE
#define IPPROTO_UDPLITE 136
#endif
/* TOS fields. */
#define IP_ECN_NOT_ECT 0x0
#define IP_ECN_ECT_1 0x01
#define IP_ECN_ECT_0 0x02
#define IP_ECN_CE 0x03
#define IP_ECN_MASK 0x03
#define IP_DSCP_CS6 0xc0
#define IP_DSCP_MASK 0xfc
static inline int
IP_ECN_is_ce(uint8_t dsfield)
{
return (dsfield & IP_ECN_MASK) == IP_ECN_CE;
}
#define IP_VERSION 4
#define IP_DONT_FRAGMENT 0x4000 /* Don't fragment. */
#define IP_MORE_FRAGMENTS 0x2000 /* More fragments. */
#define IP_FRAG_OFF_MASK 0x1fff /* Fragment offset. */
#define IP_IS_FRAGMENT(ip_frag_off) \
((ip_frag_off) & htons(IP_MORE_FRAGMENTS | IP_FRAG_OFF_MASK))
#define IP_IS_LATER_FRAG(ip_frag_off) \
((ip_frag_off) & htons(IP_FRAG_OFF_MASK))
#define IP_HEADER_LEN 20
struct ip_header {
uint8_t ip_ihl_ver;
uint8_t ip_tos;
ovs_be16 ip_tot_len;
ovs_be16 ip_id;
ovs_be16 ip_frag_off;
uint8_t ip_ttl;
uint8_t ip_proto;
ovs_be16 ip_csum;
ovs_16aligned_be32 ip_src;
ovs_16aligned_be32 ip_dst;
};
BUILD_ASSERT_DECL(IP_HEADER_LEN == sizeof(struct ip_header));
/* ICMPv4 types. */
#define ICMP4_ECHO_REPLY 0
#define ICMP4_DST_UNREACH 3
#define ICMP4_SOURCEQUENCH 4
#define ICMP4_REDIRECT 5
#define ICMP4_ECHO_REQUEST 8
#define ICMP4_TIME_EXCEEDED 11
#define ICMP4_PARAM_PROB 12
#define ICMP4_TIMESTAMP 13
#define ICMP4_TIMESTAMPREPLY 14
#define ICMP4_INFOREQUEST 15
#define ICMP4_INFOREPLY 16
#define ICMP_HEADER_LEN 8
struct icmp_header {
uint8_t icmp_type;
uint8_t icmp_code;
ovs_be16 icmp_csum;
union {
struct {
ovs_be16 id;
ovs_be16 seq;
} echo;
struct {
ovs_be16 empty;
ovs_be16 mtu;
} frag;
ovs_16aligned_be32 gateway;
} icmp_fields;
};
BUILD_ASSERT_DECL(ICMP_HEADER_LEN == sizeof(struct icmp_header));
/* ICMPV4 */
#define ICMP_ERROR_DATA_L4_LEN 8
#define IGMP_HEADER_LEN 8
struct igmp_header {
uint8_t igmp_type;
uint8_t igmp_code;
ovs_be16 igmp_csum;
ovs_16aligned_be32 group;
};
BUILD_ASSERT_DECL(IGMP_HEADER_LEN == sizeof(struct igmp_header));
#define IGMPV3_HEADER_LEN 8
struct igmpv3_header {
uint8_t type;
uint8_t rsvr1;
ovs_be16 csum;
ovs_be16 rsvr2;
ovs_be16 ngrp;
};
BUILD_ASSERT_DECL(IGMPV3_HEADER_LEN == sizeof(struct igmpv3_header));
#define IGMPV3_QUERY_HEADER_LEN 12
struct igmpv3_query_header {
uint8_t type;
uint8_t max_resp;
ovs_be16 csum;
ovs_16aligned_be32 group;
uint8_t srs_qrv;
uint8_t qqic;
ovs_be16 nsrcs;
};
BUILD_ASSERT_DECL(
IGMPV3_QUERY_HEADER_LEN == sizeof(struct igmpv3_query_header
));
#define IGMPV3_RECORD_LEN 8
struct igmpv3_record {
uint8_t type;
uint8_t aux_len;
ovs_be16 nsrcs;
ovs_16aligned_be32 maddr;
};
BUILD_ASSERT_DECL(IGMPV3_RECORD_LEN == sizeof(struct igmpv3_record));
#define IGMP_HOST_MEMBERSHIP_QUERY 0x11 /* From RFC1112 */
#define IGMP_HOST_MEMBERSHIP_REPORT 0x12 /* Ditto */
#define IGMPV2_HOST_MEMBERSHIP_REPORT 0x16 /* V2 version of 0x12 */
#define IGMP_HOST_LEAVE_MESSAGE 0x17
#define IGMPV3_HOST_MEMBERSHIP_REPORT 0x22 /* V3 version of 0x12 */
/*
* IGMPv3 and MLDv2 use the same codes.
*/
#define IGMPV3_MODE_IS_INCLUDE 1
#define IGMPV3_MODE_IS_EXCLUDE 2
#define IGMPV3_CHANGE_TO_INCLUDE_MODE 3
#define IGMPV3_CHANGE_TO_EXCLUDE_MODE 4
#define IGMPV3_ALLOW_NEW_SOURCES 5
#define IGMPV3_BLOCK_OLD_SOURCES 6
#define SCTP_HEADER_LEN 12
struct sctp_header {
ovs_be16 sctp_src;
ovs_be16 sctp_dst;
ovs_16aligned_be32 sctp_vtag;
ovs_16aligned_be32 sctp_csum;
};
BUILD_ASSERT_DECL(SCTP_HEADER_LEN == sizeof(struct sctp_header));
#define SCTP_CHUNK_HEADER_LEN 4
struct sctp_chunk_header {
uint8_t type;
uint8_t flags;
ovs_be16 length;
};
BUILD_ASSERT_DECL(SCTP_CHUNK_HEADER_LEN == sizeof(struct sctp_chunk_header));
#define SCTP_NEXT_CHUNK(sh, off) \
ALIGNED_CAST(struct sctp_chunk_header *, (uint8_t *) sh + off)
#define UDP_HEADER_LEN 8
struct udp_header {
ovs_be16 udp_src;
ovs_be16 udp_dst;
ovs_be16 udp_len;
ovs_be16 udp_csum;
};
BUILD_ASSERT_DECL(UDP_HEADER_LEN == sizeof(struct udp_header));
#define ESP_HEADER_LEN 8
struct esp_header {
ovs_be32 spi;
ovs_be32 seq_no;
};
BUILD_ASSERT_DECL(ESP_HEADER_LEN == sizeof(struct esp_header));
#define ESP_TRAILER_LEN 2
struct esp_trailer {
uint8_t pad_len;
uint8_t next_hdr;
};
BUILD_ASSERT_DECL(ESP_TRAILER_LEN == sizeof(struct esp_trailer));
#define TCP_FIN 0x001
#define TCP_SYN 0x002
#define TCP_RST 0x004
#define TCP_PSH 0x008
#define TCP_ACK 0x010
#define TCP_URG 0x020
#define TCP_ECE 0x040
#define TCP_CWR 0x080
#define TCP_NS 0x100
#define TCP_CTL(flags, offset) (htons((flags) | ((offset) << 12)))
#define TCP_FLAGS(tcp_ctl) (ntohs(tcp_ctl) & 0x0fff)
#define TCP_FLAGS_BE16(tcp_ctl) ((tcp_ctl) & htons(0x0fff))
#define TCP_OFFSET(tcp_ctl) (ntohs(tcp_ctl) >> 12)
#define TCP_HEADER_LEN 20
struct tcp_header {
ovs_be16 tcp_src;
ovs_be16 tcp_dst;
ovs_16aligned_be32 tcp_seq;
ovs_16aligned_be32 tcp_ack;
ovs_be16 tcp_ctl;
ovs_be16 tcp_winsz;
ovs_be16 tcp_csum;
ovs_be16 tcp_urg;
};
BUILD_ASSERT_DECL(TCP_HEADER_LEN == sizeof(struct tcp_header));
/* Connection states.
*
* Names like CS_RELATED are bit values, e.g. 1 << 2.
* Names like CS_RELATED_BIT are bit indexes, e.g. 2. */
#define CS_STATES \
CS_STATE(NEW, 0, "new") \
CS_STATE(ESTABLISHED, 1, "est") \
CS_STATE(RELATED, 2, "rel") \
CS_STATE(REPLY_DIR, 3, "rpl") \
CS_STATE(INVALID, 4, "inv") \
CS_STATE(TRACKED, 5, "trk") \
CS_STATE(SRC_NAT, 6, "snat") \
CS_STATE(DST_NAT, 7, "dnat")
enum {
#define CS_STATE(ENUM, INDEX, NAME) \
CS_##ENUM = 1 << INDEX, \
CS_##ENUM##_BIT = INDEX,
CS_STATES
#undef CS_STATE
};
/* Undefined connection state bits. */
enum {
#define CS_STATE(ENUM, INDEX, NAME) +CS_##ENUM
CS_SUPPORTED_MASK = CS_STATES
#undef CS_STATE
};
#define CS_UNSUPPORTED_MASK (~(uint32_t)CS_SUPPORTED_MASK)
#define ARP_HRD_ETHERNET 1
#define ARP_PRO_IP 0x0800
#define ARP_OP_REQUEST 1
#define ARP_OP_REPLY 2
#define ARP_OP_RARP 3
#define ARP_ETH_HEADER_LEN 28
struct arp_eth_header {
/* Generic members. */
ovs_be16 ar_hrd; /* Hardware type. */
ovs_be16 ar_pro; /* Protocol type. */
uint8_t ar_hln; /* Hardware address length. */
uint8_t ar_pln; /* Protocol address length. */
ovs_be16 ar_op; /* Opcode. */
/* Ethernet+IPv4 specific members. */
struct eth_addr ar_sha; /* Sender hardware address. */
ovs_16aligned_be32 ar_spa; /* Sender protocol address. */
struct eth_addr ar_tha; /* Target hardware address. */
ovs_16aligned_be32 ar_tpa; /* Target protocol address. */
};
BUILD_ASSERT_DECL(ARP_ETH_HEADER_LEN == sizeof(struct arp_eth_header));
#define IPV6_HEADER_LEN 40
/* Like struct in6_addr, but whereas that struct requires 32-bit alignment on
* most implementations, this one only requires 16-bit alignment. */
union ovs_16aligned_in6_addr {
ovs_be16 be16[8];
ovs_16aligned_be32 be32[4];
};
/* Like struct ip6_hdr, but whereas that struct requires 32-bit alignment, this
* one only requires 16-bit alignment. */
struct ovs_16aligned_ip6_hdr {
union {
struct ovs_16aligned_ip6_hdrctl {
ovs_16aligned_be32 ip6_un1_flow;
ovs_be16 ip6_un1_plen;
uint8_t ip6_un1_nxt;
uint8_t ip6_un1_hlim;
} ip6_un1;
uint8_t ip6_un2_vfc;
} ip6_ctlun;
union ovs_16aligned_in6_addr ip6_src;
union ovs_16aligned_in6_addr ip6_dst;
};
/* Like struct in6_frag, but whereas that struct requires 32-bit alignment,
* this one only requires 16-bit alignment. */
struct ovs_16aligned_ip6_frag {
uint8_t ip6f_nxt;
uint8_t ip6f_reserved;
ovs_be16 ip6f_offlg;
ovs_16aligned_be32 ip6f_ident;
};
#define IP6_RT_HDR_LEN 4
struct ip6_rt_hdr {
uint8_t nexthdr;
uint8_t hdrlen;
uint8_t type;
uint8_t segments_left;
};
BUILD_ASSERT_DECL(IP6_RT_HDR_LEN == sizeof(struct ip6_rt_hdr));
#define ICMP6_HEADER_LEN 4
struct icmp6_header {
uint8_t icmp6_type;
uint8_t icmp6_code;
ovs_be16 icmp6_cksum;
};
BUILD_ASSERT_DECL(ICMP6_HEADER_LEN == sizeof(struct icmp6_header));
#define ICMP6_DATA_HEADER_LEN 8
struct icmp6_data_header {
struct icmp6_header icmp6_base;
union {
ovs_16aligned_be32 be32[1];
ovs_be16 be16[2];
uint8_t u8[4];
} icmp6_data;
};
BUILD_ASSERT_DECL(ICMP6_DATA_HEADER_LEN == sizeof(struct icmp6_data_header));
uint32_t packet_csum_pseudoheader6(const struct ovs_16aligned_ip6_hdr *);
ovs_be16 packet_csum_upperlayer6(const struct ovs_16aligned_ip6_hdr *,
const void *, uint8_t, uint16_t);
/* Neighbor Discovery option field.
* ND options are always a multiple of 8 bytes in size. */
#define ND_LLA_OPT_LEN 8
struct ovs_nd_lla_opt {
uint8_t type; /* One of ND_OPT_*_LINKADDR. */
uint8_t len;
struct eth_addr mac;
};
BUILD_ASSERT_DECL(ND_LLA_OPT_LEN == sizeof(struct ovs_nd_lla_opt));
/* Neighbor Discovery option: Prefix Information. */
#define ND_PREFIX_OPT_LEN 32
struct ovs_nd_prefix_opt {
uint8_t type; /* ND_OPT_PREFIX_INFORMATION. */
uint8_t len; /* Always 4. */
uint8_t prefix_len;
uint8_t la_flags; /* ND_PREFIX_* flags. */
ovs_16aligned_be32 valid_lifetime;
ovs_16aligned_be32 preferred_lifetime;
ovs_16aligned_be32 reserved; /* Always 0. */
union ovs_16aligned_in6_addr prefix;
};
BUILD_ASSERT_DECL(ND_PREFIX_OPT_LEN == sizeof(struct ovs_nd_prefix_opt));
/* Neighbor Discovery option: MTU. */
#define ND_MTU_OPT_LEN 8
#define ND_MTU_DEFAULT 0
struct ovs_nd_mtu_opt {
uint8_t type; /* ND_OPT_MTU */
uint8_t len; /* Always 1. */
ovs_be16 reserved; /* Always 0. */
ovs_16aligned_be32 mtu;
};
BUILD_ASSERT_DECL(ND_MTU_OPT_LEN == sizeof(struct ovs_nd_mtu_opt));
/* Like struct nd_msg (from ndisc.h), but whereas that struct requires 32-bit
* alignment, this one only requires 16-bit alignment. */
#define ND_MSG_LEN 24
struct ovs_nd_msg {
struct icmp6_header icmph;
ovs_16aligned_be32 rso_flags;
union ovs_16aligned_in6_addr target;
struct ovs_nd_lla_opt options[0];
};
BUILD_ASSERT_DECL(ND_MSG_LEN == sizeof(struct ovs_nd_msg));
/* Neighbor Discovery packet flags. */
#define ND_RSO_ROUTER 0x80000000
#define ND_RSO_SOLICITED 0x40000000
#define ND_RSO_OVERRIDE 0x20000000
#define RA_MSG_LEN 16
struct ovs_ra_msg {
struct icmp6_header icmph;
uint8_t cur_hop_limit;
uint8_t mo_flags; /* ND_RA_MANAGED_ADDRESS and ND_RA_OTHER_CONFIG flags. */
ovs_be16 router_lifetime;
ovs_be32 reachable_time;
ovs_be32 retrans_timer;
struct ovs_nd_lla_opt options[0];
};
BUILD_ASSERT_DECL(RA_MSG_LEN == sizeof(struct ovs_ra_msg));
#define ND_RA_MANAGED_ADDRESS 0x80
#define ND_RA_OTHER_CONFIG 0x40
/* Defaults based on MaxRtrInterval and MinRtrInterval from RFC 4861 section
* 6.2.1
*/
#define ND_RA_MAX_INTERVAL_DEFAULT 600
static inline int
nd_ra_min_interval_default(int max)
{
return max >= 9 ? max / 3 : max * 3 / 4;
}
/*
* Use the same struct for MLD and MLD2, naming members as the defined fields in
* in the corresponding version of the protocol, though they are reserved in the
* other one.
*/
#define MLD_HEADER_LEN 8
struct mld_header {
uint8_t type;
uint8_t code;
ovs_be16 csum;
ovs_be16 mrd;
ovs_be16 ngrp;
};
BUILD_ASSERT_DECL(MLD_HEADER_LEN == sizeof(struct mld_header));
#define MLD2_RECORD_LEN 20
struct mld2_record {
uint8_t type;
uint8_t aux_len;
ovs_be16 nsrcs;
union ovs_16aligned_in6_addr maddr;
};
BUILD_ASSERT_DECL(MLD2_RECORD_LEN == sizeof(struct mld2_record));
#define MLD_QUERY 130
#define MLD_REPORT 131
#define MLD_DONE 132
#define MLD2_REPORT 143
/* The IPv6 flow label is in the lower 20 bits of the first 32-bit word. */
#define IPV6_LABEL_MASK 0x000fffff
/* Example:
*
* char *string = "1 ::1 2";
* char ipv6_s[IPV6_SCAN_LEN + 1];
* struct in6_addr ipv6;
*
* if (ovs_scan(string, "%d"IPV6_SCAN_FMT"%d", &a, ipv6_s, &b)
* && inet_pton(AF_INET6, ipv6_s, &ipv6) == 1) {
* ...
* }
*/
#define IPV6_SCAN_FMT "%46[0123456789abcdefABCDEF:.]"
#define IPV6_SCAN_LEN 46
extern const struct in6_addr in6addr_exact;
#define IN6ADDR_EXACT_INIT { { { 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, \
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff } } }
extern const struct in6_addr in6addr_all_hosts;
#define IN6ADDR_ALL_HOSTS_INIT { { { 0xff,0x02,0x00,0x00,0x00,0x00,0x00,0x00, \
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01 } } }
extern const struct in6_addr in6addr_all_routers;
#define IN6ADDR_ALL_ROUTERS_INIT { { { 0xff,0x02,0x00,0x00,0x00,0x00,0x00,0x00, \
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x02 } } }
static inline bool ipv6_addr_equals(const struct in6_addr *a,
const struct in6_addr *b)
{
#ifdef IN6_ARE_ADDR_EQUAL
return IN6_ARE_ADDR_EQUAL(a, b);
#else
return !memcmp(a, b, sizeof(*a));
#endif
}
/* Checks the IPv6 address in 'mask' for all zeroes. */
static inline bool ipv6_mask_is_any(const struct in6_addr *mask) {
return ipv6_addr_equals(mask, &in6addr_any);
}
static inline bool ipv6_mask_is_exact(const struct in6_addr *mask) {
return ipv6_addr_equals(mask, &in6addr_exact);
}
static inline bool ipv6_is_all_hosts(const struct in6_addr *addr) {
return ipv6_addr_equals(addr, &in6addr_all_hosts);
}
static inline bool ipv6_addr_is_set(const struct in6_addr *addr) {
return !ipv6_addr_equals(addr, &in6addr_any);
}
static inline bool ipv6_addr_is_multicast(const struct in6_addr *ip) {
return ip->s6_addr[0] == 0xff;
}
static inline struct in6_addr
in6_addr_mapped_ipv4(ovs_be32 ip4)
{
struct in6_addr ip6;
memset(&ip6, 0, sizeof(ip6));
ip6.s6_addr[10] = 0xff, ip6.s6_addr[11] = 0xff;
memcpy(&ip6.s6_addr[12], &ip4, 4);
return ip6;
}
static inline void
in6_addr_set_mapped_ipv4(struct in6_addr *ip6, ovs_be32 ip4)
{
*ip6 = in6_addr_mapped_ipv4(ip4);
}
static inline ovs_be32
in6_addr_get_mapped_ipv4(const struct in6_addr *addr)
{
union ovs_16aligned_in6_addr *taddr =
(union ovs_16aligned_in6_addr *) addr;
if (IN6_IS_ADDR_V4MAPPED(addr)) {
return get_16aligned_be32(&taddr->be32[3]);
} else {
return INADDR_ANY;
}
}
void in6_addr_solicited_node(struct in6_addr *addr,
const struct in6_addr *ip6);
void in6_generate_eui64(struct eth_addr ea, const struct in6_addr *prefix,
struct in6_addr *lla);
void in6_generate_lla(struct eth_addr ea, struct in6_addr *lla);
/* Returns true if 'addr' is a link local address. Otherwise, false. */
bool in6_is_lla(struct in6_addr *addr);
void ipv6_multicast_to_ethernet(struct eth_addr *eth,
const struct in6_addr *ip6);
static inline bool dl_type_is_ip_any(ovs_be16 dl_type)
{
return dl_type == htons(ETH_TYPE_IP)
|| dl_type == htons(ETH_TYPE_IPV6);
}
/* Tunnel header */
/* GRE protocol header */
struct gre_base_hdr {
ovs_be16 flags;
ovs_be16 protocol;
};
#define GRE_CSUM 0x8000
#define GRE_ROUTING 0x4000
#define GRE_KEY 0x2000
#define GRE_SEQ 0x1000
#define GRE_STRICT 0x0800
#define GRE_REC 0x0700
#define GRE_FLAGS 0x00F8
#define GRE_VERSION 0x0007
/*
* ERSPAN protocol header and metadata
*
* Version 1 (Type II) header (8 octets [42:49])
* 0 1 2 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Ver | VLAN | COS | En|T| Session ID |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Reserved | Index |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*
* ERSPAN Version 2 (Type III) header (12 octets [42:49])
* 0 1 2 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Ver | VLAN | COS |BSO|T| Session ID |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Timestamp |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | SGT |P| FT | Hw ID |D|Gra|O|
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*/
/* ERSPAN has fixed 8-byte GRE header */
#define ERSPAN_GREHDR_LEN 8
#define ERSPAN_HDR(gre_base_hdr) \
((struct erspan_base_hdr *)((char *)gre_base_hdr + ERSPAN_GREHDR_LEN))
#define ERSPAN_V1_MDSIZE 4
#define ERSPAN_V2_MDSIZE 8
#define ERSPAN_SID_MASK 0x03ff /* 10-bit Session ID. */
#define ERSPAN_IDX_MASK 0xfffff /* v1 Index */
#define ERSPAN_HWID_MASK 0x03f0
#define ERSPAN_DIR_MASK 0x0008
struct erspan_base_hdr {
#ifdef WORDS_BIGENDIAN
uint8_t ver:4,
vlan_upper:4;
uint8_t vlan:8;
uint8_t cos:3,
en:2,
t:1,
session_id_upper:2;
uint8_t session_id:8;
#else
uint8_t vlan_upper:4,
ver:4;
uint8_t vlan:8;
uint8_t session_id_upper:2,
t:1,
en:2,
cos:3;
uint8_t session_id:8;
#endif
};
struct erspan_md2 {
ovs_16aligned_be32 timestamp;
ovs_be16 sgt;
#ifdef WORDS_BIGENDIAN
uint8_t p:1,
ft:5,
hwid_upper:2;
uint8_t hwid:4,
dir:1,
gra:2,
o:1;
#else
uint8_t hwid_upper:2,
ft:5,
p:1;
uint8_t o:1,
gra:2,
dir:1,
hwid:4;
#endif
};
struct erspan_metadata {
int version;
union {
ovs_be32 index; /* Version 1 (type II)*/
struct erspan_md2 md2; /* Version 2 (type III) */
} u;
};
static inline uint16_t get_sid(const struct erspan_base_hdr *ershdr)
{
return (ershdr->session_id_upper << 8) + ershdr->session_id;
}
static inline void set_sid(struct erspan_base_hdr *ershdr, uint16_t id)
{
ershdr->session_id = id & 0xff;
ershdr->session_id_upper = (id >> 8) &0x3;
}
static inline uint8_t get_hwid(const struct erspan_md2 *md2)
{
return (md2->hwid_upper << 4) + md2->hwid;
}
static inline void set_hwid(struct erspan_md2 *md2, uint8_t hwid)
{
md2->hwid = hwid & 0xf;
md2->hwid_upper = (hwid >> 4) & 0x3;
}
/* ERSPAN timestamp granularity
* 00b --> granularity = 100 microseconds
* 01b --> granularity = 100 nanoseconds
* 10b --> granularity = IEEE 1588
* Here we only support 100 microseconds.
*/
enum erspan_ts_gra {
ERSPAN_100US,
ERSPAN_100NS,
ERSPAN_IEEE1588,
};
static inline ovs_be32 get_erspan_ts(enum erspan_ts_gra gra)
{
ovs_be32 ts = 0;
switch (gra) {
case ERSPAN_100US:
ts = htonl((uint32_t)(time_wall_usec() / 100));
break;
case ERSPAN_100NS:
/* fall back */
case ERSPAN_IEEE1588:
/* fall back */
default:
OVS_NOT_REACHED();
break;
}
return ts;
}
/*
* GTP-U protocol header and metadata
* See:
* User Plane Protocol and Architectural Analysis on 3GPP 5G System
* draft-hmm-dmm-5g-uplane-analysis-00
*
* 0 1 2 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Ver |P|R|E|S|N| Message Type| Length |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Tunnel Endpoint Identifier |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Sequence Number | N-PDU Number | Next-Ext-Hdr |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* GTP-U Flags:
* P: Protocol Type (Set to '1')
* R: Reserved Bit (Set to '0')
* E: Extension Header Flag (Set to '1' if extension header exists)
* S: Sequence Number Flag (Set to '1' if sequence number exists)
* N: N-PDU Number Flag (Set to '1' if N-PDU number exists)
*
* GTP-U Message Type:
* Indicates the type of GTP-U message.
*
* GTP-U Length:
* Indicates the length in octets of the payload.
*
* User payload is transmitted in G-PDU packets.
*/
#define GTPU_VER_MASK 0xe0
#define GTPU_P_MASK 0x10
#define GTPU_E_MASK 0x04
#define GTPU_S_MASK 0x02
/* GTP-U UDP port. */
#define GTPU_DST_PORT 2152
/* Default GTP-U flags: Ver = 1 and P = 1. */
#define GTPU_FLAGS_DEFAULT 0x30
/* GTP-U message type for normal user plane PDU. */
#define GTPU_MSGTYPE_REQ 1 /* Echo Request. */
#define GTPU_MSGTYPE_REPL 2 /* Echo Reply. */
#define GTPU_MSGTYPE_GPDU 255 /* User Payload. */
struct gtpu_metadata {
uint8_t flags;
uint8_t msgtype;
};
BUILD_ASSERT_DECL(sizeof(struct gtpu_metadata) == 2);
struct gtpuhdr {
struct gtpu_metadata md;
ovs_be16 len;
ovs_16aligned_be32 teid;
};
BUILD_ASSERT_DECL(sizeof(struct gtpuhdr) == 8);
struct gtpuhdr_opt {
ovs_be16 seqno;
uint8_t pdu_number;
uint8_t next_ext_type;
};
BUILD_ASSERT_DECL(sizeof(struct gtpuhdr_opt) == 4);
/* VXLAN protocol header */
struct vxlanhdr {
union {
ovs_16aligned_be32 vx_flags; /* VXLAN flags. */
struct {
uint8_t flags; /* VXLAN GPE flags. */
uint8_t reserved[2]; /* 16 bits reserved. */
uint8_t next_protocol; /* Next Protocol field for VXLAN GPE. */
} vx_gpe;
};
ovs_16aligned_be32 vx_vni;
};
BUILD_ASSERT_DECL(sizeof(struct vxlanhdr) == 8);
#define VXLAN_FLAGS 0x08000000 /* struct vxlanhdr.vx_flags required value. */
/*
* VXLAN Generic Protocol Extension (VXLAN_F_GPE):
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* |R|R|Ver|I|P|R|O| Reserved |Next Protocol |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | VXLAN Network Identifier (VNI) | Reserved |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* Ver = Version. Indicates VXLAN GPE protocol version.
*
* P = Next Protocol Bit. The P bit is set to indicate that the
* Next Protocol field is present.
*
* O = OAM Flag Bit. The O bit is set to indicate that the packet
* is an OAM packet.
*
* Next Protocol = This 8 bit field indicates the protocol header
* immediately following the VXLAN GPE header.
*
* https://tools.ietf.org/html/draft-ietf-nvo3-vxlan-gpe-01
*/
/* Fields in struct vxlanhdr.vx_gpe.flags */
#define VXLAN_GPE_FLAGS_VER 0x30 /* Version. */
#define VXLAN_GPE_FLAGS_P 0x04 /* Next Protocol Bit. */
#define VXLAN_GPE_FLAGS_O 0x01 /* OAM Bit. */
/* VXLAN-GPE header flags. */
#define VXLAN_HF_VER ((1U <<29) | (1U <<28))
#define VXLAN_HF_NP (1U <<26)
#define VXLAN_HF_OAM (1U <<24)
#define VXLAN_GPE_USED_BITS (VXLAN_HF_VER | VXLAN_HF_NP | VXLAN_HF_OAM | \
0xff)
/* VXLAN-GPE header Next Protocol. */
#define VXLAN_GPE_NP_IPV4 0x01
#define VXLAN_GPE_NP_IPV6 0x02
#define VXLAN_GPE_NP_ETHERNET 0x03
#define VXLAN_GPE_NP_NSH 0x04
#define VXLAN_F_GPE 0x4000
#define VXLAN_HF_GPE 0x04000000
/* SRv6 protocol header. */
#define IPV6_SRCRT_TYPE_4 4
#define SRV6_BASE_HDR_LEN 8
struct srv6_base_hdr {
struct ip6_rt_hdr rt_hdr;
uint8_t last_entry;
uint8_t flags;
ovs_be16 tag;
};
BUILD_ASSERT_DECL(sizeof(struct srv6_base_hdr) == SRV6_BASE_HDR_LEN);
/* Input values for PACKET_TYPE macros have to be in host byte order.
* The _BE postfix indicates result is in network byte order. Otherwise result
* is in host byte order. */
#define PACKET_TYPE(NS, NS_TYPE) ((uint32_t) ((NS) << 16 | (NS_TYPE)))
#define PACKET_TYPE_BE(NS, NS_TYPE) (htonl((NS) << 16 | (NS_TYPE)))
/* Returns the host byte ordered namespace of 'packet type'. */
static inline uint16_t
pt_ns(ovs_be32 packet_type)
{
return ntohl(packet_type) >> 16;
}
/* Returns the network byte ordered namespace type of 'packet type'. */
static inline ovs_be16
pt_ns_type_be(ovs_be32 packet_type)
{
return be32_to_be16(packet_type);
}
/* Returns the host byte ordered namespace type of 'packet type'. */
static inline uint16_t
pt_ns_type(ovs_be32 packet_type)
{
return ntohs(pt_ns_type_be(packet_type));
}
/* Well-known packet_type field values. */
enum packet_type {
PT_ETH = PACKET_TYPE(OFPHTN_ONF, 0x0000), /* Default PT: Ethernet */
PT_USE_NEXT_PROTO = PACKET_TYPE(OFPHTN_ONF, 0xfffe), /* Pseudo PT for decap. */
PT_IPV4 = PACKET_TYPE(OFPHTN_ETHERTYPE, ETH_TYPE_IP),
PT_IPV6 = PACKET_TYPE(OFPHTN_ETHERTYPE, ETH_TYPE_IPV6),
PT_MPLS = PACKET_TYPE(OFPHTN_ETHERTYPE, ETH_TYPE_MPLS),
PT_MPLS_MC = PACKET_TYPE(OFPHTN_ETHERTYPE, ETH_TYPE_MPLS_MCAST),
PT_NSH = PACKET_TYPE(OFPHTN_ETHERTYPE, ETH_TYPE_NSH),
PT_UNKNOWN = PACKET_TYPE(0xffff, 0xffff), /* Unknown packet type. */
};
void ipv6_format_addr(const struct in6_addr *addr, struct ds *);
void ipv6_format_addr_bracket(const struct in6_addr *addr, struct ds *,
bool bracket);
void ipv6_format_mapped(const struct in6_addr *addr, struct ds *);
void ipv6_format_masked(const struct in6_addr *addr,
const struct in6_addr *mask, struct ds *);
const char * ipv6_string_mapped(char *addr_str, const struct in6_addr *addr);
struct in6_addr ipv6_addr_bitand(const struct in6_addr *src,
const struct in6_addr *mask);
struct in6_addr ipv6_addr_bitxor(const struct in6_addr *a,
const struct in6_addr *b);
bool ipv6_is_zero(const struct in6_addr *a);
struct in6_addr ipv6_create_mask(int mask);
int ipv6_count_cidr_bits(const struct in6_addr *netmask);
bool ipv6_is_cidr(const struct in6_addr *netmask);
bool ipv6_parse(const char *s, struct in6_addr *ip);
char *ipv6_parse_masked(const char *s, struct in6_addr *ipv6,
struct in6_addr *mask);
char *ipv6_parse_cidr(const char *s, struct in6_addr *ip, unsigned int *plen)
OVS_WARN_UNUSED_RESULT;
char *ipv6_parse_masked_len(const char *s, int *n, struct in6_addr *ipv6,
struct in6_addr *mask);
char *ipv6_parse_cidr_len(const char *s, int *n, struct in6_addr *ip,
unsigned int *plen)
OVS_WARN_UNUSED_RESULT;
void *eth_compose(struct dp_packet *, const struct eth_addr eth_dst,
const struct eth_addr eth_src, uint16_t eth_type,
size_t size);
void *snap_compose(struct dp_packet *, const struct eth_addr eth_dst,
const struct eth_addr eth_src,
unsigned int oui, uint16_t snap_type, size_t size);
void packet_set_ipv4(struct dp_packet *, ovs_be32 src, ovs_be32 dst, uint8_t tos,
uint8_t ttl);
void packet_set_ipv4_addr(struct dp_packet *packet, ovs_16aligned_be32 *addr,
ovs_be32 new_addr);
void packet_set_ipv6(struct dp_packet *, const struct in6_addr *src,
const struct in6_addr *dst, uint8_t tc,
ovs_be32 fl, uint8_t hlmit);
void packet_set_ipv6_addr(struct dp_packet *packet, uint8_t proto,
ovs_16aligned_be32 addr[4],
const struct in6_addr *new_addr,
bool recalculate_csum);
void packet_set_ipv6_flow_label(ovs_16aligned_be32 *flow_label,
ovs_be32 flow_key);
void packet_set_ipv6_tc(ovs_16aligned_be32 *flow_label, uint8_t tc);
void packet_set_tcp_port(struct dp_packet *, ovs_be16 src, ovs_be16 dst);
void packet_set_udp_port(struct dp_packet *, ovs_be16 src, ovs_be16 dst);
void packet_set_sctp_port(struct dp_packet *, ovs_be16 src, ovs_be16 dst);
void packet_set_icmp(struct dp_packet *, uint8_t type, uint8_t code);
void packet_set_nd(struct dp_packet *, const struct in6_addr *target,
const struct eth_addr sll, const struct eth_addr tll);
void packet_set_nd_ext(struct dp_packet *packet,
const ovs_16aligned_be32 rso_flags,
const uint8_t opt_type);
void packet_set_igmp3_query(struct dp_packet *, uint8_t max_resp,
ovs_be32 group, bool srs, uint8_t qrv,
uint8_t qqic);
void packet_format_tcp_flags(struct ds *, uint16_t);
const char *packet_tcp_flag_to_string(uint32_t flag);
void *compose_ipv6(struct dp_packet *packet, uint8_t proto,
const struct in6_addr *src, const struct in6_addr *dst,
uint8_t key_tc, ovs_be32 key_fl, uint8_t key_hl, int size);
void compose_arp__(struct dp_packet *);
void compose_arp(struct dp_packet *, uint16_t arp_op,
const struct eth_addr arp_sha,
const struct eth_addr arp_tha, bool broadcast,
ovs_be32 arp_spa, ovs_be32 arp_tpa);
void compose_nd_ns(struct dp_packet *, const struct eth_addr eth_src,
const struct in6_addr *ipv6_src,
const struct in6_addr *ipv6_dst);
void compose_nd_na(struct dp_packet *, const struct eth_addr eth_src,
const struct eth_addr eth_dst,
const struct in6_addr *ipv6_src,
const struct in6_addr *ipv6_dst,
ovs_be32 rso_flags);
void compose_nd_ra(struct dp_packet *,
const struct eth_addr eth_src,
const struct eth_addr eth_dst,
const struct in6_addr *ipv6_src,
const struct in6_addr *ipv6_dst,
uint8_t cur_hop_limit, uint8_t mo_flags,
ovs_be16 router_lt, ovs_be32 reachable_time,
ovs_be32 retrans_timer, uint32_t mtu);
void packet_put_ra_prefix_opt(struct dp_packet *,
uint8_t plen, uint8_t la_flags,
ovs_be32 valid_lifetime,
ovs_be32 preferred_lifetime,
const ovs_be128 router_prefix);
uint32_t packet_csum_pseudoheader(const struct ip_header *);
bool packet_rh_present(struct dp_packet *packet, uint8_t *nexthdr,
bool *first_frag);
void IP_ECN_set_ce(struct dp_packet *pkt, bool is_ipv6);
void packet_tcp_complete_csum(struct dp_packet *, bool is_inner);
void packet_udp_complete_csum(struct dp_packet *, bool is_inner);
void packet_sctp_complete_csum(struct dp_packet *, bool is_inner);
#define DNS_HEADER_LEN 12
struct dns_header {
ovs_be16 id;
uint8_t lo_flag; /* QR (1), OPCODE (4), AA (1), TC (1) and RD (1) */
uint8_t hi_flag; /* RA (1), Z (3) and RCODE (4) */
ovs_be16 qdcount; /* Num of entries in the question section. */
ovs_be16 ancount; /* Num of resource records in the answer section. */
/* Num of name server records in the authority record section. */
ovs_be16 nscount;
/* Num of resource records in the additional records section. */
ovs_be16 arcount;
};
BUILD_ASSERT_DECL(DNS_HEADER_LEN == sizeof(struct dns_header));
#define DNS_QUERY_TYPE_A 0x01
#define DNS_QUERY_TYPE_AAAA 0x1c
#define DNS_QUERY_TYPE_ANY 0xff
#define DNS_CLASS_IN 0x01
#define DNS_DEFAULT_RR_TTL 3600
#endif /* packets.h */