2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/lib/ofp-actions.c
Jarno Rajahalme 74ff3298c8 userspace: Define and use struct eth_addr.
Define struct eth_addr and use it instead of a uint8_t array for all
ethernet addresses in OVS userspace.  The struct is always the right
size, and it can be assigned without an explicit memcpy, which makes
code more readable.

"struct eth_addr" is a good type name for this as many utility
functions are already named accordingly.

struct eth_addr can be accessed as bytes as well as ovs_be16's, which
makes the struct 16-bit aligned.  All use seems to be 16-bit aligned,
so some algorithms on the ethernet addresses can be made a bit more
efficient making use of this fact.

As the struct fits into a register (in 64-bit systems) we pass it by
value when possible.

This patch also changes the few uses of Linux specific ETH_ALEN to
OVS's own ETH_ADDR_LEN, and removes the OFP_ETH_ALEN, as it is no
longer needed.

This work stemmed from a desire to make all struct flow members
assignable for unrelated exploration purposes.  However, I think this
might be a nice code readability improvement by itself.

Signed-off-by: Jarno Rajahalme <jrajahalme@nicira.com>
2015-08-28 14:55:11 -07:00

6786 lines
216 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "ofp-actions.h"
#include "bundle.h"
#include "byte-order.h"
#include "compiler.h"
#include "dummy.h"
#include "dynamic-string.h"
#include "hmap.h"
#include "learn.h"
#include "meta-flow.h"
#include "multipath.h"
#include "nx-match.h"
#include "ofp-parse.h"
#include "ofp-util.h"
#include "ofpbuf.h"
#include "unaligned.h"
#include "util.h"
#include "openvswitch/vlog.h"
VLOG_DEFINE_THIS_MODULE(ofp_actions);
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
struct ofp_action_header;
/* Raw identifiers for OpenFlow actions.
*
* Decoding and encoding OpenFlow actions across multiple versions is difficult
* to do in a clean, consistent way. This enumeration lays out all of the
* forms of actions that Open vSwitch supports.
*
* The comments here must follow a stylized form because the
* "extract-ofp-actions" program parses them at build time to generate data
* tables.
*
* - The first part of each comment specifies the vendor, OpenFlow versions,
* and type for each protocol that supports the action:
*
* # The vendor is OF for standard OpenFlow actions, NX for Nicira
* extension actions. (Support for other vendors can be added, but
* it can't be done just based on a vendor ID definition alone
* because OpenFlow doesn't define a standard way to specify a
* subtype for vendor actions, so other vendors might do it different
* from Nicira.)
*
* # The version can specify a specific OpenFlow version, a version
* range delimited by "-", or an open-ended range with "+".
*
* # The type, in parentheses, is the action type number (for standard
* OpenFlow actions) or subtype (for vendor extension actions).
*
* # Optionally one may add "is deprecated" followed by a
* human-readable reason in parentheses (which will be used in log
* messages), if a particular action should no longer be used.
*
* Multiple such specifications may be separated by commas.
*
* - The second part describes the action's wire format. It may be:
*
* # "struct <name>": The struct fully specifies the wire format. The
* action is exactly the size of the struct. (Thus, the struct must
* be an exact multiple of 8 bytes in size.)
*
* # "struct <name>, ...": The struct specifies the beginning of the
* wire format. An instance of the action is either the struct's
* exact size, or a multiple of 8 bytes longer.
*
* # "uint<N>_t" or "ovs_be<N>": The action consists of a (standard or
* vendor extension) header, followed by 0 or more pad bytes to align
* to a multiple of <N> bits, followed by an argument of the given
* type, followed by 0 or more pad bytes to bring the total action up
* to a multiple of 8 bytes.
*
* # "void": The action is just a (standard or vendor extension)
* header.
*
* - Optional additional text enclosed in square brackets is commentary for
* the human reader.
*/
enum ofp_raw_action_type {
/* ## ----------------- ## */
/* ## Standard actions. ## */
/* ## ----------------- ## */
/* OF1.0(0): struct ofp10_action_output. */
OFPAT_RAW10_OUTPUT,
/* OF1.1+(0): struct ofp11_action_output. */
OFPAT_RAW11_OUTPUT,
/* OF1.0(1): uint16_t. */
OFPAT_RAW10_SET_VLAN_VID,
/* OF1.0(2): uint8_t. */
OFPAT_RAW10_SET_VLAN_PCP,
/* OF1.1(1), OF1.2+(1) is deprecated (use Set-Field): uint16_t.
*
* [Semantics differ slightly between the 1.0 and 1.1 versions of the VLAN
* modification actions: the 1.0 versions push a VLAN header if none is
* present, but the 1.1 versions do not. That is the only reason that we
* distinguish their raw action types.] */
OFPAT_RAW11_SET_VLAN_VID,
/* OF1.1(2), OF1.2+(2) is deprecated (use Set-Field): uint8_t. */
OFPAT_RAW11_SET_VLAN_PCP,
/* OF1.1+(17): ovs_be16.
*
* [The argument is the Ethertype, e.g. ETH_TYPE_VLAN_8021Q, not the VID or
* TCI.] */
OFPAT_RAW11_PUSH_VLAN,
/* OF1.0(3): void. */
OFPAT_RAW10_STRIP_VLAN,
/* OF1.1+(18): void. */
OFPAT_RAW11_POP_VLAN,
/* OF1.0(4), OF1.1(3), OF1.2+(3) is deprecated (use Set-Field): struct
* ofp_action_dl_addr. */
OFPAT_RAW_SET_DL_SRC,
/* OF1.0(5), OF1.1(4), OF1.2+(4) is deprecated (use Set-Field): struct
* ofp_action_dl_addr. */
OFPAT_RAW_SET_DL_DST,
/* OF1.0(6), OF1.1(5), OF1.2+(5) is deprecated (use Set-Field):
* ovs_be32. */
OFPAT_RAW_SET_NW_SRC,
/* OF1.0(7), OF1.1(6), OF1.2+(6) is deprecated (use Set-Field):
* ovs_be32. */
OFPAT_RAW_SET_NW_DST,
/* OF1.0(8), OF1.1(7), OF1.2+(7) is deprecated (use Set-Field): uint8_t. */
OFPAT_RAW_SET_NW_TOS,
/* OF1.1(8), OF1.2+(8) is deprecated (use Set-Field): uint8_t. */
OFPAT_RAW11_SET_NW_ECN,
/* OF1.0(9), OF1.1(9), OF1.2+(9) is deprecated (use Set-Field):
* ovs_be16. */
OFPAT_RAW_SET_TP_SRC,
/* OF1.0(10), OF1.1(10), OF1.2+(10) is deprecated (use Set-Field):
* ovs_be16. */
OFPAT_RAW_SET_TP_DST,
/* OF1.0(11): struct ofp10_action_enqueue. */
OFPAT_RAW10_ENQUEUE,
/* NX1.0(30), OF1.1(13), OF1.2+(13) is deprecated (use Set-Field):
* ovs_be32. */
OFPAT_RAW_SET_MPLS_LABEL,
/* NX1.0(31), OF1.1(14), OF1.2+(14) is deprecated (use Set-Field):
* uint8_t. */
OFPAT_RAW_SET_MPLS_TC,
/* NX1.0(25), OF1.1(15), OF1.2+(15) is deprecated (use Set-Field):
* uint8_t. */
OFPAT_RAW_SET_MPLS_TTL,
/* NX1.0(26), OF1.1+(16): void. */
OFPAT_RAW_DEC_MPLS_TTL,
/* NX1.0(23), OF1.1+(19): ovs_be16.
*
* [The argument is the Ethertype, e.g. ETH_TYPE_MPLS, not the label.] */
OFPAT_RAW_PUSH_MPLS,
/* NX1.0(24), OF1.1+(20): ovs_be16.
*
* [The argument is the Ethertype, e.g. ETH_TYPE_IPV4 if at BoS or
* ETH_TYPE_MPLS otherwise, not the label.] */
OFPAT_RAW_POP_MPLS,
/* NX1.0(4), OF1.1+(21): uint32_t. */
OFPAT_RAW_SET_QUEUE,
/* OF1.1+(22): uint32_t. */
OFPAT_RAW11_GROUP,
/* OF1.1+(23): uint8_t. */
OFPAT_RAW11_SET_NW_TTL,
/* NX1.0(18), OF1.1+(24): void. */
OFPAT_RAW_DEC_NW_TTL,
/* NX1.0+(21): struct nx_action_cnt_ids, ... */
NXAST_RAW_DEC_TTL_CNT_IDS,
/* OF1.2-1.4(25): struct ofp12_action_set_field, ... */
OFPAT_RAW12_SET_FIELD,
/* OF1.5+(25): struct ofp12_action_set_field, ... */
OFPAT_RAW15_SET_FIELD,
/* NX1.0-1.4(7): struct nx_action_reg_load.
*
* [In OpenFlow 1.5, set_field is a superset of reg_load functionality, so
* we drop reg_load.] */
NXAST_RAW_REG_LOAD,
/* NX1.0-1.4(33): struct nx_action_reg_load2, ...
*
* [In OpenFlow 1.5, set_field is a superset of reg_load2 functionality, so
* we drop reg_load2.] */
NXAST_RAW_REG_LOAD2,
/* OF1.5+(28): struct ofp15_action_copy_field, ... */
OFPAT_RAW15_COPY_FIELD,
/* ONF1.3-1.4(3200): struct onf_action_copy_field, ... */
ONFACT_RAW13_COPY_FIELD,
/* NX1.0-1.4(6): struct nx_action_reg_move, ... */
NXAST_RAW_REG_MOVE,
/* ## ------------------------- ## */
/* ## Nicira extension actions. ## */
/* ## ------------------------- ## */
/* Actions similar to standard actions are listed with the standard actions. */
/* NX1.0+(1): uint16_t. */
NXAST_RAW_RESUBMIT,
/* NX1.0+(14): struct nx_action_resubmit. */
NXAST_RAW_RESUBMIT_TABLE,
/* NX1.0+(2): uint32_t. */
NXAST_RAW_SET_TUNNEL,
/* NX1.0+(9): uint64_t. */
NXAST_RAW_SET_TUNNEL64,
/* NX1.0+(5): void. */
NXAST_RAW_POP_QUEUE,
/* NX1.0+(8): struct nx_action_note, ... */
NXAST_RAW_NOTE,
/* NX1.0+(10): struct nx_action_multipath. */
NXAST_RAW_MULTIPATH,
/* NX1.0+(12): struct nx_action_bundle, ... */
NXAST_RAW_BUNDLE,
/* NX1.0+(13): struct nx_action_bundle, ... */
NXAST_RAW_BUNDLE_LOAD,
/* NX1.0+(15): struct nx_action_output_reg. */
NXAST_RAW_OUTPUT_REG,
/* NX1.0+(32): struct nx_action_output_reg2. */
NXAST_RAW_OUTPUT_REG2,
/* NX1.0+(16): struct nx_action_learn, ... */
NXAST_RAW_LEARN,
/* NX1.0+(17): void. */
NXAST_RAW_EXIT,
/* NX1.0+(19): struct nx_action_fin_timeout. */
NXAST_RAW_FIN_TIMEOUT,
/* NX1.0+(20): struct nx_action_controller. */
NXAST_RAW_CONTROLLER,
/* NX1.0+(22): struct nx_action_write_metadata. */
NXAST_RAW_WRITE_METADATA,
/* NX1.0+(27): struct nx_action_stack. */
NXAST_RAW_STACK_PUSH,
/* NX1.0+(28): struct nx_action_stack. */
NXAST_RAW_STACK_POP,
/* NX1.0+(29): struct nx_action_sample. */
NXAST_RAW_SAMPLE,
/* NX1.0+(34): struct nx_action_conjunction. */
NXAST_RAW_CONJUNCTION,
/* ## ------------------ ## */
/* ## Debugging actions. ## */
/* ## ------------------ ## */
/* These are intentionally undocumented, subject to change, and ovs-vswitchd */
/* accepts them only if started with --enable-dummy. */
/* NX1.0+(255): void. */
NXAST_RAW_DEBUG_RECIRC,
};
/* OpenFlow actions are always a multiple of 8 bytes in length. */
#define OFP_ACTION_ALIGN 8
/* Define a few functions for working with instructions. */
#define DEFINE_INST(ENUM, STRUCT, EXTENSIBLE, NAME) \
static inline const struct STRUCT * OVS_UNUSED \
instruction_get_##ENUM(const struct ofp11_instruction *inst)\
{ \
ovs_assert(inst->type == htons(ENUM)); \
return ALIGNED_CAST(struct STRUCT *, inst); \
} \
\
static inline void OVS_UNUSED \
instruction_init_##ENUM(struct STRUCT *s) \
{ \
memset(s, 0, sizeof *s); \
s->type = htons(ENUM); \
s->len = htons(sizeof *s); \
} \
\
static inline struct STRUCT * OVS_UNUSED \
instruction_put_##ENUM(struct ofpbuf *buf) \
{ \
struct STRUCT *s = ofpbuf_put_uninit(buf, sizeof *s); \
instruction_init_##ENUM(s); \
return s; \
}
OVS_INSTRUCTIONS
#undef DEFINE_INST
static void ofpacts_update_instruction_actions(struct ofpbuf *openflow,
size_t ofs);
static void pad_ofpat(struct ofpbuf *openflow, size_t start_ofs);
static enum ofperr ofpacts_verify(const struct ofpact[], size_t ofpacts_len,
uint32_t allowed_ovsinsts);
static void ofpact_put_set_field(struct ofpbuf *openflow, enum ofp_version,
enum mf_field_id, uint64_t value);
static enum ofperr ofpact_pull_raw(struct ofpbuf *, enum ofp_version,
enum ofp_raw_action_type *, uint64_t *arg);
static void *ofpact_put_raw(struct ofpbuf *, enum ofp_version,
enum ofp_raw_action_type, uint64_t arg);
static char *OVS_WARN_UNUSED_RESULT ofpacts_parse(
char *str, struct ofpbuf *ofpacts, enum ofputil_protocol *usable_protocols,
bool allow_instructions);
#include "ofp-actions.inc1"
/* Output actions. */
/* Action structure for OFPAT10_OUTPUT, which sends packets out 'port'.
* When the 'port' is the OFPP_CONTROLLER, 'max_len' indicates the max
* number of bytes to send. A 'max_len' of zero means no bytes of the
* packet should be sent. */
struct ofp10_action_output {
ovs_be16 type; /* OFPAT10_OUTPUT. */
ovs_be16 len; /* Length is 8. */
ovs_be16 port; /* Output port. */
ovs_be16 max_len; /* Max length to send to controller. */
};
OFP_ASSERT(sizeof(struct ofp10_action_output) == 8);
/* Action structure for OFPAT_OUTPUT, which sends packets out 'port'.
* When the 'port' is the OFPP_CONTROLLER, 'max_len' indicates the max
* number of bytes to send. A 'max_len' of zero means no bytes of the
* packet should be sent.*/
struct ofp11_action_output {
ovs_be16 type; /* OFPAT11_OUTPUT. */
ovs_be16 len; /* Length is 16. */
ovs_be32 port; /* Output port. */
ovs_be16 max_len; /* Max length to send to controller. */
uint8_t pad[6]; /* Pad to 64 bits. */
};
OFP_ASSERT(sizeof(struct ofp11_action_output) == 16);
static enum ofperr
decode_OFPAT_RAW10_OUTPUT(const struct ofp10_action_output *oao,
struct ofpbuf *out)
{
struct ofpact_output *output;
output = ofpact_put_OUTPUT(out);
output->port = u16_to_ofp(ntohs(oao->port));
output->max_len = ntohs(oao->max_len);
return ofpact_check_output_port(output->port, OFPP_MAX);
}
static enum ofperr
decode_OFPAT_RAW11_OUTPUT(const struct ofp11_action_output *oao,
struct ofpbuf *out)
{
struct ofpact_output *output;
enum ofperr error;
output = ofpact_put_OUTPUT(out);
output->max_len = ntohs(oao->max_len);
error = ofputil_port_from_ofp11(oao->port, &output->port);
if (error) {
return error;
}
return ofpact_check_output_port(output->port, OFPP_MAX);
}
static void
encode_OUTPUT(const struct ofpact_output *output,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version == OFP10_VERSION) {
struct ofp10_action_output *oao;
oao = put_OFPAT10_OUTPUT(out);
oao->port = htons(ofp_to_u16(output->port));
oao->max_len = htons(output->max_len);
} else {
struct ofp11_action_output *oao;
oao = put_OFPAT11_OUTPUT(out);
oao->port = ofputil_port_to_ofp11(output->port);
oao->max_len = htons(output->max_len);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_OUTPUT(const char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
if (strchr(arg, '[')) {
struct ofpact_output_reg *output_reg;
output_reg = ofpact_put_OUTPUT_REG(ofpacts);
output_reg->max_len = UINT16_MAX;
return mf_parse_subfield(&output_reg->src, arg);
} else {
struct ofpact_output *output;
output = ofpact_put_OUTPUT(ofpacts);
if (!ofputil_port_from_string(arg, &output->port)) {
return xasprintf("%s: output to unknown port", arg);
}
output->max_len = output->port == OFPP_CONTROLLER ? UINT16_MAX : 0;
return NULL;
}
}
static void
format_OUTPUT(const struct ofpact_output *a, struct ds *s)
{
if (ofp_to_u16(a->port) < ofp_to_u16(OFPP_MAX)) {
ds_put_format(s, "output:%"PRIu16, a->port);
} else {
ofputil_format_port(a->port, s);
if (a->port == OFPP_CONTROLLER) {
ds_put_format(s, ":%"PRIu16, a->max_len);
}
}
}
/* Group actions. */
static enum ofperr
decode_OFPAT_RAW11_GROUP(uint32_t group_id, struct ofpbuf *out)
{
ofpact_put_GROUP(out)->group_id = group_id;
return 0;
}
static void
encode_GROUP(const struct ofpact_group *group,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version == OFP10_VERSION) {
/* XXX */
} else {
put_OFPAT11_GROUP(out, group->group_id);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_GROUP(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
return str_to_u32(arg, &ofpact_put_GROUP(ofpacts)->group_id);
}
static void
format_GROUP(const struct ofpact_group *a, struct ds *s)
{
ds_put_format(s, "group:%"PRIu32, a->group_id);
}
/* Action structure for NXAST_CONTROLLER.
*
* This generalizes using OFPAT_OUTPUT to send a packet to OFPP_CONTROLLER. In
* addition to the 'max_len' that OFPAT_OUTPUT supports, it also allows
* specifying:
*
* - 'reason': The reason code to use in the ofp_packet_in or nx_packet_in.
*
* - 'controller_id': The ID of the controller connection to which the
* ofp_packet_in should be sent. The ofp_packet_in or nx_packet_in is
* sent only to controllers that have the specified controller connection
* ID. See "struct nx_controller_id" for more information. */
struct nx_action_controller {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length is 16. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_CONTROLLER. */
ovs_be16 max_len; /* Maximum length to send to controller. */
ovs_be16 controller_id; /* Controller ID to send packet-in. */
uint8_t reason; /* enum ofp_packet_in_reason (OFPR_*). */
uint8_t zero; /* Must be zero. */
};
OFP_ASSERT(sizeof(struct nx_action_controller) == 16);
static enum ofperr
decode_NXAST_RAW_CONTROLLER(const struct nx_action_controller *nac,
struct ofpbuf *out)
{
struct ofpact_controller *oc;
oc = ofpact_put_CONTROLLER(out);
oc->max_len = ntohs(nac->max_len);
oc->controller_id = ntohs(nac->controller_id);
oc->reason = nac->reason;
return 0;
}
static void
encode_CONTROLLER(const struct ofpact_controller *controller,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct nx_action_controller *nac;
nac = put_NXAST_CONTROLLER(out);
nac->max_len = htons(controller->max_len);
nac->controller_id = htons(controller->controller_id);
nac->reason = controller->reason;
}
static char * OVS_WARN_UNUSED_RESULT
parse_CONTROLLER(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
enum ofp_packet_in_reason reason = OFPR_ACTION;
uint16_t controller_id = 0;
uint16_t max_len = UINT16_MAX;
if (!arg[0]) {
/* Use defaults. */
} else if (strspn(arg, "0123456789") == strlen(arg)) {
char *error = str_to_u16(arg, "max_len", &max_len);
if (error) {
return error;
}
} else {
char *name, *value;
while (ofputil_parse_key_value(&arg, &name, &value)) {
if (!strcmp(name, "reason")) {
if (!ofputil_packet_in_reason_from_string(value, &reason)) {
return xasprintf("unknown reason \"%s\"", value);
}
} else if (!strcmp(name, "max_len")) {
char *error = str_to_u16(value, "max_len", &max_len);
if (error) {
return error;
}
} else if (!strcmp(name, "id")) {
char *error = str_to_u16(value, "id", &controller_id);
if (error) {
return error;
}
} else {
return xasprintf("unknown key \"%s\" parsing controller "
"action", name);
}
}
}
if (reason == OFPR_ACTION && controller_id == 0) {
struct ofpact_output *output;
output = ofpact_put_OUTPUT(ofpacts);
output->port = OFPP_CONTROLLER;
output->max_len = max_len;
} else {
struct ofpact_controller *controller;
controller = ofpact_put_CONTROLLER(ofpacts);
controller->max_len = max_len;
controller->reason = reason;
controller->controller_id = controller_id;
}
return NULL;
}
static void
format_CONTROLLER(const struct ofpact_controller *a, struct ds *s)
{
if (a->reason == OFPR_ACTION && a->controller_id == 0) {
ds_put_format(s, "CONTROLLER:%"PRIu16, a->max_len);
} else {
enum ofp_packet_in_reason reason = a->reason;
ds_put_cstr(s, "controller(");
if (reason != OFPR_ACTION) {
char reasonbuf[OFPUTIL_PACKET_IN_REASON_BUFSIZE];
ds_put_format(s, "reason=%s,",
ofputil_packet_in_reason_to_string(
reason, reasonbuf, sizeof reasonbuf));
}
if (a->max_len != UINT16_MAX) {
ds_put_format(s, "max_len=%"PRIu16",", a->max_len);
}
if (a->controller_id != 0) {
ds_put_format(s, "id=%"PRIu16",", a->controller_id);
}
ds_chomp(s, ',');
ds_put_char(s, ')');
}
}
/* Enqueue action. */
struct ofp10_action_enqueue {
ovs_be16 type; /* OFPAT10_ENQUEUE. */
ovs_be16 len; /* Len is 16. */
ovs_be16 port; /* Port that queue belongs. Should
refer to a valid physical port
(i.e. < OFPP_MAX) or OFPP_IN_PORT. */
uint8_t pad[6]; /* Pad for 64-bit alignment. */
ovs_be32 queue_id; /* Where to enqueue the packets. */
};
OFP_ASSERT(sizeof(struct ofp10_action_enqueue) == 16);
static enum ofperr
decode_OFPAT_RAW10_ENQUEUE(const struct ofp10_action_enqueue *oae,
struct ofpbuf *out)
{
struct ofpact_enqueue *enqueue;
enqueue = ofpact_put_ENQUEUE(out);
enqueue->port = u16_to_ofp(ntohs(oae->port));
enqueue->queue = ntohl(oae->queue_id);
if (ofp_to_u16(enqueue->port) >= ofp_to_u16(OFPP_MAX)
&& enqueue->port != OFPP_IN_PORT
&& enqueue->port != OFPP_LOCAL) {
return OFPERR_OFPBAC_BAD_OUT_PORT;
}
return 0;
}
static void
encode_ENQUEUE(const struct ofpact_enqueue *enqueue,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version == OFP10_VERSION) {
struct ofp10_action_enqueue *oae;
oae = put_OFPAT10_ENQUEUE(out);
oae->port = htons(ofp_to_u16(enqueue->port));
oae->queue_id = htonl(enqueue->queue);
} else {
/* XXX */
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_ENQUEUE(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
char *sp = NULL;
char *port = strtok_r(arg, ":q,", &sp);
char *queue = strtok_r(NULL, "", &sp);
struct ofpact_enqueue *enqueue;
if (port == NULL || queue == NULL) {
return xstrdup("\"enqueue\" syntax is \"enqueue:PORT:QUEUE\" or "
"\"enqueue(PORT,QUEUE)\"");
}
enqueue = ofpact_put_ENQUEUE(ofpacts);
if (!ofputil_port_from_string(port, &enqueue->port)) {
return xasprintf("%s: enqueue to unknown port", port);
}
return str_to_u32(queue, &enqueue->queue);
}
static void
format_ENQUEUE(const struct ofpact_enqueue *a, struct ds *s)
{
ds_put_format(s, "enqueue:");
ofputil_format_port(a->port, s);
ds_put_format(s, ":%"PRIu32, a->queue);
}
/* Action structure for NXAST_OUTPUT_REG.
*
* Outputs to the OpenFlow port number written to src[ofs:ofs+nbits].
*
* The format and semantics of 'src' and 'ofs_nbits' are similar to those for
* the NXAST_REG_LOAD action.
*
* The acceptable nxm_header values for 'src' are the same as the acceptable
* nxm_header values for the 'src' field of NXAST_REG_MOVE.
*
* The 'max_len' field indicates the number of bytes to send when the chosen
* port is OFPP_CONTROLLER. Its semantics are equivalent to the 'max_len'
* field of OFPAT_OUTPUT.
*
* The 'zero' field is required to be zeroed for forward compatibility. */
struct nx_action_output_reg {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* 24. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_OUTPUT_REG. */
ovs_be16 ofs_nbits; /* (ofs << 6) | (n_bits - 1). */
ovs_be32 src; /* Source. */
ovs_be16 max_len; /* Max length to send to controller. */
uint8_t zero[6]; /* Reserved, must be zero. */
};
OFP_ASSERT(sizeof(struct nx_action_output_reg) == 24);
/* Action structure for NXAST_OUTPUT_REG2.
*
* Like the NXAST_OUTPUT_REG but organized so that there is room for a 64-bit
* experimenter OXM as 'src'.
*/
struct nx_action_output_reg2 {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* 24. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_OUTPUT_REG2. */
ovs_be16 ofs_nbits; /* (ofs << 6) | (n_bits - 1). */
ovs_be16 max_len; /* Max length to send to controller. */
/* Followed by:
* - 'src', as an OXM/NXM header (either 4 or 8 bytes).
* - Enough 0-bytes to pad the action out to 24 bytes. */
uint8_t pad[10];
};
OFP_ASSERT(sizeof(struct nx_action_output_reg2) == 24);
static enum ofperr
decode_NXAST_RAW_OUTPUT_REG(const struct nx_action_output_reg *naor,
struct ofpbuf *out)
{
struct ofpact_output_reg *output_reg;
if (!is_all_zeros(naor->zero, sizeof naor->zero)) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
output_reg = ofpact_put_OUTPUT_REG(out);
output_reg->ofpact.raw = NXAST_RAW_OUTPUT_REG;
output_reg->src.field = mf_from_nxm_header(ntohl(naor->src));
output_reg->src.ofs = nxm_decode_ofs(naor->ofs_nbits);
output_reg->src.n_bits = nxm_decode_n_bits(naor->ofs_nbits);
output_reg->max_len = ntohs(naor->max_len);
return mf_check_src(&output_reg->src, NULL);
}
static enum ofperr
decode_NXAST_RAW_OUTPUT_REG2(const struct nx_action_output_reg2 *naor,
struct ofpbuf *out)
{
struct ofpact_output_reg *output_reg;
enum ofperr error;
struct ofpbuf b;
output_reg = ofpact_put_OUTPUT_REG(out);
output_reg->ofpact.raw = NXAST_RAW_OUTPUT_REG2;
output_reg->src.ofs = nxm_decode_ofs(naor->ofs_nbits);
output_reg->src.n_bits = nxm_decode_n_bits(naor->ofs_nbits);
output_reg->max_len = ntohs(naor->max_len);
ofpbuf_use_const(&b, naor, ntohs(naor->len));
ofpbuf_pull(&b, OBJECT_OFFSETOF(naor, pad));
error = nx_pull_header(&b, &output_reg->src.field, NULL);
if (error) {
return error;
}
if (!is_all_zeros(b.data, b.size)) {
return OFPERR_NXBRC_MUST_BE_ZERO;
}
return mf_check_src(&output_reg->src, NULL);
}
static void
encode_OUTPUT_REG(const struct ofpact_output_reg *output_reg,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
/* If 'output_reg' came in as an NXAST_RAW_OUTPUT_REG2 action, or if it
* cannot be encoded in the older form, encode it as
* NXAST_RAW_OUTPUT_REG2. */
if (output_reg->ofpact.raw == NXAST_RAW_OUTPUT_REG2
|| !mf_nxm_header(output_reg->src.field->id)) {
struct nx_action_output_reg2 *naor = put_NXAST_OUTPUT_REG2(out);
size_t size = out->size;
naor->ofs_nbits = nxm_encode_ofs_nbits(output_reg->src.ofs,
output_reg->src.n_bits);
naor->max_len = htons(output_reg->max_len);
out->size = size - sizeof naor->pad;
nx_put_header(out, output_reg->src.field->id, 0, false);
out->size = size;
} else {
struct nx_action_output_reg *naor = put_NXAST_OUTPUT_REG(out);
naor->ofs_nbits = nxm_encode_ofs_nbits(output_reg->src.ofs,
output_reg->src.n_bits);
naor->src = htonl(mf_nxm_header(output_reg->src.field->id));
naor->max_len = htons(output_reg->max_len);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_OUTPUT_REG(const char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
return parse_OUTPUT(arg, ofpacts, usable_protocols);
}
static void
format_OUTPUT_REG(const struct ofpact_output_reg *a, struct ds *s)
{
ds_put_cstr(s, "output:");
mf_format_subfield(&a->src, s);
}
/* Action structure for NXAST_BUNDLE and NXAST_BUNDLE_LOAD.
*
* The bundle actions choose a slave from a supplied list of options.
* NXAST_BUNDLE outputs to its selection. NXAST_BUNDLE_LOAD writes its
* selection to a register.
*
* The list of possible slaves follows the nx_action_bundle structure. The size
* of each slave is governed by its type as indicated by the 'slave_type'
* parameter. The list of slaves should be padded at its end with zeros to make
* the total length of the action a multiple of 8.
*
* Switches infer from the 'slave_type' parameter the size of each slave. All
* implementations must support the NXM_OF_IN_PORT 'slave_type' which indicates
* that the slaves are OpenFlow port numbers with NXM_LENGTH(NXM_OF_IN_PORT) ==
* 2 byte width. Switches should reject actions which indicate unknown or
* unsupported slave types.
*
* Switches use a strategy dictated by the 'algorithm' parameter to choose a
* slave. If the switch does not support the specified 'algorithm' parameter,
* it should reject the action.
*
* Several algorithms take into account liveness when selecting slaves. The
* liveness of a slave is implementation defined (with one exception), but will
* generally take into account things like its carrier status and the results
* of any link monitoring protocols which happen to be running on it. In order
* to give controllers a place-holder value, the OFPP_NONE port is always
* considered live.
*
* Some slave selection strategies require the use of a hash function, in which
* case the 'fields' and 'basis' parameters should be populated. The 'fields'
* parameter (one of NX_HASH_FIELDS_*) designates which parts of the flow to
* hash. Refer to the definition of "enum nx_hash_fields" for details. The
* 'basis' parameter is used as a universal hash parameter. Different values
* of 'basis' yield different hash results.
*
* The 'zero' parameter at the end of the action structure is reserved for
* future use. Switches are required to reject actions which have nonzero
* bytes in the 'zero' field.
*
* NXAST_BUNDLE actions should have 'ofs_nbits' and 'dst' zeroed. Switches
* should reject actions which have nonzero bytes in either of these fields.
*
* NXAST_BUNDLE_LOAD stores the OpenFlow port number of the selected slave in
* dst[ofs:ofs+n_bits]. The format and semantics of 'dst' and 'ofs_nbits' are
* similar to those for the NXAST_REG_LOAD action. */
struct nx_action_bundle {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length including slaves. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_BUNDLE or NXAST_BUNDLE_LOAD. */
/* Slave choice algorithm to apply to hash value. */
ovs_be16 algorithm; /* One of NX_BD_ALG_*. */
/* What fields to hash and how. */
ovs_be16 fields; /* One of NX_HASH_FIELDS_*. */
ovs_be16 basis; /* Universal hash parameter. */
ovs_be32 slave_type; /* NXM_OF_IN_PORT. */
ovs_be16 n_slaves; /* Number of slaves. */
ovs_be16 ofs_nbits; /* (ofs << 6) | (n_bits - 1). */
ovs_be32 dst; /* Destination. */
uint8_t zero[4]; /* Reserved. Must be zero. */
};
OFP_ASSERT(sizeof(struct nx_action_bundle) == 32);
static enum ofperr
decode_bundle(bool load, const struct nx_action_bundle *nab,
struct ofpbuf *ofpacts)
{
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
struct ofpact_bundle *bundle;
uint32_t slave_type;
size_t slaves_size, i;
enum ofperr error;
bundle = ofpact_put_BUNDLE(ofpacts);
bundle->n_slaves = ntohs(nab->n_slaves);
bundle->basis = ntohs(nab->basis);
bundle->fields = ntohs(nab->fields);
bundle->algorithm = ntohs(nab->algorithm);
slave_type = ntohl(nab->slave_type);
slaves_size = ntohs(nab->len) - sizeof *nab;
error = OFPERR_OFPBAC_BAD_ARGUMENT;
if (!flow_hash_fields_valid(bundle->fields)) {
VLOG_WARN_RL(&rl, "unsupported fields %d", (int) bundle->fields);
} else if (bundle->n_slaves > BUNDLE_MAX_SLAVES) {
VLOG_WARN_RL(&rl, "too many slaves");
} else if (bundle->algorithm != NX_BD_ALG_HRW
&& bundle->algorithm != NX_BD_ALG_ACTIVE_BACKUP) {
VLOG_WARN_RL(&rl, "unsupported algorithm %d", (int) bundle->algorithm);
} else if (slave_type != mf_nxm_header(MFF_IN_PORT)) {
VLOG_WARN_RL(&rl, "unsupported slave type %"PRIu16, slave_type);
} else {
error = 0;
}
if (!is_all_zeros(nab->zero, sizeof nab->zero)) {
VLOG_WARN_RL(&rl, "reserved field is nonzero");
error = OFPERR_OFPBAC_BAD_ARGUMENT;
}
if (load) {
bundle->dst.field = mf_from_nxm_header(ntohl(nab->dst));
bundle->dst.ofs = nxm_decode_ofs(nab->ofs_nbits);
bundle->dst.n_bits = nxm_decode_n_bits(nab->ofs_nbits);
if (bundle->dst.n_bits < 16) {
VLOG_WARN_RL(&rl, "bundle_load action requires at least 16 bit "
"destination.");
error = OFPERR_OFPBAC_BAD_ARGUMENT;
}
} else {
if (nab->ofs_nbits || nab->dst) {
VLOG_WARN_RL(&rl, "bundle action has nonzero reserved fields");
error = OFPERR_OFPBAC_BAD_ARGUMENT;
}
}
if (slaves_size < bundle->n_slaves * sizeof(ovs_be16)) {
VLOG_WARN_RL(&rl, "Nicira action %s only has %"PRIuSIZE" bytes "
"allocated for slaves. %"PRIuSIZE" bytes are required "
"for %"PRIu16" slaves.",
load ? "bundle_load" : "bundle", slaves_size,
bundle->n_slaves * sizeof(ovs_be16), bundle->n_slaves);
error = OFPERR_OFPBAC_BAD_LEN;
}
for (i = 0; i < bundle->n_slaves; i++) {
uint16_t ofp_port = ntohs(((ovs_be16 *)(nab + 1))[i]);
ofpbuf_put(ofpacts, &ofp_port, sizeof ofp_port);
}
bundle = ofpacts->header;
ofpact_update_len(ofpacts, &bundle->ofpact);
if (!error) {
error = bundle_check(bundle, OFPP_MAX, NULL);
}
return error;
}
static enum ofperr
decode_NXAST_RAW_BUNDLE(const struct nx_action_bundle *nab, struct ofpbuf *out)
{
return decode_bundle(false, nab, out);
}
static enum ofperr
decode_NXAST_RAW_BUNDLE_LOAD(const struct nx_action_bundle *nab,
struct ofpbuf *out)
{
return decode_bundle(true, nab, out);
}
static void
encode_BUNDLE(const struct ofpact_bundle *bundle,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
int slaves_len = ROUND_UP(2 * bundle->n_slaves, OFP_ACTION_ALIGN);
struct nx_action_bundle *nab;
ovs_be16 *slaves;
size_t i;
nab = (bundle->dst.field
? put_NXAST_BUNDLE_LOAD(out)
: put_NXAST_BUNDLE(out));
nab->len = htons(ntohs(nab->len) + slaves_len);
nab->algorithm = htons(bundle->algorithm);
nab->fields = htons(bundle->fields);
nab->basis = htons(bundle->basis);
nab->slave_type = htonl(mf_nxm_header(MFF_IN_PORT));
nab->n_slaves = htons(bundle->n_slaves);
if (bundle->dst.field) {
nab->ofs_nbits = nxm_encode_ofs_nbits(bundle->dst.ofs,
bundle->dst.n_bits);
nab->dst = htonl(mf_nxm_header(bundle->dst.field->id));
}
slaves = ofpbuf_put_zeros(out, slaves_len);
for (i = 0; i < bundle->n_slaves; i++) {
slaves[i] = htons(ofp_to_u16(bundle->slaves[i]));
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_BUNDLE(const char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
return bundle_parse(arg, ofpacts);
}
static char * OVS_WARN_UNUSED_RESULT
parse_bundle_load(const char *arg, struct ofpbuf *ofpacts)
{
return bundle_parse_load(arg, ofpacts);
}
static void
format_BUNDLE(const struct ofpact_bundle *a, struct ds *s)
{
bundle_format(a, s);
}
/* Set VLAN actions. */
static enum ofperr
decode_set_vlan_vid(uint16_t vid, bool push_vlan_if_needed, struct ofpbuf *out)
{
if (vid & ~0xfff) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
} else {
struct ofpact_vlan_vid *vlan_vid = ofpact_put_SET_VLAN_VID(out);
vlan_vid->vlan_vid = vid;
vlan_vid->push_vlan_if_needed = push_vlan_if_needed;
return 0;
}
}
static enum ofperr
decode_OFPAT_RAW10_SET_VLAN_VID(uint16_t vid, struct ofpbuf *out)
{
return decode_set_vlan_vid(vid, true, out);
}
static enum ofperr
decode_OFPAT_RAW11_SET_VLAN_VID(uint16_t vid, struct ofpbuf *out)
{
return decode_set_vlan_vid(vid, false, out);
}
static void
encode_SET_VLAN_VID(const struct ofpact_vlan_vid *vlan_vid,
enum ofp_version ofp_version, struct ofpbuf *out)
{
uint16_t vid = vlan_vid->vlan_vid;
/* Push a VLAN tag, if none is present and this form of the action calls
* for such a feature. */
if (ofp_version > OFP10_VERSION
&& vlan_vid->push_vlan_if_needed
&& !vlan_vid->flow_has_vlan) {
put_OFPAT11_PUSH_VLAN(out, htons(ETH_TYPE_VLAN_8021Q));
}
if (ofp_version == OFP10_VERSION) {
put_OFPAT10_SET_VLAN_VID(out, vid);
} else if (ofp_version == OFP11_VERSION) {
put_OFPAT11_SET_VLAN_VID(out, vid);
} else {
ofpact_put_set_field(out, ofp_version,
MFF_VLAN_VID, vid | OFPVID12_PRESENT);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_set_vlan_vid(char *arg, struct ofpbuf *ofpacts, bool push_vlan_if_needed)
{
struct ofpact_vlan_vid *vlan_vid;
uint16_t vid;
char *error;
error = str_to_u16(arg, "VLAN VID", &vid);
if (error) {
return error;
}
if (vid & ~VLAN_VID_MASK) {
return xasprintf("%s: not a valid VLAN VID", arg);
}
vlan_vid = ofpact_put_SET_VLAN_VID(ofpacts);
vlan_vid->vlan_vid = vid;
vlan_vid->push_vlan_if_needed = push_vlan_if_needed;
return NULL;
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_VLAN_VID(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
return parse_set_vlan_vid(arg, ofpacts, false);
}
static void
format_SET_VLAN_VID(const struct ofpact_vlan_vid *a, struct ds *s)
{
ds_put_format(s, "%s:%"PRIu16,
a->push_vlan_if_needed ? "mod_vlan_vid" : "set_vlan_vid",
a->vlan_vid);
}
/* Set PCP actions. */
static enum ofperr
decode_set_vlan_pcp(uint8_t pcp, bool push_vlan_if_needed, struct ofpbuf *out)
{
if (pcp & ~7) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
} else {
struct ofpact_vlan_pcp *vlan_pcp = ofpact_put_SET_VLAN_PCP(out);
vlan_pcp->vlan_pcp = pcp;
vlan_pcp->push_vlan_if_needed = push_vlan_if_needed;
return 0;
}
}
static enum ofperr
decode_OFPAT_RAW10_SET_VLAN_PCP(uint8_t pcp, struct ofpbuf *out)
{
return decode_set_vlan_pcp(pcp, true, out);
}
static enum ofperr
decode_OFPAT_RAW11_SET_VLAN_PCP(uint8_t pcp, struct ofpbuf *out)
{
return decode_set_vlan_pcp(pcp, false, out);
}
static void
encode_SET_VLAN_PCP(const struct ofpact_vlan_pcp *vlan_pcp,
enum ofp_version ofp_version, struct ofpbuf *out)
{
uint8_t pcp = vlan_pcp->vlan_pcp;
/* Push a VLAN tag, if none is present and this form of the action calls
* for such a feature. */
if (ofp_version > OFP10_VERSION
&& vlan_pcp->push_vlan_if_needed
&& !vlan_pcp->flow_has_vlan) {
put_OFPAT11_PUSH_VLAN(out, htons(ETH_TYPE_VLAN_8021Q));
}
if (ofp_version == OFP10_VERSION) {
put_OFPAT10_SET_VLAN_PCP(out, pcp);
} else if (ofp_version == OFP11_VERSION) {
put_OFPAT11_SET_VLAN_PCP(out, pcp);
} else {
ofpact_put_set_field(out, ofp_version, MFF_VLAN_PCP, pcp);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_set_vlan_pcp(char *arg, struct ofpbuf *ofpacts, bool push_vlan_if_needed)
{
struct ofpact_vlan_pcp *vlan_pcp;
uint8_t pcp;
char *error;
error = str_to_u8(arg, "VLAN PCP", &pcp);
if (error) {
return error;
}
if (pcp & ~7) {
return xasprintf("%s: not a valid VLAN PCP", arg);
}
vlan_pcp = ofpact_put_SET_VLAN_PCP(ofpacts);
vlan_pcp->vlan_pcp = pcp;
vlan_pcp->push_vlan_if_needed = push_vlan_if_needed;
return NULL;
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_VLAN_PCP(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
return parse_set_vlan_pcp(arg, ofpacts, false);
}
static void
format_SET_VLAN_PCP(const struct ofpact_vlan_pcp *a, struct ds *s)
{
ds_put_format(s, "%s:%"PRIu8,
a->push_vlan_if_needed ? "mod_vlan_pcp" : "set_vlan_pcp",
a->vlan_pcp);
}
/* Strip VLAN actions. */
static enum ofperr
decode_OFPAT_RAW10_STRIP_VLAN(struct ofpbuf *out)
{
ofpact_put_STRIP_VLAN(out)->ofpact.raw = OFPAT_RAW10_STRIP_VLAN;
return 0;
}
static enum ofperr
decode_OFPAT_RAW11_POP_VLAN(struct ofpbuf *out)
{
ofpact_put_STRIP_VLAN(out)->ofpact.raw = OFPAT_RAW11_POP_VLAN;
return 0;
}
static void
encode_STRIP_VLAN(const struct ofpact_null *null OVS_UNUSED,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version == OFP10_VERSION) {
put_OFPAT10_STRIP_VLAN(out);
} else {
put_OFPAT11_POP_VLAN(out);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_STRIP_VLAN(char *arg OVS_UNUSED, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
ofpact_put_STRIP_VLAN(ofpacts)->ofpact.raw = OFPAT_RAW10_STRIP_VLAN;
return NULL;
}
static char * OVS_WARN_UNUSED_RESULT
parse_pop_vlan(struct ofpbuf *ofpacts)
{
ofpact_put_STRIP_VLAN(ofpacts)->ofpact.raw = OFPAT_RAW11_POP_VLAN;
return NULL;
}
static void
format_STRIP_VLAN(const struct ofpact_null *a, struct ds *s)
{
ds_put_cstr(s, (a->ofpact.raw == OFPAT_RAW11_POP_VLAN
? "pop_vlan"
: "strip_vlan"));
}
/* Push VLAN action. */
static enum ofperr
decode_OFPAT_RAW11_PUSH_VLAN(ovs_be16 eth_type, struct ofpbuf *out)
{
if (eth_type != htons(ETH_TYPE_VLAN_8021Q)) {
/* XXX 802.1AD(QinQ) isn't supported at the moment */
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
ofpact_put_PUSH_VLAN(out);
return 0;
}
static void
encode_PUSH_VLAN(const struct ofpact_null *null OVS_UNUSED,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version == OFP10_VERSION) {
/* PUSH is a side effect of a SET_VLAN_VID/PCP, which should
* follow this action. */
} else {
/* XXX ETH_TYPE_VLAN_8021AD case */
put_OFPAT11_PUSH_VLAN(out, htons(ETH_TYPE_VLAN_8021Q));
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_PUSH_VLAN(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
uint16_t ethertype;
char *error;
*usable_protocols &= OFPUTIL_P_OF11_UP;
error = str_to_u16(arg, "ethertype", &ethertype);
if (error) {
return error;
}
if (ethertype != ETH_TYPE_VLAN_8021Q) {
/* XXX ETH_TYPE_VLAN_8021AD case isn't supported */
return xasprintf("%s: not a valid VLAN ethertype", arg);
}
ofpact_put_PUSH_VLAN(ofpacts);
return NULL;
}
static void
format_PUSH_VLAN(const struct ofpact_null *a OVS_UNUSED, struct ds *s)
{
/* XXX 802.1AD case*/
ds_put_format(s, "push_vlan:%#"PRIx16, ETH_TYPE_VLAN_8021Q);
}
/* Action structure for OFPAT10_SET_DL_SRC/DST and OFPAT11_SET_DL_SRC/DST. */
struct ofp_action_dl_addr {
ovs_be16 type; /* Type. */
ovs_be16 len; /* Length is 16. */
struct eth_addr dl_addr; /* Ethernet address. */
uint8_t pad[6];
};
OFP_ASSERT(sizeof(struct ofp_action_dl_addr) == 16);
static enum ofperr
decode_OFPAT_RAW_SET_DL_SRC(const struct ofp_action_dl_addr *a,
struct ofpbuf *out)
{
ofpact_put_SET_ETH_SRC(out)->mac = a->dl_addr;
return 0;
}
static enum ofperr
decode_OFPAT_RAW_SET_DL_DST(const struct ofp_action_dl_addr *a,
struct ofpbuf *out)
{
ofpact_put_SET_ETH_DST(out)->mac = a->dl_addr;
return 0;
}
static void
encode_SET_ETH_addr(const struct ofpact_mac *mac, enum ofp_version ofp_version,
enum ofp_raw_action_type raw, enum mf_field_id field,
struct ofpbuf *out)
{
if (ofp_version < OFP12_VERSION) {
struct ofp_action_dl_addr *oada;
oada = ofpact_put_raw(out, ofp_version, raw, 0);
oada->dl_addr = mac->mac;
} else {
ofpact_put_set_field(out, ofp_version, field,
eth_addr_to_uint64(mac->mac));
}
}
static void
encode_SET_ETH_SRC(const struct ofpact_mac *mac, enum ofp_version ofp_version,
struct ofpbuf *out)
{
encode_SET_ETH_addr(mac, ofp_version, OFPAT_RAW_SET_DL_SRC, MFF_ETH_SRC,
out);
}
static void
encode_SET_ETH_DST(const struct ofpact_mac *mac,
enum ofp_version ofp_version,
struct ofpbuf *out)
{
encode_SET_ETH_addr(mac, ofp_version, OFPAT_RAW_SET_DL_DST, MFF_ETH_DST,
out);
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_ETH_SRC(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
return str_to_mac(arg, &ofpact_put_SET_ETH_SRC(ofpacts)->mac);
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_ETH_DST(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
return str_to_mac(arg, &ofpact_put_SET_ETH_DST(ofpacts)->mac);
}
static void
format_SET_ETH_SRC(const struct ofpact_mac *a, struct ds *s)
{
ds_put_format(s, "mod_dl_src:"ETH_ADDR_FMT, ETH_ADDR_ARGS(a->mac));
}
static void
format_SET_ETH_DST(const struct ofpact_mac *a, struct ds *s)
{
ds_put_format(s, "mod_dl_dst:"ETH_ADDR_FMT, ETH_ADDR_ARGS(a->mac));
}
/* Set IPv4 address actions. */
static enum ofperr
decode_OFPAT_RAW_SET_NW_SRC(ovs_be32 ipv4, struct ofpbuf *out)
{
ofpact_put_SET_IPV4_SRC(out)->ipv4 = ipv4;
return 0;
}
static enum ofperr
decode_OFPAT_RAW_SET_NW_DST(ovs_be32 ipv4, struct ofpbuf *out)
{
ofpact_put_SET_IPV4_DST(out)->ipv4 = ipv4;
return 0;
}
static void
encode_SET_IPV4_addr(const struct ofpact_ipv4 *ipv4,
enum ofp_version ofp_version,
enum ofp_raw_action_type raw, enum mf_field_id field,
struct ofpbuf *out)
{
ovs_be32 addr = ipv4->ipv4;
if (ofp_version < OFP12_VERSION) {
ofpact_put_raw(out, ofp_version, raw, ntohl(addr));
} else {
ofpact_put_set_field(out, ofp_version, field, ntohl(addr));
}
}
static void
encode_SET_IPV4_SRC(const struct ofpact_ipv4 *ipv4,
enum ofp_version ofp_version, struct ofpbuf *out)
{
encode_SET_IPV4_addr(ipv4, ofp_version, OFPAT_RAW_SET_NW_SRC, MFF_IPV4_SRC,
out);
}
static void
encode_SET_IPV4_DST(const struct ofpact_ipv4 *ipv4,
enum ofp_version ofp_version, struct ofpbuf *out)
{
encode_SET_IPV4_addr(ipv4, ofp_version, OFPAT_RAW_SET_NW_DST, MFF_IPV4_DST,
out);
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_IPV4_SRC(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
return str_to_ip(arg, &ofpact_put_SET_IPV4_SRC(ofpacts)->ipv4);
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_IPV4_DST(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
return str_to_ip(arg, &ofpact_put_SET_IPV4_DST(ofpacts)->ipv4);
}
static void
format_SET_IPV4_SRC(const struct ofpact_ipv4 *a, struct ds *s)
{
ds_put_format(s, "mod_nw_src:"IP_FMT, IP_ARGS(a->ipv4));
}
static void
format_SET_IPV4_DST(const struct ofpact_ipv4 *a, struct ds *s)
{
ds_put_format(s, "mod_nw_dst:"IP_FMT, IP_ARGS(a->ipv4));
}
/* Set IPv4/v6 TOS actions. */
static enum ofperr
decode_OFPAT_RAW_SET_NW_TOS(uint8_t dscp, struct ofpbuf *out)
{
if (dscp & ~IP_DSCP_MASK) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
} else {
ofpact_put_SET_IP_DSCP(out)->dscp = dscp;
return 0;
}
}
static void
encode_SET_IP_DSCP(const struct ofpact_dscp *dscp,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version < OFP12_VERSION) {
put_OFPAT_SET_NW_TOS(out, ofp_version, dscp->dscp);
} else {
ofpact_put_set_field(out, ofp_version,
MFF_IP_DSCP_SHIFTED, dscp->dscp >> 2);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_IP_DSCP(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
uint8_t tos;
char *error;
error = str_to_u8(arg, "TOS", &tos);
if (error) {
return error;
}
if (tos & ~IP_DSCP_MASK) {
return xasprintf("%s: not a valid TOS", arg);
}
ofpact_put_SET_IP_DSCP(ofpacts)->dscp = tos;
return NULL;
}
static void
format_SET_IP_DSCP(const struct ofpact_dscp *a, struct ds *s)
{
ds_put_format(s, "mod_nw_tos:%d", a->dscp);
}
/* Set IPv4/v6 ECN actions. */
static enum ofperr
decode_OFPAT_RAW11_SET_NW_ECN(uint8_t ecn, struct ofpbuf *out)
{
if (ecn & ~IP_ECN_MASK) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
} else {
ofpact_put_SET_IP_ECN(out)->ecn = ecn;
return 0;
}
}
static void
encode_SET_IP_ECN(const struct ofpact_ecn *ip_ecn,
enum ofp_version ofp_version, struct ofpbuf *out)
{
uint8_t ecn = ip_ecn->ecn;
if (ofp_version == OFP10_VERSION) {
/* XXX */
} else if (ofp_version == OFP11_VERSION) {
put_OFPAT11_SET_NW_ECN(out, ecn);
} else {
ofpact_put_set_field(out, ofp_version, MFF_IP_ECN, ecn);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_IP_ECN(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
uint8_t ecn;
char *error;
error = str_to_u8(arg, "ECN", &ecn);
if (error) {
return error;
}
if (ecn & ~IP_ECN_MASK) {
return xasprintf("%s: not a valid ECN", arg);
}
ofpact_put_SET_IP_ECN(ofpacts)->ecn = ecn;
return NULL;
}
static void
format_SET_IP_ECN(const struct ofpact_ecn *a, struct ds *s)
{
ds_put_format(s, "mod_nw_ecn:%d", a->ecn);
}
/* Set IPv4/v6 TTL actions. */
static enum ofperr
decode_OFPAT_RAW11_SET_NW_TTL(uint8_t ttl, struct ofpbuf *out)
{
ofpact_put_SET_IP_TTL(out)->ttl = ttl;
return 0;
}
static void
encode_SET_IP_TTL(const struct ofpact_ip_ttl *ttl,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version >= OFP11_VERSION) {
put_OFPAT11_SET_NW_TTL(out, ttl->ttl);
} else {
/* XXX */
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_IP_TTL(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
uint8_t ttl;
char *error;
error = str_to_u8(arg, "TTL", &ttl);
if (error) {
return error;
}
ofpact_put_SET_IP_TTL(ofpacts)->ttl = ttl;
return NULL;
}
static void
format_SET_IP_TTL(const struct ofpact_ip_ttl *a, struct ds *s)
{
ds_put_format(s, "mod_nw_ttl:%d", a->ttl);
}
/* Set TCP/UDP/SCTP port actions. */
static enum ofperr
decode_OFPAT_RAW_SET_TP_SRC(ovs_be16 port, struct ofpbuf *out)
{
ofpact_put_SET_L4_SRC_PORT(out)->port = ntohs(port);
return 0;
}
static enum ofperr
decode_OFPAT_RAW_SET_TP_DST(ovs_be16 port, struct ofpbuf *out)
{
ofpact_put_SET_L4_DST_PORT(out)->port = ntohs(port);
return 0;
}
static void
encode_SET_L4_port(const struct ofpact_l4_port *l4_port,
enum ofp_version ofp_version, enum ofp_raw_action_type raw,
enum mf_field_id field, struct ofpbuf *out)
{
uint16_t port = l4_port->port;
if (ofp_version >= OFP12_VERSION && field != MFF_N_IDS) {
ofpact_put_set_field(out, ofp_version, field, port);
} else {
ofpact_put_raw(out, ofp_version, raw, port);
}
}
static void
encode_SET_L4_SRC_PORT(const struct ofpact_l4_port *l4_port,
enum ofp_version ofp_version, struct ofpbuf *out)
{
uint8_t proto = l4_port->flow_ip_proto;
enum mf_field_id field = (proto == IPPROTO_TCP ? MFF_TCP_SRC
: proto == IPPROTO_UDP ? MFF_UDP_SRC
: proto == IPPROTO_SCTP ? MFF_SCTP_SRC
: MFF_N_IDS);
encode_SET_L4_port(l4_port, ofp_version, OFPAT_RAW_SET_TP_SRC, field, out);
}
static void
encode_SET_L4_DST_PORT(const struct ofpact_l4_port *l4_port,
enum ofp_version ofp_version,
struct ofpbuf *out)
{
uint8_t proto = l4_port->flow_ip_proto;
enum mf_field_id field = (proto == IPPROTO_TCP ? MFF_TCP_DST
: proto == IPPROTO_UDP ? MFF_UDP_DST
: proto == IPPROTO_SCTP ? MFF_SCTP_DST
: MFF_N_IDS);
encode_SET_L4_port(l4_port, ofp_version, OFPAT_RAW_SET_TP_DST, field, out);
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_L4_SRC_PORT(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
return str_to_u16(arg, "source port",
&ofpact_put_SET_L4_SRC_PORT(ofpacts)->port);
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_L4_DST_PORT(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
return str_to_u16(arg, "destination port",
&ofpact_put_SET_L4_DST_PORT(ofpacts)->port);
}
static void
format_SET_L4_SRC_PORT(const struct ofpact_l4_port *a, struct ds *s)
{
ds_put_format(s, "mod_tp_src:%d", a->port);
}
static void
format_SET_L4_DST_PORT(const struct ofpact_l4_port *a, struct ds *s)
{
ds_put_format(s, "mod_tp_dst:%d", a->port);
}
/* Action structure for OFPAT_COPY_FIELD. */
struct ofp15_action_copy_field {
ovs_be16 type; /* OFPAT_COPY_FIELD. */
ovs_be16 len; /* Length is padded to 64 bits. */
ovs_be16 n_bits; /* Number of bits to copy. */
ovs_be16 src_offset; /* Starting bit offset in source. */
ovs_be16 dst_offset; /* Starting bit offset in destination. */
uint8_t pad[2];
/* Followed by:
* - OXM header for source field.
* - OXM header for destination field.
* - Padding with 0-bytes to a multiple of 8 bytes.
* The "pad2" member is the beginning of the above. */
uint8_t pad2[4];
};
OFP_ASSERT(sizeof(struct ofp15_action_copy_field) == 16);
/* Action structure for OpenFlow 1.3 extension copy-field action.. */
struct onf_action_copy_field {
ovs_be16 type; /* OFPAT_EXPERIMENTER. */
ovs_be16 len; /* Length is padded to 64 bits. */
ovs_be32 experimenter; /* ONF_VENDOR_ID. */
ovs_be16 exp_type; /* 3200. */
uint8_t pad[2]; /* Not used. */
ovs_be16 n_bits; /* Number of bits to copy. */
ovs_be16 src_offset; /* Starting bit offset in source. */
ovs_be16 dst_offset; /* Starting bit offset in destination. */
uint8_t pad2[2]; /* Not used. */
/* Followed by:
* - OXM header for source field.
* - OXM header for destination field.
* - Padding with 0-bytes (either 0 or 4 of them) to a multiple of 8 bytes.
* The "pad3" member is the beginning of the above. */
uint8_t pad3[4]; /* Not used. */
};
OFP_ASSERT(sizeof(struct onf_action_copy_field) == 24);
/* Action structure for NXAST_REG_MOVE.
*
* Copies src[src_ofs:src_ofs+n_bits] to dst[dst_ofs:dst_ofs+n_bits], where
* a[b:c] denotes the bits within 'a' numbered 'b' through 'c' (not including
* bit 'c'). Bit numbering starts at 0 for the least-significant bit, 1 for
* the next most significant bit, and so on.
*
* 'src' and 'dst' are nxm_header values with nxm_hasmask=0. (It doesn't make
* sense to use nxm_hasmask=1 because the action does not do any kind of
* matching; it uses the actual value of a field.)
*
* The following nxm_header values are potentially acceptable as 'src':
*
* - NXM_OF_IN_PORT
* - NXM_OF_ETH_DST
* - NXM_OF_ETH_SRC
* - NXM_OF_ETH_TYPE
* - NXM_OF_VLAN_TCI
* - NXM_OF_IP_TOS
* - NXM_OF_IP_PROTO
* - NXM_OF_IP_SRC
* - NXM_OF_IP_DST
* - NXM_OF_TCP_SRC
* - NXM_OF_TCP_DST
* - NXM_OF_UDP_SRC
* - NXM_OF_UDP_DST
* - NXM_OF_ICMP_TYPE
* - NXM_OF_ICMP_CODE
* - NXM_OF_ARP_OP
* - NXM_OF_ARP_SPA
* - NXM_OF_ARP_TPA
* - NXM_NX_TUN_ID
* - NXM_NX_ARP_SHA
* - NXM_NX_ARP_THA
* - NXM_NX_ICMPV6_TYPE
* - NXM_NX_ICMPV6_CODE
* - NXM_NX_ND_SLL
* - NXM_NX_ND_TLL
* - NXM_NX_REG(idx) for idx in the switch's accepted range.
* - NXM_NX_PKT_MARK
* - NXM_NX_TUN_IPV4_SRC
* - NXM_NX_TUN_IPV4_DST
*
* The following nxm_header values are potentially acceptable as 'dst':
*
* - NXM_OF_ETH_DST
* - NXM_OF_ETH_SRC
* - NXM_OF_IP_TOS
* - NXM_OF_IP_SRC
* - NXM_OF_IP_DST
* - NXM_OF_TCP_SRC
* - NXM_OF_TCP_DST
* - NXM_OF_UDP_SRC
* - NXM_OF_UDP_DST
* - NXM_NX_ARP_SHA
* - NXM_NX_ARP_THA
* - NXM_OF_ARP_OP
* - NXM_OF_ARP_SPA
* - NXM_OF_ARP_TPA
* Modifying any of the above fields changes the corresponding packet
* header.
*
* - NXM_OF_IN_PORT
*
* - NXM_NX_REG(idx) for idx in the switch's accepted range.
*
* - NXM_NX_PKT_MARK
*
* - NXM_OF_VLAN_TCI. Modifying this field's value has side effects on the
* packet's 802.1Q header. Setting a value with CFI=0 removes the 802.1Q
* header (if any), ignoring the other bits. Setting a value with CFI=1
* adds or modifies the 802.1Q header appropriately, setting the TCI field
* to the field's new value (with the CFI bit masked out).
*
* - NXM_NX_TUN_ID, NXM_NX_TUN_IPV4_SRC, NXM_NX_TUN_IPV4_DST. Modifying
* any of these values modifies the corresponding tunnel header field used
* for the packet's next tunnel encapsulation, if allowed by the
* configuration of the output tunnel port.
*
* A given nxm_header value may be used as 'src' or 'dst' only on a flow whose
* nx_match satisfies its prerequisites. For example, NXM_OF_IP_TOS may be
* used only if the flow's nx_match includes an nxm_entry that specifies
* nxm_type=NXM_OF_ETH_TYPE, nxm_hasmask=0, and nxm_value=0x0800.
*
* The switch will reject actions for which src_ofs+n_bits is greater than the
* width of 'src' or dst_ofs+n_bits is greater than the width of 'dst' with
* error type OFPET_BAD_ACTION, code OFPBAC_BAD_ARGUMENT.
*
* This action behaves properly when 'src' overlaps with 'dst', that is, it
* behaves as if 'src' were copied out to a temporary buffer, then the
* temporary buffer copied to 'dst'.
*/
struct nx_action_reg_move {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length is 24. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_REG_MOVE. */
ovs_be16 n_bits; /* Number of bits. */
ovs_be16 src_ofs; /* Starting bit offset in source. */
ovs_be16 dst_ofs; /* Starting bit offset in destination. */
/* Followed by:
* - OXM/NXM header for source field (4 or 8 bytes).
* - OXM/NXM header for destination field (4 or 8 bytes).
* - Padding with 0-bytes to a multiple of 8 bytes, if necessary. */
};
OFP_ASSERT(sizeof(struct nx_action_reg_move) == 16);
static enum ofperr
decode_copy_field__(ovs_be16 src_offset, ovs_be16 dst_offset, ovs_be16 n_bits,
const void *action, ovs_be16 action_len, size_t oxm_offset,
struct ofpbuf *ofpacts)
{
struct ofpact_reg_move *move;
enum ofperr error;
struct ofpbuf b;
move = ofpact_put_REG_MOVE(ofpacts);
move->ofpact.raw = ONFACT_RAW13_COPY_FIELD;
move->src.ofs = ntohs(src_offset);
move->src.n_bits = ntohs(n_bits);
move->dst.ofs = ntohs(dst_offset);
move->dst.n_bits = ntohs(n_bits);
ofpbuf_use_const(&b, action, ntohs(action_len));
ofpbuf_pull(&b, oxm_offset);
error = nx_pull_header(&b, &move->src.field, NULL);
if (error) {
return error;
}
error = nx_pull_header(&b, &move->dst.field, NULL);
if (error) {
return error;
}
if (!is_all_zeros(b.data, b.size)) {
return OFPERR_NXBRC_MUST_BE_ZERO;
}
return nxm_reg_move_check(move, NULL);
}
static enum ofperr
decode_OFPAT_RAW15_COPY_FIELD(const struct ofp15_action_copy_field *oacf,
struct ofpbuf *ofpacts)
{
return decode_copy_field__(oacf->src_offset, oacf->dst_offset,
oacf->n_bits, oacf, oacf->len,
OBJECT_OFFSETOF(oacf, pad2), ofpacts);
}
static enum ofperr
decode_ONFACT_RAW13_COPY_FIELD(const struct onf_action_copy_field *oacf,
struct ofpbuf *ofpacts)
{
return decode_copy_field__(oacf->src_offset, oacf->dst_offset,
oacf->n_bits, oacf, oacf->len,
OBJECT_OFFSETOF(oacf, pad3), ofpacts);
}
static enum ofperr
decode_NXAST_RAW_REG_MOVE(const struct nx_action_reg_move *narm,
struct ofpbuf *ofpacts)
{
struct ofpact_reg_move *move;
enum ofperr error;
struct ofpbuf b;
move = ofpact_put_REG_MOVE(ofpacts);
move->ofpact.raw = NXAST_RAW_REG_MOVE;
move->src.ofs = ntohs(narm->src_ofs);
move->src.n_bits = ntohs(narm->n_bits);
move->dst.ofs = ntohs(narm->dst_ofs);
move->dst.n_bits = ntohs(narm->n_bits);
ofpbuf_use_const(&b, narm, ntohs(narm->len));
ofpbuf_pull(&b, sizeof *narm);
error = nx_pull_header(&b, &move->src.field, NULL);
if (error) {
return error;
}
error = nx_pull_header(&b, &move->dst.field, NULL);
if (error) {
return error;
}
if (!is_all_zeros(b.data, b.size)) {
return OFPERR_NXBRC_MUST_BE_ZERO;
}
return nxm_reg_move_check(move, NULL);
}
static void
encode_REG_MOVE(const struct ofpact_reg_move *move,
enum ofp_version ofp_version, struct ofpbuf *out)
{
/* For OpenFlow 1.3, the choice of ONFACT_RAW13_COPY_FIELD versus
* NXAST_RAW_REG_MOVE is somewhat difficult. Neither one is guaranteed to
* be supported by every OpenFlow 1.3 implementation. It would be ideal to
* probe for support. Until we have that ability, we currently prefer
* NXAST_RAW_REG_MOVE for backward compatibility with older Open vSwitch
* versions. */
size_t start_ofs = out->size;
if (ofp_version >= OFP15_VERSION) {
struct ofp15_action_copy_field *copy = put_OFPAT15_COPY_FIELD(out);
copy->n_bits = htons(move->dst.n_bits);
copy->src_offset = htons(move->src.ofs);
copy->dst_offset = htons(move->dst.ofs);
out->size = out->size - sizeof copy->pad2;
nx_put_header(out, move->src.field->id, ofp_version, false);
nx_put_header(out, move->dst.field->id, ofp_version, false);
} else if (ofp_version == OFP13_VERSION
&& move->ofpact.raw == ONFACT_RAW13_COPY_FIELD) {
struct onf_action_copy_field *copy = put_ONFACT13_COPY_FIELD(out);
copy->n_bits = htons(move->dst.n_bits);
copy->src_offset = htons(move->src.ofs);
copy->dst_offset = htons(move->dst.ofs);
out->size = out->size - sizeof copy->pad3;
nx_put_header(out, move->src.field->id, ofp_version, false);
nx_put_header(out, move->dst.field->id, ofp_version, false);
} else {
struct nx_action_reg_move *narm = put_NXAST_REG_MOVE(out);
narm->n_bits = htons(move->dst.n_bits);
narm->src_ofs = htons(move->src.ofs);
narm->dst_ofs = htons(move->dst.ofs);
nx_put_header(out, move->src.field->id, 0, false);
nx_put_header(out, move->dst.field->id, 0, false);
}
pad_ofpat(out, start_ofs);
}
static char * OVS_WARN_UNUSED_RESULT
parse_REG_MOVE(const char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
struct ofpact_reg_move *move = ofpact_put_REG_MOVE(ofpacts);
const char *full_arg = arg;
char *error;
error = mf_parse_subfield__(&move->src, &arg);
if (error) {
return error;
}
if (strncmp(arg, "->", 2)) {
return xasprintf("%s: missing `->' following source", full_arg);
}
arg += 2;
error = mf_parse_subfield(&move->dst, arg);
if (error) {
return error;
}
if (move->src.n_bits != move->dst.n_bits) {
return xasprintf("%s: source field is %d bits wide but destination is "
"%d bits wide", full_arg,
move->src.n_bits, move->dst.n_bits);
}
return NULL;
}
static void
format_REG_MOVE(const struct ofpact_reg_move *a, struct ds *s)
{
nxm_format_reg_move(a, s);
}
/* Action structure for OFPAT12_SET_FIELD. */
struct ofp12_action_set_field {
ovs_be16 type; /* OFPAT12_SET_FIELD. */
ovs_be16 len; /* Length is padded to 64 bits. */
/* Followed by:
* - An OXM header, value, and (in OpenFlow 1.5+) optionally a mask.
* - Enough 0-bytes to pad out to a multiple of 64 bits.
*
* The "pad" member is the beginning of the above. */
uint8_t pad[4];
};
OFP_ASSERT(sizeof(struct ofp12_action_set_field) == 8);
/* Action structure for NXAST_REG_LOAD.
*
* Copies value[0:n_bits] to dst[ofs:ofs+n_bits], where a[b:c] denotes the bits
* within 'a' numbered 'b' through 'c' (not including bit 'c'). Bit numbering
* starts at 0 for the least-significant bit, 1 for the next most significant
* bit, and so on.
*
* 'dst' is an nxm_header with nxm_hasmask=0. See the documentation for
* NXAST_REG_MOVE, above, for the permitted fields and for the side effects of
* loading them.
*
* The 'ofs' and 'n_bits' fields are combined into a single 'ofs_nbits' field
* to avoid enlarging the structure by another 8 bytes. To allow 'n_bits' to
* take a value between 1 and 64 (inclusive) while taking up only 6 bits, it is
* also stored as one less than its true value:
*
* 15 6 5 0
* +------------------------------+------------------+
* | ofs | n_bits - 1 |
* +------------------------------+------------------+
*
* The switch will reject actions for which ofs+n_bits is greater than the
* width of 'dst', or in which any bits in 'value' with value 2**n_bits or
* greater are set to 1, with error type OFPET_BAD_ACTION, code
* OFPBAC_BAD_ARGUMENT.
*/
struct nx_action_reg_load {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length is 24. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_REG_LOAD. */
ovs_be16 ofs_nbits; /* (ofs << 6) | (n_bits - 1). */
ovs_be32 dst; /* Destination register. */
ovs_be64 value; /* Immediate value. */
};
OFP_ASSERT(sizeof(struct nx_action_reg_load) == 24);
/* Action structure for NXAST_REG_LOAD2.
*
* Compared to OFPAT_SET_FIELD, we can use this to set whole or partial fields
* in any OpenFlow version. Compared to NXAST_REG_LOAD, we can use this to set
* OXM experimenter fields. */
struct nx_action_reg_load2 {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* At least 16. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_SET_FIELD. */
/* Followed by:
* - An NXM/OXM header, value, and optionally a mask.
* - Enough 0-bytes to pad out to a multiple of 64 bits.
*
* The "pad" member is the beginning of the above. */
uint8_t pad[6];
};
OFP_ASSERT(sizeof(struct nx_action_reg_load2) == 16);
static enum ofperr
decode_ofpat_set_field(const struct ofp12_action_set_field *oasf,
bool may_mask, struct ofpbuf *ofpacts)
{
struct ofpact_set_field *sf;
enum ofperr error;
struct ofpbuf b;
sf = ofpact_put_SET_FIELD(ofpacts);
ofpbuf_use_const(&b, oasf, ntohs(oasf->len));
ofpbuf_pull(&b, OBJECT_OFFSETOF(oasf, pad));
error = nx_pull_entry(&b, &sf->field, &sf->value,
may_mask ? &sf->mask : NULL);
if (error) {
return (error == OFPERR_OFPBMC_BAD_MASK
? OFPERR_OFPBAC_BAD_SET_MASK
: error);
}
if (!may_mask) {
memset(&sf->mask, 0xff, sf->field->n_bytes);
}
if (!is_all_zeros(b.data, b.size)) {
return OFPERR_OFPBAC_BAD_SET_ARGUMENT;
}
/* OpenFlow says specifically that one may not set OXM_OF_IN_PORT via
* Set-Field. */
if (sf->field->id == MFF_IN_PORT_OXM) {
return OFPERR_OFPBAC_BAD_SET_ARGUMENT;
}
/* oxm_length is now validated to be compatible with mf_value. */
if (!sf->field->writable) {
VLOG_WARN_RL(&rl, "destination field %s is not writable",
sf->field->name);
return OFPERR_OFPBAC_BAD_SET_ARGUMENT;
}
/* The value must be valid for match. OpenFlow 1.5 also says,
* "In an OXM_OF_VLAN_VID set-field action, the OFPVID_PRESENT bit must be
* a 1-bit in oxm_value and in oxm_mask." */
if (!mf_is_value_valid(sf->field, &sf->value)
|| (sf->field->id == MFF_VLAN_VID
&& (!(sf->mask.be16 & htons(OFPVID12_PRESENT))
|| !(sf->value.be16 & htons(OFPVID12_PRESENT))))) {
struct ds ds = DS_EMPTY_INITIALIZER;
mf_format(sf->field, &sf->value, NULL, &ds);
VLOG_WARN_RL(&rl, "Invalid value for set field %s: %s",
sf->field->name, ds_cstr(&ds));
ds_destroy(&ds);
return OFPERR_OFPBAC_BAD_SET_ARGUMENT;
}
return 0;
}
static enum ofperr
decode_OFPAT_RAW12_SET_FIELD(const struct ofp12_action_set_field *oasf,
struct ofpbuf *ofpacts)
{
return decode_ofpat_set_field(oasf, false, ofpacts);
}
static enum ofperr
decode_OFPAT_RAW15_SET_FIELD(const struct ofp12_action_set_field *oasf,
struct ofpbuf *ofpacts)
{
return decode_ofpat_set_field(oasf, true, ofpacts);
}
static enum ofperr
decode_NXAST_RAW_REG_LOAD(const struct nx_action_reg_load *narl,
struct ofpbuf *out)
{
struct ofpact_set_field *sf = ofpact_put_reg_load(out);
struct mf_subfield dst;
enum ofperr error;
sf->ofpact.raw = NXAST_RAW_REG_LOAD;
dst.field = mf_from_nxm_header(ntohl(narl->dst));
dst.ofs = nxm_decode_ofs(narl->ofs_nbits);
dst.n_bits = nxm_decode_n_bits(narl->ofs_nbits);
error = mf_check_dst(&dst, NULL);
if (error) {
return error;
}
/* Reject 'narl' if a bit numbered 'n_bits' or higher is set to 1 in
* narl->value. */
if (dst.n_bits < 64 && ntohll(narl->value) >> dst.n_bits) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
sf->field = dst.field;
bitwise_put(ntohll(narl->value),
&sf->value, dst.field->n_bytes, dst.ofs,
dst.n_bits);
bitwise_put(UINT64_MAX,
&sf->mask, dst.field->n_bytes, dst.ofs,
dst.n_bits);
return 0;
}
static enum ofperr
decode_NXAST_RAW_REG_LOAD2(const struct nx_action_reg_load2 *narl,
struct ofpbuf *out)
{
struct ofpact_set_field *sf;
enum ofperr error;
struct ofpbuf b;
sf = ofpact_put_SET_FIELD(out);
sf->ofpact.raw = NXAST_RAW_REG_LOAD2;
ofpbuf_use_const(&b, narl, ntohs(narl->len));
ofpbuf_pull(&b, OBJECT_OFFSETOF(narl, pad));
error = nx_pull_entry(&b, &sf->field, &sf->value, &sf->mask);
if (error) {
return error;
}
if (!is_all_zeros(b.data, b.size)) {
return OFPERR_OFPBAC_BAD_SET_ARGUMENT;
}
if (!sf->field->writable) {
VLOG_WARN_RL(&rl, "destination field %s is not writable",
sf->field->name);
return OFPERR_OFPBAC_BAD_SET_ARGUMENT;
}
return 0;
}
static void
ofpact_put_set_field(struct ofpbuf *openflow, enum ofp_version ofp_version,
enum mf_field_id field, uint64_t value_)
{
struct ofp12_action_set_field *oasf OVS_UNUSED;
int n_bytes = mf_from_id(field)->n_bytes;
size_t start_ofs = openflow->size;
union mf_value value;
value.be64 = htonll(value_ << (8 * (8 - n_bytes)));
oasf = put_OFPAT12_SET_FIELD(openflow);
openflow->size = openflow->size - sizeof oasf->pad;
nx_put_entry(openflow, field, ofp_version, &value, NULL);
pad_ofpat(openflow, start_ofs);
}
static bool
next_load_segment(const struct ofpact_set_field *sf,
struct mf_subfield *dst, uint64_t *value)
{
int n_bits = sf->field->n_bits;
int n_bytes = sf->field->n_bytes;
int start = dst->ofs + dst->n_bits;
if (start < n_bits) {
dst->field = sf->field;
dst->ofs = bitwise_scan(&sf->mask, n_bytes, 1, start, n_bits);
if (dst->ofs < n_bits) {
dst->n_bits = bitwise_scan(&sf->mask, n_bytes, 0, dst->ofs + 1,
MIN(dst->ofs + 64, n_bits)) - dst->ofs;
*value = bitwise_get(&sf->value, n_bytes, dst->ofs, dst->n_bits);
return true;
}
}
return false;
}
/* Convert 'sf' to a series of REG_LOADs. */
static void
set_field_to_nxast(const struct ofpact_set_field *sf, struct ofpbuf *openflow)
{
/* If 'sf' cannot be encoded as NXAST_REG_LOAD because it requires an
* experimenter OXM or is variable length (or if it came in as
* NXAST_REG_LOAD2), encode as NXAST_REG_LOAD2. Otherwise use
* NXAST_REG_LOAD, which is backward compatible. */
if (sf->ofpact.raw == NXAST_RAW_REG_LOAD2
|| !mf_nxm_header(sf->field->id) || sf->field->variable_len) {
struct nx_action_reg_load2 *narl OVS_UNUSED;
size_t start_ofs = openflow->size;
narl = put_NXAST_REG_LOAD2(openflow);
openflow->size = openflow->size - sizeof narl->pad;
nx_put_entry(openflow, sf->field->id, 0, &sf->value, &sf->mask);
pad_ofpat(openflow, start_ofs);
} else {
struct mf_subfield dst;
uint64_t value;
dst.ofs = dst.n_bits = 0;
while (next_load_segment(sf, &dst, &value)) {
struct nx_action_reg_load *narl = put_NXAST_REG_LOAD(openflow);
narl->ofs_nbits = nxm_encode_ofs_nbits(dst.ofs, dst.n_bits);
narl->dst = htonl(mf_nxm_header(dst.field->id));
narl->value = htonll(value);
}
}
}
/* Convert 'sf', which must set an entire field, to standard OpenFlow 1.0/1.1
* actions, if we can, falling back to Nicira extensions if we must.
*
* We check only meta-flow types that can appear within set field actions and
* that have a mapping to compatible action types. These struct mf_field
* definitions have a defined OXM or NXM header value and specify the field as
* writable. */
static void
set_field_to_legacy_openflow(const struct ofpact_set_field *sf,
enum ofp_version ofp_version,
struct ofpbuf *out)
{
switch ((int) sf->field->id) {
case MFF_VLAN_TCI: {
ovs_be16 tci = sf->value.be16;
bool cfi = (tci & htons(VLAN_CFI)) != 0;
uint16_t vid = vlan_tci_to_vid(tci);
uint8_t pcp = vlan_tci_to_pcp(tci);
if (ofp_version < OFP11_VERSION) {
/* NXM_OF_VLAN_TCI to OpenFlow 1.0 mapping:
*
* If CFI=1, Add or modify VLAN VID & PCP.
* If CFI=0, strip VLAN header, if any.
*/
if (cfi) {
put_OFPAT10_SET_VLAN_VID(out, vid);
put_OFPAT10_SET_VLAN_PCP(out, pcp);
} else {
put_OFPAT10_STRIP_VLAN(out);
}
} else {
/* NXM_OF_VLAN_TCI to OpenFlow 1.1 mapping:
*
* If CFI=1, Add or modify VLAN VID & PCP.
* OpenFlow 1.1 set actions only apply if the packet
* already has VLAN tags. To be sure that is the case
* we have to push a VLAN header. As we do not support
* multiple layers of VLANs, this is a no-op, if a VLAN
* header already exists. This may backfire, however,
* when we start supporting multiple layers of VLANs.
* If CFI=0, strip VLAN header, if any.
*/
if (cfi) {
/* Push a VLAN tag, if one was not seen at action validation
* time. */
if (!sf->flow_has_vlan) {
put_OFPAT11_PUSH_VLAN(out, htons(ETH_TYPE_VLAN_8021Q));
}
put_OFPAT11_SET_VLAN_VID(out, vid);
put_OFPAT11_SET_VLAN_PCP(out, pcp);
} else {
/* If the flow did not match on vlan, we have no way of
* knowing if the vlan tag exists, so we must POP just to be
* sure. */
put_OFPAT11_POP_VLAN(out);
}
}
break;
}
case MFF_VLAN_VID: {
uint16_t vid = ntohs(sf->value.be16) & VLAN_VID_MASK;
if (ofp_version == OFP10_VERSION) {
put_OFPAT10_SET_VLAN_VID(out, vid);
} else {
put_OFPAT11_SET_VLAN_VID(out, vid);
}
break;
}
case MFF_VLAN_PCP:
if (ofp_version == OFP10_VERSION) {
put_OFPAT10_SET_VLAN_PCP(out, sf->value.u8);
} else {
put_OFPAT11_SET_VLAN_PCP(out, sf->value.u8);
}
break;
case MFF_ETH_SRC:
put_OFPAT_SET_DL_SRC(out, ofp_version)->dl_addr = sf->value.mac;
break;
case MFF_ETH_DST:
put_OFPAT_SET_DL_DST(out, ofp_version)->dl_addr = sf->value.mac;
break;
case MFF_IPV4_SRC:
put_OFPAT_SET_NW_SRC(out, ofp_version, sf->value.be32);
break;
case MFF_IPV4_DST:
put_OFPAT_SET_NW_DST(out, ofp_version, sf->value.be32);
break;
case MFF_IP_DSCP:
put_OFPAT_SET_NW_TOS(out, ofp_version, sf->value.u8);
break;
case MFF_IP_DSCP_SHIFTED:
put_OFPAT_SET_NW_TOS(out, ofp_version, sf->value.u8 << 2);
break;
case MFF_TCP_SRC:
case MFF_UDP_SRC:
put_OFPAT_SET_TP_SRC(out, sf->value.be16);
break;
case MFF_TCP_DST:
case MFF_UDP_DST:
put_OFPAT_SET_TP_DST(out, sf->value.be16);
break;
default:
set_field_to_nxast(sf, out);
break;
}
}
static void
set_field_to_set_field(const struct ofpact_set_field *sf,
enum ofp_version ofp_version, struct ofpbuf *out)
{
struct ofp12_action_set_field *oasf OVS_UNUSED;
size_t start_ofs = out->size;
oasf = put_OFPAT12_SET_FIELD(out);
out->size = out->size - sizeof oasf->pad;
nx_put_entry(out, sf->field->id, ofp_version, &sf->value, &sf->mask);
pad_ofpat(out, start_ofs);
}
static void
encode_SET_FIELD(const struct ofpact_set_field *sf,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version >= OFP15_VERSION) {
/* OF1.5+ only has Set-Field (reg_load is redundant so we drop it
* entirely). */
set_field_to_set_field(sf, ofp_version, out);
} else if (sf->ofpact.raw == NXAST_RAW_REG_LOAD ||
sf->ofpact.raw == NXAST_RAW_REG_LOAD2) {
/* It came in as reg_load, send it out the same way. */
set_field_to_nxast(sf, out);
} else if (ofp_version < OFP12_VERSION) {
/* OpenFlow 1.0 and 1.1 don't have Set-Field. */
set_field_to_legacy_openflow(sf, ofp_version, out);
} else if (is_all_ones((const uint8_t *) &sf->mask, sf->field->n_bytes)) {
/* We're encoding to OpenFlow 1.2, 1.3, or 1.4. The action sets an
* entire field, so encode it as OFPAT_SET_FIELD. */
set_field_to_set_field(sf, ofp_version, out);
} else {
/* We're encoding to OpenFlow 1.2, 1.3, or 1.4. The action cannot be
* encoded as OFPAT_SET_FIELD because it does not set an entire field,
* so encode it as reg_load. */
set_field_to_nxast(sf, out);
}
}
/* Parses a "set_field" action with argument 'arg', appending the parsed
* action to 'ofpacts'.
*
* Returns NULL if successful, otherwise a malloc()'d string describing the
* error. The caller is responsible for freeing the returned string. */
static char * OVS_WARN_UNUSED_RESULT
set_field_parse__(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols)
{
struct ofpact_set_field *sf = ofpact_put_SET_FIELD(ofpacts);
char *value;
char *delim;
char *key;
const struct mf_field *mf;
char *error;
value = arg;
delim = strstr(arg, "->");
if (!delim) {
return xasprintf("%s: missing `->'", arg);
}
if (strlen(delim) <= strlen("->")) {
return xasprintf("%s: missing field name following `->'", arg);
}
key = delim + strlen("->");
mf = mf_from_name(key);
if (!mf) {
return xasprintf("%s is not a valid OXM field name", key);
}
if (!mf->writable) {
return xasprintf("%s is read-only", key);
}
sf->field = mf;
delim[0] = '\0';
error = mf_parse(mf, value, &sf->value, &sf->mask);
if (error) {
return error;
}
if (!mf_is_value_valid(mf, &sf->value)) {
return xasprintf("%s is not a valid value for field %s", value, key);
}
*usable_protocols &= mf->usable_protocols_exact;
return NULL;
}
/* Parses 'arg' as the argument to a "set_field" action, and appends such an
* action to 'ofpacts'.
*
* Returns NULL if successful, otherwise a malloc()'d string describing the
* error. The caller is responsible for freeing the returned string. */
static char * OVS_WARN_UNUSED_RESULT
parse_SET_FIELD(const char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols)
{
char *copy = xstrdup(arg);
char *error = set_field_parse__(copy, ofpacts, usable_protocols);
free(copy);
return error;
}
static char * OVS_WARN_UNUSED_RESULT
parse_reg_load(char *arg, struct ofpbuf *ofpacts)
{
struct ofpact_set_field *sf = ofpact_put_reg_load(ofpacts);
const char *full_arg = arg;
uint64_t value = strtoull(arg, (char **) &arg, 0);
struct mf_subfield dst;
char *error;
if (strncmp(arg, "->", 2)) {
return xasprintf("%s: missing `->' following value", full_arg);
}
arg += 2;
error = mf_parse_subfield(&dst, arg);
if (error) {
return error;
}
if (dst.n_bits < 64 && (value >> dst.n_bits) != 0) {
return xasprintf("%s: value %"PRIu64" does not fit into %d bits",
full_arg, value, dst.n_bits);
}
sf->field = dst.field;
memset(&sf->value, 0, sizeof sf->value);
bitwise_put(value, &sf->value, dst.field->n_bytes, dst.ofs, dst.n_bits);
bitwise_put(UINT64_MAX, &sf->mask,
dst.field->n_bytes, dst.ofs, dst.n_bits);
return NULL;
}
static void
format_SET_FIELD(const struct ofpact_set_field *a, struct ds *s)
{
if (a->ofpact.raw == NXAST_RAW_REG_LOAD) {
struct mf_subfield dst;
uint64_t value;
dst.ofs = dst.n_bits = 0;
while (next_load_segment(a, &dst, &value)) {
ds_put_format(s, "load:%#"PRIx64"->", value);
mf_format_subfield(&dst, s);
ds_put_char(s, ',');
}
ds_chomp(s, ',');
} else {
ds_put_cstr(s, "set_field:");
mf_format(a->field, &a->value, &a->mask, s);
ds_put_format(s, "->%s", a->field->name);
}
}
/* Appends an OFPACT_SET_FIELD ofpact to 'ofpacts' and returns it. The ofpact
* is marked such that, if possible, it will be translated to OpenFlow as
* NXAST_REG_LOAD extension actions rather than OFPAT_SET_FIELD, either because
* that was the way that the action was expressed when it came into OVS or for
* backward compatibility. */
struct ofpact_set_field *
ofpact_put_reg_load(struct ofpbuf *ofpacts)
{
struct ofpact_set_field *sf = ofpact_put_SET_FIELD(ofpacts);
sf->ofpact.raw = NXAST_RAW_REG_LOAD;
return sf;
}
/* Action structure for NXAST_STACK_PUSH and NXAST_STACK_POP.
*
* Pushes (or pops) field[offset: offset + n_bits] to (or from)
* top of the stack.
*/
struct nx_action_stack {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length is 16. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_STACK_PUSH or NXAST_STACK_POP. */
ovs_be16 offset; /* Bit offset into the field. */
/* Followed by:
* - OXM/NXM header for field to push or pop (4 or 8 bytes).
* - ovs_be16 'n_bits', the number of bits to extract from the field.
* - Enough 0-bytes to pad out the action to 24 bytes. */
uint8_t pad[12]; /* See above. */
};
OFP_ASSERT(sizeof(struct nx_action_stack) == 24);
static enum ofperr
decode_stack_action(const struct nx_action_stack *nasp,
struct ofpact_stack *stack_action)
{
enum ofperr error;
struct ofpbuf b;
stack_action->subfield.ofs = ntohs(nasp->offset);
ofpbuf_use_const(&b, nasp, sizeof *nasp);
ofpbuf_pull(&b, OBJECT_OFFSETOF(nasp, pad));
error = nx_pull_header(&b, &stack_action->subfield.field, NULL);
if (error) {
return error;
}
stack_action->subfield.n_bits = ntohs(*(const ovs_be16 *) b.data);
ofpbuf_pull(&b, 2);
if (!is_all_zeros(b.data, b.size)) {
return OFPERR_NXBRC_MUST_BE_ZERO;
}
return 0;
}
static enum ofperr
decode_NXAST_RAW_STACK_PUSH(const struct nx_action_stack *nasp,
struct ofpbuf *ofpacts)
{
struct ofpact_stack *push = ofpact_put_STACK_PUSH(ofpacts);
enum ofperr error = decode_stack_action(nasp, push);
return error ? error : nxm_stack_push_check(push, NULL);
}
static enum ofperr
decode_NXAST_RAW_STACK_POP(const struct nx_action_stack *nasp,
struct ofpbuf *ofpacts)
{
struct ofpact_stack *pop = ofpact_put_STACK_POP(ofpacts);
enum ofperr error = decode_stack_action(nasp, pop);
return error ? error : nxm_stack_pop_check(pop, NULL);
}
static void
encode_STACK_op(const struct ofpact_stack *stack_action,
struct nx_action_stack *nasp)
{
struct ofpbuf b;
ovs_be16 n_bits;
nasp->offset = htons(stack_action->subfield.ofs);
ofpbuf_use_stack(&b, nasp, ntohs(nasp->len));
ofpbuf_put_uninit(&b, OBJECT_OFFSETOF(nasp, pad));
nx_put_header(&b, stack_action->subfield.field->id, 0, false);
n_bits = htons(stack_action->subfield.n_bits);
ofpbuf_put(&b, &n_bits, sizeof n_bits);
}
static void
encode_STACK_PUSH(const struct ofpact_stack *stack,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
encode_STACK_op(stack, put_NXAST_STACK_PUSH(out));
}
static void
encode_STACK_POP(const struct ofpact_stack *stack,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
encode_STACK_op(stack, put_NXAST_STACK_POP(out));
}
static char * OVS_WARN_UNUSED_RESULT
parse_STACK_PUSH(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
return nxm_parse_stack_action(ofpact_put_STACK_PUSH(ofpacts), arg);
}
static char * OVS_WARN_UNUSED_RESULT
parse_STACK_POP(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
return nxm_parse_stack_action(ofpact_put_STACK_POP(ofpacts), arg);
}
static void
format_STACK_PUSH(const struct ofpact_stack *a, struct ds *s)
{
nxm_format_stack_push(a, s);
}
static void
format_STACK_POP(const struct ofpact_stack *a, struct ds *s)
{
nxm_format_stack_pop(a, s);
}
/* Action structure for NXAST_DEC_TTL_CNT_IDS.
*
* If the packet is not IPv4 or IPv6, does nothing. For IPv4 or IPv6, if the
* TTL or hop limit is at least 2, decrements it by 1. Otherwise, if TTL or
* hop limit is 0 or 1, sends a packet-in to the controllers with each of the
* 'n_controllers' controller IDs specified in 'cnt_ids'.
*
* (This differs from NXAST_DEC_TTL in that for NXAST_DEC_TTL the packet-in is
* sent only to controllers with id 0.)
*/
struct nx_action_cnt_ids {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length including slaves. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_DEC_TTL_CNT_IDS. */
ovs_be16 n_controllers; /* Number of controllers. */
uint8_t zeros[4]; /* Must be zero. */
/* Followed by 1 or more controller ids.
*
* uint16_t cnt_ids[]; // Controller ids.
* uint8_t pad[]; // Must be 0 to 8-byte align cnt_ids[].
*/
};
OFP_ASSERT(sizeof(struct nx_action_cnt_ids) == 16);
static enum ofperr
decode_OFPAT_RAW_DEC_NW_TTL(struct ofpbuf *out)
{
uint16_t id = 0;
struct ofpact_cnt_ids *ids;
enum ofperr error = 0;
ids = ofpact_put_DEC_TTL(out);
ids->n_controllers = 1;
ofpbuf_put(out, &id, sizeof id);
ids = out->header;
ofpact_update_len(out, &ids->ofpact);
return error;
}
static enum ofperr
decode_NXAST_RAW_DEC_TTL_CNT_IDS(const struct nx_action_cnt_ids *nac_ids,
struct ofpbuf *out)
{
struct ofpact_cnt_ids *ids;
size_t ids_size;
int i;
ids = ofpact_put_DEC_TTL(out);
ids->ofpact.raw = NXAST_RAW_DEC_TTL_CNT_IDS;
ids->n_controllers = ntohs(nac_ids->n_controllers);
ids_size = ntohs(nac_ids->len) - sizeof *nac_ids;
if (!is_all_zeros(nac_ids->zeros, sizeof nac_ids->zeros)) {
return OFPERR_NXBRC_MUST_BE_ZERO;
}
if (ids_size < ids->n_controllers * sizeof(ovs_be16)) {
VLOG_WARN_RL(&rl, "Nicira action dec_ttl_cnt_ids only has %"PRIuSIZE" "
"bytes allocated for controller ids. %"PRIuSIZE" bytes "
"are required for %"PRIu16" controllers.",
ids_size, ids->n_controllers * sizeof(ovs_be16),
ids->n_controllers);
return OFPERR_OFPBAC_BAD_LEN;
}
for (i = 0; i < ids->n_controllers; i++) {
uint16_t id = ntohs(((ovs_be16 *)(nac_ids + 1))[i]);
ofpbuf_put(out, &id, sizeof id);
ids = out->header;
}
ofpact_update_len(out, &ids->ofpact);
return 0;
}
static void
encode_DEC_TTL(const struct ofpact_cnt_ids *dec_ttl,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (dec_ttl->ofpact.raw == NXAST_RAW_DEC_TTL_CNT_IDS
|| dec_ttl->n_controllers != 1
|| dec_ttl->cnt_ids[0] != 0) {
struct nx_action_cnt_ids *nac_ids = put_NXAST_DEC_TTL_CNT_IDS(out);
int ids_len = ROUND_UP(2 * dec_ttl->n_controllers, OFP_ACTION_ALIGN);
ovs_be16 *ids;
size_t i;
nac_ids->len = htons(ntohs(nac_ids->len) + ids_len);
nac_ids->n_controllers = htons(dec_ttl->n_controllers);
ids = ofpbuf_put_zeros(out, ids_len);
for (i = 0; i < dec_ttl->n_controllers; i++) {
ids[i] = htons(dec_ttl->cnt_ids[i]);
}
} else {
put_OFPAT_DEC_NW_TTL(out, ofp_version);
}
}
static void
parse_noargs_dec_ttl(struct ofpbuf *ofpacts)
{
struct ofpact_cnt_ids *ids;
uint16_t id = 0;
ofpact_put_DEC_TTL(ofpacts);
ofpbuf_put(ofpacts, &id, sizeof id);
ids = ofpacts->header;
ids->n_controllers++;
ofpact_update_len(ofpacts, &ids->ofpact);
}
static char * OVS_WARN_UNUSED_RESULT
parse_DEC_TTL(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
if (*arg == '\0') {
parse_noargs_dec_ttl(ofpacts);
} else {
struct ofpact_cnt_ids *ids;
char *cntr;
ids = ofpact_put_DEC_TTL(ofpacts);
ids->ofpact.raw = NXAST_RAW_DEC_TTL_CNT_IDS;
for (cntr = strtok_r(arg, ", ", &arg); cntr != NULL;
cntr = strtok_r(NULL, ", ", &arg)) {
uint16_t id = atoi(cntr);
ofpbuf_put(ofpacts, &id, sizeof id);
ids = ofpacts->header;
ids->n_controllers++;
}
if (!ids->n_controllers) {
return xstrdup("dec_ttl_cnt_ids: expected at least one controller "
"id.");
}
ofpact_update_len(ofpacts, &ids->ofpact);
}
return NULL;
}
static void
format_DEC_TTL(const struct ofpact_cnt_ids *a, struct ds *s)
{
size_t i;
ds_put_cstr(s, "dec_ttl");
if (a->ofpact.raw == NXAST_RAW_DEC_TTL_CNT_IDS) {
ds_put_cstr(s, "(");
for (i = 0; i < a->n_controllers; i++) {
if (i) {
ds_put_cstr(s, ",");
}
ds_put_format(s, "%"PRIu16, a->cnt_ids[i]);
}
ds_put_cstr(s, ")");
}
}
/* Set MPLS label actions. */
static enum ofperr
decode_OFPAT_RAW_SET_MPLS_LABEL(ovs_be32 label, struct ofpbuf *out)
{
ofpact_put_SET_MPLS_LABEL(out)->label = label;
return 0;
}
static void
encode_SET_MPLS_LABEL(const struct ofpact_mpls_label *label,
enum ofp_version ofp_version,
struct ofpbuf *out)
{
if (ofp_version < OFP12_VERSION) {
put_OFPAT_SET_MPLS_LABEL(out, ofp_version, label->label);
} else {
ofpact_put_set_field(out, ofp_version, MFF_MPLS_LABEL,
ntohl(label->label));
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_MPLS_LABEL(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
struct ofpact_mpls_label *mpls_label = ofpact_put_SET_MPLS_LABEL(ofpacts);
if (*arg == '\0') {
return xstrdup("set_mpls_label: expected label.");
}
mpls_label->label = htonl(atoi(arg));
return NULL;
}
static void
format_SET_MPLS_LABEL(const struct ofpact_mpls_label *a, struct ds *s)
{
ds_put_format(s, "set_mpls_label(%"PRIu32")", ntohl(a->label));
}
/* Set MPLS TC actions. */
static enum ofperr
decode_OFPAT_RAW_SET_MPLS_TC(uint8_t tc, struct ofpbuf *out)
{
ofpact_put_SET_MPLS_TC(out)->tc = tc;
return 0;
}
static void
encode_SET_MPLS_TC(const struct ofpact_mpls_tc *tc,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version < OFP12_VERSION) {
put_OFPAT_SET_MPLS_TC(out, ofp_version, tc->tc);
} else {
ofpact_put_set_field(out, ofp_version, MFF_MPLS_TC, tc->tc);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_MPLS_TC(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
struct ofpact_mpls_tc *mpls_tc = ofpact_put_SET_MPLS_TC(ofpacts);
if (*arg == '\0') {
return xstrdup("set_mpls_tc: expected tc.");
}
mpls_tc->tc = atoi(arg);
return NULL;
}
static void
format_SET_MPLS_TC(const struct ofpact_mpls_tc *a, struct ds *s)
{
ds_put_format(s, "set_mpls_ttl(%"PRIu8")", a->tc);
}
/* Set MPLS TTL actions. */
static enum ofperr
decode_OFPAT_RAW_SET_MPLS_TTL(uint8_t ttl, struct ofpbuf *out)
{
ofpact_put_SET_MPLS_TTL(out)->ttl = ttl;
return 0;
}
static void
encode_SET_MPLS_TTL(const struct ofpact_mpls_ttl *ttl,
enum ofp_version ofp_version, struct ofpbuf *out)
{
put_OFPAT_SET_MPLS_TTL(out, ofp_version, ttl->ttl);
}
/* Parses 'arg' as the argument to a "set_mpls_ttl" action, and appends such an
* action to 'ofpacts'.
*
* Returns NULL if successful, otherwise a malloc()'d string describing the
* error. The caller is responsible for freeing the returned string. */
static char * OVS_WARN_UNUSED_RESULT
parse_SET_MPLS_TTL(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
struct ofpact_mpls_ttl *mpls_ttl = ofpact_put_SET_MPLS_TTL(ofpacts);
if (*arg == '\0') {
return xstrdup("set_mpls_ttl: expected ttl.");
}
mpls_ttl->ttl = atoi(arg);
return NULL;
}
static void
format_SET_MPLS_TTL(const struct ofpact_mpls_ttl *a, struct ds *s)
{
ds_put_format(s, "set_mpls_ttl(%"PRIu8")", a->ttl);
}
/* Decrement MPLS TTL actions. */
static enum ofperr
decode_OFPAT_RAW_DEC_MPLS_TTL(struct ofpbuf *out)
{
ofpact_put_DEC_MPLS_TTL(out);
return 0;
}
static void
encode_DEC_MPLS_TTL(const struct ofpact_null *null OVS_UNUSED,
enum ofp_version ofp_version, struct ofpbuf *out)
{
put_OFPAT_DEC_MPLS_TTL(out, ofp_version);
}
static char * OVS_WARN_UNUSED_RESULT
parse_DEC_MPLS_TTL(char *arg OVS_UNUSED, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
ofpact_put_DEC_MPLS_TTL(ofpacts);
return NULL;
}
static void
format_DEC_MPLS_TTL(const struct ofpact_null *a OVS_UNUSED, struct ds *s)
{
ds_put_cstr(s, "dec_mpls_ttl");
}
/* Push MPLS label action. */
static enum ofperr
decode_OFPAT_RAW_PUSH_MPLS(ovs_be16 ethertype, struct ofpbuf *out)
{
struct ofpact_push_mpls *oam;
if (!eth_type_mpls(ethertype)) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
oam = ofpact_put_PUSH_MPLS(out);
oam->ethertype = ethertype;
return 0;
}
static void
encode_PUSH_MPLS(const struct ofpact_push_mpls *push_mpls,
enum ofp_version ofp_version, struct ofpbuf *out)
{
put_OFPAT_PUSH_MPLS(out, ofp_version, push_mpls->ethertype);
}
static char * OVS_WARN_UNUSED_RESULT
parse_PUSH_MPLS(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
uint16_t ethertype;
char *error;
error = str_to_u16(arg, "push_mpls", &ethertype);
if (!error) {
ofpact_put_PUSH_MPLS(ofpacts)->ethertype = htons(ethertype);
}
return error;
}
static void
format_PUSH_MPLS(const struct ofpact_push_mpls *a, struct ds *s)
{
ds_put_format(s, "push_mpls:0x%04"PRIx16, ntohs(a->ethertype));
}
/* Pop MPLS label action. */
static enum ofperr
decode_OFPAT_RAW_POP_MPLS(ovs_be16 ethertype, struct ofpbuf *out)
{
ofpact_put_POP_MPLS(out)->ethertype = ethertype;
return 0;
}
static void
encode_POP_MPLS(const struct ofpact_pop_mpls *pop_mpls,
enum ofp_version ofp_version, struct ofpbuf *out)
{
put_OFPAT_POP_MPLS(out, ofp_version, pop_mpls->ethertype);
}
static char * OVS_WARN_UNUSED_RESULT
parse_POP_MPLS(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
uint16_t ethertype;
char *error;
error = str_to_u16(arg, "pop_mpls", &ethertype);
if (!error) {
ofpact_put_POP_MPLS(ofpacts)->ethertype = htons(ethertype);
}
return error;
}
static void
format_POP_MPLS(const struct ofpact_pop_mpls *a, struct ds *s)
{
ds_put_format(s, "pop_mpls:0x%04"PRIx16, ntohs(a->ethertype));
}
/* Set tunnel ID actions. */
static enum ofperr
decode_NXAST_RAW_SET_TUNNEL(uint32_t tun_id, struct ofpbuf *out)
{
struct ofpact_tunnel *tunnel = ofpact_put_SET_TUNNEL(out);
tunnel->ofpact.raw = NXAST_RAW_SET_TUNNEL;
tunnel->tun_id = tun_id;
return 0;
}
static enum ofperr
decode_NXAST_RAW_SET_TUNNEL64(uint64_t tun_id, struct ofpbuf *out)
{
struct ofpact_tunnel *tunnel = ofpact_put_SET_TUNNEL(out);
tunnel->ofpact.raw = NXAST_RAW_SET_TUNNEL64;
tunnel->tun_id = tun_id;
return 0;
}
static void
encode_SET_TUNNEL(const struct ofpact_tunnel *tunnel,
enum ofp_version ofp_version, struct ofpbuf *out)
{
uint64_t tun_id = tunnel->tun_id;
if (ofp_version < OFP12_VERSION) {
if (tun_id <= UINT32_MAX
&& tunnel->ofpact.raw != NXAST_RAW_SET_TUNNEL64) {
put_NXAST_SET_TUNNEL(out, tun_id);
} else {
put_NXAST_SET_TUNNEL64(out, tun_id);
}
} else {
ofpact_put_set_field(out, ofp_version, MFF_TUN_ID, tun_id);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_set_tunnel(char *arg, struct ofpbuf *ofpacts,
enum ofp_raw_action_type raw)
{
struct ofpact_tunnel *tunnel;
tunnel = ofpact_put_SET_TUNNEL(ofpacts);
tunnel->ofpact.raw = raw;
return str_to_u64(arg, &tunnel->tun_id);
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_TUNNEL(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
return parse_set_tunnel(arg, ofpacts, NXAST_RAW_SET_TUNNEL);
}
static void
format_SET_TUNNEL(const struct ofpact_tunnel *a, struct ds *s)
{
ds_put_format(s, "set_tunnel%s:%#"PRIx64,
(a->tun_id > UINT32_MAX
|| a->ofpact.raw == NXAST_RAW_SET_TUNNEL64 ? "64" : ""),
a->tun_id);
}
/* Set queue action. */
static enum ofperr
decode_OFPAT_RAW_SET_QUEUE(uint32_t queue_id, struct ofpbuf *out)
{
ofpact_put_SET_QUEUE(out)->queue_id = queue_id;
return 0;
}
static void
encode_SET_QUEUE(const struct ofpact_queue *queue,
enum ofp_version ofp_version, struct ofpbuf *out)
{
put_OFPAT_SET_QUEUE(out, ofp_version, queue->queue_id);
}
static char * OVS_WARN_UNUSED_RESULT
parse_SET_QUEUE(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
return str_to_u32(arg, &ofpact_put_SET_QUEUE(ofpacts)->queue_id);
}
static void
format_SET_QUEUE(const struct ofpact_queue *a, struct ds *s)
{
ds_put_format(s, "set_queue:%"PRIu32, a->queue_id);
}
/* Pop queue action. */
static enum ofperr
decode_NXAST_RAW_POP_QUEUE(struct ofpbuf *out)
{
ofpact_put_POP_QUEUE(out);
return 0;
}
static void
encode_POP_QUEUE(const struct ofpact_null *null OVS_UNUSED,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
put_NXAST_POP_QUEUE(out);
}
static char * OVS_WARN_UNUSED_RESULT
parse_POP_QUEUE(const char *arg OVS_UNUSED, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
ofpact_put_POP_QUEUE(ofpacts);
return NULL;
}
static void
format_POP_QUEUE(const struct ofpact_null *a OVS_UNUSED, struct ds *s)
{
ds_put_cstr(s, "pop_queue");
}
/* Action structure for NXAST_FIN_TIMEOUT.
*
* This action changes the idle timeout or hard timeout, or both, of this
* OpenFlow rule when the rule matches a TCP packet with the FIN or RST flag.
* When such a packet is observed, the action reduces the rule's idle timeout
* to 'fin_idle_timeout' and its hard timeout to 'fin_hard_timeout'. This
* action has no effect on an existing timeout that is already shorter than the
* one that the action specifies. A 'fin_idle_timeout' or 'fin_hard_timeout'
* of zero has no effect on the respective timeout.
*
* 'fin_idle_timeout' and 'fin_hard_timeout' are measured in seconds.
* 'fin_hard_timeout' specifies time since the flow's creation, not since the
* receipt of the FIN or RST.
*
* This is useful for quickly discarding learned TCP flows that otherwise will
* take a long time to expire.
*
* This action is intended for use with an OpenFlow rule that matches only a
* single TCP flow. If the rule matches multiple TCP flows (e.g. it wildcards
* all TCP traffic, or all TCP traffic to a particular port), then any FIN or
* RST in any of those flows will cause the entire OpenFlow rule to expire
* early, which is not normally desirable.
*/
struct nx_action_fin_timeout {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* 16. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_FIN_TIMEOUT. */
ovs_be16 fin_idle_timeout; /* New idle timeout, if nonzero. */
ovs_be16 fin_hard_timeout; /* New hard timeout, if nonzero. */
ovs_be16 pad; /* Must be zero. */
};
OFP_ASSERT(sizeof(struct nx_action_fin_timeout) == 16);
static enum ofperr
decode_NXAST_RAW_FIN_TIMEOUT(const struct nx_action_fin_timeout *naft,
struct ofpbuf *out)
{
struct ofpact_fin_timeout *oft;
oft = ofpact_put_FIN_TIMEOUT(out);
oft->fin_idle_timeout = ntohs(naft->fin_idle_timeout);
oft->fin_hard_timeout = ntohs(naft->fin_hard_timeout);
return 0;
}
static void
encode_FIN_TIMEOUT(const struct ofpact_fin_timeout *fin_timeout,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
struct nx_action_fin_timeout *naft = put_NXAST_FIN_TIMEOUT(out);
naft->fin_idle_timeout = htons(fin_timeout->fin_idle_timeout);
naft->fin_hard_timeout = htons(fin_timeout->fin_hard_timeout);
}
static char * OVS_WARN_UNUSED_RESULT
parse_FIN_TIMEOUT(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
struct ofpact_fin_timeout *oft = ofpact_put_FIN_TIMEOUT(ofpacts);
char *key, *value;
while (ofputil_parse_key_value(&arg, &key, &value)) {
char *error;
if (!strcmp(key, "idle_timeout")) {
error = str_to_u16(value, key, &oft->fin_idle_timeout);
} else if (!strcmp(key, "hard_timeout")) {
error = str_to_u16(value, key, &oft->fin_hard_timeout);
} else {
error = xasprintf("invalid key '%s' in 'fin_timeout' argument",
key);
}
if (error) {
return error;
}
}
return NULL;
}
static void
format_FIN_TIMEOUT(const struct ofpact_fin_timeout *a, struct ds *s)
{
ds_put_cstr(s, "fin_timeout(");
if (a->fin_idle_timeout) {
ds_put_format(s, "idle_timeout=%"PRIu16",", a->fin_idle_timeout);
}
if (a->fin_hard_timeout) {
ds_put_format(s, "hard_timeout=%"PRIu16",", a->fin_hard_timeout);
}
ds_chomp(s, ',');
ds_put_char(s, ')');
}
/* Action structures for NXAST_RESUBMIT and NXAST_RESUBMIT_TABLE.
*
* These actions search one of the switch's flow tables:
*
* - For NXAST_RESUBMIT_TABLE only, if the 'table' member is not 255, then
* it specifies the table to search.
*
* - Otherwise (for NXAST_RESUBMIT_TABLE with a 'table' of 255, or for
* NXAST_RESUBMIT regardless of 'table'), it searches the current flow
* table, that is, the OpenFlow flow table that contains the flow from
* which this action was obtained. If this action did not come from a
* flow table (e.g. it came from an OFPT_PACKET_OUT message), then table 0
* is the current table.
*
* The flow table lookup uses a flow that may be slightly modified from the
* original lookup:
*
* - For NXAST_RESUBMIT, the 'in_port' member of struct nx_action_resubmit
* is used as the flow's in_port.
*
* - For NXAST_RESUBMIT_TABLE, if the 'in_port' member is not OFPP_IN_PORT,
* then its value is used as the flow's in_port. Otherwise, the original
* in_port is used.
*
* - If actions that modify the flow (e.g. OFPAT_SET_VLAN_VID) precede the
* resubmit action, then the flow is updated with the new values.
*
* Following the lookup, the original in_port is restored.
*
* If the modified flow matched in the flow table, then the corresponding
* actions are executed. Afterward, actions following the resubmit in the
* original set of actions, if any, are executed; any changes made to the
* packet (e.g. changes to VLAN) by secondary actions persist when those
* actions are executed, although the original in_port is restored.
*
* Resubmit actions may be used any number of times within a set of actions.
*
* Resubmit actions may nest to an implementation-defined depth. Beyond this
* implementation-defined depth, further resubmit actions are simply ignored.
*
* NXAST_RESUBMIT ignores 'table' and 'pad'. NXAST_RESUBMIT_TABLE requires
* 'pad' to be all-bits-zero.
*
* Open vSwitch 1.0.1 and earlier did not support recursion. Open vSwitch
* before 1.2.90 did not support NXAST_RESUBMIT_TABLE.
*/
struct nx_action_resubmit {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length is 16. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_RESUBMIT. */
ovs_be16 in_port; /* New in_port for checking flow table. */
uint8_t table; /* NXAST_RESUBMIT_TABLE: table to use. */
uint8_t pad[3];
};
OFP_ASSERT(sizeof(struct nx_action_resubmit) == 16);
static enum ofperr
decode_NXAST_RAW_RESUBMIT(uint16_t port, struct ofpbuf *out)
{
struct ofpact_resubmit *resubmit;
resubmit = ofpact_put_RESUBMIT(out);
resubmit->ofpact.raw = NXAST_RAW_RESUBMIT;
resubmit->in_port = u16_to_ofp(port);
resubmit->table_id = 0xff;
return 0;
}
static enum ofperr
decode_NXAST_RAW_RESUBMIT_TABLE(const struct nx_action_resubmit *nar,
struct ofpbuf *out)
{
struct ofpact_resubmit *resubmit;
if (nar->pad[0] || nar->pad[1] || nar->pad[2]) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
resubmit = ofpact_put_RESUBMIT(out);
resubmit->ofpact.raw = NXAST_RAW_RESUBMIT_TABLE;
resubmit->in_port = u16_to_ofp(ntohs(nar->in_port));
resubmit->table_id = nar->table;
return 0;
}
static void
encode_RESUBMIT(const struct ofpact_resubmit *resubmit,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
uint16_t in_port = ofp_to_u16(resubmit->in_port);
if (resubmit->table_id == 0xff
&& resubmit->ofpact.raw != NXAST_RAW_RESUBMIT_TABLE) {
put_NXAST_RESUBMIT(out, in_port);
} else {
struct nx_action_resubmit *nar = put_NXAST_RESUBMIT_TABLE(out);
nar->table = resubmit->table_id;
nar->in_port = htons(in_port);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_RESUBMIT(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
struct ofpact_resubmit *resubmit;
char *in_port_s, *table_s;
resubmit = ofpact_put_RESUBMIT(ofpacts);
in_port_s = strsep(&arg, ",");
if (in_port_s && in_port_s[0]) {
if (!ofputil_port_from_string(in_port_s, &resubmit->in_port)) {
return xasprintf("%s: resubmit to unknown port", in_port_s);
}
} else {
resubmit->in_port = OFPP_IN_PORT;
}
table_s = strsep(&arg, ",");
if (table_s && table_s[0]) {
uint32_t table_id = 0;
char *error;
error = str_to_u32(table_s, &table_id);
if (error) {
return error;
}
resubmit->table_id = table_id;
} else {
resubmit->table_id = 255;
}
if (resubmit->in_port == OFPP_IN_PORT && resubmit->table_id == 255) {
return xstrdup("at least one \"in_port\" or \"table\" must be "
"specified on resubmit");
}
return NULL;
}
static void
format_RESUBMIT(const struct ofpact_resubmit *a, struct ds *s)
{
if (a->in_port != OFPP_IN_PORT && a->table_id == 255) {
ds_put_cstr(s, "resubmit:");
ofputil_format_port(a->in_port, s);
} else {
ds_put_format(s, "resubmit(");
if (a->in_port != OFPP_IN_PORT) {
ofputil_format_port(a->in_port, s);
}
ds_put_char(s, ',');
if (a->table_id != 255) {
ds_put_format(s, "%"PRIu8, a->table_id);
}
ds_put_char(s, ')');
}
}
/* Action structure for NXAST_LEARN.
*
* This action adds or modifies a flow in an OpenFlow table, similar to
* OFPT_FLOW_MOD with OFPFC_MODIFY_STRICT as 'command'. The new flow has the
* specified idle timeout, hard timeout, priority, cookie, and flags. The new
* flow's match criteria and actions are built by applying each of the series
* of flow_mod_spec elements included as part of the action.
*
* A flow_mod_spec starts with a 16-bit header. A header that is all-bits-0 is
* a no-op used for padding the action as a whole to a multiple of 8 bytes in
* length. Otherwise, the flow_mod_spec can be thought of as copying 'n_bits'
* bits from a source to a destination. In this case, the header contains
* multiple fields:
*
* 15 14 13 12 11 10 0
* +------+---+------+---------------------------------+
* | 0 |src| dst | n_bits |
* +------+---+------+---------------------------------+
*
* The meaning and format of a flow_mod_spec depends on 'src' and 'dst'. The
* following table summarizes the meaning of each possible combination.
* Details follow the table:
*
* src dst meaning
* --- --- ----------------------------------------------------------
* 0 0 Add match criteria based on value in a field.
* 1 0 Add match criteria based on an immediate value.
* 0 1 Add NXAST_REG_LOAD action to copy field into a different field.
* 1 1 Add NXAST_REG_LOAD action to load immediate value into a field.
* 0 2 Add OFPAT_OUTPUT action to output to port from specified field.
* All other combinations are undefined and not allowed.
*
* The flow_mod_spec header is followed by a source specification and a
* destination specification. The format and meaning of the source
* specification depends on 'src':
*
* - If 'src' is 0, the source bits are taken from a field in the flow to
* which this action is attached. (This should be a wildcarded field. If
* its value is fully specified then the source bits being copied have
* constant values.)
*
* The source specification is an ovs_be32 'field' and an ovs_be16 'ofs'.
* 'field' is an nxm_header with nxm_hasmask=0, and 'ofs' the starting bit
* offset within that field. The source bits are field[ofs:ofs+n_bits-1].
* 'field' and 'ofs' are subject to the same restrictions as the source
* field in NXAST_REG_MOVE.
*
* - If 'src' is 1, the source bits are a constant value. The source
* specification is (n_bits+15)/16*2 bytes long. Taking those bytes as a
* number in network order, the source bits are the 'n_bits'
* least-significant bits. The switch will report an error if other bits
* in the constant are nonzero.
*
* The flow_mod_spec destination specification, for 'dst' of 0 or 1, is an
* ovs_be32 'field' and an ovs_be16 'ofs'. 'field' is an nxm_header with
* nxm_hasmask=0 and 'ofs' is a starting bit offset within that field. The
* meaning of the flow_mod_spec depends on 'dst':
*
* - If 'dst' is 0, the flow_mod_spec specifies match criteria for the new
* flow. The new flow matches only if bits field[ofs:ofs+n_bits-1] in a
* packet equal the source bits. 'field' may be any nxm_header with
* nxm_hasmask=0 that is allowed in NXT_FLOW_MOD.
*
* Order is significant. Earlier flow_mod_specs must satisfy any
* prerequisites for matching fields specified later, by copying constant
* values into prerequisite fields.
*
* The switch will reject flow_mod_specs that do not satisfy NXM masking
* restrictions.
*
* - If 'dst' is 1, the flow_mod_spec specifies an NXAST_REG_LOAD action for
* the new flow. The new flow copies the source bits into
* field[ofs:ofs+n_bits-1]. Actions are executed in the same order as the
* flow_mod_specs.
*
* A single NXAST_REG_LOAD action writes no more than 64 bits, so n_bits
* greater than 64 yields multiple NXAST_REG_LOAD actions.
*
* The flow_mod_spec destination spec for 'dst' of 2 (when 'src' is 0) is
* empty. It has the following meaning:
*
* - The flow_mod_spec specifies an OFPAT_OUTPUT action for the new flow.
* The new flow outputs to the OpenFlow port specified by the source field.
* Of the special output ports with value OFPP_MAX or larger, OFPP_IN_PORT,
* OFPP_FLOOD, OFPP_LOCAL, and OFPP_ALL are supported. Other special ports
* may not be used.
*
* Resource Management
* -------------------
*
* A switch has a finite amount of flow table space available for learning.
* When this space is exhausted, no new learning table entries will be learned
* until some existing flow table entries expire. The controller should be
* prepared to handle this by flooding (which can be implemented as a
* low-priority flow).
*
* If a learned flow matches a single TCP stream with a relatively long
* timeout, one may make the best of resource constraints by setting
* 'fin_idle_timeout' or 'fin_hard_timeout' (both measured in seconds), or
* both, to shorter timeouts. When either of these is specified as a nonzero
* value, OVS adds a NXAST_FIN_TIMEOUT action, with the specified timeouts, to
* the learned flow.
*
* Examples
* --------
*
* The following examples give a prose description of the flow_mod_specs along
* with informal notation for how those would be represented and a hex dump of
* the bytes that would be required.
*
* These examples could work with various nx_action_learn parameters. Typical
* values would be idle_timeout=OFP_FLOW_PERMANENT, hard_timeout=60,
* priority=OFP_DEFAULT_PRIORITY, flags=0, table_id=10.
*
* 1. Learn input port based on the source MAC, with lookup into
* NXM_NX_REG1[16:31] by resubmit to in_port=99:
*
* Match on in_port=99:
* ovs_be16(src=1, dst=0, n_bits=16), 20 10
* ovs_be16(99), 00 63
* ovs_be32(NXM_OF_IN_PORT), ovs_be16(0) 00 00 00 02 00 00
*
* Match Ethernet destination on Ethernet source from packet:
* ovs_be16(src=0, dst=0, n_bits=48), 00 30
* ovs_be32(NXM_OF_ETH_SRC), ovs_be16(0) 00 00 04 06 00 00
* ovs_be32(NXM_OF_ETH_DST), ovs_be16(0) 00 00 02 06 00 00
*
* Set NXM_NX_REG1[16:31] to the packet's input port:
* ovs_be16(src=0, dst=1, n_bits=16), 08 10
* ovs_be32(NXM_OF_IN_PORT), ovs_be16(0) 00 00 00 02 00 00
* ovs_be32(NXM_NX_REG1), ovs_be16(16) 00 01 02 04 00 10
*
* Given a packet that arrived on port A with Ethernet source address B,
* this would set up the flow "in_port=99, dl_dst=B,
* actions=load:A->NXM_NX_REG1[16..31]".
*
* In syntax accepted by ovs-ofctl, this action is: learn(in_port=99,
* NXM_OF_ETH_DST[]=NXM_OF_ETH_SRC[],
* load:NXM_OF_IN_PORT[]->NXM_NX_REG1[16..31])
*
* 2. Output to input port based on the source MAC and VLAN VID, with lookup
* into NXM_NX_REG1[16:31]:
*
* Match on same VLAN ID as packet:
* ovs_be16(src=0, dst=0, n_bits=12), 00 0c
* ovs_be32(NXM_OF_VLAN_TCI), ovs_be16(0) 00 00 08 02 00 00
* ovs_be32(NXM_OF_VLAN_TCI), ovs_be16(0) 00 00 08 02 00 00
*
* Match Ethernet destination on Ethernet source from packet:
* ovs_be16(src=0, dst=0, n_bits=48), 00 30
* ovs_be32(NXM_OF_ETH_SRC), ovs_be16(0) 00 00 04 06 00 00
* ovs_be32(NXM_OF_ETH_DST), ovs_be16(0) 00 00 02 06 00 00
*
* Output to the packet's input port:
* ovs_be16(src=0, dst=2, n_bits=16), 10 10
* ovs_be32(NXM_OF_IN_PORT), ovs_be16(0) 00 00 00 02 00 00
*
* Given a packet that arrived on port A with Ethernet source address B in
* VLAN C, this would set up the flow "dl_dst=B, vlan_vid=C,
* actions=output:A".
*
* In syntax accepted by ovs-ofctl, this action is:
* learn(NXM_OF_VLAN_TCI[0..11], NXM_OF_ETH_DST[]=NXM_OF_ETH_SRC[],
* output:NXM_OF_IN_PORT[])
*
* 3. Here's a recipe for a very simple-minded MAC learning switch. It uses a
* 10-second MAC expiration time to make it easier to see what's going on
*
* ovs-vsctl del-controller br0
* ovs-ofctl del-flows br0
* ovs-ofctl add-flow br0 "table=0 actions=learn(table=1, \
hard_timeout=10, NXM_OF_VLAN_TCI[0..11], \
NXM_OF_ETH_DST[]=NXM_OF_ETH_SRC[], \
output:NXM_OF_IN_PORT[]), resubmit(,1)"
* ovs-ofctl add-flow br0 "table=1 priority=0 actions=flood"
*
* You can then dump the MAC learning table with:
*
* ovs-ofctl dump-flows br0 table=1
*
* Usage Advice
* ------------
*
* For best performance, segregate learned flows into a table that is not used
* for any other flows except possibly for a lowest-priority "catch-all" flow
* (a flow with no match criteria). If different learning actions specify
* different match criteria, use different tables for the learned flows.
*
* The meaning of 'hard_timeout' and 'idle_timeout' can be counterintuitive.
* These timeouts apply to the flow that is added, which means that a flow with
* an idle timeout will expire when no traffic has been sent *to* the learned
* address. This is not usually the intent in MAC learning; instead, we want
* the MAC learn entry to expire when no traffic has been sent *from* the
* learned address. Use a hard timeout for that.
*
*
* Visibility of Changes
* ---------------------
*
* Prior to Open vSwitch 2.4, any changes made by a "learn" action in a given
* flow translation are visible to flow table lookups made later in the flow
* translation. This means that, in the example above, a MAC learned by the
* learn action in table 0 would be found in table 1 (if the packet being
* processed had the same source and destination MAC address).
*
* In Open vSwitch 2.4 and later, changes to a flow table (whether to add or
* modify a flow) by a "learn" action are visible only for later flow
* translations, not for later lookups within the same flow translation. In
* the MAC learning example, a MAC learned by the learn action in table 0 would
* not be found in table 1 if the flow translation would resubmit to table 1
* after the processing of the learn action, meaning that if this MAC had not
* been learned before then the packet would be flooded. */
struct nx_action_learn {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* At least 24. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_LEARN. */
ovs_be16 idle_timeout; /* Idle time before discarding (seconds). */
ovs_be16 hard_timeout; /* Max time before discarding (seconds). */
ovs_be16 priority; /* Priority level of flow entry. */
ovs_be64 cookie; /* Cookie for new flow. */
ovs_be16 flags; /* NX_LEARN_F_*. */
uint8_t table_id; /* Table to insert flow entry. */
uint8_t pad; /* Must be zero. */
ovs_be16 fin_idle_timeout; /* Idle timeout after FIN, if nonzero. */
ovs_be16 fin_hard_timeout; /* Hard timeout after FIN, if nonzero. */
/* Followed by a sequence of flow_mod_spec elements, as described above,
* until the end of the action is reached. */
};
OFP_ASSERT(sizeof(struct nx_action_learn) == 32);
static ovs_be16
get_be16(const void **pp)
{
const ovs_be16 *p = *pp;
ovs_be16 value = *p;
*pp = p + 1;
return value;
}
static ovs_be32
get_be32(const void **pp)
{
const ovs_be32 *p = *pp;
ovs_be32 value = get_unaligned_be32(p);
*pp = p + 1;
return value;
}
static void
get_subfield(int n_bits, const void **p, struct mf_subfield *sf)
{
sf->field = mf_from_nxm_header(ntohl(get_be32(p)));
sf->ofs = ntohs(get_be16(p));
sf->n_bits = n_bits;
}
static unsigned int
learn_min_len(uint16_t header)
{
int n_bits = header & NX_LEARN_N_BITS_MASK;
int src_type = header & NX_LEARN_SRC_MASK;
int dst_type = header & NX_LEARN_DST_MASK;
unsigned int min_len;
min_len = 0;
if (src_type == NX_LEARN_SRC_FIELD) {
min_len += sizeof(ovs_be32); /* src_field */
min_len += sizeof(ovs_be16); /* src_ofs */
} else {
min_len += DIV_ROUND_UP(n_bits, 16);
}
if (dst_type == NX_LEARN_DST_MATCH ||
dst_type == NX_LEARN_DST_LOAD) {
min_len += sizeof(ovs_be32); /* dst_field */
min_len += sizeof(ovs_be16); /* dst_ofs */
}
return min_len;
}
/* Converts 'nal' into a "struct ofpact_learn" and appends that struct to
* 'ofpacts'. Returns 0 if successful, otherwise an OFPERR_*. */
static enum ofperr
decode_NXAST_RAW_LEARN(const struct nx_action_learn *nal,
struct ofpbuf *ofpacts)
{
struct ofpact_learn *learn;
const void *p, *end;
if (nal->pad) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
learn = ofpact_put_LEARN(ofpacts);
learn->idle_timeout = ntohs(nal->idle_timeout);
learn->hard_timeout = ntohs(nal->hard_timeout);
learn->priority = ntohs(nal->priority);
learn->cookie = nal->cookie;
learn->table_id = nal->table_id;
learn->fin_idle_timeout = ntohs(nal->fin_idle_timeout);
learn->fin_hard_timeout = ntohs(nal->fin_hard_timeout);
learn->flags = ntohs(nal->flags);
if (learn->flags & ~(NX_LEARN_F_SEND_FLOW_REM |
NX_LEARN_F_DELETE_LEARNED)) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
if (learn->table_id == 0xff) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
end = (char *) nal + ntohs(nal->len);
for (p = nal + 1; p != end; ) {
struct ofpact_learn_spec *spec;
uint16_t header = ntohs(get_be16(&p));
if (!header) {
break;
}
spec = ofpbuf_put_zeros(ofpacts, sizeof *spec);
learn = ofpacts->header;
learn->n_specs++;
spec->src_type = header & NX_LEARN_SRC_MASK;
spec->dst_type = header & NX_LEARN_DST_MASK;
spec->n_bits = header & NX_LEARN_N_BITS_MASK;
/* Check for valid src and dst type combination. */
if (spec->dst_type == NX_LEARN_DST_MATCH ||
spec->dst_type == NX_LEARN_DST_LOAD ||
(spec->dst_type == NX_LEARN_DST_OUTPUT &&
spec->src_type == NX_LEARN_SRC_FIELD)) {
/* OK. */
} else {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
/* Check that the arguments don't overrun the end of the action. */
if ((char *) end - (char *) p < learn_min_len(header)) {
return OFPERR_OFPBAC_BAD_LEN;
}
/* Get the source. */
if (spec->src_type == NX_LEARN_SRC_FIELD) {
get_subfield(spec->n_bits, &p, &spec->src);
} else {
int p_bytes = 2 * DIV_ROUND_UP(spec->n_bits, 16);
bitwise_copy(p, p_bytes, 0,
&spec->src_imm, sizeof spec->src_imm, 0,
spec->n_bits);
p = (const uint8_t *) p + p_bytes;
}
/* Get the destination. */
if (spec->dst_type == NX_LEARN_DST_MATCH ||
spec->dst_type == NX_LEARN_DST_LOAD) {
get_subfield(spec->n_bits, &p, &spec->dst);
}
}
ofpact_update_len(ofpacts, &learn->ofpact);
if (!is_all_zeros(p, (char *) end - (char *) p)) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
return 0;
}
static void
put_be16(struct ofpbuf *b, ovs_be16 x)
{
ofpbuf_put(b, &x, sizeof x);
}
static void
put_be32(struct ofpbuf *b, ovs_be32 x)
{
ofpbuf_put(b, &x, sizeof x);
}
static void
put_u16(struct ofpbuf *b, uint16_t x)
{
put_be16(b, htons(x));
}
static void
put_u32(struct ofpbuf *b, uint32_t x)
{
put_be32(b, htonl(x));
}
static void
encode_LEARN(const struct ofpact_learn *learn,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
const struct ofpact_learn_spec *spec;
struct nx_action_learn *nal;
size_t start_ofs;
start_ofs = out->size;
nal = put_NXAST_LEARN(out);
nal->idle_timeout = htons(learn->idle_timeout);
nal->hard_timeout = htons(learn->hard_timeout);
nal->fin_idle_timeout = htons(learn->fin_idle_timeout);
nal->fin_hard_timeout = htons(learn->fin_hard_timeout);
nal->priority = htons(learn->priority);
nal->cookie = learn->cookie;
nal->flags = htons(learn->flags);
nal->table_id = learn->table_id;
for (spec = learn->specs; spec < &learn->specs[learn->n_specs]; spec++) {
put_u16(out, spec->n_bits | spec->dst_type | spec->src_type);
if (spec->src_type == NX_LEARN_SRC_FIELD) {
put_u32(out, mf_nxm_header(spec->src.field->id));
put_u16(out, spec->src.ofs);
} else {
size_t n_dst_bytes = 2 * DIV_ROUND_UP(spec->n_bits, 16);
uint8_t *bits = ofpbuf_put_zeros(out, n_dst_bytes);
bitwise_copy(&spec->src_imm, sizeof spec->src_imm, 0,
bits, n_dst_bytes, 0,
spec->n_bits);
}
if (spec->dst_type == NX_LEARN_DST_MATCH ||
spec->dst_type == NX_LEARN_DST_LOAD) {
put_u32(out, mf_nxm_header(spec->dst.field->id));
put_u16(out, spec->dst.ofs);
}
}
pad_ofpat(out, start_ofs);
}
static char * OVS_WARN_UNUSED_RESULT
parse_LEARN(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
return learn_parse(arg, ofpacts);
}
static void
format_LEARN(const struct ofpact_learn *a, struct ds *s)
{
learn_format(a, s);
}
/* Action structure for NXAST_CONJUNCTION. */
struct nx_action_conjunction {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* At least 16. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* See enum ofp_raw_action_type. */
uint8_t clause;
uint8_t n_clauses;
ovs_be32 id;
};
OFP_ASSERT(sizeof(struct nx_action_conjunction) == 16);
static void
add_conjunction(struct ofpbuf *out,
uint32_t id, uint8_t clause, uint8_t n_clauses)
{
struct ofpact_conjunction *oc;
oc = ofpact_put_CONJUNCTION(out);
oc->id = id;
oc->clause = clause;
oc->n_clauses = n_clauses;
}
static enum ofperr
decode_NXAST_RAW_CONJUNCTION(const struct nx_action_conjunction *nac,
struct ofpbuf *out)
{
if (nac->n_clauses < 2 || nac->n_clauses > 64
|| nac->clause >= nac->n_clauses) {
return OFPERR_NXBAC_BAD_CONJUNCTION;
} else {
add_conjunction(out, ntohl(nac->id), nac->clause, nac->n_clauses);
return 0;
}
}
static void
encode_CONJUNCTION(const struct ofpact_conjunction *oc,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
struct nx_action_conjunction *nac = put_NXAST_CONJUNCTION(out);
nac->clause = oc->clause;
nac->n_clauses = oc->n_clauses;
nac->id = htonl(oc->id);
}
static void
format_CONJUNCTION(const struct ofpact_conjunction *oc, struct ds *s)
{
ds_put_format(s, "conjunction(%"PRIu32",%"PRIu8"/%"PRIu8")",
oc->id, oc->clause + 1, oc->n_clauses);
}
static char * OVS_WARN_UNUSED_RESULT
parse_CONJUNCTION(const char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
uint8_t n_clauses;
uint8_t clause;
uint32_t id;
int n;
if (!ovs_scan(arg, "%"SCNi32" , %"SCNu8" / %"SCNu8" %n",
&id, &clause, &n_clauses, &n) || n != strlen(arg)) {
return xstrdup("\"conjunction\" syntax is \"conjunction(id,i/n)\"");
}
if (n_clauses < 2) {
return xstrdup("conjunction must have at least 2 clauses");
} else if (n_clauses > 64) {
return xstrdup("conjunction must have at most 64 clauses");
} else if (clause < 1) {
return xstrdup("clause index must be positive");
} else if (clause > n_clauses) {
return xstrdup("clause index must be less than or equal to "
"number of clauses");
}
add_conjunction(ofpacts, id, clause - 1, n_clauses);
return NULL;
}
/* Action structure for NXAST_MULTIPATH.
*
* This action performs the following steps in sequence:
*
* 1. Hashes the fields designated by 'fields', one of NX_HASH_FIELDS_*.
* Refer to the definition of "enum nx_mp_fields" for details.
*
* The 'basis' value is used as a universal hash parameter, that is,
* different values of 'basis' yield different hash functions. The
* particular universal hash function used is implementation-defined.
*
* The hashed fields' values are drawn from the current state of the
* flow, including all modifications that have been made by actions up to
* this point.
*
* 2. Applies the multipath link choice algorithm specified by 'algorithm',
* one of NX_MP_ALG_*. Refer to the definition of "enum nx_mp_algorithm"
* for details.
*
* The output of the algorithm is 'link', an unsigned integer less than
* or equal to 'max_link'.
*
* Some algorithms use 'arg' as an additional argument.
*
* 3. Stores 'link' in dst[ofs:ofs+n_bits]. The format and semantics of
* 'dst' and 'ofs_nbits' are similar to those for the NXAST_REG_LOAD
* action.
*
* The switch will reject actions that have an unknown 'fields', or an unknown
* 'algorithm', or in which ofs+n_bits is greater than the width of 'dst', or
* in which 'max_link' is greater than or equal to 2**n_bits, with error type
* OFPET_BAD_ACTION, code OFPBAC_BAD_ARGUMENT.
*/
struct nx_action_multipath {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length is 32. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_MULTIPATH. */
/* What fields to hash and how. */
ovs_be16 fields; /* One of NX_HASH_FIELDS_*. */
ovs_be16 basis; /* Universal hash parameter. */
ovs_be16 pad0;
/* Multipath link choice algorithm to apply to hash value. */
ovs_be16 algorithm; /* One of NX_MP_ALG_*. */
ovs_be16 max_link; /* Number of output links, minus 1. */
ovs_be32 arg; /* Algorithm-specific argument. */
ovs_be16 pad1;
/* Where to store the result. */
ovs_be16 ofs_nbits; /* (ofs << 6) | (n_bits - 1). */
ovs_be32 dst; /* Destination. */
};
OFP_ASSERT(sizeof(struct nx_action_multipath) == 32);
static enum ofperr
decode_NXAST_RAW_MULTIPATH(const struct nx_action_multipath *nam,
struct ofpbuf *out)
{
uint32_t n_links = ntohs(nam->max_link) + 1;
size_t min_n_bits = log_2_ceil(n_links);
struct ofpact_multipath *mp;
mp = ofpact_put_MULTIPATH(out);
mp->fields = ntohs(nam->fields);
mp->basis = ntohs(nam->basis);
mp->algorithm = ntohs(nam->algorithm);
mp->max_link = ntohs(nam->max_link);
mp->arg = ntohl(nam->arg);
mp->dst.field = mf_from_nxm_header(ntohl(nam->dst));
mp->dst.ofs = nxm_decode_ofs(nam->ofs_nbits);
mp->dst.n_bits = nxm_decode_n_bits(nam->ofs_nbits);
if (!flow_hash_fields_valid(mp->fields)) {
VLOG_WARN_RL(&rl, "unsupported fields %d", (int) mp->fields);
return OFPERR_OFPBAC_BAD_ARGUMENT;
} else if (mp->algorithm != NX_MP_ALG_MODULO_N
&& mp->algorithm != NX_MP_ALG_HASH_THRESHOLD
&& mp->algorithm != NX_MP_ALG_HRW
&& mp->algorithm != NX_MP_ALG_ITER_HASH) {
VLOG_WARN_RL(&rl, "unsupported algorithm %d", (int) mp->algorithm);
return OFPERR_OFPBAC_BAD_ARGUMENT;
} else if (mp->dst.n_bits < min_n_bits) {
VLOG_WARN_RL(&rl, "multipath action requires at least %"PRIuSIZE" bits for "
"%"PRIu32" links", min_n_bits, n_links);
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
return multipath_check(mp, NULL);
}
static void
encode_MULTIPATH(const struct ofpact_multipath *mp,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
struct nx_action_multipath *nam = put_NXAST_MULTIPATH(out);
nam->fields = htons(mp->fields);
nam->basis = htons(mp->basis);
nam->algorithm = htons(mp->algorithm);
nam->max_link = htons(mp->max_link);
nam->arg = htonl(mp->arg);
nam->ofs_nbits = nxm_encode_ofs_nbits(mp->dst.ofs, mp->dst.n_bits);
nam->dst = htonl(mf_nxm_header(mp->dst.field->id));
}
static char * OVS_WARN_UNUSED_RESULT
parse_MULTIPATH(const char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
return multipath_parse(ofpact_put_MULTIPATH(ofpacts), arg);
}
static void
format_MULTIPATH(const struct ofpact_multipath *a, struct ds *s)
{
multipath_format(a, s);
}
/* Action structure for NXAST_NOTE.
*
* This action has no effect. It is variable length. The switch does not
* attempt to interpret the user-defined 'note' data in any way. A controller
* can use this action to attach arbitrary metadata to a flow.
*
* This action might go away in the future.
*/
struct nx_action_note {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* A multiple of 8, but at least 16. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_NOTE. */
uint8_t note[6]; /* Start of user-defined data. */
/* Possibly followed by additional user-defined data. */
};
OFP_ASSERT(sizeof(struct nx_action_note) == 16);
static enum ofperr
decode_NXAST_RAW_NOTE(const struct nx_action_note *nan, struct ofpbuf *out)
{
struct ofpact_note *note;
unsigned int length;
length = ntohs(nan->len) - offsetof(struct nx_action_note, note);
note = ofpact_put(out, OFPACT_NOTE,
offsetof(struct ofpact_note, data) + length);
note->length = length;
memcpy(note->data, nan->note, length);
return 0;
}
static void
encode_NOTE(const struct ofpact_note *note,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
size_t start_ofs = out->size;
struct nx_action_note *nan;
unsigned int remainder;
unsigned int len;
put_NXAST_NOTE(out);
out->size = out->size - sizeof nan->note;
ofpbuf_put(out, note->data, note->length);
len = out->size - start_ofs;
remainder = len % OFP_ACTION_ALIGN;
if (remainder) {
ofpbuf_put_zeros(out, OFP_ACTION_ALIGN - remainder);
}
nan = ofpbuf_at(out, start_ofs, sizeof *nan);
nan->len = htons(out->size - start_ofs);
}
static char * OVS_WARN_UNUSED_RESULT
parse_NOTE(const char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
struct ofpact_note *note;
note = ofpact_put_NOTE(ofpacts);
while (*arg != '\0') {
uint8_t byte;
bool ok;
if (*arg == '.') {
arg++;
}
if (*arg == '\0') {
break;
}
byte = hexits_value(arg, 2, &ok);
if (!ok) {
return xstrdup("bad hex digit in `note' argument");
}
ofpbuf_put(ofpacts, &byte, 1);
note = ofpacts->header;
note->length++;
arg += 2;
}
ofpact_update_len(ofpacts, &note->ofpact);
return NULL;
}
static void
format_NOTE(const struct ofpact_note *a, struct ds *s)
{
size_t i;
ds_put_cstr(s, "note:");
for (i = 0; i < a->length; i++) {
if (i) {
ds_put_char(s, '.');
}
ds_put_format(s, "%02"PRIx8, a->data[i]);
}
}
/* Exit action. */
static enum ofperr
decode_NXAST_RAW_EXIT(struct ofpbuf *out)
{
ofpact_put_EXIT(out);
return 0;
}
static void
encode_EXIT(const struct ofpact_null *null OVS_UNUSED,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
put_NXAST_EXIT(out);
}
static char * OVS_WARN_UNUSED_RESULT
parse_EXIT(char *arg OVS_UNUSED, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
ofpact_put_EXIT(ofpacts);
return NULL;
}
static void
format_EXIT(const struct ofpact_null *a OVS_UNUSED, struct ds *s)
{
ds_put_cstr(s, "exit");
}
/* Unroll xlate action. */
static void
encode_UNROLL_XLATE(const struct ofpact_unroll_xlate *unroll OVS_UNUSED,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out OVS_UNUSED)
{
OVS_NOT_REACHED();
}
static char * OVS_WARN_UNUSED_RESULT
parse_UNROLL_XLATE(char *arg OVS_UNUSED, struct ofpbuf *ofpacts OVS_UNUSED,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
OVS_NOT_REACHED();
return NULL;
}
static void
format_UNROLL_XLATE(const struct ofpact_unroll_xlate *a OVS_UNUSED,
struct ds *s)
{
ds_put_cstr(s, "unroll_xlate");
}
/* Action structure for NXAST_SAMPLE.
*
* Samples matching packets with the given probability and sends them
* each to the set of collectors identified with the given ID. The
* probability is expressed as a number of packets to be sampled out
* of USHRT_MAX packets, and must be >0.
*
* When sending packet samples to IPFIX collectors, the IPFIX flow
* record sent for each sampled packet is associated with the given
* observation domain ID and observation point ID. Each IPFIX flow
* record contain the sampled packet's headers when executing this
* rule. If a sampled packet's headers are modified by previous
* actions in the flow, those modified headers are sent. */
struct nx_action_sample {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length is 24. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_SAMPLE. */
ovs_be16 probability; /* Fraction of packets to sample. */
ovs_be32 collector_set_id; /* ID of collector set in OVSDB. */
ovs_be32 obs_domain_id; /* ID of sampling observation domain. */
ovs_be32 obs_point_id; /* ID of sampling observation point. */
};
OFP_ASSERT(sizeof(struct nx_action_sample) == 24);
static enum ofperr
decode_NXAST_RAW_SAMPLE(const struct nx_action_sample *nas, struct ofpbuf *out)
{
struct ofpact_sample *sample;
sample = ofpact_put_SAMPLE(out);
sample->probability = ntohs(nas->probability);
sample->collector_set_id = ntohl(nas->collector_set_id);
sample->obs_domain_id = ntohl(nas->obs_domain_id);
sample->obs_point_id = ntohl(nas->obs_point_id);
if (sample->probability == 0) {
return OFPERR_OFPBAC_BAD_ARGUMENT;
}
return 0;
}
static void
encode_SAMPLE(const struct ofpact_sample *sample,
enum ofp_version ofp_version OVS_UNUSED, struct ofpbuf *out)
{
struct nx_action_sample *nas;
nas = put_NXAST_SAMPLE(out);
nas->probability = htons(sample->probability);
nas->collector_set_id = htonl(sample->collector_set_id);
nas->obs_domain_id = htonl(sample->obs_domain_id);
nas->obs_point_id = htonl(sample->obs_point_id);
}
/* Parses 'arg' as the argument to a "sample" action, and appends such an
* action to 'ofpacts'.
*
* Returns NULL if successful, otherwise a malloc()'d string describing the
* error. The caller is responsible for freeing the returned string. */
static char * OVS_WARN_UNUSED_RESULT
parse_SAMPLE(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
struct ofpact_sample *os = ofpact_put_SAMPLE(ofpacts);
char *key, *value;
while (ofputil_parse_key_value(&arg, &key, &value)) {
char *error = NULL;
if (!strcmp(key, "probability")) {
error = str_to_u16(value, "probability", &os->probability);
if (!error && os->probability == 0) {
error = xasprintf("invalid probability value \"%s\"", value);
}
} else if (!strcmp(key, "collector_set_id")) {
error = str_to_u32(value, &os->collector_set_id);
} else if (!strcmp(key, "obs_domain_id")) {
error = str_to_u32(value, &os->obs_domain_id);
} else if (!strcmp(key, "obs_point_id")) {
error = str_to_u32(value, &os->obs_point_id);
} else {
error = xasprintf("invalid key \"%s\" in \"sample\" argument",
key);
}
if (error) {
return error;
}
}
if (os->probability == 0) {
return xstrdup("non-zero \"probability\" must be specified on sample");
}
return NULL;
}
static void
format_SAMPLE(const struct ofpact_sample *a, struct ds *s)
{
ds_put_format(s, "sample(probability=%"PRIu16",collector_set_id=%"PRIu32
",obs_domain_id=%"PRIu32",obs_point_id=%"PRIu32")",
a->probability, a->collector_set_id,
a->obs_domain_id, a->obs_point_id);
}
/* debug_recirc instruction. */
static bool enable_debug;
void
ofpact_dummy_enable(void)
{
enable_debug = true;
}
static enum ofperr
decode_NXAST_RAW_DEBUG_RECIRC(struct ofpbuf *out)
{
if (!enable_debug) {
return OFPERR_OFPBAC_BAD_VENDOR_TYPE;
}
ofpact_put_DEBUG_RECIRC(out);
return 0;
}
static void
encode_DEBUG_RECIRC(const struct ofpact_null *n OVS_UNUSED,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out)
{
put_NXAST_DEBUG_RECIRC(out);
}
static char * OVS_WARN_UNUSED_RESULT
parse_DEBUG_RECIRC(char *arg OVS_UNUSED, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
ofpact_put_DEBUG_RECIRC(ofpacts);
return NULL;
}
static void
format_DEBUG_RECIRC(const struct ofpact_null *a OVS_UNUSED, struct ds *s)
{
ds_put_cstr(s, "debug_recirc");
}
/* Meter instruction. */
static void
encode_METER(const struct ofpact_meter *meter,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version >= OFP13_VERSION) {
instruction_put_OFPIT13_METER(out)->meter_id = htonl(meter->meter_id);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_METER(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols)
{
*usable_protocols &= OFPUTIL_P_OF13_UP;
return str_to_u32(arg, &ofpact_put_METER(ofpacts)->meter_id);
}
static void
format_METER(const struct ofpact_meter *a, struct ds *s)
{
ds_put_format(s, "meter:%"PRIu32, a->meter_id);
}
/* Clear-Actions instruction. */
static void
encode_CLEAR_ACTIONS(const struct ofpact_null *null OVS_UNUSED,
enum ofp_version ofp_version OVS_UNUSED,
struct ofpbuf *out OVS_UNUSED)
{
if (ofp_version > OFP10_VERSION) {
instruction_put_OFPIT11_CLEAR_ACTIONS(out);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_CLEAR_ACTIONS(char *arg OVS_UNUSED, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
ofpact_put_CLEAR_ACTIONS(ofpacts);
return NULL;
}
static void
format_CLEAR_ACTIONS(const struct ofpact_null *a OVS_UNUSED, struct ds *s)
{
ds_put_cstr(s, "clear_actions");
}
/* Write-Actions instruction. */
static void
encode_WRITE_ACTIONS(const struct ofpact_nest *actions,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version > OFP10_VERSION) {
const size_t ofs = out->size;
instruction_put_OFPIT11_WRITE_ACTIONS(out);
ofpacts_put_openflow_actions(actions->actions,
ofpact_nest_get_action_len(actions),
out, ofp_version);
ofpacts_update_instruction_actions(out, ofs);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_WRITE_ACTIONS(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols)
{
struct ofpact_nest *on;
char *error;
size_t ofs;
/* Pull off existing actions or instructions. */
ofpact_pad(ofpacts);
ofs = ofpacts->size;
ofpbuf_pull(ofpacts, ofs);
/* Add a Write-Actions instruction and then pull it off. */
ofpact_put(ofpacts, OFPACT_WRITE_ACTIONS, sizeof *on);
ofpbuf_pull(ofpacts, sizeof *on);
/* Parse nested actions.
*
* We pulled off "write-actions" and the previous actions because the
* OFPACT_WRITE_ACTIONS is only partially constructed: its length is such
* that it doesn't actually include the nested actions. That means that
* ofpacts_parse() would reject them as being part of an Apply-Actions that
* follows a Write-Actions, which is an invalid order. */
error = ofpacts_parse(arg, ofpacts, usable_protocols, false);
/* Put the Write-Actions back on and update its length. */
on = ofpbuf_push_uninit(ofpacts, sizeof *on);
on->ofpact.len = ofpacts->size;
/* Put any previous actions or instructions back on. */
ofpbuf_push_uninit(ofpacts, ofs);
return error;
}
static void
format_WRITE_ACTIONS(const struct ofpact_nest *a, struct ds *s)
{
ds_put_cstr(s, "write_actions(");
ofpacts_format(a->actions, ofpact_nest_get_action_len(a), s);
ds_put_char(s, ')');
}
/* Action structure for NXAST_WRITE_METADATA.
*
* Modifies the 'mask' bits of the metadata value. */
struct nx_action_write_metadata {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* Length is 32. */
ovs_be32 vendor; /* NX_VENDOR_ID. */
ovs_be16 subtype; /* NXAST_WRITE_METADATA. */
uint8_t zeros[6]; /* Must be zero. */
ovs_be64 metadata; /* Metadata register. */
ovs_be64 mask; /* Metadata mask. */
};
OFP_ASSERT(sizeof(struct nx_action_write_metadata) == 32);
static enum ofperr
decode_NXAST_RAW_WRITE_METADATA(const struct nx_action_write_metadata *nawm,
struct ofpbuf *out)
{
struct ofpact_metadata *om;
if (!is_all_zeros(nawm->zeros, sizeof nawm->zeros)) {
return OFPERR_NXBRC_MUST_BE_ZERO;
}
om = ofpact_put_WRITE_METADATA(out);
om->metadata = nawm->metadata;
om->mask = nawm->mask;
return 0;
}
static void
encode_WRITE_METADATA(const struct ofpact_metadata *metadata,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version == OFP10_VERSION) {
struct nx_action_write_metadata *nawm;
nawm = put_NXAST_WRITE_METADATA(out);
nawm->metadata = metadata->metadata;
nawm->mask = metadata->mask;
} else {
struct ofp11_instruction_write_metadata *oiwm;
oiwm = instruction_put_OFPIT11_WRITE_METADATA(out);
oiwm->metadata = metadata->metadata;
oiwm->metadata_mask = metadata->mask;
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_WRITE_METADATA(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols)
{
struct ofpact_metadata *om;
char *mask = strchr(arg, '/');
*usable_protocols &= OFPUTIL_P_NXM_OF11_UP;
om = ofpact_put_WRITE_METADATA(ofpacts);
if (mask) {
char *error;
*mask = '\0';
error = str_to_be64(mask + 1, &om->mask);
if (error) {
return error;
}
} else {
om->mask = OVS_BE64_MAX;
}
return str_to_be64(arg, &om->metadata);
}
static void
format_WRITE_METADATA(const struct ofpact_metadata *a, struct ds *s)
{
ds_put_format(s, "write_metadata:%#"PRIx64, ntohll(a->metadata));
if (a->mask != OVS_BE64_MAX) {
ds_put_format(s, "/%#"PRIx64, ntohll(a->mask));
}
}
/* Goto-Table instruction. */
static void
encode_GOTO_TABLE(const struct ofpact_goto_table *goto_table,
enum ofp_version ofp_version, struct ofpbuf *out)
{
if (ofp_version == OFP10_VERSION) {
struct nx_action_resubmit *nar;
nar = put_NXAST_RESUBMIT_TABLE(out);
nar->table = goto_table->table_id;
nar->in_port = htons(ofp_to_u16(OFPP_IN_PORT));
} else {
struct ofp11_instruction_goto_table *oigt;
oigt = instruction_put_OFPIT11_GOTO_TABLE(out);
oigt->table_id = goto_table->table_id;
memset(oigt->pad, 0, sizeof oigt->pad);
}
}
static char * OVS_WARN_UNUSED_RESULT
parse_GOTO_TABLE(char *arg, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols OVS_UNUSED)
{
struct ofpact_goto_table *ogt = ofpact_put_GOTO_TABLE(ofpacts);
char *table_s = strsep(&arg, ",");
if (!table_s || !table_s[0]) {
return xstrdup("instruction goto-table needs table id");
}
return str_to_u8(table_s, "table", &ogt->table_id);
}
static void
format_GOTO_TABLE(const struct ofpact_goto_table *a, struct ds *s)
{
ds_put_format(s, "goto_table:%"PRIu8, a->table_id);
}
static void
log_bad_action(const struct ofp_action_header *actions, size_t actions_len,
const struct ofp_action_header *bad_action, enum ofperr error)
{
if (!VLOG_DROP_WARN(&rl)) {
struct ds s;
ds_init(&s);
ds_put_hex_dump(&s, actions, actions_len, 0, false);
VLOG_WARN("bad action at offset %#"PRIxPTR" (%s):\n%s",
(char *)bad_action - (char *)actions,
ofperr_get_name(error), ds_cstr(&s));
ds_destroy(&s);
}
}
static enum ofperr
ofpacts_decode(const void *actions, size_t actions_len,
enum ofp_version ofp_version, struct ofpbuf *ofpacts)
{
struct ofpbuf openflow;
ofpbuf_use_const(&openflow, actions, actions_len);
while (openflow.size) {
const struct ofp_action_header *action = openflow.data;
enum ofp_raw_action_type raw;
enum ofperr error;
uint64_t arg;
error = ofpact_pull_raw(&openflow, ofp_version, &raw, &arg);
if (!error) {
error = ofpact_decode(action, raw, arg, ofpacts);
}
if (error) {
log_bad_action(actions, actions_len, action, error);
return error;
}
}
ofpact_pad(ofpacts);
return 0;
}
static enum ofperr
ofpacts_pull_openflow_actions__(struct ofpbuf *openflow,
unsigned int actions_len,
enum ofp_version version,
uint32_t allowed_ovsinsts,
struct ofpbuf *ofpacts)
{
const struct ofp_action_header *actions;
enum ofperr error;
ofpbuf_clear(ofpacts);
if (actions_len % OFP_ACTION_ALIGN != 0) {
VLOG_WARN_RL(&rl, "OpenFlow message actions length %u is not a "
"multiple of %d", actions_len, OFP_ACTION_ALIGN);
return OFPERR_OFPBRC_BAD_LEN;
}
actions = ofpbuf_try_pull(openflow, actions_len);
if (actions == NULL) {
VLOG_WARN_RL(&rl, "OpenFlow message actions length %u exceeds "
"remaining message length (%"PRIu32")",
actions_len, openflow->size);
return OFPERR_OFPBRC_BAD_LEN;
}
error = ofpacts_decode(actions, actions_len, version, ofpacts);
if (error) {
ofpbuf_clear(ofpacts);
return error;
}
error = ofpacts_verify(ofpacts->data, ofpacts->size,
allowed_ovsinsts);
if (error) {
ofpbuf_clear(ofpacts);
}
return error;
}
/* Attempts to convert 'actions_len' bytes of OpenFlow actions from the
* front of 'openflow' into ofpacts. On success, replaces any existing content
* in 'ofpacts' by the converted ofpacts; on failure, clears 'ofpacts'.
* Returns 0 if successful, otherwise an OpenFlow error.
*
* Actions are processed according to their OpenFlow version which
* is provided in the 'version' parameter.
*
* In most places in OpenFlow, actions appear encapsulated in instructions, so
* you should call ofpacts_pull_openflow_instructions() instead of this
* function.
*
* The parsed actions are valid generically, but they may not be valid in a
* specific context. For example, port numbers up to OFPP_MAX are valid
* generically, but specific datapaths may only support port numbers in a
* smaller range. Use ofpacts_check() to additional check whether actions are
* valid in a specific context. */
enum ofperr
ofpacts_pull_openflow_actions(struct ofpbuf *openflow,
unsigned int actions_len,
enum ofp_version version,
struct ofpbuf *ofpacts)
{
return ofpacts_pull_openflow_actions__(openflow, actions_len, version,
1u << OVSINST_OFPIT11_APPLY_ACTIONS,
ofpacts);
}
/* OpenFlow 1.1 actions. */
/* True if an action sets the value of a field
* in a way that is compatibile with the action set.
* The field can be set via either a set or a move action.
* False otherwise. */
static bool
ofpact_is_set_or_move_action(const struct ofpact *a)
{
switch (a->type) {
case OFPACT_SET_FIELD:
case OFPACT_REG_MOVE:
case OFPACT_SET_ETH_DST:
case OFPACT_SET_ETH_SRC:
case OFPACT_SET_IP_DSCP:
case OFPACT_SET_IP_ECN:
case OFPACT_SET_IP_TTL:
case OFPACT_SET_IPV4_DST:
case OFPACT_SET_IPV4_SRC:
case OFPACT_SET_L4_DST_PORT:
case OFPACT_SET_L4_SRC_PORT:
case OFPACT_SET_MPLS_LABEL:
case OFPACT_SET_MPLS_TC:
case OFPACT_SET_MPLS_TTL:
case OFPACT_SET_QUEUE:
case OFPACT_SET_TUNNEL:
case OFPACT_SET_VLAN_PCP:
case OFPACT_SET_VLAN_VID:
return true;
case OFPACT_BUNDLE:
case OFPACT_CLEAR_ACTIONS:
case OFPACT_CONTROLLER:
case OFPACT_DEC_MPLS_TTL:
case OFPACT_DEC_TTL:
case OFPACT_ENQUEUE:
case OFPACT_EXIT:
case OFPACT_UNROLL_XLATE:
case OFPACT_FIN_TIMEOUT:
case OFPACT_GOTO_TABLE:
case OFPACT_GROUP:
case OFPACT_LEARN:
case OFPACT_CONJUNCTION:
case OFPACT_METER:
case OFPACT_MULTIPATH:
case OFPACT_NOTE:
case OFPACT_OUTPUT:
case OFPACT_OUTPUT_REG:
case OFPACT_POP_MPLS:
case OFPACT_POP_QUEUE:
case OFPACT_PUSH_MPLS:
case OFPACT_PUSH_VLAN:
case OFPACT_RESUBMIT:
case OFPACT_SAMPLE:
case OFPACT_STACK_POP:
case OFPACT_STACK_PUSH:
case OFPACT_STRIP_VLAN:
case OFPACT_WRITE_ACTIONS:
case OFPACT_WRITE_METADATA:
case OFPACT_DEBUG_RECIRC:
return false;
default:
OVS_NOT_REACHED();
}
}
/* True if an action is allowed in the action set.
* False otherwise. */
static bool
ofpact_is_allowed_in_actions_set(const struct ofpact *a)
{
switch (a->type) {
case OFPACT_DEC_MPLS_TTL:
case OFPACT_DEC_TTL:
case OFPACT_GROUP:
case OFPACT_OUTPUT:
case OFPACT_POP_MPLS:
case OFPACT_PUSH_MPLS:
case OFPACT_PUSH_VLAN:
case OFPACT_REG_MOVE:
case OFPACT_SET_FIELD:
case OFPACT_SET_ETH_DST:
case OFPACT_SET_ETH_SRC:
case OFPACT_SET_IP_DSCP:
case OFPACT_SET_IP_ECN:
case OFPACT_SET_IP_TTL:
case OFPACT_SET_IPV4_DST:
case OFPACT_SET_IPV4_SRC:
case OFPACT_SET_L4_DST_PORT:
case OFPACT_SET_L4_SRC_PORT:
case OFPACT_SET_MPLS_LABEL:
case OFPACT_SET_MPLS_TC:
case OFPACT_SET_MPLS_TTL:
case OFPACT_SET_QUEUE:
case OFPACT_SET_TUNNEL:
case OFPACT_SET_VLAN_PCP:
case OFPACT_SET_VLAN_VID:
case OFPACT_STRIP_VLAN:
return true;
/* In general these actions are excluded because they are not part of
* the OpenFlow specification nor map to actions that are defined in
* the specification. Thus the order in which they should be applied
* in the action set is undefined. */
case OFPACT_BUNDLE:
case OFPACT_CONTROLLER:
case OFPACT_ENQUEUE:
case OFPACT_EXIT:
case OFPACT_UNROLL_XLATE:
case OFPACT_FIN_TIMEOUT:
case OFPACT_LEARN:
case OFPACT_CONJUNCTION:
case OFPACT_MULTIPATH:
case OFPACT_NOTE:
case OFPACT_OUTPUT_REG:
case OFPACT_POP_QUEUE:
case OFPACT_RESUBMIT:
case OFPACT_SAMPLE:
case OFPACT_STACK_POP:
case OFPACT_STACK_PUSH:
case OFPACT_DEBUG_RECIRC:
/* The action set may only include actions and thus
* may not include any instructions */
case OFPACT_CLEAR_ACTIONS:
case OFPACT_GOTO_TABLE:
case OFPACT_METER:
case OFPACT_WRITE_ACTIONS:
case OFPACT_WRITE_METADATA:
return false;
default:
OVS_NOT_REACHED();
}
}
/* Append ofpact 'a' onto the tail of 'out' */
static void
ofpact_copy(struct ofpbuf *out, const struct ofpact *a)
{
ofpbuf_put(out, a, OFPACT_ALIGN(a->len));
}
/* Copies the last ofpact whose type is 'filter' from 'in' to 'out'. */
static bool
ofpacts_copy_last(struct ofpbuf *out, const struct ofpbuf *in,
enum ofpact_type filter)
{
const struct ofpact *target;
const struct ofpact *a;
target = NULL;
OFPACT_FOR_EACH (a, in->data, in->size) {
if (a->type == filter) {
target = a;
}
}
if (target) {
ofpact_copy(out, target);
}
return target != NULL;
}
/* Append all ofpacts, for which 'filter' returns true, from 'in' to 'out'.
* The order of appended ofpacts is preserved between 'in' and 'out' */
static void
ofpacts_copy_all(struct ofpbuf *out, const struct ofpbuf *in,
bool (*filter)(const struct ofpact *))
{
const struct ofpact *a;
OFPACT_FOR_EACH (a, in->data, in->size) {
if (filter(a)) {
ofpact_copy(out, a);
}
}
}
/* Reads 'action_set', which contains ofpacts accumulated by
* OFPACT_WRITE_ACTIONS instructions, and writes equivalent actions to be
* executed directly into 'action_list'. (These names correspond to the
* "Action Set" and "Action List" terms used in OpenFlow 1.1+.)
*
* In general this involves appending the last instance of each action that is
* admissible in the action set in the order described in the OpenFlow
* specification.
*
* Exceptions:
* + output action is only appended if no group action was present in 'in'.
* + As a simplification all set actions are copied in the order the are
* provided in 'in' as many set actions applied to a field has the same
* affect as only applying the last action that sets a field and
* duplicates are removed by do_xlate_actions().
* This has an unwanted side-effect of compsoting multiple
* LOAD_REG actions that touch different regions of the same field. */
void
ofpacts_execute_action_set(struct ofpbuf *action_list,
const struct ofpbuf *action_set)
{
/* The OpenFlow spec "Action Set" section specifies this order. */
ofpacts_copy_last(action_list, action_set, OFPACT_STRIP_VLAN);
ofpacts_copy_last(action_list, action_set, OFPACT_POP_MPLS);
ofpacts_copy_last(action_list, action_set, OFPACT_PUSH_MPLS);
ofpacts_copy_last(action_list, action_set, OFPACT_PUSH_VLAN);
ofpacts_copy_last(action_list, action_set, OFPACT_DEC_TTL);
ofpacts_copy_last(action_list, action_set, OFPACT_DEC_MPLS_TTL);
ofpacts_copy_all(action_list, action_set, ofpact_is_set_or_move_action);
ofpacts_copy_last(action_list, action_set, OFPACT_SET_QUEUE);
/* If both OFPACT_GROUP and OFPACT_OUTPUT are present, OpenFlow says that
* we should execute only OFPACT_GROUP.
*
* If neither OFPACT_GROUP nor OFPACT_OUTPUT is present, then we can drop
* all the actions because there's no point in modifying a packet that will
* not be sent anywhere. */
if (!ofpacts_copy_last(action_list, action_set, OFPACT_GROUP) &&
!ofpacts_copy_last(action_list, action_set, OFPACT_OUTPUT) &&
!ofpacts_copy_last(action_list, action_set, OFPACT_RESUBMIT)) {
ofpbuf_clear(action_list);
}
}
static enum ofperr
ofpacts_decode_for_action_set(const struct ofp_action_header *in,
size_t n_in, enum ofp_version version,
struct ofpbuf *out)
{
enum ofperr error;
struct ofpact *a;
size_t start = out->size;
error = ofpacts_decode(in, n_in, version, out);
if (error) {
return error;
}
OFPACT_FOR_EACH (a, ofpact_end(out->data, start), out->size - start) {
if (!ofpact_is_allowed_in_actions_set(a)) {
VLOG_WARN_RL(&rl, "disallowed action in action set");
return OFPERR_OFPBAC_BAD_TYPE;
}
}
return 0;
}
/* OpenFlow 1.1 instructions. */
struct instruction_type_info {
enum ovs_instruction_type type;
const char *name;
};
static const struct instruction_type_info inst_info[] = {
#define DEFINE_INST(ENUM, STRUCT, EXTENSIBLE, NAME) {OVSINST_##ENUM, NAME},
OVS_INSTRUCTIONS
#undef DEFINE_INST
};
const char *
ovs_instruction_name_from_type(enum ovs_instruction_type type)
{
return inst_info[type].name;
}
int
ovs_instruction_type_from_name(const char *name)
{
const struct instruction_type_info *p;
for (p = inst_info; p < &inst_info[ARRAY_SIZE(inst_info)]; p++) {
if (!strcasecmp(name, p->name)) {
return p->type;
}
}
return -1;
}
enum ovs_instruction_type
ovs_instruction_type_from_ofpact_type(enum ofpact_type type)
{
switch (type) {
case OFPACT_METER:
return OVSINST_OFPIT13_METER;
case OFPACT_CLEAR_ACTIONS:
return OVSINST_OFPIT11_CLEAR_ACTIONS;
case OFPACT_WRITE_ACTIONS:
return OVSINST_OFPIT11_WRITE_ACTIONS;
case OFPACT_WRITE_METADATA:
return OVSINST_OFPIT11_WRITE_METADATA;
case OFPACT_GOTO_TABLE:
return OVSINST_OFPIT11_GOTO_TABLE;
case OFPACT_OUTPUT:
case OFPACT_GROUP:
case OFPACT_CONTROLLER:
case OFPACT_ENQUEUE:
case OFPACT_OUTPUT_REG:
case OFPACT_BUNDLE:
case OFPACT_SET_VLAN_VID:
case OFPACT_SET_VLAN_PCP:
case OFPACT_STRIP_VLAN:
case OFPACT_PUSH_VLAN:
case OFPACT_SET_ETH_SRC:
case OFPACT_SET_ETH_DST:
case OFPACT_SET_IPV4_SRC:
case OFPACT_SET_IPV4_DST:
case OFPACT_SET_IP_DSCP:
case OFPACT_SET_IP_ECN:
case OFPACT_SET_IP_TTL:
case OFPACT_SET_L4_SRC_PORT:
case OFPACT_SET_L4_DST_PORT:
case OFPACT_REG_MOVE:
case OFPACT_SET_FIELD:
case OFPACT_STACK_PUSH:
case OFPACT_STACK_POP:
case OFPACT_DEC_TTL:
case OFPACT_SET_MPLS_LABEL:
case OFPACT_SET_MPLS_TC:
case OFPACT_SET_MPLS_TTL:
case OFPACT_DEC_MPLS_TTL:
case OFPACT_PUSH_MPLS:
case OFPACT_POP_MPLS:
case OFPACT_SET_TUNNEL:
case OFPACT_SET_QUEUE:
case OFPACT_POP_QUEUE:
case OFPACT_FIN_TIMEOUT:
case OFPACT_RESUBMIT:
case OFPACT_LEARN:
case OFPACT_CONJUNCTION:
case OFPACT_MULTIPATH:
case OFPACT_NOTE:
case OFPACT_EXIT:
case OFPACT_UNROLL_XLATE:
case OFPACT_SAMPLE:
case OFPACT_DEBUG_RECIRC:
default:
return OVSINST_OFPIT11_APPLY_ACTIONS;
}
}
enum ofperr
ovs_instruction_type_from_inst_type(enum ovs_instruction_type *instruction_type,
const uint16_t inst_type)
{
switch (inst_type) {
#define DEFINE_INST(ENUM, STRUCT, EXTENSIBLE, NAME) \
case ENUM: \
*instruction_type = OVSINST_##ENUM; \
return 0;
OVS_INSTRUCTIONS
#undef DEFINE_INST
default:
return OFPERR_OFPBIC_UNKNOWN_INST;
}
}
/* Two-way translation between OVS's internal "OVSINST_*" representation of
* instructions and the "OFPIT_*" representation used in OpenFlow. */
struct ovsinst_map {
enum ovs_instruction_type ovsinst; /* Internal name for instruction. */
int ofpit; /* OFPIT_* number from OpenFlow spec. */
};
static const struct ovsinst_map *
get_ovsinst_map(enum ofp_version version)
{
/* OpenFlow 1.1 and 1.2 instructions. */
static const struct ovsinst_map of11[] = {
{ OVSINST_OFPIT11_GOTO_TABLE, 1 },
{ OVSINST_OFPIT11_WRITE_METADATA, 2 },
{ OVSINST_OFPIT11_WRITE_ACTIONS, 3 },
{ OVSINST_OFPIT11_APPLY_ACTIONS, 4 },
{ OVSINST_OFPIT11_CLEAR_ACTIONS, 5 },
{ 0, -1 },
};
/* OpenFlow 1.3+ instructions. */
static const struct ovsinst_map of13[] = {
{ OVSINST_OFPIT11_GOTO_TABLE, 1 },
{ OVSINST_OFPIT11_WRITE_METADATA, 2 },
{ OVSINST_OFPIT11_WRITE_ACTIONS, 3 },
{ OVSINST_OFPIT11_APPLY_ACTIONS, 4 },
{ OVSINST_OFPIT11_CLEAR_ACTIONS, 5 },
{ OVSINST_OFPIT13_METER, 6 },
{ 0, -1 },
};
return version < OFP13_VERSION ? of11 : of13;
}
/* Converts 'ovsinst_bitmap', a bitmap whose bits correspond to OVSINST_*
* values, into a bitmap of instructions suitable for OpenFlow 'version'
* (OFP11_VERSION or later), and returns the result. */
ovs_be32
ovsinst_bitmap_to_openflow(uint32_t ovsinst_bitmap, enum ofp_version version)
{
uint32_t ofpit_bitmap = 0;
const struct ovsinst_map *x;
for (x = get_ovsinst_map(version); x->ofpit >= 0; x++) {
if (ovsinst_bitmap & (1u << x->ovsinst)) {
ofpit_bitmap |= 1u << x->ofpit;
}
}
return htonl(ofpit_bitmap);
}
/* Converts 'ofpit_bitmap', a bitmap of instructions from an OpenFlow message
* with the given 'version' (OFP11_VERSION or later) into a bitmap whose bits
* correspond to OVSINST_* values, and returns the result. */
uint32_t
ovsinst_bitmap_from_openflow(ovs_be32 ofpit_bitmap, enum ofp_version version)
{
uint32_t ovsinst_bitmap = 0;
const struct ovsinst_map *x;
for (x = get_ovsinst_map(version); x->ofpit >= 0; x++) {
if (ofpit_bitmap & htonl(1u << x->ofpit)) {
ovsinst_bitmap |= 1u << x->ovsinst;
}
}
return ovsinst_bitmap;
}
static inline struct ofp11_instruction *
instruction_next(const struct ofp11_instruction *inst)
{
return ((struct ofp11_instruction *) (void *)
((uint8_t *) inst + ntohs(inst->len)));
}
static inline bool
instruction_is_valid(const struct ofp11_instruction *inst,
size_t n_instructions)
{
uint16_t len = ntohs(inst->len);
return (!(len % OFP11_INSTRUCTION_ALIGN)
&& len >= sizeof *inst
&& len / sizeof *inst <= n_instructions);
}
/* This macro is careful to check for instructions with bad lengths. */
#define INSTRUCTION_FOR_EACH(ITER, LEFT, INSTRUCTIONS, N_INSTRUCTIONS) \
for ((ITER) = (INSTRUCTIONS), (LEFT) = (N_INSTRUCTIONS); \
(LEFT) > 0 && instruction_is_valid(ITER, LEFT); \
((LEFT) -= (ntohs((ITER)->len) \
/ sizeof(struct ofp11_instruction)), \
(ITER) = instruction_next(ITER)))
static enum ofperr
decode_openflow11_instruction(const struct ofp11_instruction *inst,
enum ovs_instruction_type *type)
{
uint16_t len = ntohs(inst->len);
switch (inst->type) {
case CONSTANT_HTONS(OFPIT11_EXPERIMENTER):
return OFPERR_OFPBIC_BAD_EXPERIMENTER;
#define DEFINE_INST(ENUM, STRUCT, EXTENSIBLE, NAME) \
case CONSTANT_HTONS(ENUM): \
if (EXTENSIBLE \
? len >= sizeof(struct STRUCT) \
: len == sizeof(struct STRUCT)) { \
*type = OVSINST_##ENUM; \
return 0; \
} else { \
return OFPERR_OFPBIC_BAD_LEN; \
}
OVS_INSTRUCTIONS
#undef DEFINE_INST
default:
return OFPERR_OFPBIC_UNKNOWN_INST;
}
}
static enum ofperr
decode_openflow11_instructions(const struct ofp11_instruction insts[],
size_t n_insts,
const struct ofp11_instruction *out[])
{
const struct ofp11_instruction *inst;
size_t left;
memset(out, 0, N_OVS_INSTRUCTIONS * sizeof *out);
INSTRUCTION_FOR_EACH (inst, left, insts, n_insts) {
enum ovs_instruction_type type;
enum ofperr error;
error = decode_openflow11_instruction(inst, &type);
if (error) {
return error;
}
if (out[type]) {
return OFPERR_OFPBIC_DUP_INST;
}
out[type] = inst;
}
if (left) {
VLOG_WARN_RL(&rl, "bad instruction format at offset %"PRIuSIZE,
(n_insts - left) * sizeof *inst);
return OFPERR_OFPBIC_BAD_LEN;
}
return 0;
}
static void
get_actions_from_instruction(const struct ofp11_instruction *inst,
const struct ofp_action_header **actions,
size_t *actions_len)
{
*actions = ALIGNED_CAST(const struct ofp_action_header *, inst + 1);
*actions_len = ntohs(inst->len) - sizeof *inst;
}
enum ofperr
ofpacts_pull_openflow_instructions(struct ofpbuf *openflow,
unsigned int instructions_len,
enum ofp_version version,
struct ofpbuf *ofpacts)
{
const struct ofp11_instruction *instructions;
const struct ofp11_instruction *insts[N_OVS_INSTRUCTIONS];
enum ofperr error;
if (version == OFP10_VERSION) {
return ofpacts_pull_openflow_actions__(openflow, instructions_len,
version,
(1u << N_OVS_INSTRUCTIONS) - 1,
ofpacts);
}
ofpbuf_clear(ofpacts);
if (instructions_len % OFP11_INSTRUCTION_ALIGN != 0) {
VLOG_WARN_RL(&rl, "OpenFlow message instructions length %u is not a "
"multiple of %d",
instructions_len, OFP11_INSTRUCTION_ALIGN);
error = OFPERR_OFPBIC_BAD_LEN;
goto exit;
}
instructions = ofpbuf_try_pull(openflow, instructions_len);
if (instructions == NULL) {
VLOG_WARN_RL(&rl, "OpenFlow message instructions length %u exceeds "
"remaining message length (%"PRIu32")",
instructions_len, openflow->size);
error = OFPERR_OFPBIC_BAD_LEN;
goto exit;
}
error = decode_openflow11_instructions(
instructions, instructions_len / OFP11_INSTRUCTION_ALIGN,
insts);
if (error) {
goto exit;
}
if (insts[OVSINST_OFPIT13_METER]) {
const struct ofp13_instruction_meter *oim;
struct ofpact_meter *om;
oim = ALIGNED_CAST(const struct ofp13_instruction_meter *,
insts[OVSINST_OFPIT13_METER]);
om = ofpact_put_METER(ofpacts);
om->meter_id = ntohl(oim->meter_id);
}
if (insts[OVSINST_OFPIT11_APPLY_ACTIONS]) {
const struct ofp_action_header *actions;
size_t actions_len;
get_actions_from_instruction(insts[OVSINST_OFPIT11_APPLY_ACTIONS],
&actions, &actions_len);
error = ofpacts_decode(actions, actions_len, version, ofpacts);
if (error) {
goto exit;
}
}
if (insts[OVSINST_OFPIT11_CLEAR_ACTIONS]) {
instruction_get_OFPIT11_CLEAR_ACTIONS(
insts[OVSINST_OFPIT11_CLEAR_ACTIONS]);
ofpact_put_CLEAR_ACTIONS(ofpacts);
}
if (insts[OVSINST_OFPIT11_WRITE_ACTIONS]) {
struct ofpact_nest *on;
const struct ofp_action_header *actions;
size_t actions_len;
size_t start;
ofpact_pad(ofpacts);
start = ofpacts->size;
ofpact_put(ofpacts, OFPACT_WRITE_ACTIONS,
offsetof(struct ofpact_nest, actions));
get_actions_from_instruction(insts[OVSINST_OFPIT11_WRITE_ACTIONS],
&actions, &actions_len);
error = ofpacts_decode_for_action_set(actions, actions_len,
version, ofpacts);
if (error) {
goto exit;
}
on = ofpbuf_at_assert(ofpacts, start, sizeof *on);
on->ofpact.len = ofpacts->size - start;
}
if (insts[OVSINST_OFPIT11_WRITE_METADATA]) {
const struct ofp11_instruction_write_metadata *oiwm;
struct ofpact_metadata *om;
oiwm = ALIGNED_CAST(const struct ofp11_instruction_write_metadata *,
insts[OVSINST_OFPIT11_WRITE_METADATA]);
om = ofpact_put_WRITE_METADATA(ofpacts);
om->metadata = oiwm->metadata;
om->mask = oiwm->metadata_mask;
}
if (insts[OVSINST_OFPIT11_GOTO_TABLE]) {
const struct ofp11_instruction_goto_table *oigt;
struct ofpact_goto_table *ogt;
oigt = instruction_get_OFPIT11_GOTO_TABLE(
insts[OVSINST_OFPIT11_GOTO_TABLE]);
ogt = ofpact_put_GOTO_TABLE(ofpacts);
ogt->table_id = oigt->table_id;
}
error = ofpacts_verify(ofpacts->data, ofpacts->size,
(1u << N_OVS_INSTRUCTIONS) - 1);
exit:
if (error) {
ofpbuf_clear(ofpacts);
}
return error;
}
/* Update the length of the instruction that begins at offset 'ofs' within
* 'openflow' and contains nested actions that extend to the end of 'openflow'.
* If the instruction contains no nested actions, deletes it entirely. */
static void
ofpacts_update_instruction_actions(struct ofpbuf *openflow, size_t ofs)
{
struct ofp11_instruction_actions *oia;
oia = ofpbuf_at_assert(openflow, ofs, sizeof *oia);
if (openflow->size > ofs + sizeof *oia) {
oia->len = htons(openflow->size - ofs);
} else {
openflow->size = ofs;
}
}
/* Checks that 'port' is a valid output port for OFPACT_OUTPUT, given that the
* switch will never have more than 'max_ports' ports. Returns 0 if 'port' is
* valid, otherwise an OpenFlow error code. */
enum ofperr
ofpact_check_output_port(ofp_port_t port, ofp_port_t max_ports)
{
switch (port) {
case OFPP_IN_PORT:
case OFPP_TABLE:
case OFPP_NORMAL:
case OFPP_FLOOD:
case OFPP_ALL:
case OFPP_CONTROLLER:
case OFPP_LOCAL:
return 0;
case OFPP_NONE:
return OFPERR_OFPBAC_BAD_OUT_PORT;
default:
if (ofp_to_u16(port) < ofp_to_u16(max_ports)) {
return 0;
}
return OFPERR_OFPBAC_BAD_OUT_PORT;
}
}
/* Removes the protocols that require consistency between match and actions
* (that's everything but OpenFlow 1.0) from '*usable_protocols'.
*
* (An example of an inconsistency between match and actions is a flow that
* does not match on an MPLS Ethertype but has an action that pops an MPLS
* label.) */
static void
inconsistent_match(enum ofputil_protocol *usable_protocols)
{
*usable_protocols &= OFPUTIL_P_OF10_ANY;
}
/* May modify flow->dl_type, flow->nw_proto and flow->vlan_tci,
* caller must restore them.
*
* Modifies some actions, filling in fields that could not be properly set
* without context. */
static enum ofperr
ofpact_check__(enum ofputil_protocol *usable_protocols, struct ofpact *a,
struct flow *flow, ofp_port_t max_ports,
uint8_t table_id, uint8_t n_tables)
{
const struct ofpact_enqueue *enqueue;
const struct mf_field *mf;
switch (a->type) {
case OFPACT_OUTPUT:
return ofpact_check_output_port(ofpact_get_OUTPUT(a)->port,
max_ports);
case OFPACT_CONTROLLER:
return 0;
case OFPACT_ENQUEUE:
enqueue = ofpact_get_ENQUEUE(a);
if (ofp_to_u16(enqueue->port) >= ofp_to_u16(max_ports)
&& enqueue->port != OFPP_IN_PORT
&& enqueue->port != OFPP_LOCAL) {
return OFPERR_OFPBAC_BAD_OUT_PORT;
}
return 0;
case OFPACT_OUTPUT_REG:
return mf_check_src(&ofpact_get_OUTPUT_REG(a)->src, flow);
case OFPACT_BUNDLE:
return bundle_check(ofpact_get_BUNDLE(a), max_ports, flow);
case OFPACT_SET_VLAN_VID:
/* Remember if we saw a vlan tag in the flow to aid translating to
* OpenFlow 1.1+ if need be. */
ofpact_get_SET_VLAN_VID(a)->flow_has_vlan =
(flow->vlan_tci & htons(VLAN_CFI)) == htons(VLAN_CFI);
if (!(flow->vlan_tci & htons(VLAN_CFI)) &&
!ofpact_get_SET_VLAN_VID(a)->push_vlan_if_needed) {
inconsistent_match(usable_protocols);
}
/* Temporary mark that we have a vlan tag. */
flow->vlan_tci |= htons(VLAN_CFI);
return 0;
case OFPACT_SET_VLAN_PCP:
/* Remember if we saw a vlan tag in the flow to aid translating to
* OpenFlow 1.1+ if need be. */
ofpact_get_SET_VLAN_PCP(a)->flow_has_vlan =
(flow->vlan_tci & htons(VLAN_CFI)) == htons(VLAN_CFI);
if (!(flow->vlan_tci & htons(VLAN_CFI)) &&
!ofpact_get_SET_VLAN_PCP(a)->push_vlan_if_needed) {
inconsistent_match(usable_protocols);
}
/* Temporary mark that we have a vlan tag. */
flow->vlan_tci |= htons(VLAN_CFI);
return 0;
case OFPACT_STRIP_VLAN:
if (!(flow->vlan_tci & htons(VLAN_CFI))) {
inconsistent_match(usable_protocols);
}
/* Temporary mark that we have no vlan tag. */
flow->vlan_tci = htons(0);
return 0;
case OFPACT_PUSH_VLAN:
if (flow->vlan_tci & htons(VLAN_CFI)) {
/* Multiple VLAN headers not supported. */
return OFPERR_OFPBAC_BAD_TAG;
}
/* Temporary mark that we have a vlan tag. */
flow->vlan_tci |= htons(VLAN_CFI);
return 0;
case OFPACT_SET_ETH_SRC:
case OFPACT_SET_ETH_DST:
return 0;
case OFPACT_SET_IPV4_SRC:
case OFPACT_SET_IPV4_DST:
if (flow->dl_type != htons(ETH_TYPE_IP)) {
inconsistent_match(usable_protocols);
}
return 0;
case OFPACT_SET_IP_DSCP:
case OFPACT_SET_IP_ECN:
case OFPACT_SET_IP_TTL:
case OFPACT_DEC_TTL:
if (!is_ip_any(flow)) {
inconsistent_match(usable_protocols);
}
return 0;
case OFPACT_SET_L4_SRC_PORT:
case OFPACT_SET_L4_DST_PORT:
if (!is_ip_any(flow) || (flow->nw_frag & FLOW_NW_FRAG_LATER) ||
(flow->nw_proto != IPPROTO_TCP && flow->nw_proto != IPPROTO_UDP
&& flow->nw_proto != IPPROTO_SCTP)) {
inconsistent_match(usable_protocols);
}
/* Note on which transport protocol the port numbers are set.
* This allows this set action to be converted to an OF1.2 set field
* action. */
if (a->type == OFPACT_SET_L4_SRC_PORT) {
ofpact_get_SET_L4_SRC_PORT(a)->flow_ip_proto = flow->nw_proto;
} else {
ofpact_get_SET_L4_DST_PORT(a)->flow_ip_proto = flow->nw_proto;
}
return 0;
case OFPACT_REG_MOVE:
return nxm_reg_move_check(ofpact_get_REG_MOVE(a), flow);
case OFPACT_SET_FIELD:
mf = ofpact_get_SET_FIELD(a)->field;
/* Require OXM_OF_VLAN_VID to have an existing VLAN header. */
if (!mf_are_prereqs_ok(mf, flow) ||
(mf->id == MFF_VLAN_VID && !(flow->vlan_tci & htons(VLAN_CFI)))) {
VLOG_WARN_RL(&rl, "set_field %s lacks correct prerequisities",
mf->name);
return OFPERR_OFPBAC_MATCH_INCONSISTENT;
}
/* Remember if we saw a vlan tag in the flow to aid translating to
* OpenFlow 1.1 if need be. */
ofpact_get_SET_FIELD(a)->flow_has_vlan =
(flow->vlan_tci & htons(VLAN_CFI)) == htons(VLAN_CFI);
if (mf->id == MFF_VLAN_TCI) {
/* The set field may add or remove the vlan tag,
* Mark the status temporarily. */
flow->vlan_tci = ofpact_get_SET_FIELD(a)->value.be16;
}
return 0;
case OFPACT_STACK_PUSH:
return nxm_stack_push_check(ofpact_get_STACK_PUSH(a), flow);
case OFPACT_STACK_POP:
return nxm_stack_pop_check(ofpact_get_STACK_POP(a), flow);
case OFPACT_SET_MPLS_LABEL:
case OFPACT_SET_MPLS_TC:
case OFPACT_SET_MPLS_TTL:
case OFPACT_DEC_MPLS_TTL:
if (!eth_type_mpls(flow->dl_type)) {
inconsistent_match(usable_protocols);
}
return 0;
case OFPACT_SET_TUNNEL:
case OFPACT_SET_QUEUE:
case OFPACT_POP_QUEUE:
case OFPACT_RESUBMIT:
return 0;
case OFPACT_FIN_TIMEOUT:
if (flow->nw_proto != IPPROTO_TCP) {
inconsistent_match(usable_protocols);
}
return 0;
case OFPACT_LEARN:
return learn_check(ofpact_get_LEARN(a), flow);
case OFPACT_CONJUNCTION:
return 0;
case OFPACT_MULTIPATH:
return multipath_check(ofpact_get_MULTIPATH(a), flow);
case OFPACT_NOTE:
case OFPACT_EXIT:
return 0;
case OFPACT_PUSH_MPLS:
flow->dl_type = ofpact_get_PUSH_MPLS(a)->ethertype;
/* The packet is now MPLS and the MPLS payload is opaque.
* Thus nothing can be assumed about the network protocol.
* Temporarily mark that we have no nw_proto. */
flow->nw_proto = 0;
return 0;
case OFPACT_POP_MPLS:
if (!eth_type_mpls(flow->dl_type)) {
inconsistent_match(usable_protocols);
}
flow->dl_type = ofpact_get_POP_MPLS(a)->ethertype;
return 0;
case OFPACT_SAMPLE:
return 0;
case OFPACT_CLEAR_ACTIONS:
return 0;
case OFPACT_WRITE_ACTIONS: {
/* Use a temporary copy of 'usable_protocols' because we can't check
* consistency of an action set. */
struct ofpact_nest *on = ofpact_get_WRITE_ACTIONS(a);
enum ofputil_protocol p = *usable_protocols;
return ofpacts_check(on->actions, ofpact_nest_get_action_len(on),
flow, max_ports, table_id, n_tables, &p);
}
case OFPACT_WRITE_METADATA:
return 0;
case OFPACT_METER: {
uint32_t mid = ofpact_get_METER(a)->meter_id;
if (mid == 0 || mid > OFPM13_MAX) {
return OFPERR_OFPMMFC_INVALID_METER;
}
return 0;
}
case OFPACT_GOTO_TABLE: {
uint8_t goto_table = ofpact_get_GOTO_TABLE(a)->table_id;
if ((table_id != 255 && goto_table <= table_id)
|| (n_tables != 255 && goto_table >= n_tables)) {
return OFPERR_OFPBIC_BAD_TABLE_ID;
}
return 0;
}
case OFPACT_GROUP:
return 0;
case OFPACT_UNROLL_XLATE:
/* UNROLL is an internal action that should never be seen via
* OpenFlow. */
return OFPERR_OFPBAC_BAD_TYPE;
case OFPACT_DEBUG_RECIRC:
return 0;
default:
OVS_NOT_REACHED();
}
}
/* Checks that the 'ofpacts_len' bytes of actions in 'ofpacts' are
* appropriate for a packet with the prerequisites satisfied by 'flow' in a
* switch with no more than 'max_ports' ports.
*
* If 'ofpacts' and 'flow' are inconsistent with one another, un-sets in
* '*usable_protocols' the protocols that forbid the inconsistency. (An
* example of an inconsistency between match and actions is a flow that does
* not match on an MPLS Ethertype but has an action that pops an MPLS label.)
*
* May annotate ofpacts with information gathered from the 'flow'.
*
* May temporarily modify 'flow', but restores the changes before returning. */
enum ofperr
ofpacts_check(struct ofpact ofpacts[], size_t ofpacts_len,
struct flow *flow, ofp_port_t max_ports,
uint8_t table_id, uint8_t n_tables,
enum ofputil_protocol *usable_protocols)
{
struct ofpact *a;
ovs_be16 dl_type = flow->dl_type;
ovs_be16 vlan_tci = flow->vlan_tci;
uint8_t nw_proto = flow->nw_proto;
enum ofperr error = 0;
OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
error = ofpact_check__(usable_protocols, a, flow,
max_ports, table_id, n_tables);
if (error) {
break;
}
}
/* Restore fields that may have been modified. */
flow->dl_type = dl_type;
flow->vlan_tci = vlan_tci;
flow->nw_proto = nw_proto;
return error;
}
/* Like ofpacts_check(), but reports inconsistencies as
* OFPERR_OFPBAC_MATCH_INCONSISTENT rather than clearing bits. */
enum ofperr
ofpacts_check_consistency(struct ofpact ofpacts[], size_t ofpacts_len,
struct flow *flow, ofp_port_t max_ports,
uint8_t table_id, uint8_t n_tables,
enum ofputil_protocol usable_protocols)
{
enum ofputil_protocol p = usable_protocols;
enum ofperr error;
error = ofpacts_check(ofpacts, ofpacts_len, flow, max_ports,
table_id, n_tables, &p);
return (error ? error
: p != usable_protocols ? OFPERR_OFPBAC_MATCH_INCONSISTENT
: 0);
}
/* Verifies that the 'ofpacts_len' bytes of actions in 'ofpacts' are in the
* appropriate order as defined by the OpenFlow spec and as required by Open
* vSwitch.
*
* 'allowed_ovsinsts' is a bitmap of OVSINST_* values, in which 1-bits indicate
* instructions that are allowed within 'ofpacts[]'. */
static enum ofperr
ofpacts_verify(const struct ofpact ofpacts[], size_t ofpacts_len,
uint32_t allowed_ovsinsts)
{
const struct ofpact *a;
enum ovs_instruction_type inst;
inst = OVSINST_OFPIT13_METER;
OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
enum ovs_instruction_type next;
if (a->type == OFPACT_CONJUNCTION) {
OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
if (a->type != OFPACT_CONJUNCTION && a->type != OFPACT_NOTE) {
VLOG_WARN("\"conjunction\" actions may be used along with "
"\"note\" but not any other kind of action "
"(such as the \"%s\" action used here)",
ofpact_name(a->type));
return OFPERR_NXBAC_BAD_CONJUNCTION;
}
}
return 0;
}
next = ovs_instruction_type_from_ofpact_type(a->type);
if (a > ofpacts
&& (inst == OVSINST_OFPIT11_APPLY_ACTIONS
? next < inst
: next <= inst)) {
const char *name = ovs_instruction_name_from_type(inst);
const char *next_name = ovs_instruction_name_from_type(next);
if (next == inst) {
VLOG_WARN("duplicate %s instruction not allowed, for OpenFlow "
"1.1+ compatibility", name);
} else {
VLOG_WARN("invalid instruction ordering: %s must appear "
"before %s, for OpenFlow 1.1+ compatibility",
next_name, name);
}
return OFPERR_OFPBAC_UNSUPPORTED_ORDER;
}
if (!((1u << next) & allowed_ovsinsts)) {
const char *name = ovs_instruction_name_from_type(next);
VLOG_WARN("%s instruction not allowed here", name);
return OFPERR_OFPBIC_UNSUP_INST;
}
inst = next;
}
return 0;
}
/* Converting ofpacts to OpenFlow. */
static void
encode_ofpact(const struct ofpact *a, enum ofp_version ofp_version,
struct ofpbuf *out)
{
switch (a->type) {
#define OFPACT(ENUM, STRUCT, MEMBER, NAME) \
case OFPACT_##ENUM: \
encode_##ENUM(ofpact_get_##ENUM(a), ofp_version, out); \
return;
OFPACTS
#undef OFPACT
default:
OVS_NOT_REACHED();
}
}
/* Converts the 'ofpacts_len' bytes of ofpacts in 'ofpacts' into OpenFlow
* actions in 'openflow', appending the actions to any existing data in
* 'openflow'. */
size_t
ofpacts_put_openflow_actions(const struct ofpact ofpacts[], size_t ofpacts_len,
struct ofpbuf *openflow,
enum ofp_version ofp_version)
{
const struct ofpact *a;
size_t start_size = openflow->size;
OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
encode_ofpact(a, ofp_version, openflow);
}
return openflow->size - start_size;
}
static enum ovs_instruction_type
ofpact_is_apply_actions(const struct ofpact *a)
{
return (ovs_instruction_type_from_ofpact_type(a->type)
== OVSINST_OFPIT11_APPLY_ACTIONS);
}
void
ofpacts_put_openflow_instructions(const struct ofpact ofpacts[],
size_t ofpacts_len,
struct ofpbuf *openflow,
enum ofp_version ofp_version)
{
const struct ofpact *end = ofpact_end(ofpacts, ofpacts_len);
const struct ofpact *a;
if (ofp_version == OFP10_VERSION) {
ofpacts_put_openflow_actions(ofpacts, ofpacts_len, openflow,
ofp_version);
return;
}
a = ofpacts;
while (a < end) {
if (ofpact_is_apply_actions(a)) {
size_t ofs = openflow->size;
instruction_put_OFPIT11_APPLY_ACTIONS(openflow);
do {
encode_ofpact(a, ofp_version, openflow);
a = ofpact_next(a);
} while (a < end && ofpact_is_apply_actions(a));
ofpacts_update_instruction_actions(openflow, ofs);
} else {
encode_ofpact(a, ofp_version, openflow);
a = ofpact_next(a);
}
}
}
/* Sets of supported actions. */
/* Two-way translation between OVS's internal "OFPACT_*" representation of
* actions and the "OFPAT_*" representation used in some OpenFlow version.
* (OFPAT_* numbering varies from one OpenFlow version to another, so a given
* instance is specific to one OpenFlow version.) */
struct ofpact_map {
enum ofpact_type ofpact; /* Internal name for action type. */
int ofpat; /* OFPAT_* number from OpenFlow spec. */
};
static const struct ofpact_map *
get_ofpact_map(enum ofp_version version)
{
/* OpenFlow 1.0 actions. */
static const struct ofpact_map of10[] = {
{ OFPACT_OUTPUT, 0 },
{ OFPACT_SET_VLAN_VID, 1 },
{ OFPACT_SET_VLAN_PCP, 2 },
{ OFPACT_STRIP_VLAN, 3 },
{ OFPACT_SET_ETH_SRC, 4 },
{ OFPACT_SET_ETH_DST, 5 },
{ OFPACT_SET_IPV4_SRC, 6 },
{ OFPACT_SET_IPV4_DST, 7 },
{ OFPACT_SET_IP_DSCP, 8 },
{ OFPACT_SET_L4_SRC_PORT, 9 },
{ OFPACT_SET_L4_DST_PORT, 10 },
{ OFPACT_ENQUEUE, 11 },
{ 0, -1 },
};
/* OpenFlow 1.1 actions. */
static const struct ofpact_map of11[] = {
{ OFPACT_OUTPUT, 0 },
{ OFPACT_SET_VLAN_VID, 1 },
{ OFPACT_SET_VLAN_PCP, 2 },
{ OFPACT_SET_ETH_SRC, 3 },
{ OFPACT_SET_ETH_DST, 4 },
{ OFPACT_SET_IPV4_SRC, 5 },
{ OFPACT_SET_IPV4_DST, 6 },
{ OFPACT_SET_IP_DSCP, 7 },
{ OFPACT_SET_IP_ECN, 8 },
{ OFPACT_SET_L4_SRC_PORT, 9 },
{ OFPACT_SET_L4_DST_PORT, 10 },
/* OFPAT_COPY_TTL_OUT (11) not supported. */
/* OFPAT_COPY_TTL_IN (12) not supported. */
{ OFPACT_SET_MPLS_LABEL, 13 },
{ OFPACT_SET_MPLS_TC, 14 },
{ OFPACT_SET_MPLS_TTL, 15 },
{ OFPACT_DEC_MPLS_TTL, 16 },
{ OFPACT_PUSH_VLAN, 17 },
{ OFPACT_STRIP_VLAN, 18 },
{ OFPACT_PUSH_MPLS, 19 },
{ OFPACT_POP_MPLS, 20 },
{ OFPACT_SET_QUEUE, 21 },
{ OFPACT_GROUP, 22 },
{ OFPACT_SET_IP_TTL, 23 },
{ OFPACT_DEC_TTL, 24 },
{ 0, -1 },
};
/* OpenFlow 1.2, 1.3, and 1.4 actions. */
static const struct ofpact_map of12[] = {
{ OFPACT_OUTPUT, 0 },
/* OFPAT_COPY_TTL_OUT (11) not supported. */
/* OFPAT_COPY_TTL_IN (12) not supported. */
{ OFPACT_SET_MPLS_TTL, 15 },
{ OFPACT_DEC_MPLS_TTL, 16 },
{ OFPACT_PUSH_VLAN, 17 },
{ OFPACT_STRIP_VLAN, 18 },
{ OFPACT_PUSH_MPLS, 19 },
{ OFPACT_POP_MPLS, 20 },
{ OFPACT_SET_QUEUE, 21 },
{ OFPACT_GROUP, 22 },
{ OFPACT_SET_IP_TTL, 23 },
{ OFPACT_DEC_TTL, 24 },
{ OFPACT_SET_FIELD, 25 },
/* OF1.3+ OFPAT_PUSH_PBB (26) not supported. */
/* OF1.3+ OFPAT_POP_PBB (27) not supported. */
{ 0, -1 },
};
switch (version) {
case OFP10_VERSION:
return of10;
case OFP11_VERSION:
return of11;
case OFP12_VERSION:
case OFP13_VERSION:
case OFP14_VERSION:
case OFP15_VERSION:
default:
return of12;
}
}
/* Converts 'ofpacts_bitmap', a bitmap whose bits correspond to OFPACT_*
* values, into a bitmap of actions suitable for OpenFlow 'version', and
* returns the result. */
ovs_be32
ofpact_bitmap_to_openflow(uint64_t ofpacts_bitmap, enum ofp_version version)
{
uint32_t openflow_bitmap = 0;
const struct ofpact_map *x;
for (x = get_ofpact_map(version); x->ofpat >= 0; x++) {
if (ofpacts_bitmap & (UINT64_C(1) << x->ofpact)) {
openflow_bitmap |= 1u << x->ofpat;
}
}
return htonl(openflow_bitmap);
}
/* Converts 'ofpat_bitmap', a bitmap of actions from an OpenFlow message with
* the given 'version' into a bitmap whose bits correspond to OFPACT_* values,
* and returns the result. */
uint64_t
ofpact_bitmap_from_openflow(ovs_be32 ofpat_bitmap, enum ofp_version version)
{
uint64_t ofpact_bitmap = 0;
const struct ofpact_map *x;
for (x = get_ofpact_map(version); x->ofpat >= 0; x++) {
if (ofpat_bitmap & htonl(1u << x->ofpat)) {
ofpact_bitmap |= UINT64_C(1) << x->ofpact;
}
}
return ofpact_bitmap;
}
/* Appends to 's' a string representation of the set of OFPACT_* represented
* by 'ofpacts_bitmap'. */
void
ofpact_bitmap_format(uint64_t ofpacts_bitmap, struct ds *s)
{
if (!ofpacts_bitmap) {
ds_put_cstr(s, "<none>");
} else {
while (ofpacts_bitmap) {
ds_put_format(s, "%s ",
ofpact_name(rightmost_1bit_idx(ofpacts_bitmap)));
ofpacts_bitmap = zero_rightmost_1bit(ofpacts_bitmap);
}
ds_chomp(s, ' ');
}
}
/* Returns true if 'action' outputs to 'port', false otherwise. */
static bool
ofpact_outputs_to_port(const struct ofpact *ofpact, ofp_port_t port)
{
switch (ofpact->type) {
case OFPACT_OUTPUT:
return ofpact_get_OUTPUT(ofpact)->port == port;
case OFPACT_ENQUEUE:
return ofpact_get_ENQUEUE(ofpact)->port == port;
case OFPACT_CONTROLLER:
return port == OFPP_CONTROLLER;
case OFPACT_OUTPUT_REG:
case OFPACT_BUNDLE:
case OFPACT_SET_VLAN_VID:
case OFPACT_SET_VLAN_PCP:
case OFPACT_STRIP_VLAN:
case OFPACT_PUSH_VLAN:
case OFPACT_SET_ETH_SRC:
case OFPACT_SET_ETH_DST:
case OFPACT_SET_IPV4_SRC:
case OFPACT_SET_IPV4_DST:
case OFPACT_SET_IP_DSCP:
case OFPACT_SET_IP_ECN:
case OFPACT_SET_IP_TTL:
case OFPACT_SET_L4_SRC_PORT:
case OFPACT_SET_L4_DST_PORT:
case OFPACT_REG_MOVE:
case OFPACT_SET_FIELD:
case OFPACT_STACK_PUSH:
case OFPACT_STACK_POP:
case OFPACT_DEC_TTL:
case OFPACT_SET_MPLS_LABEL:
case OFPACT_SET_MPLS_TC:
case OFPACT_SET_MPLS_TTL:
case OFPACT_DEC_MPLS_TTL:
case OFPACT_SET_TUNNEL:
case OFPACT_WRITE_METADATA:
case OFPACT_SET_QUEUE:
case OFPACT_POP_QUEUE:
case OFPACT_FIN_TIMEOUT:
case OFPACT_RESUBMIT:
case OFPACT_LEARN:
case OFPACT_CONJUNCTION:
case OFPACT_MULTIPATH:
case OFPACT_NOTE:
case OFPACT_EXIT:
case OFPACT_UNROLL_XLATE:
case OFPACT_PUSH_MPLS:
case OFPACT_POP_MPLS:
case OFPACT_SAMPLE:
case OFPACT_CLEAR_ACTIONS:
case OFPACT_WRITE_ACTIONS:
case OFPACT_GOTO_TABLE:
case OFPACT_METER:
case OFPACT_GROUP:
case OFPACT_DEBUG_RECIRC:
default:
return false;
}
}
/* Returns true if any action in the 'ofpacts_len' bytes of 'ofpacts' outputs
* to 'port', false otherwise. */
bool
ofpacts_output_to_port(const struct ofpact *ofpacts, size_t ofpacts_len,
ofp_port_t port)
{
const struct ofpact *a;
OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
if (ofpact_outputs_to_port(a, port)) {
return true;
}
}
return false;
}
/* Returns true if any action in the 'ofpacts_len' bytes of 'ofpacts' outputs
* to 'group', false otherwise. */
bool
ofpacts_output_to_group(const struct ofpact *ofpacts, size_t ofpacts_len,
uint32_t group_id)
{
const struct ofpact *a;
OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
if (a->type == OFPACT_GROUP
&& ofpact_get_GROUP(a)->group_id == group_id) {
return true;
}
}
return false;
}
bool
ofpacts_equal(const struct ofpact *a, size_t a_len,
const struct ofpact *b, size_t b_len)
{
return a_len == b_len && !memcmp(a, b, a_len);
}
/* Finds the OFPACT_METER action, if any, in the 'ofpacts_len' bytes of
* 'ofpacts'. If found, returns its meter ID; if not, returns 0.
*
* This function relies on the order of 'ofpacts' being correct (as checked by
* ofpacts_verify()). */
uint32_t
ofpacts_get_meter(const struct ofpact ofpacts[], size_t ofpacts_len)
{
const struct ofpact *a;
OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
enum ovs_instruction_type inst;
inst = ovs_instruction_type_from_ofpact_type(a->type);
if (a->type == OFPACT_METER) {
return ofpact_get_METER(a)->meter_id;
} else if (inst > OVSINST_OFPIT13_METER) {
break;
}
}
return 0;
}
/* Formatting ofpacts. */
static void
ofpact_format(const struct ofpact *a, struct ds *s)
{
switch (a->type) {
#define OFPACT(ENUM, STRUCT, MEMBER, NAME) \
case OFPACT_##ENUM: \
format_##ENUM(ALIGNED_CAST(const struct STRUCT *, a), s); \
break;
OFPACTS
#undef OFPACT
default:
OVS_NOT_REACHED();
}
}
/* Appends a string representing the 'ofpacts_len' bytes of ofpacts in
* 'ofpacts' to 'string'. */
void
ofpacts_format(const struct ofpact *ofpacts, size_t ofpacts_len,
struct ds *string)
{
if (!ofpacts_len) {
ds_put_cstr(string, "drop");
} else {
const struct ofpact *a;
OFPACT_FOR_EACH (a, ofpacts, ofpacts_len) {
if (a != ofpacts) {
ds_put_cstr(string, ",");
}
/* XXX write-actions */
ofpact_format(a, string);
}
}
}
/* Internal use by helpers. */
void *
ofpact_put(struct ofpbuf *ofpacts, enum ofpact_type type, size_t len)
{
struct ofpact *ofpact;
ofpact_pad(ofpacts);
ofpacts->header = ofpbuf_put_uninit(ofpacts, len);
ofpact = ofpacts->header;
ofpact_init(ofpact, type, len);
return ofpact;
}
void
ofpact_init(struct ofpact *ofpact, enum ofpact_type type, size_t len)
{
memset(ofpact, 0, len);
ofpact->type = type;
ofpact->raw = -1;
ofpact->len = len;
}
/* Updates 'ofpact->len' to the number of bytes in the tail of 'ofpacts'
* starting at 'ofpact'.
*
* This is the correct way to update a variable-length ofpact's length after
* adding the variable-length part of the payload. (See the large comment
* near the end of ofp-actions.h for more information.) */
void
ofpact_update_len(struct ofpbuf *ofpacts, struct ofpact *ofpact)
{
ovs_assert(ofpact == ofpacts->header);
ofpact->len = (char *) ofpbuf_tail(ofpacts) - (char *) ofpact;
}
/* Pads out 'ofpacts' to a multiple of OFPACT_ALIGNTO bytes in length. Each
* ofpact_put_<ENUM>() calls this function automatically beforehand, but the
* client must call this itself after adding the final ofpact to an array of
* them.
*
* (The consequences of failing to call this function are probably not dire.
* OFPACT_FOR_EACH will calculate a pointer beyond the end of the ofpacts, but
* not dereference it. That's undefined behavior, technically, but it will not
* cause a real problem on common systems. Still, it seems better to call
* it.) */
void
ofpact_pad(struct ofpbuf *ofpacts)
{
unsigned int pad = PAD_SIZE(ofpacts->size, OFPACT_ALIGNTO);
if (pad) {
ofpbuf_put_zeros(ofpacts, pad);
}
}
static char * OVS_WARN_UNUSED_RESULT
ofpact_parse(enum ofpact_type type, char *value, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols)
{
switch (type) {
#define OFPACT(ENUM, STRUCT, MEMBER, NAME) \
case OFPACT_##ENUM: \
return parse_##ENUM(value, ofpacts, usable_protocols);
OFPACTS
#undef OFPACT
default:
OVS_NOT_REACHED();
}
}
static bool
ofpact_type_from_name(const char *name, enum ofpact_type *type)
{
#define OFPACT(ENUM, STRUCT, MEMBER, NAME) \
if (!strcasecmp(name, NAME)) { \
*type = OFPACT_##ENUM; \
return true; \
}
OFPACTS
#undef OFPACT
return false;
}
/* Parses 'str' as a series of instructions, and appends them to 'ofpacts'.
*
* Returns NULL if successful, otherwise a malloc()'d string describing the
* error. The caller is responsible for freeing the returned string. */
static char * OVS_WARN_UNUSED_RESULT
ofpacts_parse__(char *str, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols,
bool allow_instructions)
{
int prev_inst = -1;
enum ofperr retval;
char *key, *value;
bool drop = false;
char *pos;
pos = str;
while (ofputil_parse_key_value(&pos, &key, &value)) {
enum ovs_instruction_type inst = OVSINST_OFPIT11_APPLY_ACTIONS;
enum ofpact_type type;
char *error = NULL;
ofp_port_t port;
if (ofpact_type_from_name(key, &type)) {
error = ofpact_parse(type, value, ofpacts, usable_protocols);
inst = ovs_instruction_type_from_ofpact_type(type);
} else if (!strcasecmp(key, "mod_vlan_vid")) {
error = parse_set_vlan_vid(value, ofpacts, true);
} else if (!strcasecmp(key, "mod_vlan_pcp")) {
error = parse_set_vlan_pcp(value, ofpacts, true);
} else if (!strcasecmp(key, "set_nw_ttl")) {
error = parse_SET_IP_TTL(value, ofpacts, usable_protocols);
} else if (!strcasecmp(key, "pop_vlan")) {
error = parse_pop_vlan(ofpacts);
} else if (!strcasecmp(key, "set_tunnel64")) {
error = parse_set_tunnel(value, ofpacts,
NXAST_RAW_SET_TUNNEL64);
} else if (!strcasecmp(key, "load")) {
error = parse_reg_load(value, ofpacts);
} else if (!strcasecmp(key, "bundle_load")) {
error = parse_bundle_load(value, ofpacts);
} else if (!strcasecmp(key, "drop")) {
drop = true;
} else if (!strcasecmp(key, "apply_actions")) {
return xstrdup("apply_actions is the default instruction");
} else if (ofputil_port_from_string(key, &port)) {
ofpact_put_OUTPUT(ofpacts)->port = port;
} else {
return xasprintf("unknown action %s", key);
}
if (error) {
return error;
}
if (inst != OVSINST_OFPIT11_APPLY_ACTIONS) {
if (!allow_instructions) {
return xasprintf("only actions are allowed here (not "
"instruction %s)",
ovs_instruction_name_from_type(inst));
}
if (inst == prev_inst) {
return xasprintf("instruction %s may be specified only once",
ovs_instruction_name_from_type(inst));
}
}
if (prev_inst != -1 && inst < prev_inst) {
return xasprintf("instruction %s must be specified before %s",
ovs_instruction_name_from_type(inst),
ovs_instruction_name_from_type(prev_inst));
}
prev_inst = inst;
}
ofpact_pad(ofpacts);
if (drop && ofpacts->size) {
return xstrdup("\"drop\" must not be accompanied by any other action "
"or instruction");
}
retval = ofpacts_verify(ofpacts->data, ofpacts->size,
(allow_instructions
? (1u << N_OVS_INSTRUCTIONS) - 1
: 1u << OVSINST_OFPIT11_APPLY_ACTIONS));
if (retval) {
return xstrdup("Incorrect instruction ordering");
}
return NULL;
}
static char * OVS_WARN_UNUSED_RESULT
ofpacts_parse(char *str, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols, bool allow_instructions)
{
uint32_t orig_size = ofpacts->size;
char *error = ofpacts_parse__(str, ofpacts, usable_protocols,
allow_instructions);
if (error) {
ofpacts->size = orig_size;
}
return error;
}
static char * OVS_WARN_UNUSED_RESULT
ofpacts_parse_copy(const char *s_, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols,
bool allow_instructions)
{
char *error, *s;
*usable_protocols = OFPUTIL_P_ANY;
s = xstrdup(s_);
error = ofpacts_parse(s, ofpacts, usable_protocols, allow_instructions);
free(s);
return error;
}
/* Parses 's' as a set of OpenFlow actions and appends the actions to
* 'ofpacts'.
*
* Returns NULL if successful, otherwise a malloc()'d string describing the
* error. The caller is responsible for freeing the returned string. */
char * OVS_WARN_UNUSED_RESULT
ofpacts_parse_actions(const char *s, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols)
{
return ofpacts_parse_copy(s, ofpacts, usable_protocols, false);
}
/* Parses 's' as a set of OpenFlow instructions and appends the instructions to
* 'ofpacts'.
*
* Returns NULL if successful, otherwise a malloc()'d string describing the
* error. The caller is responsible for freeing the returned string. */
char * OVS_WARN_UNUSED_RESULT
ofpacts_parse_instructions(const char *s, struct ofpbuf *ofpacts,
enum ofputil_protocol *usable_protocols)
{
return ofpacts_parse_copy(s, ofpacts, usable_protocols, true);
}
const char *
ofpact_name(enum ofpact_type type)
{
switch (type) {
#define OFPACT(ENUM, STRUCT, MEMBER, NAME) case OFPACT_##ENUM: return NAME;
OFPACTS
#undef OFPACT
}
return "<unknown>";
}
/* Low-level action decoding and encoding functions. */
/* Everything needed to identify a particular OpenFlow action. */
struct ofpact_hdrs {
uint32_t vendor; /* 0 if standard, otherwise a vendor code. */
uint16_t type; /* Type if standard, otherwise subtype. */
uint8_t ofp_version; /* From ofp_header. */
};
/* Information about a particular OpenFlow action. */
struct ofpact_raw_instance {
/* The action's identity. */
struct ofpact_hdrs hdrs;
enum ofp_raw_action_type raw;
/* Looking up the action. */
struct hmap_node decode_node; /* Based on 'hdrs'. */
struct hmap_node encode_node; /* Based on 'raw' + 'hdrs.ofp_version'. */
/* The action's encoded size.
*
* If this action is fixed-length, 'min_length' == 'max_length'.
* If it is variable length, then 'max_length' is ROUND_DOWN(UINT16_MAX,
* OFP_ACTION_ALIGN) == 65528. */
unsigned short int min_length;
unsigned short int max_length;
/* For actions with a simple integer numeric argument, 'arg_ofs' is the
* offset of that argument from the beginning of the action and 'arg_len'
* its length, both in bytes.
*
* For actions that take other forms, these are both zero. */
unsigned short int arg_ofs;
unsigned short int arg_len;
/* The name of the action, e.g. "OFPAT_OUTPUT" or "NXAST_RESUBMIT". */
const char *name;
/* If this action is deprecated, a human-readable string with a brief
* explanation. */
const char *deprecation;
};
/* Action header. */
struct ofp_action_header {
/* The meaning of other values of 'type' generally depends on the OpenFlow
* version (see enum ofp_raw_action_type).
*
* Across all OpenFlow versions, OFPAT_VENDOR indicates that 'vendor'
* designates an OpenFlow vendor ID and that the remainder of the action
* structure has a vendor-defined meaning.
*/
#define OFPAT_VENDOR 0xffff
ovs_be16 type;
/* Always a multiple of 8. */
ovs_be16 len;
/* For type == OFPAT_VENDOR only, this is a vendor ID, e.g. NX_VENDOR_ID or
* ONF_VENDOR_ID. Other 'type's use this space for some other purpose. */
ovs_be32 vendor;
};
OFP_ASSERT(sizeof(struct ofp_action_header) == 8);
/* Header for Nicira-defined actions and for ONF vendor extensions.
*
* This cannot be used as an entirely generic vendor extension action header,
* because OpenFlow does not specify the location or size of the action
* subtype; it just happens that ONF extensions and Nicira extensions share
* this format. */
struct ext_action_header {
ovs_be16 type; /* OFPAT_VENDOR. */
ovs_be16 len; /* At least 16. */
ovs_be32 vendor; /* NX_VENDOR_ID or ONF_VENDOR_ID. */
ovs_be16 subtype; /* See enum ofp_raw_action_type. */
uint8_t pad[6];
};
OFP_ASSERT(sizeof(struct ext_action_header) == 16);
static bool
ofpact_hdrs_equal(const struct ofpact_hdrs *a,
const struct ofpact_hdrs *b)
{
return (a->vendor == b->vendor
&& a->type == b->type
&& a->ofp_version == b->ofp_version);
}
static uint32_t
ofpact_hdrs_hash(const struct ofpact_hdrs *hdrs)
{
return hash_2words(hdrs->vendor, (hdrs->type << 16) | hdrs->ofp_version);
}
#include "ofp-actions.inc2"
static struct hmap *
ofpact_decode_hmap(void)
{
static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
static struct hmap hmap;
if (ovsthread_once_start(&once)) {
struct ofpact_raw_instance *inst;
hmap_init(&hmap);
for (inst = all_raw_instances;
inst < &all_raw_instances[ARRAY_SIZE(all_raw_instances)];
inst++) {
hmap_insert(&hmap, &inst->decode_node,
ofpact_hdrs_hash(&inst->hdrs));
}
ovsthread_once_done(&once);
}
return &hmap;
}
static struct hmap *
ofpact_encode_hmap(void)
{
static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
static struct hmap hmap;
if (ovsthread_once_start(&once)) {
struct ofpact_raw_instance *inst;
hmap_init(&hmap);
for (inst = all_raw_instances;
inst < &all_raw_instances[ARRAY_SIZE(all_raw_instances)];
inst++) {
hmap_insert(&hmap, &inst->encode_node,
hash_2words(inst->raw, inst->hdrs.ofp_version));
}
ovsthread_once_done(&once);
}
return &hmap;
}
static enum ofperr
ofpact_decode_raw(enum ofp_version ofp_version,
const struct ofp_action_header *oah, size_t length,
const struct ofpact_raw_instance **instp)
{
const struct ofpact_raw_instance *inst;
struct ofpact_hdrs hdrs;
*instp = NULL;
if (length < sizeof *oah) {
return OFPERR_OFPBAC_BAD_LEN;
}
/* Get base action type. */
if (oah->type == htons(OFPAT_VENDOR)) {
/* Get vendor. */
hdrs.vendor = ntohl(oah->vendor);
if (hdrs.vendor == NX_VENDOR_ID || hdrs.vendor == ONF_VENDOR_ID) {
/* Get extension subtype. */
const struct ext_action_header *nah;
nah = ALIGNED_CAST(const struct ext_action_header *, oah);
if (length < sizeof *nah) {
return OFPERR_OFPBAC_BAD_LEN;
}
hdrs.type = ntohs(nah->subtype);
} else {
VLOG_WARN_RL(&rl, "OpenFlow action has unknown vendor %#"PRIx32,
hdrs.vendor);
return OFPERR_OFPBAC_BAD_VENDOR;
}
} else {
hdrs.vendor = 0;
hdrs.type = ntohs(oah->type);
}
hdrs.ofp_version = ofp_version;
HMAP_FOR_EACH_WITH_HASH (inst, decode_node, ofpact_hdrs_hash(&hdrs),
ofpact_decode_hmap()) {
if (ofpact_hdrs_equal(&hdrs, &inst->hdrs)) {
*instp = inst;
return 0;
}
}
return (hdrs.vendor
? OFPERR_OFPBAC_BAD_VENDOR_TYPE
: OFPERR_OFPBAC_BAD_TYPE);
}
static enum ofperr
ofpact_pull_raw(struct ofpbuf *buf, enum ofp_version ofp_version,
enum ofp_raw_action_type *raw, uint64_t *arg)
{
const struct ofp_action_header *oah = buf->data;
const struct ofpact_raw_instance *action;
unsigned int length;
enum ofperr error;
*raw = *arg = 0;
error = ofpact_decode_raw(ofp_version, oah, buf->size, &action);
if (error) {
return error;
}
if (action->deprecation) {
VLOG_INFO_RL(&rl, "%s is deprecated in %s (%s)",
action->name, ofputil_version_to_string(ofp_version),
action->deprecation);
}
length = ntohs(oah->len);
if (length > buf->size) {
VLOG_WARN_RL(&rl, "OpenFlow action %s length %u exceeds action buffer "
"length %"PRIu32, action->name, length, buf->size);
return OFPERR_OFPBAC_BAD_LEN;
}
if (length < action->min_length || length > action->max_length) {
VLOG_WARN_RL(&rl, "OpenFlow action %s length %u not in valid range "
"[%hu,%hu]", action->name, length,
action->min_length, action->max_length);
return OFPERR_OFPBAC_BAD_LEN;
}
if (length % 8) {
VLOG_WARN_RL(&rl, "OpenFlow action %s length %u is not a multiple "
"of 8", action->name, length);
return OFPERR_OFPBAC_BAD_LEN;
}
*raw = action->raw;
*arg = 0;
if (action->arg_len) {
const uint8_t *p;
int i;
p = ofpbuf_at_assert(buf, action->arg_ofs, action->arg_len);
for (i = 0; i < action->arg_len; i++) {
*arg = (*arg << 8) | p[i];
}
}
ofpbuf_pull(buf, length);
return 0;
}
static const struct ofpact_raw_instance *
ofpact_raw_lookup(enum ofp_version ofp_version, enum ofp_raw_action_type raw)
{
const struct ofpact_raw_instance *inst;
HMAP_FOR_EACH_WITH_HASH (inst, encode_node, hash_2words(raw, ofp_version),
ofpact_encode_hmap()) {
if (inst->raw == raw && inst->hdrs.ofp_version == ofp_version) {
return inst;
}
}
OVS_NOT_REACHED();
}
static void *
ofpact_put_raw(struct ofpbuf *buf, enum ofp_version ofp_version,
enum ofp_raw_action_type raw, uint64_t arg)
{
const struct ofpact_raw_instance *inst;
struct ofp_action_header *oah;
const struct ofpact_hdrs *hdrs;
inst = ofpact_raw_lookup(ofp_version, raw);
hdrs = &inst->hdrs;
oah = ofpbuf_put_zeros(buf, inst->min_length);
oah->type = htons(hdrs->vendor ? OFPAT_VENDOR : hdrs->type);
oah->len = htons(inst->min_length);
oah->vendor = htonl(hdrs->vendor);
switch (hdrs->vendor) {
case 0:
break;
case NX_VENDOR_ID:
case ONF_VENDOR_ID: {
struct ext_action_header *nah = (struct ext_action_header *) oah;
nah->subtype = htons(hdrs->type);
break;
}
default:
OVS_NOT_REACHED();
}
if (inst->arg_len) {
uint8_t *p = (uint8_t *) oah + inst->arg_ofs + inst->arg_len;
int i;
for (i = 0; i < inst->arg_len; i++) {
*--p = arg;
arg >>= 8;
}
} else {
ovs_assert(!arg);
}
return oah;
}
static void
pad_ofpat(struct ofpbuf *openflow, size_t start_ofs)
{
struct ofp_action_header *oah;
ofpbuf_put_zeros(openflow, PAD_SIZE(openflow->size - start_ofs, 8));
oah = ofpbuf_at_assert(openflow, start_ofs, sizeof *oah);
oah->len = htons(openflow->size - start_ofs);
}