2
0
mirror of https://github.com/openvswitch/ovs synced 2025-09-05 08:45:23 +00:00
Files
ovs/lib/flow.c
Justin Pettit 685a51a5b8 nicira-ext: Support matching IPv6 Neighbor Discovery messages.
IPv6 uses Neighbor Discovery messages in a similar manner to how IPv4
uses ARP.  This commit adds support for matching deeper into the
payloads of Neighbor Solicitation (NS) and Neighbor Advertisement (NA)
messages.  Currently, the matching fields include:

    - NS and NA Target (nd_target)
    - NS Source Link Layer Address (nd_sll)
    - NA Target Link Layer Address (nd_tll)

When defining IPv6 Neighbor Discovery rules, the Nicira Extensible Match
(NXM) extension to OVS must be used.

Signed-off-by: Justin Pettit <jpettit@nicira.com>
Acked-by: Ben Pfaff <blp@nicira.com>
2011-02-02 13:22:34 -08:00

812 lines
25 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2008, 2009, 2010, 2011 Nicira Networks.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include <sys/types.h>
#include "flow.h"
#include <errno.h>
#include <inttypes.h>
#include <netinet/in.h>
#include <netinet/icmp6.h>
#include <netinet/ip6.h>
#include <stdlib.h>
#include <string.h>
#include "byte-order.h"
#include "coverage.h"
#include "dpif.h"
#include "dynamic-string.h"
#include "hash.h"
#include "ofpbuf.h"
#include "openflow/openflow.h"
#include "openvswitch/datapath-protocol.h"
#include "packets.h"
#include "unaligned.h"
#include "vlog.h"
VLOG_DEFINE_THIS_MODULE(flow);
COVERAGE_DEFINE(flow_extract);
static struct arp_eth_header *
pull_arp(struct ofpbuf *packet)
{
return ofpbuf_try_pull(packet, ARP_ETH_HEADER_LEN);
}
static struct ip_header *
pull_ip(struct ofpbuf *packet)
{
if (packet->size >= IP_HEADER_LEN) {
struct ip_header *ip = packet->data;
int ip_len = IP_IHL(ip->ip_ihl_ver) * 4;
if (ip_len >= IP_HEADER_LEN && packet->size >= ip_len) {
return ofpbuf_pull(packet, ip_len);
}
}
return NULL;
}
static struct tcp_header *
pull_tcp(struct ofpbuf *packet)
{
if (packet->size >= TCP_HEADER_LEN) {
struct tcp_header *tcp = packet->data;
int tcp_len = TCP_OFFSET(tcp->tcp_ctl) * 4;
if (tcp_len >= TCP_HEADER_LEN && packet->size >= tcp_len) {
return ofpbuf_pull(packet, tcp_len);
}
}
return NULL;
}
static struct udp_header *
pull_udp(struct ofpbuf *packet)
{
return ofpbuf_try_pull(packet, UDP_HEADER_LEN);
}
static struct icmp_header *
pull_icmp(struct ofpbuf *packet)
{
return ofpbuf_try_pull(packet, ICMP_HEADER_LEN);
}
static struct icmp6_hdr *
pull_icmpv6(struct ofpbuf *packet)
{
return ofpbuf_try_pull(packet, sizeof(struct icmp6_hdr));
}
static void
parse_vlan(struct ofpbuf *b, struct flow *flow)
{
struct qtag_prefix {
ovs_be16 eth_type; /* ETH_TYPE_VLAN */
ovs_be16 tci;
};
if (b->size >= sizeof(struct qtag_prefix) + sizeof(ovs_be16)) {
struct qtag_prefix *qp = ofpbuf_pull(b, sizeof *qp);
flow->vlan_tci = qp->tci | htons(VLAN_CFI);
}
}
static ovs_be16
parse_ethertype(struct ofpbuf *b)
{
struct llc_snap_header *llc;
ovs_be16 proto;
proto = *(ovs_be16 *) ofpbuf_pull(b, sizeof proto);
if (ntohs(proto) >= ETH_TYPE_MIN) {
return proto;
}
if (b->size < sizeof *llc) {
return htons(FLOW_DL_TYPE_NONE);
}
llc = b->data;
if (llc->llc.llc_dsap != LLC_DSAP_SNAP
|| llc->llc.llc_ssap != LLC_SSAP_SNAP
|| llc->llc.llc_cntl != LLC_CNTL_SNAP
|| memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
sizeof llc->snap.snap_org)) {
return htons(FLOW_DL_TYPE_NONE);
}
ofpbuf_pull(b, sizeof *llc);
return llc->snap.snap_type;
}
static int
parse_ipv6(struct ofpbuf *packet, struct flow *flow)
{
struct ip6_hdr *nh;
int nh_len = sizeof(struct ip6_hdr);
int payload_len;
ovs_be32 tc_flow;
int nexthdr;
if (packet->size < sizeof *nh) {
return -EINVAL;
}
nh = packet->data;
nexthdr = nh->ip6_nxt;
payload_len = ntohs(nh->ip6_plen);
flow->ipv6_src = nh->ip6_src;
flow->ipv6_dst = nh->ip6_dst;
tc_flow = get_unaligned_be32(&nh->ip6_flow);
flow->nw_tos = (ntohl(tc_flow) >> 4) & IP_DSCP_MASK;
flow->nw_proto = IPPROTO_NONE;
/* We don't process jumbograms. */
if (!payload_len) {
return -EINVAL;
}
if (packet->size < sizeof *nh + payload_len) {
return -EINVAL;
}
while (1) {
if ((nexthdr != IPPROTO_HOPOPTS)
&& (nexthdr != IPPROTO_ROUTING)
&& (nexthdr != IPPROTO_DSTOPTS)
&& (nexthdr != IPPROTO_AH)
&& (nexthdr != IPPROTO_FRAGMENT)) {
/* It's either a terminal header (e.g., TCP, UDP) or one we
* don't understand. In either case, we're done with the
* packet, so use it to fill in 'nw_proto'. */
break;
}
/* We only verify that at least 8 bytes of the next header are
* available, but many of these headers are longer. Ensure that
* accesses within the extension header are within those first 8
* bytes. */
if (packet->size < nh_len + 8) {
return -EINVAL;
}
if ((nexthdr == IPPROTO_HOPOPTS)
|| (nexthdr == IPPROTO_ROUTING)
|| (nexthdr == IPPROTO_DSTOPTS)) {
/* These headers, while different, have the fields we care about
* in the same location and with the same interpretation. */
struct ip6_ext *ext_hdr;
ext_hdr = (struct ip6_ext *)((char *)packet->data + nh_len);
nexthdr = ext_hdr->ip6e_nxt;
nh_len += (ext_hdr->ip6e_len + 1) * 8;
} else if (nexthdr == IPPROTO_AH) {
/* A standard AH definition isn't available, but the fields
* we care about are in the same location as the generic
* option header--only the header length is calculated
* differently. */
struct ip6_ext *ext_hdr;
ext_hdr = (struct ip6_ext *)((char *)packet->data + nh_len);
nexthdr = ext_hdr->ip6e_nxt;
nh_len += (ext_hdr->ip6e_len + 2) * 4;
} else if (nexthdr == IPPROTO_FRAGMENT) {
struct ip6_frag *frag_hdr;
frag_hdr = (struct ip6_frag *)((char *)packet->data + nh_len);
nexthdr = frag_hdr->ip6f_nxt;
nh_len += sizeof *frag_hdr;
/* We only process the first fragment. */
if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) {
nexthdr = IPPROTO_FRAGMENT;
break;
}
}
}
/* The payload length claims to be smaller than the size of the
* headers we've already processed. */
if (payload_len < nh_len - sizeof *nh) {
return -EINVAL;
}
flow->nw_proto = nexthdr;
return nh_len;
}
/* Neighbor Discovery Solicitation and Advertisement messages are
* identical in structure, so we'll just use one of them. To be safe,
* we'll assert that they're still identical. */
BUILD_ASSERT_DECL(sizeof(struct nd_neighbor_solicit)
== sizeof(struct nd_neighbor_advert));
static bool
parse_icmpv6(struct ofpbuf *b, struct flow *flow, int icmp_len)
{
const struct icmp6_hdr *icmp = pull_icmpv6(b);
if (!icmp) {
return false;
}
/* The ICMPv6 type and code fields use the 16-bit transport port
* fields, so we need to store them in 16-bit network byte order. */
flow->icmp_type = htons(icmp->icmp6_type);
flow->icmp_code = htons(icmp->icmp6_code);
if (!icmp->icmp6_code
&& ((icmp->icmp6_type == ND_NEIGHBOR_SOLICIT)
|| (icmp->icmp6_type == ND_NEIGHBOR_ADVERT))) {
struct nd_neighbor_solicit *nd_ns; /* Identical to ND advert */
/* In order to process neighbor discovery options, we need the
* entire packet. */
if ((icmp_len < sizeof *nd_ns)
|| (!ofpbuf_try_pull(b, sizeof *nd_ns - sizeof *icmp))) {
return false;
}
nd_ns = (struct nd_neighbor_solicit *)icmp;
flow->nd_target = nd_ns->nd_ns_target;
icmp_len -= sizeof(*nd_ns);
while (icmp_len >= 8) {
struct nd_opt_hdr *nd_opt;
int opt_len;
const uint8_t *data;
/* The minimum size of an option is 8 bytes, which also is
* the size of Ethernet link-layer options. */
nd_opt = ofpbuf_pull(b, 8);
if (!nd_opt->nd_opt_len || nd_opt->nd_opt_len * 8 > icmp_len) {
goto invalid;
}
opt_len = nd_opt->nd_opt_len * 8;
data = (const uint8_t *)(nd_opt + 1);
/* Store the link layer address if the appropriate option is
* provided. It is considered an error if the same link
* layer option is specified twice. */
if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR
&& opt_len == 8) {
if (eth_addr_is_zero(flow->arp_sha)) {
memcpy(flow->arp_sha, data, ETH_ADDR_LEN);
} else {
goto invalid;
}
} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR
&& opt_len == 8) {
if (eth_addr_is_zero(flow->arp_tha)) {
memcpy(flow->arp_tha, data, ETH_ADDR_LEN);
} else {
goto invalid;
}
}
/* Pull the rest of this option. */
if (!ofpbuf_try_pull(b, opt_len - 8)) {
goto invalid;
}
icmp_len -= opt_len;
}
}
return true;
invalid:
memset(&flow->nd_target, '\0', sizeof(flow->nd_target));
memset(flow->arp_sha, '\0', sizeof(flow->arp_sha));
memset(flow->arp_tha, '\0', sizeof(flow->arp_tha));
return false;
}
/* Initializes 'flow' members from 'packet', 'tun_id', and 'in_port.
* Initializes 'packet' header pointers as follows:
*
* - packet->l2 to the start of the Ethernet header.
*
* - packet->l3 to just past the Ethernet header, or just past the
* vlan_header if one is present, to the first byte of the payload of the
* Ethernet frame.
*
* - packet->l4 to just past the IPv4 header, if one is present and has a
* correct length, and otherwise NULL.
*
* - packet->l7 to just past the TCP or UDP or ICMP header, if one is
* present and has a correct length, and otherwise NULL.
*/
int
flow_extract(struct ofpbuf *packet, ovs_be64 tun_id, uint16_t in_port,
struct flow *flow)
{
struct ofpbuf b = *packet;
struct eth_header *eth;
int retval = 0;
COVERAGE_INC(flow_extract);
memset(flow, 0, sizeof *flow);
flow->tun_id = tun_id;
flow->in_port = in_port;
packet->l2 = b.data;
packet->l3 = NULL;
packet->l4 = NULL;
packet->l7 = NULL;
if (b.size < sizeof *eth) {
return 0;
}
/* Link layer. */
eth = b.data;
memcpy(flow->dl_src, eth->eth_src, ETH_ADDR_LEN);
memcpy(flow->dl_dst, eth->eth_dst, ETH_ADDR_LEN);
/* dl_type, vlan_tci. */
ofpbuf_pull(&b, ETH_ADDR_LEN * 2);
if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
parse_vlan(&b, flow);
}
flow->dl_type = parse_ethertype(&b);
/* Network layer. */
packet->l3 = b.data;
if (flow->dl_type == htons(ETH_TYPE_IP)) {
const struct ip_header *nh = pull_ip(&b);
if (nh) {
flow->nw_src = get_unaligned_be32(&nh->ip_src);
flow->nw_dst = get_unaligned_be32(&nh->ip_dst);
flow->nw_tos = nh->ip_tos & IP_DSCP_MASK;
flow->nw_proto = nh->ip_proto;
packet->l4 = b.data;
if (!IP_IS_FRAGMENT(nh->ip_frag_off)) {
if (flow->nw_proto == IPPROTO_TCP) {
const struct tcp_header *tcp = pull_tcp(&b);
if (tcp) {
flow->tp_src = tcp->tcp_src;
flow->tp_dst = tcp->tcp_dst;
packet->l7 = b.data;
}
} else if (flow->nw_proto == IPPROTO_UDP) {
const struct udp_header *udp = pull_udp(&b);
if (udp) {
flow->tp_src = udp->udp_src;
flow->tp_dst = udp->udp_dst;
packet->l7 = b.data;
}
} else if (flow->nw_proto == IPPROTO_ICMP) {
const struct icmp_header *icmp = pull_icmp(&b);
if (icmp) {
flow->icmp_type = htons(icmp->icmp_type);
flow->icmp_code = htons(icmp->icmp_code);
packet->l7 = b.data;
}
}
} else {
retval = 1;
}
}
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
int nh_len;
const struct ip6_hdr *nh;
nh_len = parse_ipv6(&b, flow);
if (nh_len < 0) {
return 0;
}
nh = ofpbuf_pull(&b, nh_len);
if (nh) {
packet->l4 = b.data;
if (flow->nw_proto == IPPROTO_TCP) {
const struct tcp_header *tcp = pull_tcp(&b);
if (tcp) {
flow->tp_src = tcp->tcp_src;
flow->tp_dst = tcp->tcp_dst;
packet->l7 = b.data;
}
} else if (flow->nw_proto == IPPROTO_UDP) {
const struct udp_header *udp = pull_udp(&b);
if (udp) {
flow->tp_src = udp->udp_src;
flow->tp_dst = udp->udp_dst;
packet->l7 = b.data;
}
} else if (flow->nw_proto == IPPROTO_ICMPV6) {
int icmp_len = ntohs(nh->ip6_plen) + sizeof *nh - nh_len;
if (parse_icmpv6(&b, flow, icmp_len)) {
packet->l7 = b.data;
}
}
}
} else if (flow->dl_type == htons(ETH_TYPE_ARP)) {
const struct arp_eth_header *arp = pull_arp(&b);
if (arp && arp->ar_hrd == htons(1)
&& arp->ar_pro == htons(ETH_TYPE_IP)
&& arp->ar_hln == ETH_ADDR_LEN
&& arp->ar_pln == 4) {
/* We only match on the lower 8 bits of the opcode. */
if (ntohs(arp->ar_op) <= 0xff) {
flow->nw_proto = ntohs(arp->ar_op);
}
if ((flow->nw_proto == ARP_OP_REQUEST)
|| (flow->nw_proto == ARP_OP_REPLY)) {
flow->nw_src = arp->ar_spa;
flow->nw_dst = arp->ar_tpa;
memcpy(flow->arp_sha, arp->ar_sha, ETH_ADDR_LEN);
memcpy(flow->arp_tha, arp->ar_tha, ETH_ADDR_LEN);
}
}
}
return retval;
}
/* Extracts the flow stats for a packet. The 'flow' and 'packet'
* arguments must have been initialized through a call to flow_extract().
*/
void
flow_extract_stats(const struct flow *flow, struct ofpbuf *packet,
struct dpif_flow_stats *stats)
{
memset(stats, 0, sizeof(*stats));
if ((flow->dl_type == htons(ETH_TYPE_IP)) && packet->l4) {
if ((flow->nw_proto == IPPROTO_TCP) && packet->l7) {
struct tcp_header *tcp = packet->l4;
stats->tcp_flags = TCP_FLAGS(tcp->tcp_ctl);
}
}
stats->n_bytes = packet->size;
stats->n_packets = 1;
}
char *
flow_to_string(const struct flow *flow)
{
struct ds ds = DS_EMPTY_INITIALIZER;
flow_format(&ds, flow);
return ds_cstr(&ds);
}
void
flow_format(struct ds *ds, const struct flow *flow)
{
ds_put_format(ds, "tunnel%#"PRIx64":in_port%04"PRIx16":tci(",
flow->tun_id, flow->in_port);
if (flow->vlan_tci) {
ds_put_format(ds, "vlan%"PRIu16",pcp%d",
vlan_tci_to_vid(flow->vlan_tci),
vlan_tci_to_pcp(flow->vlan_tci));
} else {
ds_put_char(ds, '0');
}
ds_put_format(ds, ") mac"ETH_ADDR_FMT"->"ETH_ADDR_FMT
" type%04"PRIx16,
ETH_ADDR_ARGS(flow->dl_src),
ETH_ADDR_ARGS(flow->dl_dst),
ntohs(flow->dl_type));
if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
ds_put_format(ds, " proto%"PRIu8" tos%"PRIu8" ipv6",
flow->nw_proto, flow->nw_tos);
print_ipv6_addr(ds, &flow->ipv6_src);
ds_put_cstr(ds, "->");
print_ipv6_addr(ds, &flow->ipv6_dst);
} else {
ds_put_format(ds, " proto%"PRIu8
" tos%"PRIu8
" ip"IP_FMT"->"IP_FMT,
flow->nw_proto,
flow->nw_tos,
IP_ARGS(&flow->nw_src),
IP_ARGS(&flow->nw_dst));
}
if (flow->tp_src || flow->tp_dst) {
ds_put_format(ds, " port%"PRIu16"->%"PRIu16,
ntohs(flow->tp_src), ntohs(flow->tp_dst));
}
if (!eth_addr_is_zero(flow->arp_sha) || !eth_addr_is_zero(flow->arp_tha)) {
ds_put_format(ds, " arp_ha"ETH_ADDR_FMT"->"ETH_ADDR_FMT,
ETH_ADDR_ARGS(flow->arp_sha),
ETH_ADDR_ARGS(flow->arp_tha));
}
}
void
flow_print(FILE *stream, const struct flow *flow)
{
char *s = flow_to_string(flow);
fputs(s, stream);
free(s);
}
/* flow_wildcards functions. */
/* Initializes 'wc' as a set of wildcards that matches every packet. */
void
flow_wildcards_init_catchall(struct flow_wildcards *wc)
{
wc->wildcards = FWW_ALL;
wc->tun_id_mask = htonll(0);
wc->nw_src_mask = htonl(0);
wc->nw_dst_mask = htonl(0);
wc->ipv6_src_mask = in6addr_any;
wc->ipv6_dst_mask = in6addr_any;
memset(wc->reg_masks, 0, sizeof wc->reg_masks);
wc->vlan_tci_mask = htons(0);
wc->zero = 0;
}
/* Initializes 'wc' as an exact-match set of wildcards; that is, 'wc' does not
* wildcard any bits or fields. */
void
flow_wildcards_init_exact(struct flow_wildcards *wc)
{
wc->wildcards = 0;
wc->tun_id_mask = htonll(UINT64_MAX);
wc->nw_src_mask = htonl(UINT32_MAX);
wc->nw_dst_mask = htonl(UINT32_MAX);
wc->ipv6_src_mask = in6addr_exact;
wc->ipv6_dst_mask = in6addr_exact;
memset(wc->reg_masks, 0xff, sizeof wc->reg_masks);
wc->vlan_tci_mask = htons(UINT16_MAX);
wc->zero = 0;
}
/* Returns true if 'wc' is exact-match, false if 'wc' wildcards any bits or
* fields. */
bool
flow_wildcards_is_exact(const struct flow_wildcards *wc)
{
int i;
if (wc->wildcards
|| wc->tun_id_mask != htonll(UINT64_MAX)
|| wc->nw_src_mask != htonl(UINT32_MAX)
|| wc->nw_dst_mask != htonl(UINT32_MAX)
|| wc->vlan_tci_mask != htons(UINT16_MAX)
|| !ipv6_mask_is_exact(&wc->ipv6_src_mask)
|| !ipv6_mask_is_exact(&wc->ipv6_dst_mask)) {
return false;
}
for (i = 0; i < FLOW_N_REGS; i++) {
if (wc->reg_masks[i] != htonl(UINT32_MAX)) {
return false;
}
}
return true;
}
/* Initializes 'dst' as the combination of wildcards in 'src1' and 'src2'.
* That is, a bit or a field is wildcarded in 'dst' if it is wildcarded in
* 'src1' or 'src2' or both. */
void
flow_wildcards_combine(struct flow_wildcards *dst,
const struct flow_wildcards *src1,
const struct flow_wildcards *src2)
{
int i;
dst->wildcards = src1->wildcards | src2->wildcards;
dst->tun_id_mask = src1->tun_id_mask & src2->tun_id_mask;
dst->nw_src_mask = src1->nw_src_mask & src2->nw_src_mask;
dst->nw_dst_mask = src1->nw_dst_mask & src2->nw_dst_mask;
dst->ipv6_src_mask = ipv6_addr_bitand(&src1->ipv6_src_mask,
&src2->ipv6_src_mask);
dst->ipv6_dst_mask = ipv6_addr_bitand(&src1->ipv6_dst_mask,
&src2->ipv6_dst_mask);
for (i = 0; i < FLOW_N_REGS; i++) {
dst->reg_masks[i] = src1->reg_masks[i] & src2->reg_masks[i];
}
dst->vlan_tci_mask = src1->vlan_tci_mask & src2->vlan_tci_mask;
}
/* Returns a hash of the wildcards in 'wc'. */
uint32_t
flow_wildcards_hash(const struct flow_wildcards *wc)
{
/* If you change struct flow_wildcards and thereby trigger this
* assertion, please check that the new struct flow_wildcards has no holes
* in it before you update the assertion. */
BUILD_ASSERT_DECL(sizeof *wc == 56 + FLOW_N_REGS * 4);
return hash_bytes(wc, sizeof *wc, 0);
}
/* Returns true if 'a' and 'b' represent the same wildcards, false if they are
* different. */
bool
flow_wildcards_equal(const struct flow_wildcards *a,
const struct flow_wildcards *b)
{
int i;
if (a->wildcards != b->wildcards
|| a->tun_id_mask != b->tun_id_mask
|| a->nw_src_mask != b->nw_src_mask
|| a->nw_dst_mask != b->nw_dst_mask
|| a->vlan_tci_mask != b->vlan_tci_mask
|| !ipv6_addr_equals(&a->ipv6_src_mask, &b->ipv6_src_mask)
|| !ipv6_addr_equals(&a->ipv6_dst_mask, &b->ipv6_dst_mask)) {
return false;
}
for (i = 0; i < FLOW_N_REGS; i++) {
if (a->reg_masks[i] != b->reg_masks[i]) {
return false;
}
}
return true;
}
/* Returns true if at least one bit or field is wildcarded in 'a' but not in
* 'b', false otherwise. */
bool
flow_wildcards_has_extra(const struct flow_wildcards *a,
const struct flow_wildcards *b)
{
int i;
struct in6_addr ipv6_masked;
for (i = 0; i < FLOW_N_REGS; i++) {
if ((a->reg_masks[i] & b->reg_masks[i]) != b->reg_masks[i]) {
return true;
}
}
ipv6_masked = ipv6_addr_bitand(&a->ipv6_src_mask, &b->ipv6_src_mask);
if (!ipv6_addr_equals(&ipv6_masked, &b->ipv6_src_mask)) {
return true;
}
ipv6_masked = ipv6_addr_bitand(&a->ipv6_dst_mask, &b->ipv6_dst_mask);
if (!ipv6_addr_equals(&ipv6_masked, &b->ipv6_dst_mask)) {
return true;
}
return (a->wildcards & ~b->wildcards
|| (a->tun_id_mask & b->tun_id_mask) != b->tun_id_mask
|| (a->nw_src_mask & b->nw_src_mask) != b->nw_src_mask
|| (a->nw_dst_mask & b->nw_dst_mask) != b->nw_dst_mask
|| (a->vlan_tci_mask & b->vlan_tci_mask) != b->vlan_tci_mask);
}
static bool
set_nw_mask(ovs_be32 *maskp, ovs_be32 mask)
{
if (ip_is_cidr(mask)) {
*maskp = mask;
return true;
} else {
return false;
}
}
/* Sets the IP (or ARP) source wildcard mask to CIDR 'mask' (consisting of N
* high-order 1-bit and 32-N low-order 0-bits). Returns true if successful,
* false if 'mask' is not a CIDR mask. */
bool
flow_wildcards_set_nw_src_mask(struct flow_wildcards *wc, ovs_be32 mask)
{
return set_nw_mask(&wc->nw_src_mask, mask);
}
/* Sets the IP (or ARP) destination wildcard mask to CIDR 'mask' (consisting of
* N high-order 1-bit and 32-N low-order 0-bits). Returns true if successful,
* false if 'mask' is not a CIDR mask. */
bool
flow_wildcards_set_nw_dst_mask(struct flow_wildcards *wc, ovs_be32 mask)
{
return set_nw_mask(&wc->nw_dst_mask, mask);
}
static bool
set_ipv6_mask(struct in6_addr *maskp, const struct in6_addr *mask)
{
if (ipv6_is_cidr(mask)) {
*maskp = *mask;
return true;
} else {
return false;
}
}
/* Sets the IPv6 source wildcard mask to CIDR 'mask' (consisting of N
* high-order 1-bit and 128-N low-order 0-bits). Returns true if successful,
* false if 'mask' is not a CIDR mask. */
bool
flow_wildcards_set_ipv6_src_mask(struct flow_wildcards *wc,
const struct in6_addr *mask)
{
return set_ipv6_mask(&wc->ipv6_src_mask, mask);
}
/* Sets the IPv6 destination wildcard mask to CIDR 'mask' (consisting of
* N high-order 1-bit and 128-N low-order 0-bits). Returns true if
* successful, false if 'mask' is not a CIDR mask. */
bool
flow_wildcards_set_ipv6_dst_mask(struct flow_wildcards *wc,
const struct in6_addr *mask)
{
return set_ipv6_mask(&wc->ipv6_dst_mask, mask);
}
/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
* (A 0-bit indicates a wildcard bit.) */
void
flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
{
wc->reg_masks[idx] = mask;
}
/* Hashes 'flow' based on its L2 through L4 protocol information. */
uint32_t
flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
{
struct {
union {
ovs_be32 ipv4_addr;
struct in6_addr ipv6_addr;
};
ovs_be16 eth_type;
ovs_be16 vlan_tci;
ovs_be16 tp_addr;
uint8_t eth_addr[ETH_ADDR_LEN];
uint8_t ip_proto;
} fields;
int i;
memset(&fields, 0, sizeof fields);
for (i = 0; i < ETH_ADDR_LEN; i++) {
fields.eth_addr[i] = flow->dl_src[i] ^ flow->dl_dst[i];
}
fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK);
fields.eth_type = flow->dl_type;
if (fields.eth_type == htons(ETH_TYPE_IP)) {
fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
fields.ip_proto = flow->nw_proto;
if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_UDP) {
fields.tp_addr = flow->tp_src ^ flow->tp_dst;
}
} else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
const uint8_t *a = &flow->ipv6_src.s6_addr[0];
const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];
for (i=0; i<16; i++) {
ipv6_addr[i] = a[i] ^ b[i];
}
fields.ip_proto = flow->nw_proto;
if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_UDP) {
fields.tp_addr = flow->tp_src ^ flow->tp_dst;
}
}
return hash_bytes(&fields, sizeof fields, basis);
}