2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/lib/timeval.c
Frode Nordahl 6ece3d57b2 timeval: Add internal timewarp interface.
It may be desirable to make use of time warp functionality in unit
tests.

Separate logic from time/stop unixctl into timeval_stop() and add
a new timeval_warp() interface for directing monotonic clock into
slow path and advancing the current monotonic directly.

This will be used in a patch that implements unit tests for the
cooperative multitasking module.

Signed-off-by: Frode Nordahl <frode.nordahl@canonical.com>
Signed-off-by: Ilya Maximets <i.maximets@ovn.org>
2024-01-17 14:41:18 +01:00

897 lines
24 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "timeval.h"
#include <errno.h>
#include <poll.h>
#include <pthread.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <unistd.h>
#include "coverage.h"
#include "dummy.h"
#include "openvswitch/dynamic-string.h"
#include "fatal-signal.h"
#include "hash.h"
#include "openvswitch/hmap.h"
#include "ovs-rcu.h"
#include "ovs-thread.h"
#include "signals.h"
#include "seq.h"
#include "unixctl.h"
#include "util.h"
#include "openvswitch/vlog.h"
VLOG_DEFINE_THIS_MODULE(timeval);
COVERAGE_DEFINE(long_poll_interval);
#if !defined(HAVE_CLOCK_GETTIME)
typedef unsigned int clockid_t;
static int clock_gettime(clock_t id, struct timespec *ts);
#ifndef CLOCK_MONOTONIC
#define CLOCK_MONOTONIC 1
#endif
#ifndef CLOCK_REALTIME
#define CLOCK_REALTIME 2
#endif
#endif /* !defined(HAVE_CLOCK_GETTIME) */
#ifdef _WIN32
/* Number of 100 ns intervals from January 1, 1601 till January 1, 1970. */
const static unsigned long long unix_epoch = 116444736000000000;
#endif /* _WIN32 */
/* Structure set by unixctl time/warp command. */
struct large_warp {
struct unixctl_conn *conn; /* Connection waiting for warp response. */
long long int total_warp; /* Total offset to be added to monotonic time. */
long long int warp; /* 'total_warp' offset done in steps of 'warp'. */
unsigned int main_thread_id; /* Identification for the main thread. */
};
struct clock {
clockid_t id; /* CLOCK_MONOTONIC or CLOCK_REALTIME. */
/* Features for use by unit tests. Protected by 'mutex'. */
atomic_bool slow_path; /* True if warped or stopped. */
bool stopped OVS_GUARDED; /* Disable real-time updates if true. */
struct ovs_mutex mutex;
struct timespec warp OVS_GUARDED; /* Offset added for unit tests. */
struct timespec cache OVS_GUARDED; /* Last time read from kernel. */
struct large_warp large_warp OVS_GUARDED; /* Connection information waiting
for warp response. */
};
/* Our clocks. */
static struct clock monotonic_clock; /* CLOCK_MONOTONIC, if available. */
static struct clock wall_clock; /* CLOCK_REALTIME. */
/* The monotonic time at which the time module was initialized. */
static long long int boot_time;
/* True only when timeval_dummy_register() is called. */
static bool timewarp_enabled;
/* Reference to the seq struct. Threads other than main thread can
* wait on timewarp_seq and be waken up when time is warped. */
static struct seq *timewarp_seq;
/* Last value of 'timewarp_seq'. */
DEFINE_STATIC_PER_THREAD_DATA(uint64_t, last_seq, 0);
/* Monotonic time in milliseconds at which to die with SIGALRM (if not
* LLONG_MAX). */
static long long int deadline = LLONG_MAX;
/* Monotonic time, in milliseconds, at which the last call to time_poll() woke
* up. */
DEFINE_STATIC_PER_THREAD_DATA(long long int, last_wakeup, 0);
static void log_poll_interval(long long int last_wakeup);
static struct rusage *get_recent_rusage(void);
static int getrusage_thread(struct rusage *);
static void refresh_rusage(void);
static void timespec_add(struct timespec *sum,
const struct timespec *a, const struct timespec *b);
static void
init_clock(struct clock *c, clockid_t id)
{
memset(c, 0, sizeof *c);
c->id = id;
ovs_mutex_init(&c->mutex);
atomic_init(&c->slow_path, false);
xclock_gettime(c->id, &c->cache);
}
static void
do_init_time(void)
{
struct timespec ts;
coverage_init();
timewarp_seq = seq_create();
init_clock(&monotonic_clock, (!clock_gettime(CLOCK_MONOTONIC, &ts)
? CLOCK_MONOTONIC
: CLOCK_REALTIME));
init_clock(&wall_clock, CLOCK_REALTIME);
boot_time = timespec_to_msec(&monotonic_clock.cache);
}
/* Initializes the timetracking module, if not already initialized. */
static void
time_init(void)
{
static pthread_once_t once = PTHREAD_ONCE_INIT;
pthread_once(&once, do_init_time);
}
static void
time_timespec__(struct clock *c, struct timespec *ts)
{
bool slow_path;
time_init();
atomic_read_relaxed(&c->slow_path, &slow_path);
if (!slow_path) {
xclock_gettime(c->id, ts);
} else {
struct timespec warp;
struct timespec cache;
bool stopped;
ovs_mutex_lock(&c->mutex);
stopped = c->stopped;
warp = c->warp;
cache = c->cache;
ovs_mutex_unlock(&c->mutex);
if (!stopped) {
xclock_gettime(c->id, &cache);
}
timespec_add(ts, &cache, &warp);
}
}
/* Stores a monotonic timer into '*ts'. */
void
time_timespec(struct timespec *ts)
{
time_timespec__(&monotonic_clock, ts);
}
/* Stores the current time into '*ts'. */
void
time_wall_timespec(struct timespec *ts)
{
time_timespec__(&wall_clock, ts);
}
static time_t
time_sec__(struct clock *c)
{
struct timespec ts;
time_timespec__(c, &ts);
return ts.tv_sec;
}
/* Returns a monotonic timer, in seconds. */
time_t
time_now(void)
{
return time_sec__(&monotonic_clock);
}
/* Returns the current time, in seconds. */
time_t
time_wall(void)
{
return time_sec__(&wall_clock);
}
static long long int
time_msec__(struct clock *c)
{
struct timespec ts;
time_timespec__(c, &ts);
return timespec_to_msec(&ts);
}
/* Returns a monotonic timer, in ms. */
long long int
time_msec(void)
{
return time_msec__(&monotonic_clock);
}
/* Returns the current time, in ms. */
long long int
time_wall_msec(void)
{
return time_msec__(&wall_clock);
}
static long long int
time_usec__(struct clock *c)
{
struct timespec ts;
time_timespec__(c, &ts);
return timespec_to_usec(&ts);
}
/* Returns a monotonic timer, in microseconds. */
long long int
time_usec(void)
{
return time_usec__(&monotonic_clock);
}
/* Returns the current time, in microseconds. */
long long int
time_wall_usec(void)
{
return time_usec__(&wall_clock);
}
/* Configures the program to die with SIGALRM 'secs' seconds from now, if
* 'secs' is nonzero, or disables the feature if 'secs' is zero. */
void
time_alarm(unsigned int secs)
{
long long int now;
long long int msecs;
assert_single_threaded();
time_init();
now = time_msec();
msecs = secs * 1000LL;
deadline = now < LLONG_MAX - msecs ? now + msecs : LLONG_MAX;
}
/* Like poll(), except:
*
* - The timeout is specified as an absolute time, as defined by
* time_msec(), instead of a duration.
*
* - On error, returns a negative error code (instead of setting errno).
*
* - If interrupted by a signal, retries automatically until the original
* timeout is reached. (Because of this property, this function will
* never return -EINTR.)
*
* Stores the number of milliseconds elapsed during poll in '*elapsed'. */
int
time_poll(struct pollfd *pollfds, int n_pollfds, HANDLE *handles OVS_UNUSED,
long long int timeout_when, int *elapsed)
{
long long int *last_wakeup = last_wakeup_get();
long long int start;
bool quiescent;
int retval = 0;
time_init();
coverage_clear();
coverage_run();
if (*last_wakeup && !thread_is_pmd()) {
log_poll_interval(*last_wakeup);
}
start = time_msec();
timeout_when = MIN(timeout_when, deadline);
quiescent = ovsrcu_is_quiescent();
for (;;) {
long long int now = time_msec();
int time_left;
if (now >= timeout_when) {
time_left = 0;
} else if ((unsigned long long int) timeout_when - now > INT_MAX) {
time_left = INT_MAX;
} else {
time_left = timeout_when - now;
}
if (!quiescent) {
if (!time_left) {
ovsrcu_quiesce();
} else {
ovsrcu_quiesce_start();
}
}
#ifndef _WIN32
retval = poll(pollfds, n_pollfds, time_left);
if (retval < 0) {
retval = -errno;
}
#else
if (n_pollfds > MAXIMUM_WAIT_OBJECTS) {
VLOG_ERR("Cannot handle more than maximum wait objects\n");
} else if (n_pollfds != 0) {
retval = WaitForMultipleObjects(n_pollfds, handles, FALSE,
time_left);
}
if (retval < 0) {
/* XXX This will be replace by a win error to errno
conversion function */
retval = -WSAGetLastError();
retval = -EINVAL;
}
#endif
if (!quiescent && time_left) {
ovsrcu_quiesce_end();
}
if (deadline <= time_msec()) {
#ifndef _WIN32
fatal_signal_handler(SIGALRM);
#else
VLOG_ERR("wake up from WaitForMultipleObjects after deadline");
fatal_signal_handler(SIGTERM);
#endif
if (retval < 0) {
retval = 0;
}
break;
}
if (retval != -EINTR) {
break;
}
}
*last_wakeup = time_msec();
refresh_rusage();
*elapsed = *last_wakeup - start;
return retval;
}
long long int
timespec_to_msec(const struct timespec *ts)
{
return (long long int) ts->tv_sec * 1000 + ts->tv_nsec / (1000 * 1000);
}
long long int
timeval_to_msec(const struct timeval *tv)
{
return (long long int) tv->tv_sec * 1000 + tv->tv_usec / 1000;
}
long long int
timespec_to_usec(const struct timespec *ts)
{
return (long long int) ts->tv_sec * 1000 * 1000 + ts->tv_nsec / 1000;
}
long long int
timeval_to_usec(const struct timeval *tv)
{
return (long long int) tv->tv_sec * 1000 * 1000 + tv->tv_usec;
}
/* Returns the monotonic time at which the "time" module was initialized, in
* milliseconds. */
long long int
time_boot_msec(void)
{
time_init();
return boot_time;
}
#ifdef _WIN32
static ULARGE_INTEGER
xgetfiletime(void)
{
ULARGE_INTEGER current_time;
FILETIME current_time_ft;
/* Returns current time in UTC as a 64-bit value representing the number
* of 100-nanosecond intervals since January 1, 1601 . */
GetSystemTimePreciseAsFileTime(&current_time_ft);
current_time.LowPart = current_time_ft.dwLowDateTime;
current_time.HighPart = current_time_ft.dwHighDateTime;
return current_time;
}
static int
clock_gettime(clock_t id, struct timespec *ts)
{
if (id == CLOCK_MONOTONIC) {
static LARGE_INTEGER freq;
LARGE_INTEGER count;
long long int ns;
if (!freq.QuadPart) {
/* Number of counts per second. */
QueryPerformanceFrequency(&freq);
}
/* Total number of counts from a starting point. */
QueryPerformanceCounter(&count);
/* Total nano seconds from a starting point. */
ns = (double) count.QuadPart / freq.QuadPart * 1000000000;
ts->tv_sec = count.QuadPart / freq.QuadPart;
ts->tv_nsec = ns % 1000000000;
} else if (id == CLOCK_REALTIME) {
ULARGE_INTEGER current_time = xgetfiletime();
/* Time from Epoch to now. */
ts->tv_sec = (current_time.QuadPart - unix_epoch) / 10000000;
ts->tv_nsec = ((current_time.QuadPart - unix_epoch) %
10000000) * 100;
} else {
return -1;
}
return 0;
}
#endif /* _WIN32 */
#if defined(__MACH__) && !defined(HAVE_CLOCK_GETTIME)
#include <mach/clock.h>
#include <mach/mach.h>
static int
clock_gettime(clock_t id, struct timespec *ts)
{
mach_timespec_t mts;
clock_serv_t clk;
clock_id_t cid;
if (id == CLOCK_MONOTONIC) {
cid = SYSTEM_CLOCK;
} else if (id == CLOCK_REALTIME) {
cid = CALENDAR_CLOCK;
} else {
return -1;
}
host_get_clock_service(mach_host_self(), cid, &clk);
clock_get_time(clk, &mts);
mach_port_deallocate(mach_task_self(), clk);
ts->tv_sec = mts.tv_sec;
ts->tv_nsec = mts.tv_nsec;
return 0;
}
#endif
void
xgettimeofday(struct timeval *tv)
{
#ifndef _WIN32
if (gettimeofday(tv, NULL) == -1) {
VLOG_FATAL("gettimeofday failed (%s)", ovs_strerror(errno));
}
#else
ULARGE_INTEGER current_time = xgetfiletime();
tv->tv_sec = (current_time.QuadPart - unix_epoch) / 10000000;
tv->tv_usec = ((current_time.QuadPart - unix_epoch) %
10000000) / 10;
#endif
}
void
xclock_gettime(clock_t id, struct timespec *ts)
{
if (clock_gettime(id, ts) == -1) {
/* It seems like a bad idea to try to use vlog here because it is
* likely to try to check the current time. */
ovs_abort(errno, "xclock_gettime() failed");
}
}
static void
msec_to_timespec(long long int ms, struct timespec *ts)
{
ts->tv_sec = ms / 1000;
ts->tv_nsec = (ms % 1000) * 1000 * 1000;
}
void
nsec_to_timespec(long long int nsec, struct timespec *ts)
{
if (!nsec) {
ts->tv_sec = ts->tv_nsec = 0;
return;
}
ts->tv_sec = nsec / (1000 * 1000 * 1000);
nsec = nsec % (1000 * 1000 * 1000);
/* This is to handle dates before epoch. */
if (OVS_UNLIKELY(nsec < 0)) {
nsec += 1000 * 1000 * 1000;
ts->tv_sec--;
}
ts->tv_nsec = nsec;
}
static void
timewarp_work(void)
{
struct clock *c = &monotonic_clock;
struct timespec warp;
ovs_mutex_lock(&c->mutex);
if (!c->large_warp.conn) {
ovs_mutex_unlock(&c->mutex);
return;
}
if (c->large_warp.total_warp >= c->large_warp.warp) {
msec_to_timespec(c->large_warp.warp, &warp);
timespec_add(&c->warp, &c->warp, &warp);
c->large_warp.total_warp -= c->large_warp.warp;
} else if (c->large_warp.total_warp) {
msec_to_timespec(c->large_warp.total_warp, &warp);
timespec_add(&c->warp, &c->warp, &warp);
c->large_warp.total_warp = 0;
} else {
/* c->large_warp.total_warp is 0. */
msec_to_timespec(c->large_warp.warp, &warp);
timespec_add(&c->warp, &c->warp, &warp);
}
if (!c->large_warp.total_warp) {
unixctl_command_reply(c->large_warp.conn, "warped");
c->large_warp.conn = NULL;
}
ovs_mutex_unlock(&c->mutex);
seq_change(timewarp_seq);
/* give threads (eg. monitor) some chances to run */
#ifndef _WIN32
poll(NULL, 0, 10);
#else
Sleep(10);
#endif
}
/* Perform work needed for "timewarp_seq"'s producer and consumers. */
void
timewarp_run(void)
{
/* The function is a no-op unless timeval_dummy_register() is called. */
if (timewarp_enabled) {
unsigned int thread_id;
ovs_mutex_lock(&monotonic_clock.mutex);
thread_id = monotonic_clock.large_warp.main_thread_id;
ovs_mutex_unlock(&monotonic_clock.mutex);
if (thread_id != ovsthread_id_self()) {
/* For threads other than the thread that changes the sequence,
* wait on it. */
uint64_t *last_seq = last_seq_get();
*last_seq = seq_read(timewarp_seq);
seq_wait(timewarp_seq, *last_seq);
} else {
/* Work on adding the remaining warps. */
timewarp_work();
}
}
}
static long long int
timeval_diff_msec(const struct timeval *a, const struct timeval *b)
{
return timeval_to_msec(a) - timeval_to_msec(b);
}
static void
timespec_add(struct timespec *sum,
const struct timespec *a,
const struct timespec *b)
{
struct timespec tmp;
tmp.tv_sec = a->tv_sec + b->tv_sec;
tmp.tv_nsec = a->tv_nsec + b->tv_nsec;
if (tmp.tv_nsec >= 1000 * 1000 * 1000) {
tmp.tv_nsec -= 1000 * 1000 * 1000;
tmp.tv_sec++;
}
*sum = tmp;
}
static bool
is_warped(const struct clock *c)
{
bool warped;
ovs_mutex_lock(&c->mutex);
warped = monotonic_clock.warp.tv_sec || monotonic_clock.warp.tv_nsec;
ovs_mutex_unlock(&c->mutex);
return warped;
}
static void
log_poll_interval(long long int last_wakeup)
{
long long int interval = time_msec() - last_wakeup;
if (interval >= 1000 && !is_warped(&monotonic_clock)) {
const struct rusage *last_rusage = get_recent_rusage();
struct rusage rusage;
COVERAGE_INC(long_poll_interval);
if (!getrusage_thread(&rusage)) {
VLOG_WARN("Unreasonably long %lldms poll interval"
" (%lldms user, %lldms system)",
interval,
timeval_diff_msec(&rusage.ru_utime,
&last_rusage->ru_utime),
timeval_diff_msec(&rusage.ru_stime,
&last_rusage->ru_stime));
if (rusage.ru_minflt > last_rusage->ru_minflt
|| rusage.ru_majflt > last_rusage->ru_majflt) {
VLOG_WARN("faults: %ld minor, %ld major",
rusage.ru_minflt - last_rusage->ru_minflt,
rusage.ru_majflt - last_rusage->ru_majflt);
}
if (rusage.ru_inblock > last_rusage->ru_inblock
|| rusage.ru_oublock > last_rusage->ru_oublock) {
VLOG_WARN("disk: %ld reads, %ld writes",
rusage.ru_inblock - last_rusage->ru_inblock,
rusage.ru_oublock - last_rusage->ru_oublock);
}
if (rusage.ru_nvcsw > last_rusage->ru_nvcsw
|| rusage.ru_nivcsw > last_rusage->ru_nivcsw) {
VLOG_WARN("context switches: %ld voluntary, %ld involuntary",
rusage.ru_nvcsw - last_rusage->ru_nvcsw,
rusage.ru_nivcsw - last_rusage->ru_nivcsw);
}
} else {
VLOG_WARN("Unreasonably long %lldms poll interval", interval);
}
coverage_log();
}
}
/* CPU usage tracking. */
struct cpu_usage {
long long int when; /* Time that this sample was taken. */
unsigned long long int cpu; /* Total user+system CPU usage when sampled. */
};
struct cpu_tracker {
struct cpu_usage older;
struct cpu_usage newer;
int cpu_usage;
struct rusage recent_rusage;
};
DEFINE_PER_THREAD_MALLOCED_DATA(struct cpu_tracker *, cpu_tracker_var);
static struct cpu_tracker *
get_cpu_tracker(void)
{
struct cpu_tracker *t = cpu_tracker_var_get();
if (!t) {
t = xzalloc(sizeof *t);
t->older.when = LLONG_MIN;
t->newer.when = LLONG_MIN;
cpu_tracker_var_set_unsafe(t);
}
return t;
}
static struct rusage *
get_recent_rusage(void)
{
return &get_cpu_tracker()->recent_rusage;
}
static int
getrusage_thread(struct rusage *rusage OVS_UNUSED)
{
#ifdef RUSAGE_THREAD
return getrusage(RUSAGE_THREAD, rusage);
#else
errno = EINVAL;
return -1;
#endif
}
static void
refresh_rusage(void)
{
struct cpu_tracker *t = get_cpu_tracker();
struct rusage *recent_rusage = &t->recent_rusage;
if (!getrusage_thread(recent_rusage)) {
long long int now = time_msec();
if (now >= t->newer.when + 3 * 1000) {
t->older = t->newer;
t->newer.when = now;
t->newer.cpu = (timeval_to_msec(&recent_rusage->ru_utime) +
timeval_to_msec(&recent_rusage->ru_stime));
if (t->older.when != LLONG_MIN && t->newer.cpu > t->older.cpu) {
unsigned int dividend = t->newer.cpu - t->older.cpu;
unsigned int divisor = (t->newer.when - t->older.when) / 100;
t->cpu_usage = divisor > 0 ? dividend / divisor : -1;
} else {
t->cpu_usage = -1;
}
}
}
}
/* Returns an estimate of this process's CPU usage, as a percentage, over the
* past few seconds of wall-clock time. Returns -1 if no estimate is available
* (which will happen if the process has not been running long enough to have
* an estimate, and can happen for other reasons as well). */
int
get_cpu_usage(void)
{
return get_cpu_tracker()->cpu_usage;
}
/* Unixctl interface. */
/* "time/stop" stops the monotonic time returned by e.g. time_msec() from
* advancing, except due to later calls to "time/warp". */
void
timeval_stop(void)
{
ovs_mutex_lock(&monotonic_clock.mutex);
atomic_store_relaxed(&monotonic_clock.slow_path, true);
monotonic_clock.stopped = true;
xclock_gettime(monotonic_clock.id, &monotonic_clock.cache);
ovs_mutex_unlock(&monotonic_clock.mutex);
}
static void
timeval_stop_cb(struct unixctl_conn *conn,
int argc OVS_UNUSED, const char *argv[] OVS_UNUSED,
void *aux OVS_UNUSED)
{
timeval_stop();
unixctl_command_reply(conn, NULL);
}
/* "time/warp MSECS" advances the current monotonic time by the specified
* number of milliseconds. Unless "time/stop" has also been executed, the
* monotonic clock continues to tick forward at the normal rate afterward.
*
* "time/warp LARGE_MSECS MSECS" is a variation of the above command. It
* advances the current monotonic time by LARGE_MSECS. This is done MSECS
* at a time in each run of the main thread. This gives other threads
* time to run after the clock has been advanced by MSECS.
*
* Does not affect wall clock readings. */
static void
timeval_warp_cb(struct unixctl_conn *conn,
int argc OVS_UNUSED, const char *argv[], void *aux OVS_UNUSED)
{
long long int total_warp = argc > 2 ? atoll(argv[1]) : 0;
long long int msecs = argc > 2 ? atoll(argv[2]) : atoll(argv[1]);
if (msecs <= 0 || total_warp < 0) {
unixctl_command_reply_error(conn, "invalid MSECS");
return;
}
ovs_mutex_lock(&monotonic_clock.mutex);
if (monotonic_clock.large_warp.conn) {
ovs_mutex_unlock(&monotonic_clock.mutex);
unixctl_command_reply_error(conn, "A previous warp in progress");
return;
}
atomic_store_relaxed(&monotonic_clock.slow_path, true);
monotonic_clock.large_warp.conn = conn;
monotonic_clock.large_warp.total_warp = total_warp;
monotonic_clock.large_warp.warp = msecs;
monotonic_clock.large_warp.main_thread_id = ovsthread_id_self();
ovs_mutex_unlock(&monotonic_clock.mutex);
timewarp_work();
}
/* Direct monotonic clock into slow path and advance the current monotonic
* time by 'msecs' milliseconds directly. This is for use in unit tests. */
void
timeval_warp(long long int msecs)
{
struct clock *c = &monotonic_clock;
struct timespec warp;
ovs_mutex_lock(&monotonic_clock.mutex);
atomic_store_relaxed(&monotonic_clock.slow_path, true);
msec_to_timespec(msecs, &warp);
timespec_add(&c->warp, &c->warp, &warp);
ovs_mutex_unlock(&monotonic_clock.mutex);
}
void
timeval_dummy_register(void)
{
timewarp_enabled = true;
unixctl_command_register("time/stop", "", 0, 0, timeval_stop_cb, NULL);
unixctl_command_register("time/warp", "[large_msecs] msecs", 1, 2,
timeval_warp_cb, NULL);
}
/* strftime() with an extension for high-resolution timestamps. Any '#'s in
* 'format' will be replaced by subseconds, e.g. use "%S.###" to obtain results
* like "01.123". */
size_t
strftime_msec(char *s, size_t max, const char *format,
const struct tm_msec *tm)
{
size_t n;
/* Visual Studio 2013's behavior is to crash when 0 is passed as second
* argument to strftime. */
n = max ? strftime(s, max, format, &tm->tm) : 0;
if (n) {
char decimals[4];
char *p;
sprintf(decimals, "%03d", tm->msec);
for (p = strchr(s, '#'); p; p = strchr(p, '#')) {
char *d = decimals;
while (*p == '#') {
*p++ = *d ? *d++ : '0';
}
}
}
return n;
}
struct tm_msec *
localtime_msec(long long int now, struct tm_msec *result)
{
time_t now_sec = now / 1000;
localtime_r(&now_sec, &result->tm);
result->msec = now % 1000;
return result;
}
struct tm_msec *
gmtime_msec(long long int now, struct tm_msec *result)
{
time_t now_sec = now / 1000;
gmtime_r(&now_sec, &result->tm);
result->msec = now % 1000;
return result;
}