2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/lib/util.c
Scott Mann 7f2f24e379 Build: Add support for shared libraries and versioning.
These changes allow for the building of shared libraries by providing
the --enable-shared option to configure. In particular, lib/libopenvwitch.so,
lib/libsflow.so, ofproto/libofproto.so, and ovsdb/libovsdb.so will be built.
Original behavior of building static remains the same.

Additionally, versioning is introduced to each of the libraries objects
paving the way for APIs to be built around them. A detailed comment
outlining the rules for changing a version number is provided in
configure.ac. Note that at this time, the version number is set to
1.0.0, no API is specified yet, and there are no requirements to
maintain any sort of compatibility in any of the libraries.

Signed-off-by: Scott Mann <smann@noironetworks.com>
Signed-off-by: Ben Pfaff <blp@nicira.com>
2014-11-11 22:08:41 -08:00

1851 lines
45 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "util.h"
#include <ctype.h>
#include <errno.h>
#include <limits.h>
#include <pthread.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>
#include "bitmap.h"
#include "byte-order.h"
#include "coverage.h"
#include "ovs-rcu.h"
#include "ovs-thread.h"
#include "socket-util.h"
#include "vlog.h"
#ifdef HAVE_PTHREAD_SET_NAME_NP
#include <pthread_np.h>
#endif
VLOG_DEFINE_THIS_MODULE(util);
COVERAGE_DEFINE(util_xalloc);
/* argv[0] without directory names. */
char *program_name;
/* Name for the currently running thread or process, for log messages, process
* listings, and debuggers. */
DEFINE_PER_THREAD_MALLOCED_DATA(char *, subprogram_name);
/* --version option output. */
static char *program_version;
/* Buffer used by ovs_strerror() and ovs_format_message(). */
DEFINE_STATIC_PER_THREAD_DATA(struct { char s[128]; },
strerror_buffer,
{ "" });
static char *xreadlink(const char *filename);
void
ovs_assert_failure(const char *where, const char *function,
const char *condition)
{
/* Prevent an infinite loop (or stack overflow) in case VLOG_ABORT happens
* to trigger an assertion failure of its own. */
static int reentry = 0;
switch (reentry++) {
case 0:
VLOG_ABORT("%s: assertion %s failed in %s()",
where, condition, function);
OVS_NOT_REACHED();
case 1:
fprintf(stderr, "%s: assertion %s failed in %s()",
where, condition, function);
abort();
default:
abort();
}
}
void
out_of_memory(void)
{
ovs_abort(0, "virtual memory exhausted");
}
void *
xcalloc(size_t count, size_t size)
{
void *p = count && size ? calloc(count, size) : malloc(1);
COVERAGE_INC(util_xalloc);
if (p == NULL) {
out_of_memory();
}
return p;
}
void *
xzalloc(size_t size)
{
return xcalloc(1, size);
}
void *
xmalloc(size_t size)
{
void *p = malloc(size ? size : 1);
COVERAGE_INC(util_xalloc);
if (p == NULL) {
out_of_memory();
}
return p;
}
void *
xrealloc(void *p, size_t size)
{
p = realloc(p, size ? size : 1);
COVERAGE_INC(util_xalloc);
if (p == NULL) {
out_of_memory();
}
return p;
}
void *
xmemdup(const void *p_, size_t size)
{
void *p = xmalloc(size);
memcpy(p, p_, size);
return p;
}
char *
xmemdup0(const char *p_, size_t length)
{
char *p = xmalloc(length + 1);
memcpy(p, p_, length);
p[length] = '\0';
return p;
}
char *
xstrdup(const char *s)
{
return xmemdup0(s, strlen(s));
}
char *
xvasprintf(const char *format, va_list args)
{
va_list args2;
size_t needed;
char *s;
va_copy(args2, args);
needed = vsnprintf(NULL, 0, format, args);
s = xmalloc(needed + 1);
vsnprintf(s, needed + 1, format, args2);
va_end(args2);
return s;
}
void *
x2nrealloc(void *p, size_t *n, size_t s)
{
*n = *n == 0 ? 1 : 2 * *n;
return xrealloc(p, *n * s);
}
/* The desired minimum alignment for an allocated block of memory. */
#define MEM_ALIGN MAX(sizeof(void *), 8)
BUILD_ASSERT_DECL(IS_POW2(MEM_ALIGN));
BUILD_ASSERT_DECL(CACHE_LINE_SIZE >= MEM_ALIGN);
/* Allocates and returns 'size' bytes of memory in dedicated cache lines. That
* is, the memory block returned will not share a cache line with other data,
* avoiding "false sharing". (The memory returned will not be at the start of
* a cache line, though, so don't assume such alignment.)
*
* Use free_cacheline() to free the returned memory block. */
void *
xmalloc_cacheline(size_t size)
{
#ifdef HAVE_POSIX_MEMALIGN
void *p;
int error;
COVERAGE_INC(util_xalloc);
error = posix_memalign(&p, CACHE_LINE_SIZE, size ? size : 1);
if (error != 0) {
out_of_memory();
}
return p;
#else
void **payload;
void *base;
/* Allocate room for:
*
* - Up to CACHE_LINE_SIZE - 1 bytes before the payload, so that the
* start of the payload doesn't potentially share a cache line.
*
* - A payload consisting of a void *, followed by padding out to
* MEM_ALIGN bytes, followed by 'size' bytes of user data.
*
* - Space following the payload up to the end of the cache line, so
* that the end of the payload doesn't potentially share a cache line
* with some following block. */
base = xmalloc((CACHE_LINE_SIZE - 1)
+ ROUND_UP(MEM_ALIGN + size, CACHE_LINE_SIZE));
/* Locate the payload and store a pointer to the base at the beginning. */
payload = (void **) ROUND_UP((uintptr_t) base, CACHE_LINE_SIZE);
*payload = base;
return (char *) payload + MEM_ALIGN;
#endif
}
/* Like xmalloc_cacheline() but clears the allocated memory to all zero
* bytes. */
void *
xzalloc_cacheline(size_t size)
{
void *p = xmalloc_cacheline(size);
memset(p, 0, size);
return p;
}
/* Frees a memory block allocated with xmalloc_cacheline() or
* xzalloc_cacheline(). */
void
free_cacheline(void *p)
{
#ifdef HAVE_POSIX_MEMALIGN
free(p);
#else
if (p) {
free(*(void **) ((uintptr_t) p - MEM_ALIGN));
}
#endif
}
char *
xasprintf(const char *format, ...)
{
va_list args;
char *s;
va_start(args, format);
s = xvasprintf(format, args);
va_end(args);
return s;
}
/* Similar to strlcpy() from OpenBSD, but it never reads more than 'size - 1'
* bytes from 'src' and doesn't return anything. */
void
ovs_strlcpy(char *dst, const char *src, size_t size)
{
if (size > 0) {
size_t len = strnlen(src, size - 1);
memcpy(dst, src, len);
dst[len] = '\0';
}
}
/* Copies 'src' to 'dst'. Reads no more than 'size - 1' bytes from 'src'.
* Always null-terminates 'dst' (if 'size' is nonzero), and writes a zero byte
* to every otherwise unused byte in 'dst'.
*
* Except for performance, the following call:
* ovs_strzcpy(dst, src, size);
* is equivalent to these two calls:
* memset(dst, '\0', size);
* ovs_strlcpy(dst, src, size);
*
* (Thus, ovs_strzcpy() is similar to strncpy() without some of the pitfalls.)
*/
void
ovs_strzcpy(char *dst, const char *src, size_t size)
{
if (size > 0) {
size_t len = strnlen(src, size - 1);
memcpy(dst, src, len);
memset(dst + len, '\0', size - len);
}
}
/* Prints 'format' on stderr, formatting it like printf() does. If 'err_no' is
* nonzero, then it is formatted with ovs_retval_to_string() and appended to
* the message inside parentheses. Then, terminates with abort().
*
* This function is preferred to ovs_fatal() in a situation where it would make
* sense for a monitoring process to restart the daemon.
*
* 'format' should not end with a new-line, because this function will add one
* itself. */
void
ovs_abort(int err_no, const char *format, ...)
{
va_list args;
va_start(args, format);
ovs_abort_valist(err_no, format, args);
}
/* Same as ovs_abort() except that the arguments are supplied as a va_list. */
void
ovs_abort_valist(int err_no, const char *format, va_list args)
{
ovs_error_valist(err_no, format, args);
abort();
}
/* Prints 'format' on stderr, formatting it like printf() does. If 'err_no' is
* nonzero, then it is formatted with ovs_retval_to_string() and appended to
* the message inside parentheses. Then, terminates with EXIT_FAILURE.
*
* 'format' should not end with a new-line, because this function will add one
* itself. */
void
ovs_fatal(int err_no, const char *format, ...)
{
va_list args;
va_start(args, format);
ovs_fatal_valist(err_no, format, args);
}
/* Same as ovs_fatal() except that the arguments are supplied as a va_list. */
void
ovs_fatal_valist(int err_no, const char *format, va_list args)
{
ovs_error_valist(err_no, format, args);
exit(EXIT_FAILURE);
}
/* Prints 'format' on stderr, formatting it like printf() does. If 'err_no' is
* nonzero, then it is formatted with ovs_retval_to_string() and appended to
* the message inside parentheses.
*
* 'format' should not end with a new-line, because this function will add one
* itself. */
void
ovs_error(int err_no, const char *format, ...)
{
va_list args;
va_start(args, format);
ovs_error_valist(err_no, format, args);
va_end(args);
}
/* Same as ovs_error() except that the arguments are supplied as a va_list. */
void
ovs_error_valist(int err_no, const char *format, va_list args)
{
const char *subprogram_name = get_subprogram_name();
int save_errno = errno;
if (subprogram_name[0]) {
fprintf(stderr, "%s(%s): ", program_name, subprogram_name);
} else {
fprintf(stderr, "%s: ", program_name);
}
vfprintf(stderr, format, args);
if (err_no != 0) {
fprintf(stderr, " (%s)", ovs_retval_to_string(err_no));
}
putc('\n', stderr);
errno = save_errno;
}
/* Many OVS functions return an int which is one of:
* - 0: no error yet
* - >0: errno value
* - EOF: end of file (not necessarily an error; depends on the function called)
*
* Returns the appropriate human-readable string. The caller must copy the
* string if it wants to hold onto it, as the storage may be overwritten on
* subsequent function calls.
*/
const char *
ovs_retval_to_string(int retval)
{
return (!retval ? ""
: retval == EOF ? "End of file"
: ovs_strerror(retval));
}
/* This function returns the string describing the error number in 'error'
* for POSIX platforms. For Windows, this function can be used for C library
* calls. For socket calls that are also used in Windows, use sock_strerror()
* instead. For WINAPI calls, look at ovs_lasterror_to_string(). */
const char *
ovs_strerror(int error)
{
enum { BUFSIZE = sizeof strerror_buffer_get()->s };
int save_errno;
char *buffer;
char *s;
save_errno = errno;
buffer = strerror_buffer_get()->s;
#if STRERROR_R_CHAR_P
/* GNU style strerror_r() might return an immutable static string, or it
* might write and return 'buffer', but in either case we can pass the
* returned string directly to the caller. */
s = strerror_r(error, buffer, BUFSIZE);
#else /* strerror_r() returns an int. */
s = buffer;
if (strerror_r(error, buffer, BUFSIZE)) {
/* strerror_r() is only allowed to fail on ERANGE (because the buffer
* is too short). We don't check the actual failure reason because
* POSIX requires strerror_r() to return the error but old glibc
* (before 2.13) returns -1 and sets errno. */
snprintf(buffer, BUFSIZE, "Unknown error %d", error);
}
#endif
errno = save_errno;
return s;
}
/* Sets global "program_name" and "program_version" variables. Should
* be called at the beginning of main() with "argv[0]" as the argument
* to 'argv0'.
*
* 'version' should contain the version of the caller's program. If 'version'
* is the same as the VERSION #define, the caller is assumed to be part of Open
* vSwitch. Otherwise, it is assumed to be an external program linking against
* the Open vSwitch libraries.
*
* The 'date' and 'time' arguments should likely be called with
* "__DATE__" and "__TIME__" to use the time the binary was built.
* Alternatively, the "set_program_name" macro may be called to do this
* automatically.
*/
void
set_program_name__(const char *argv0, const char *version, const char *date,
const char *time)
{
char *basename;
#ifdef _WIN32
size_t max_len = strlen(argv0) + 1;
SetErrorMode(GetErrorMode() | SEM_NOGPFAULTERRORBOX);
_set_output_format(_TWO_DIGIT_EXPONENT);
basename = xmalloc(max_len);
_splitpath_s(argv0, NULL, 0, NULL, 0, basename, max_len, NULL, 0);
#else
const char *slash = strrchr(argv0, '/');
basename = xstrdup(slash ? slash + 1 : argv0);
#endif
assert_single_threaded();
free(program_name);
/* Remove libtool prefix, if it is there */
if (strncmp(basename, "lt-", 3) == 0) {
char *tmp_name = basename;
basename = xstrdup(basename + 3);
free(tmp_name);
}
program_name = basename;
free(program_version);
if (!strcmp(version, VERSION)) {
program_version = xasprintf("%s (Open vSwitch) "VERSION"\n"
"Compiled %s %s\n",
program_name, date, time);
} else {
program_version = xasprintf("%s %s\n"
"Open vSwitch Library "VERSION"\n"
"Compiled %s %s\n",
program_name, version, date, time);
}
}
/* Returns the name of the currently running thread or process. */
const char *
get_subprogram_name(void)
{
const char *name = subprogram_name_get();
return name ? name : "";
}
/* Sets the formatted value of 'format' as the name of the currently running
* thread or process. (This appears in log messages and may also be visible in
* system process listings and debuggers.) */
void
set_subprogram_name(const char *format, ...)
{
char *pname;
if (format) {
va_list args;
va_start(args, format);
pname = xvasprintf(format, args);
va_end(args);
} else {
pname = xstrdup(program_name);
}
free(subprogram_name_set(pname));
#if HAVE_GLIBC_PTHREAD_SETNAME_NP
pthread_setname_np(pthread_self(), pname);
#elif HAVE_NETBSD_PTHREAD_SETNAME_NP
pthread_setname_np(pthread_self(), "%s", pname);
#elif HAVE_PTHREAD_SET_NAME_NP
pthread_set_name_np(pthread_self(), pname);
#endif
}
/* Returns a pointer to a string describing the program version. The
* caller must not modify or free the returned string.
*/
const char *
get_program_version(void)
{
return program_version;
}
/* Print the version information for the program. */
void
ovs_print_version(uint8_t min_ofp, uint8_t max_ofp)
{
printf("%s", program_version);
if (min_ofp || max_ofp) {
printf("OpenFlow versions %#x:%#x\n", min_ofp, max_ofp);
}
}
/* Writes the 'size' bytes in 'buf' to 'stream' as hex bytes arranged 16 per
* line. Numeric offsets are also included, starting at 'ofs' for the first
* byte in 'buf'. If 'ascii' is true then the corresponding ASCII characters
* are also rendered alongside. */
void
ovs_hex_dump(FILE *stream, const void *buf_, size_t size,
uintptr_t ofs, bool ascii)
{
const uint8_t *buf = buf_;
const size_t per_line = 16; /* Maximum bytes per line. */
while (size > 0)
{
size_t start, end, n;
size_t i;
/* Number of bytes on this line. */
start = ofs % per_line;
end = per_line;
if (end - start > size)
end = start + size;
n = end - start;
/* Print line. */
fprintf(stream, "%08"PRIxMAX" ", (uintmax_t) ROUND_DOWN(ofs, per_line));
for (i = 0; i < start; i++)
fprintf(stream, " ");
for (; i < end; i++)
fprintf(stream, "%02x%c",
buf[i - start], i == per_line / 2 - 1? '-' : ' ');
if (ascii)
{
for (; i < per_line; i++)
fprintf(stream, " ");
fprintf(stream, "|");
for (i = 0; i < start; i++)
fprintf(stream, " ");
for (; i < end; i++) {
int c = buf[i - start];
putc(c >= 32 && c < 127 ? c : '.', stream);
}
for (; i < per_line; i++)
fprintf(stream, " ");
fprintf(stream, "|");
}
fprintf(stream, "\n");
ofs += n;
buf += n;
size -= n;
}
}
bool
str_to_int(const char *s, int base, int *i)
{
long long ll;
bool ok = str_to_llong(s, base, &ll);
*i = ll;
return ok;
}
bool
str_to_long(const char *s, int base, long *li)
{
long long ll;
bool ok = str_to_llong(s, base, &ll);
*li = ll;
return ok;
}
bool
str_to_llong(const char *s, int base, long long *x)
{
int save_errno = errno;
char *tail;
errno = 0;
*x = strtoll(s, &tail, base);
if (errno == EINVAL || errno == ERANGE || tail == s || *tail != '\0') {
errno = save_errno;
*x = 0;
return false;
} else {
errno = save_errno;
return true;
}
}
bool
str_to_uint(const char *s, int base, unsigned int *u)
{
long long ll;
bool ok = str_to_llong(s, base, &ll);
if (!ok || ll < 0 || ll > UINT_MAX) {
*u = 0;
return false;
} else {
*u = ll;
return true;
}
}
/* Converts floating-point string 's' into a double. If successful, stores
* the double in '*d' and returns true; on failure, stores 0 in '*d' and
* returns false.
*
* Underflow (e.g. "1e-9999") is not considered an error, but overflow
* (e.g. "1e9999)" is. */
bool
str_to_double(const char *s, double *d)
{
int save_errno = errno;
char *tail;
errno = 0;
*d = strtod(s, &tail);
if (errno == EINVAL || (errno == ERANGE && *d != 0)
|| tail == s || *tail != '\0') {
errno = save_errno;
*d = 0;
return false;
} else {
errno = save_errno;
return true;
}
}
/* Returns the value of 'c' as a hexadecimal digit. */
int
hexit_value(int c)
{
switch (c) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
return c - '0';
case 'a': case 'A':
return 0xa;
case 'b': case 'B':
return 0xb;
case 'c': case 'C':
return 0xc;
case 'd': case 'D':
return 0xd;
case 'e': case 'E':
return 0xe;
case 'f': case 'F':
return 0xf;
default:
return -1;
}
}
/* Returns the integer value of the 'n' hexadecimal digits starting at 's', or
* UINTMAX_MAX if one of those "digits" is not really a hex digit. Sets '*ok'
* to true if the conversion succeeds or to false if a non-hex digit is
* detected. */
uintmax_t
hexits_value(const char *s, size_t n, bool *ok)
{
uintmax_t value;
size_t i;
value = 0;
for (i = 0; i < n; i++) {
int hexit = hexit_value(s[i]);
if (hexit < 0) {
*ok = false;
return UINTMAX_MAX;
}
value = (value << 4) + hexit;
}
*ok = true;
return value;
}
/* Returns the current working directory as a malloc()'d string, or a null
* pointer if the current working directory cannot be determined. */
char *
get_cwd(void)
{
long int path_max;
size_t size;
/* Get maximum path length or at least a reasonable estimate. */
#ifndef _WIN32
path_max = pathconf(".", _PC_PATH_MAX);
#else
path_max = MAX_PATH;
#endif
size = (path_max < 0 ? 1024
: path_max > 10240 ? 10240
: path_max);
/* Get current working directory. */
for (;;) {
char *buf = xmalloc(size);
if (getcwd(buf, size)) {
return xrealloc(buf, strlen(buf) + 1);
} else {
int error = errno;
free(buf);
if (error != ERANGE) {
VLOG_WARN("getcwd failed (%s)", ovs_strerror(error));
return NULL;
}
size *= 2;
}
}
}
static char *
all_slashes_name(const char *s)
{
return xstrdup(s[0] == '/' && s[1] == '/' && s[2] != '/' ? "//"
: s[0] == '/' ? "/"
: ".");
}
#ifndef _WIN32
/* Returns the directory name portion of 'file_name' as a malloc()'d string,
* similar to the POSIX dirname() function but thread-safe. */
char *
dir_name(const char *file_name)
{
size_t len = strlen(file_name);
while (len > 0 && file_name[len - 1] == '/') {
len--;
}
while (len > 0 && file_name[len - 1] != '/') {
len--;
}
while (len > 0 && file_name[len - 1] == '/') {
len--;
}
return len ? xmemdup0(file_name, len) : all_slashes_name(file_name);
}
/* Returns the file name portion of 'file_name' as a malloc()'d string,
* similar to the POSIX basename() function but thread-safe. */
char *
base_name(const char *file_name)
{
size_t end, start;
end = strlen(file_name);
while (end > 0 && file_name[end - 1] == '/') {
end--;
}
if (!end) {
return all_slashes_name(file_name);
}
start = end;
while (start > 0 && file_name[start - 1] != '/') {
start--;
}
return xmemdup0(file_name + start, end - start);
}
#endif /* _WIN32 */
/* If 'file_name' starts with '/', returns a copy of 'file_name'. Otherwise,
* returns an absolute path to 'file_name' considering it relative to 'dir',
* which itself must be absolute. 'dir' may be null or the empty string, in
* which case the current working directory is used.
*
* Returns a null pointer if 'dir' is null and getcwd() fails. */
char *
abs_file_name(const char *dir, const char *file_name)
{
if (file_name[0] == '/') {
return xstrdup(file_name);
} else if (dir && dir[0]) {
char *separator = dir[strlen(dir) - 1] == '/' ? "" : "/";
return xasprintf("%s%s%s", dir, separator, file_name);
} else {
char *cwd = get_cwd();
if (cwd) {
char *abs_name = xasprintf("%s/%s", cwd, file_name);
free(cwd);
return abs_name;
} else {
return NULL;
}
}
}
/* Like readlink(), but returns the link name as a null-terminated string in
* allocated memory that the caller must eventually free (with free()).
* Returns NULL on error, in which case errno is set appropriately. */
static char *
xreadlink(const char *filename)
{
size_t size;
for (size = 64; ; size *= 2) {
char *buf = xmalloc(size);
ssize_t retval = readlink(filename, buf, size);
int error = errno;
if (retval >= 0 && retval < size) {
buf[retval] = '\0';
return buf;
}
free(buf);
if (retval < 0) {
errno = error;
return NULL;
}
}
}
/* Returns a version of 'filename' with symlinks in the final component
* dereferenced. This differs from realpath() in that:
*
* - 'filename' need not exist.
*
* - If 'filename' does exist as a symlink, its referent need not exist.
*
* - Only symlinks in the final component of 'filename' are dereferenced.
*
* For Windows platform, this function returns a string that has the same
* value as the passed string.
*
* The caller must eventually free the returned string (with free()). */
char *
follow_symlinks(const char *filename)
{
#ifndef _WIN32
struct stat s;
char *fn;
int i;
fn = xstrdup(filename);
for (i = 0; i < 10; i++) {
char *linkname;
char *next_fn;
if (lstat(fn, &s) != 0 || !S_ISLNK(s.st_mode)) {
return fn;
}
linkname = xreadlink(fn);
if (!linkname) {
VLOG_WARN("%s: readlink failed (%s)",
filename, ovs_strerror(errno));
return fn;
}
if (linkname[0] == '/') {
/* Target of symlink is absolute so use it raw. */
next_fn = linkname;
} else {
/* Target of symlink is relative so add to 'fn''s directory. */
char *dir = dir_name(fn);
if (!strcmp(dir, ".")) {
next_fn = linkname;
} else {
char *separator = dir[strlen(dir) - 1] == '/' ? "" : "/";
next_fn = xasprintf("%s%s%s", dir, separator, linkname);
free(linkname);
}
free(dir);
}
free(fn);
fn = next_fn;
}
VLOG_WARN("%s: too many levels of symlinks", filename);
free(fn);
#endif
return xstrdup(filename);
}
/* Pass a value to this function if it is marked with
* __attribute__((warn_unused_result)) and you genuinely want to ignore
* its return value. (Note that every scalar type can be implicitly
* converted to bool.) */
void ignore(bool x OVS_UNUSED) { }
/* Returns an appropriate delimiter for inserting just before the 0-based item
* 'index' in a list that has 'total' items in it. */
const char *
english_list_delimiter(size_t index, size_t total)
{
return (index == 0 ? ""
: index < total - 1 ? ", "
: total > 2 ? ", and "
: " and ");
}
/* Returns the number of trailing 0-bits in 'n'. Undefined if 'n' == 0. */
#if __GNUC__ >= 4 || _MSC_VER
/* Defined inline in util.h. */
#else
/* Returns the number of trailing 0-bits in 'n'. Undefined if 'n' == 0. */
int
raw_ctz(uint64_t n)
{
uint64_t k;
int count = 63;
#define CTZ_STEP(X) \
k = n << (X); \
if (k) { \
count -= X; \
n = k; \
}
CTZ_STEP(32);
CTZ_STEP(16);
CTZ_STEP(8);
CTZ_STEP(4);
CTZ_STEP(2);
CTZ_STEP(1);
#undef CTZ_STEP
return count;
}
/* Returns the number of leading 0-bits in 'n'. Undefined if 'n' == 0. */
int
raw_clz64(uint64_t n)
{
uint64_t k;
int count = 63;
#define CLZ_STEP(X) \
k = n >> (X); \
if (k) { \
count -= X; \
n = k; \
}
CLZ_STEP(32);
CLZ_STEP(16);
CLZ_STEP(8);
CLZ_STEP(4);
CLZ_STEP(2);
CLZ_STEP(1);
#undef CLZ_STEP
return count;
}
#endif
#if NEED_COUNT_1BITS_8
#define INIT1(X) \
((((X) & (1 << 0)) != 0) + \
(((X) & (1 << 1)) != 0) + \
(((X) & (1 << 2)) != 0) + \
(((X) & (1 << 3)) != 0) + \
(((X) & (1 << 4)) != 0) + \
(((X) & (1 << 5)) != 0) + \
(((X) & (1 << 6)) != 0) + \
(((X) & (1 << 7)) != 0))
#define INIT2(X) INIT1(X), INIT1((X) + 1)
#define INIT4(X) INIT2(X), INIT2((X) + 2)
#define INIT8(X) INIT4(X), INIT4((X) + 4)
#define INIT16(X) INIT8(X), INIT8((X) + 8)
#define INIT32(X) INIT16(X), INIT16((X) + 16)
#define INIT64(X) INIT32(X), INIT32((X) + 32)
const uint8_t count_1bits_8[256] = {
INIT64(0), INIT64(64), INIT64(128), INIT64(192)
};
#endif
/* Returns true if the 'n' bytes starting at 'p' are zeros. */
bool
is_all_zeros(const void *p_, size_t n)
{
const uint8_t *p = p_;
size_t i;
for (i = 0; i < n; i++) {
if (p[i] != 0x00) {
return false;
}
}
return true;
}
/* Returns true if the 'n' bytes starting at 'p' are 0xff. */
bool
is_all_ones(const void *p_, size_t n)
{
const uint8_t *p = p_;
size_t i;
for (i = 0; i < n; i++) {
if (p[i] != 0xff) {
return false;
}
}
return true;
}
/* Copies 'n_bits' bits starting from bit 'src_ofs' in 'src' to the 'n_bits'
* starting from bit 'dst_ofs' in 'dst'. 'src' is 'src_len' bytes long and
* 'dst' is 'dst_len' bytes long.
*
* If you consider all of 'src' to be a single unsigned integer in network byte
* order, then bit N is the bit with value 2**N. That is, bit 0 is the bit
* with value 1 in src[src_len - 1], bit 1 is the bit with value 2, bit 2 is
* the bit with value 4, ..., bit 8 is the bit with value 1 in src[src_len -
* 2], and so on. Similarly for 'dst'.
*
* Required invariants:
* src_ofs + n_bits <= src_len * 8
* dst_ofs + n_bits <= dst_len * 8
* 'src' and 'dst' must not overlap.
*/
void
bitwise_copy(const void *src_, unsigned int src_len, unsigned int src_ofs,
void *dst_, unsigned int dst_len, unsigned int dst_ofs,
unsigned int n_bits)
{
const uint8_t *src = src_;
uint8_t *dst = dst_;
src += src_len - (src_ofs / 8 + 1);
src_ofs %= 8;
dst += dst_len - (dst_ofs / 8 + 1);
dst_ofs %= 8;
if (src_ofs == 0 && dst_ofs == 0) {
unsigned int n_bytes = n_bits / 8;
if (n_bytes) {
dst -= n_bytes - 1;
src -= n_bytes - 1;
memcpy(dst, src, n_bytes);
n_bits %= 8;
src--;
dst--;
}
if (n_bits) {
uint8_t mask = (1 << n_bits) - 1;
*dst = (*dst & ~mask) | (*src & mask);
}
} else {
while (n_bits > 0) {
unsigned int max_copy = 8 - MAX(src_ofs, dst_ofs);
unsigned int chunk = MIN(n_bits, max_copy);
uint8_t mask = ((1 << chunk) - 1) << dst_ofs;
*dst &= ~mask;
*dst |= ((*src >> src_ofs) << dst_ofs) & mask;
src_ofs += chunk;
if (src_ofs == 8) {
src--;
src_ofs = 0;
}
dst_ofs += chunk;
if (dst_ofs == 8) {
dst--;
dst_ofs = 0;
}
n_bits -= chunk;
}
}
}
/* Zeros the 'n_bits' bits starting from bit 'dst_ofs' in 'dst'. 'dst' is
* 'dst_len' bytes long.
*
* If you consider all of 'dst' to be a single unsigned integer in network byte
* order, then bit N is the bit with value 2**N. That is, bit 0 is the bit
* with value 1 in dst[dst_len - 1], bit 1 is the bit with value 2, bit 2 is
* the bit with value 4, ..., bit 8 is the bit with value 1 in dst[dst_len -
* 2], and so on.
*
* Required invariant:
* dst_ofs + n_bits <= dst_len * 8
*/
void
bitwise_zero(void *dst_, unsigned int dst_len, unsigned dst_ofs,
unsigned int n_bits)
{
uint8_t *dst = dst_;
if (!n_bits) {
return;
}
dst += dst_len - (dst_ofs / 8 + 1);
dst_ofs %= 8;
if (dst_ofs) {
unsigned int chunk = MIN(n_bits, 8 - dst_ofs);
*dst &= ~(((1 << chunk) - 1) << dst_ofs);
n_bits -= chunk;
if (!n_bits) {
return;
}
dst--;
}
while (n_bits >= 8) {
*dst-- = 0;
n_bits -= 8;
}
if (n_bits) {
*dst &= ~((1 << n_bits) - 1);
}
}
/* Sets to 1 all of the 'n_bits' bits starting from bit 'dst_ofs' in 'dst'.
* 'dst' is 'dst_len' bytes long.
*
* If you consider all of 'dst' to be a single unsigned integer in network byte
* order, then bit N is the bit with value 2**N. That is, bit 0 is the bit
* with value 1 in dst[dst_len - 1], bit 1 is the bit with value 2, bit 2 is
* the bit with value 4, ..., bit 8 is the bit with value 1 in dst[dst_len -
* 2], and so on.
*
* Required invariant:
* dst_ofs + n_bits <= dst_len * 8
*/
void
bitwise_one(void *dst_, unsigned int dst_len, unsigned dst_ofs,
unsigned int n_bits)
{
uint8_t *dst = dst_;
if (!n_bits) {
return;
}
dst += dst_len - (dst_ofs / 8 + 1);
dst_ofs %= 8;
if (dst_ofs) {
unsigned int chunk = MIN(n_bits, 8 - dst_ofs);
*dst |= ((1 << chunk) - 1) << dst_ofs;
n_bits -= chunk;
if (!n_bits) {
return;
}
dst--;
}
while (n_bits >= 8) {
*dst-- = 0xff;
n_bits -= 8;
}
if (n_bits) {
*dst |= (1 << n_bits) - 1;
}
}
/* Scans the 'n_bits' bits starting from bit 'dst_ofs' in 'dst' for 1-bits.
* Returns false if any 1-bits are found, otherwise true. 'dst' is 'dst_len'
* bytes long.
*
* If you consider all of 'dst' to be a single unsigned integer in network byte
* order, then bit N is the bit with value 2**N. That is, bit 0 is the bit
* with value 1 in dst[dst_len - 1], bit 1 is the bit with value 2, bit 2 is
* the bit with value 4, ..., bit 8 is the bit with value 1 in dst[dst_len -
* 2], and so on.
*
* Required invariant:
* dst_ofs + n_bits <= dst_len * 8
*/
bool
bitwise_is_all_zeros(const void *p_, unsigned int len, unsigned int ofs,
unsigned int n_bits)
{
const uint8_t *p = p_;
if (!n_bits) {
return true;
}
p += len - (ofs / 8 + 1);
ofs %= 8;
if (ofs) {
unsigned int chunk = MIN(n_bits, 8 - ofs);
if (*p & (((1 << chunk) - 1) << ofs)) {
return false;
}
n_bits -= chunk;
if (!n_bits) {
return true;
}
p--;
}
while (n_bits >= 8) {
if (*p) {
return false;
}
n_bits -= 8;
p--;
}
if (n_bits && *p & ((1 << n_bits) - 1)) {
return false;
}
return true;
}
/* Scans the bits in 'p' that have bit offsets 'start' through 'end'
* (inclusive) for the first bit with value 'target'. If one is found, returns
* its offset, otherwise 'end'. 'p' is 'len' bytes long.
*
* If you consider all of 'p' to be a single unsigned integer in network byte
* order, then bit N is the bit with value 2**N. That is, bit 0 is the bit
* with value 1 in p[len - 1], bit 1 is the bit with value 2, bit 2 is the bit
* with value 4, ..., bit 8 is the bit with value 1 in p[len - 2], and so on.
*
* Required invariant:
* start <= end
*/
unsigned int
bitwise_scan(const void *p_, unsigned int len, bool target, unsigned int start,
unsigned int end)
{
const uint8_t *p = p_;
unsigned int ofs;
for (ofs = start; ofs < end; ofs++) {
bool bit = (p[len - (ofs / 8 + 1)] & (1u << (ofs % 8))) != 0;
if (bit == target) {
break;
}
}
return ofs;
}
/* Copies the 'n_bits' low-order bits of 'value' into the 'n_bits' bits
* starting at bit 'dst_ofs' in 'dst', which is 'dst_len' bytes long.
*
* If you consider all of 'dst' to be a single unsigned integer in network byte
* order, then bit N is the bit with value 2**N. That is, bit 0 is the bit
* with value 1 in dst[dst_len - 1], bit 1 is the bit with value 2, bit 2 is
* the bit with value 4, ..., bit 8 is the bit with value 1 in dst[dst_len -
* 2], and so on.
*
* Required invariants:
* dst_ofs + n_bits <= dst_len * 8
* n_bits <= 64
*/
void
bitwise_put(uint64_t value,
void *dst, unsigned int dst_len, unsigned int dst_ofs,
unsigned int n_bits)
{
ovs_be64 n_value = htonll(value);
bitwise_copy(&n_value, sizeof n_value, 0,
dst, dst_len, dst_ofs,
n_bits);
}
/* Returns the value of the 'n_bits' bits starting at bit 'src_ofs' in 'src',
* which is 'src_len' bytes long.
*
* If you consider all of 'src' to be a single unsigned integer in network byte
* order, then bit N is the bit with value 2**N. That is, bit 0 is the bit
* with value 1 in src[src_len - 1], bit 1 is the bit with value 2, bit 2 is
* the bit with value 4, ..., bit 8 is the bit with value 1 in src[src_len -
* 2], and so on.
*
* Required invariants:
* src_ofs + n_bits <= src_len * 8
* n_bits <= 64
*/
uint64_t
bitwise_get(const void *src, unsigned int src_len,
unsigned int src_ofs, unsigned int n_bits)
{
ovs_be64 value = htonll(0);
bitwise_copy(src, src_len, src_ofs,
&value, sizeof value, 0,
n_bits);
return ntohll(value);
}
/* ovs_scan */
struct scan_spec {
unsigned int width;
enum {
SCAN_DISCARD,
SCAN_CHAR,
SCAN_SHORT,
SCAN_INT,
SCAN_LONG,
SCAN_LLONG,
SCAN_INTMAX_T,
SCAN_PTRDIFF_T,
SCAN_SIZE_T
} type;
};
static const char *
skip_spaces(const char *s)
{
while (isspace((unsigned char) *s)) {
s++;
}
return s;
}
static const char *
scan_int(const char *s, const struct scan_spec *spec, int base, va_list *args)
{
const char *start = s;
uintmax_t value;
bool negative;
int n_digits;
negative = *s == '-';
s += *s == '-' || *s == '+';
if ((!base || base == 16) && *s == '0' && (s[1] == 'x' || s[1] == 'X')) {
base = 16;
s += 2;
} else if (!base) {
base = *s == '0' ? 8 : 10;
}
if (s - start >= spec->width) {
return NULL;
}
value = 0;
n_digits = 0;
while (s - start < spec->width) {
int digit = hexit_value(*s);
if (digit < 0 || digit >= base) {
break;
}
value = value * base + digit;
n_digits++;
s++;
}
if (!n_digits) {
return NULL;
}
if (negative) {
value = -value;
}
switch (spec->type) {
case SCAN_DISCARD:
break;
case SCAN_CHAR:
*va_arg(*args, char *) = value;
break;
case SCAN_SHORT:
*va_arg(*args, short int *) = value;
break;
case SCAN_INT:
*va_arg(*args, int *) = value;
break;
case SCAN_LONG:
*va_arg(*args, long int *) = value;
break;
case SCAN_LLONG:
*va_arg(*args, long long int *) = value;
break;
case SCAN_INTMAX_T:
*va_arg(*args, intmax_t *) = value;
break;
case SCAN_PTRDIFF_T:
*va_arg(*args, ptrdiff_t *) = value;
break;
case SCAN_SIZE_T:
*va_arg(*args, size_t *) = value;
break;
}
return s;
}
static const char *
skip_digits(const char *s)
{
while (*s >= '0' && *s <= '9') {
s++;
}
return s;
}
static const char *
scan_float(const char *s, const struct scan_spec *spec, va_list *args)
{
const char *start = s;
long double value;
char *tail;
char *copy;
bool ok;
s += *s == '+' || *s == '-';
s = skip_digits(s);
if (*s == '.') {
s = skip_digits(s + 1);
}
if (*s == 'e' || *s == 'E') {
s++;
s += *s == '+' || *s == '-';
s = skip_digits(s);
}
if (s - start > spec->width) {
s = start + spec->width;
}
copy = xmemdup0(start, s - start);
value = strtold(copy, &tail);
ok = *tail == '\0';
free(copy);
if (!ok) {
return NULL;
}
switch (spec->type) {
case SCAN_DISCARD:
break;
case SCAN_INT:
*va_arg(*args, float *) = value;
break;
case SCAN_LONG:
*va_arg(*args, double *) = value;
break;
case SCAN_LLONG:
*va_arg(*args, long double *) = value;
break;
case SCAN_CHAR:
case SCAN_SHORT:
case SCAN_INTMAX_T:
case SCAN_PTRDIFF_T:
case SCAN_SIZE_T:
OVS_NOT_REACHED();
}
return s;
}
static void
scan_output_string(const struct scan_spec *spec,
const char *s, size_t n,
va_list *args)
{
if (spec->type != SCAN_DISCARD) {
char *out = va_arg(*args, char *);
memcpy(out, s, n);
out[n] = '\0';
}
}
static const char *
scan_string(const char *s, const struct scan_spec *spec, va_list *args)
{
size_t n;
for (n = 0; n < spec->width; n++) {
if (!s[n] || isspace((unsigned char) s[n])) {
break;
}
}
if (!n) {
return NULL;
}
scan_output_string(spec, s, n, args);
return s + n;
}
static const char *
parse_scanset(const char *p_, unsigned long *set, bool *complemented)
{
const uint8_t *p = (const uint8_t *) p_;
*complemented = *p == '^';
p += *complemented;
if (*p == ']') {
bitmap_set1(set, ']');
p++;
}
while (*p && *p != ']') {
if (p[1] == '-' && p[2] != ']' && p[2] > *p) {
bitmap_set_multiple(set, *p, p[2] - *p + 1, true);
p += 3;
} else {
bitmap_set1(set, *p++);
}
}
if (*p == ']') {
p++;
}
return (const char *) p;
}
static const char *
scan_set(const char *s, const struct scan_spec *spec, const char **pp,
va_list *args)
{
unsigned long set[BITMAP_N_LONGS(UCHAR_MAX + 1)];
bool complemented;
unsigned int n;
/* Parse the scan set. */
memset(set, 0, sizeof set);
*pp = parse_scanset(*pp, set, &complemented);
/* Parse the data. */
n = 0;
while (s[n]
&& bitmap_is_set(set, (unsigned char) s[n]) == !complemented
&& n < spec->width) {
n++;
}
if (!n) {
return NULL;
}
scan_output_string(spec, s, n, args);
return s + n;
}
static const char *
scan_chars(const char *s, const struct scan_spec *spec, va_list *args)
{
unsigned int n = spec->width == UINT_MAX ? 1 : spec->width;
if (strlen(s) < n) {
return NULL;
}
if (spec->type != SCAN_DISCARD) {
memcpy(va_arg(*args, char *), s, n);
}
return s + n;
}
/* This is an implementation of the standard sscanf() function, with the
* following exceptions:
*
* - It returns true if the entire format was successfully scanned and
* converted, false if any conversion failed.
*
* - The standard doesn't define sscanf() behavior when an out-of-range value
* is scanned, e.g. if a "%"PRIi8 conversion scans "-1" or "0x1ff". Some
* implementations consider this an error and stop scanning. This
* implementation never considers an out-of-range value an error; instead,
* it stores the least-significant bits of the converted value in the
* destination, e.g. the value 255 for both examples earlier.
*
* - Only single-byte characters are supported, that is, the 'l' modifier
* on %s, %[, and %c is not supported. The GNU extension 'a' modifier is
* also not supported.
*
* - %p is not supported.
*/
bool
ovs_scan(const char *s, const char *format, ...)
{
const char *const start = s;
bool ok = false;
const char *p;
va_list args;
va_start(args, format);
p = format;
while (*p != '\0') {
struct scan_spec spec;
unsigned char c = *p++;
bool discard;
if (isspace(c)) {
s = skip_spaces(s);
continue;
} else if (c != '%') {
if (*s != c) {
goto exit;
}
s++;
continue;
} else if (*p == '%') {
if (*s++ != '%') {
goto exit;
}
p++;
continue;
}
/* Parse '*' flag. */
discard = *p == '*';
p += discard;
/* Parse field width. */
spec.width = 0;
while (*p >= '0' && *p <= '9') {
spec.width = spec.width * 10 + (*p++ - '0');
}
if (spec.width == 0) {
spec.width = UINT_MAX;
}
/* Parse type modifier. */
switch (*p) {
case 'h':
if (p[1] == 'h') {
spec.type = SCAN_CHAR;
p += 2;
} else {
spec.type = SCAN_SHORT;
p++;
}
break;
case 'j':
spec.type = SCAN_INTMAX_T;
p++;
break;
case 'l':
if (p[1] == 'l') {
spec.type = SCAN_LLONG;
p += 2;
} else {
spec.type = SCAN_LONG;
p++;
}
break;
case 'L':
case 'q':
spec.type = SCAN_LLONG;
p++;
break;
case 't':
spec.type = SCAN_PTRDIFF_T;
p++;
break;
case 'z':
spec.type = SCAN_SIZE_T;
p++;
break;
default:
spec.type = SCAN_INT;
break;
}
if (discard) {
spec.type = SCAN_DISCARD;
}
c = *p++;
if (c != 'c' && c != 'n' && c != '[') {
s = skip_spaces(s);
}
switch (c) {
case 'd':
s = scan_int(s, &spec, 10, &args);
break;
case 'i':
s = scan_int(s, &spec, 0, &args);
break;
case 'o':
s = scan_int(s, &spec, 8, &args);
break;
case 'u':
s = scan_int(s, &spec, 10, &args);
break;
case 'x':
case 'X':
s = scan_int(s, &spec, 16, &args);
break;
case 'e':
case 'f':
case 'g':
case 'E':
case 'G':
s = scan_float(s, &spec, &args);
break;
case 's':
s = scan_string(s, &spec, &args);
break;
case '[':
s = scan_set(s, &spec, &p, &args);
break;
case 'c':
s = scan_chars(s, &spec, &args);
break;
case 'n':
if (spec.type != SCAN_DISCARD) {
*va_arg(args, int *) = s - start;
}
break;
}
if (!s) {
goto exit;
}
}
ok = true;
exit:
va_end(args);
return ok;
}
void
xsleep(unsigned int seconds)
{
ovsrcu_quiesce_start();
#ifdef _WIN32
Sleep(seconds * 1000);
#else
sleep(seconds);
#endif
ovsrcu_quiesce_end();
}
#ifdef _WIN32
char *
ovs_format_message(int error)
{
enum { BUFSIZE = sizeof strerror_buffer_get()->s };
char *buffer = strerror_buffer_get()->s;
FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, error, 0, buffer, BUFSIZE, NULL);
return buffer;
}
/* Returns a null-terminated string that explains the last error.
* Use this function to get the error string for WINAPI calls. */
char *
ovs_lasterror_to_string(void)
{
return ovs_format_message(GetLastError());
}
int
ftruncate(int fd, off_t length)
{
int error;
error = _chsize_s(fd, length);
if (error) {
return -1;
}
return 0;
}
OVS_CONSTRUCTOR(winsock_start) {
WSADATA wsaData;
int error;
error = WSAStartup(MAKEWORD(2, 2), &wsaData);
if (error != 0) {
VLOG_FATAL("WSAStartup failed: %s", sock_strerror(sock_errno()));
}
}
#endif