2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/lib/tc.c
Roi Dayan 83e866067e netdev-tc-offloads: Add support for IP fragmentation
Add support for frag no, first and later.

Signed-off-by: Roi Dayan <roid@mellanox.com>
Reviewed-by: Shahar Klein <shahark@mellanox.com>
Reviewed-by: Paul Blakey <paulb@mellanox.com>
Signed-off-by: Simon Horman <simon.horman@netronome.com>
2018-03-21 09:59:29 +01:00

1620 lines
56 KiB
C

/*
* Copyright (c) 2009-2017 Nicira, Inc.
* Copyright (c) 2016 Mellanox Technologies, Ltd.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "tc.h"
#include <errno.h>
#include <linux/if_ether.h>
#include <linux/rtnetlink.h>
#include <linux/tc_act/tc_csum.h>
#include <linux/tc_act/tc_gact.h>
#include <linux/tc_act/tc_mirred.h>
#include <linux/tc_act/tc_pedit.h>
#include <linux/tc_act/tc_tunnel_key.h>
#include <linux/tc_act/tc_vlan.h>
#include <linux/gen_stats.h>
#include <net/if.h>
#include <unistd.h>
#include "byte-order.h"
#include "netlink-socket.h"
#include "netlink.h"
#include "openvswitch/ofpbuf.h"
#include "openvswitch/util.h"
#include "openvswitch/vlog.h"
#include "packets.h"
#include "timeval.h"
#include "unaligned.h"
#define MAX_PEDIT_OFFSETS 32
VLOG_DEFINE_THIS_MODULE(tc);
static struct vlog_rate_limit error_rl = VLOG_RATE_LIMIT_INIT(60, 5);
enum tc_offload_policy {
TC_POLICY_NONE,
TC_POLICY_SKIP_SW,
TC_POLICY_SKIP_HW
};
static enum tc_offload_policy tc_policy = TC_POLICY_NONE;
struct tc_pedit_key_ex {
enum pedit_header_type htype;
enum pedit_cmd cmd;
};
struct flower_key_to_pedit {
enum pedit_header_type htype;
int offset;
int flower_offset;
int size;
};
static struct flower_key_to_pedit flower_pedit_map[] = {
{
TCA_PEDIT_KEY_EX_HDR_TYPE_IP4,
12,
offsetof(struct tc_flower_key, ipv4.ipv4_src),
MEMBER_SIZEOF(struct tc_flower_key, ipv4.ipv4_src)
}, {
TCA_PEDIT_KEY_EX_HDR_TYPE_IP4,
16,
offsetof(struct tc_flower_key, ipv4.ipv4_dst),
MEMBER_SIZEOF(struct tc_flower_key, ipv4.ipv4_dst)
}, {
TCA_PEDIT_KEY_EX_HDR_TYPE_IP4,
8,
offsetof(struct tc_flower_key, ipv4.rewrite_ttl),
MEMBER_SIZEOF(struct tc_flower_key, ipv4.rewrite_ttl)
}, {
TCA_PEDIT_KEY_EX_HDR_TYPE_IP6,
8,
offsetof(struct tc_flower_key, ipv6.ipv6_src),
MEMBER_SIZEOF(struct tc_flower_key, ipv6.ipv6_src)
}, {
TCA_PEDIT_KEY_EX_HDR_TYPE_IP6,
24,
offsetof(struct tc_flower_key, ipv6.ipv6_dst),
MEMBER_SIZEOF(struct tc_flower_key, ipv6.ipv6_dst)
}, {
TCA_PEDIT_KEY_EX_HDR_TYPE_ETH,
6,
offsetof(struct tc_flower_key, src_mac),
MEMBER_SIZEOF(struct tc_flower_key, src_mac)
}, {
TCA_PEDIT_KEY_EX_HDR_TYPE_ETH,
0,
offsetof(struct tc_flower_key, dst_mac),
MEMBER_SIZEOF(struct tc_flower_key, dst_mac)
}, {
TCA_PEDIT_KEY_EX_HDR_TYPE_ETH,
12,
offsetof(struct tc_flower_key, eth_type),
MEMBER_SIZEOF(struct tc_flower_key, eth_type)
}, {
TCA_PEDIT_KEY_EX_HDR_TYPE_TCP,
0,
offsetof(struct tc_flower_key, tcp_src),
MEMBER_SIZEOF(struct tc_flower_key, tcp_src)
}, {
TCA_PEDIT_KEY_EX_HDR_TYPE_TCP,
2,
offsetof(struct tc_flower_key, tcp_dst),
MEMBER_SIZEOF(struct tc_flower_key, tcp_dst)
}, {
TCA_PEDIT_KEY_EX_HDR_TYPE_UDP,
0,
offsetof(struct tc_flower_key, udp_src),
MEMBER_SIZEOF(struct tc_flower_key, udp_src)
}, {
TCA_PEDIT_KEY_EX_HDR_TYPE_UDP,
2,
offsetof(struct tc_flower_key, udp_dst),
MEMBER_SIZEOF(struct tc_flower_key, udp_dst)
},
};
static inline int
csum_update_flag(struct tc_flower *flower,
enum pedit_header_type htype);
struct tcmsg *
tc_make_request(int ifindex, int type, unsigned int flags,
struct ofpbuf *request)
{
struct tcmsg *tcmsg;
ofpbuf_init(request, 512);
nl_msg_put_nlmsghdr(request, sizeof *tcmsg, type, NLM_F_REQUEST | flags);
tcmsg = ofpbuf_put_zeros(request, sizeof *tcmsg);
tcmsg->tcm_family = AF_UNSPEC;
tcmsg->tcm_ifindex = ifindex;
/* Caller should fill in tcmsg->tcm_handle. */
/* Caller should fill in tcmsg->tcm_parent. */
return tcmsg;
}
int
tc_transact(struct ofpbuf *request, struct ofpbuf **replyp)
{
int error = nl_transact(NETLINK_ROUTE, request, replyp);
ofpbuf_uninit(request);
return error;
}
/* Adds or deletes a root ingress qdisc on device with specified ifindex.
*
* This function is equivalent to running the following when 'add' is true:
* /sbin/tc qdisc add dev <devname> handle ffff: ingress
*
* This function is equivalent to running the following when 'add' is false:
* /sbin/tc qdisc del dev <devname> handle ffff: ingress
*
* Where dev <devname> is the device with specified ifindex name.
*
* The configuration and stats may be seen with the following command:
* /sbin/tc -s qdisc show dev <devname>
*
* Returns 0 if successful, otherwise a positive errno value.
*/
int
tc_add_del_ingress_qdisc(int ifindex, bool add)
{
struct ofpbuf request;
struct tcmsg *tcmsg;
int error;
int type = add ? RTM_NEWQDISC : RTM_DELQDISC;
int flags = add ? NLM_F_EXCL | NLM_F_CREATE : 0;
tcmsg = tc_make_request(ifindex, type, flags, &request);
tcmsg->tcm_handle = TC_H_MAKE(TC_H_INGRESS, 0);
tcmsg->tcm_parent = TC_H_INGRESS;
nl_msg_put_string(&request, TCA_KIND, "ingress");
nl_msg_put_unspec(&request, TCA_OPTIONS, NULL, 0);
error = tc_transact(&request, NULL);
if (error) {
/* If we're deleting the qdisc, don't worry about some of the
* error conditions. */
if (!add && (error == ENOENT || error == EINVAL)) {
return 0;
}
return error;
}
return 0;
}
static const struct nl_policy tca_policy[] = {
[TCA_KIND] = { .type = NL_A_STRING, .optional = false, },
[TCA_OPTIONS] = { .type = NL_A_NESTED, .optional = false, },
[TCA_STATS] = { .type = NL_A_UNSPEC,
.min_len = sizeof(struct tc_stats), .optional = true, },
[TCA_STATS2] = { .type = NL_A_NESTED, .optional = true, },
};
static const struct nl_policy tca_flower_policy[] = {
[TCA_FLOWER_CLASSID] = { .type = NL_A_U32, .optional = true, },
[TCA_FLOWER_INDEV] = { .type = NL_A_STRING, .max_len = IFNAMSIZ,
.optional = true, },
[TCA_FLOWER_KEY_ETH_SRC] = { .type = NL_A_UNSPEC,
.min_len = ETH_ALEN, .optional = true, },
[TCA_FLOWER_KEY_ETH_DST] = { .type = NL_A_UNSPEC,
.min_len = ETH_ALEN, .optional = true, },
[TCA_FLOWER_KEY_ETH_SRC_MASK] = { .type = NL_A_UNSPEC,
.min_len = ETH_ALEN,
.optional = true, },
[TCA_FLOWER_KEY_ETH_DST_MASK] = { .type = NL_A_UNSPEC,
.min_len = ETH_ALEN,
.optional = true, },
[TCA_FLOWER_KEY_ETH_TYPE] = { .type = NL_A_U16, .optional = false, },
[TCA_FLOWER_FLAGS] = { .type = NL_A_U32, .optional = false, },
[TCA_FLOWER_ACT] = { .type = NL_A_NESTED, .optional = false, },
[TCA_FLOWER_KEY_IP_PROTO] = { .type = NL_A_U8, .optional = true, },
[TCA_FLOWER_KEY_IPV4_SRC] = { .type = NL_A_U32, .optional = true, },
[TCA_FLOWER_KEY_IPV4_DST] = {.type = NL_A_U32, .optional = true, },
[TCA_FLOWER_KEY_IPV4_SRC_MASK] = { .type = NL_A_U32, .optional = true, },
[TCA_FLOWER_KEY_IPV4_DST_MASK] = { .type = NL_A_U32, .optional = true, },
[TCA_FLOWER_KEY_IPV6_SRC] = { .type = NL_A_UNSPEC,
.min_len = sizeof(struct in6_addr),
.optional = true, },
[TCA_FLOWER_KEY_IPV6_DST] = { .type = NL_A_UNSPEC,
.min_len = sizeof(struct in6_addr),
.optional = true, },
[TCA_FLOWER_KEY_IPV6_SRC_MASK] = { .type = NL_A_UNSPEC,
.min_len = sizeof(struct in6_addr),
.optional = true, },
[TCA_FLOWER_KEY_IPV6_DST_MASK] = { .type = NL_A_UNSPEC,
.min_len = sizeof(struct in6_addr),
.optional = true, },
[TCA_FLOWER_KEY_TCP_SRC] = { .type = NL_A_U16, .optional = true, },
[TCA_FLOWER_KEY_TCP_DST] = { .type = NL_A_U16, .optional = true, },
[TCA_FLOWER_KEY_TCP_SRC_MASK] = { .type = NL_A_U16, .optional = true, },
[TCA_FLOWER_KEY_TCP_DST_MASK] = { .type = NL_A_U16, .optional = true, },
[TCA_FLOWER_KEY_UDP_SRC] = { .type = NL_A_U16, .optional = true, },
[TCA_FLOWER_KEY_UDP_DST] = { .type = NL_A_U16, .optional = true, },
[TCA_FLOWER_KEY_UDP_SRC_MASK] = { .type = NL_A_U16, .optional = true, },
[TCA_FLOWER_KEY_UDP_DST_MASK] = { .type = NL_A_U16, .optional = true, },
[TCA_FLOWER_KEY_SCTP_SRC] = { .type = NL_A_U16, .optional = true, },
[TCA_FLOWER_KEY_SCTP_DST] = { .type = NL_A_U16, .optional = true, },
[TCA_FLOWER_KEY_SCTP_SRC_MASK] = { .type = NL_A_U16, .optional = true, },
[TCA_FLOWER_KEY_SCTP_DST_MASK] = { .type = NL_A_U16, .optional = true, },
[TCA_FLOWER_KEY_VLAN_ID] = { .type = NL_A_U16, .optional = true, },
[TCA_FLOWER_KEY_VLAN_PRIO] = { .type = NL_A_U8, .optional = true, },
[TCA_FLOWER_KEY_VLAN_ETH_TYPE] = { .type = NL_A_U16, .optional = true, },
[TCA_FLOWER_KEY_ENC_KEY_ID] = { .type = NL_A_U32, .optional = true, },
[TCA_FLOWER_KEY_ENC_IPV4_SRC] = { .type = NL_A_U32, .optional = true, },
[TCA_FLOWER_KEY_ENC_IPV4_DST] = { .type = NL_A_U32, .optional = true, },
[TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK] = { .type = NL_A_U32,
.optional = true, },
[TCA_FLOWER_KEY_ENC_IPV4_DST_MASK] = { .type = NL_A_U32,
.optional = true, },
[TCA_FLOWER_KEY_ENC_IPV6_SRC] = { .type = NL_A_UNSPEC,
.min_len = sizeof(struct in6_addr),
.optional = true, },
[TCA_FLOWER_KEY_ENC_IPV6_DST] = { .type = NL_A_UNSPEC,
.min_len = sizeof(struct in6_addr),
.optional = true, },
[TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK] = { .type = NL_A_UNSPEC,
.min_len = sizeof(struct in6_addr),
.optional = true, },
[TCA_FLOWER_KEY_ENC_IPV6_DST_MASK] = { .type = NL_A_UNSPEC,
.min_len = sizeof(struct in6_addr),
.optional = true, },
[TCA_FLOWER_KEY_ENC_UDP_DST_PORT] = { .type = NL_A_U16,
.optional = true, },
[TCA_FLOWER_KEY_FLAGS] = { .type = NL_A_BE32, .optional = true, },
[TCA_FLOWER_KEY_FLAGS_MASK] = { .type = NL_A_BE32, .optional = true, },
[TCA_FLOWER_KEY_IP_TTL] = { .type = NL_A_U8,
.optional = true, },
[TCA_FLOWER_KEY_IP_TTL_MASK] = { .type = NL_A_U8,
.optional = true, },
[TCA_FLOWER_KEY_TCP_FLAGS] = { .type = NL_A_U16,
.optional = true, },
[TCA_FLOWER_KEY_TCP_FLAGS_MASK] = { .type = NL_A_U16,
.optional = true, },
};
static void
nl_parse_flower_eth(struct nlattr **attrs, struct tc_flower *flower)
{
const struct eth_addr *eth;
if (attrs[TCA_FLOWER_KEY_ETH_SRC_MASK]) {
eth = nl_attr_get_unspec(attrs[TCA_FLOWER_KEY_ETH_SRC], ETH_ALEN);
memcpy(&flower->key.src_mac, eth, sizeof flower->key.src_mac);
eth = nl_attr_get_unspec(attrs[TCA_FLOWER_KEY_ETH_SRC_MASK], ETH_ALEN);
memcpy(&flower->mask.src_mac, eth, sizeof flower->mask.src_mac);
}
if (attrs[TCA_FLOWER_KEY_ETH_DST_MASK]) {
eth = nl_attr_get_unspec(attrs[TCA_FLOWER_KEY_ETH_DST], ETH_ALEN);
memcpy(&flower->key.dst_mac, eth, sizeof flower->key.dst_mac);
eth = nl_attr_get_unspec(attrs[TCA_FLOWER_KEY_ETH_DST_MASK], ETH_ALEN);
memcpy(&flower->mask.dst_mac, eth, sizeof flower->mask.dst_mac);
}
}
static void
nl_parse_flower_vlan(struct nlattr **attrs, struct tc_flower *flower)
{
if (flower->key.eth_type != htons(ETH_TYPE_VLAN)) {
return;
}
flower->key.encap_eth_type =
nl_attr_get_be16(attrs[TCA_FLOWER_KEY_ETH_TYPE]);
if (attrs[TCA_FLOWER_KEY_VLAN_ID]) {
flower->key.vlan_id =
nl_attr_get_u16(attrs[TCA_FLOWER_KEY_VLAN_ID]);
}
if (attrs[TCA_FLOWER_KEY_VLAN_PRIO]) {
flower->key.vlan_prio =
nl_attr_get_u8(attrs[TCA_FLOWER_KEY_VLAN_PRIO]);
}
}
static void
nl_parse_flower_tunnel(struct nlattr **attrs, struct tc_flower *flower)
{
if (attrs[TCA_FLOWER_KEY_ENC_KEY_ID]) {
ovs_be32 id = nl_attr_get_be32(attrs[TCA_FLOWER_KEY_ENC_KEY_ID]);
flower->tunnel.id = be32_to_be64(id);
}
if (attrs[TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK]) {
flower->tunnel.ipv4.ipv4_src =
nl_attr_get_be32(attrs[TCA_FLOWER_KEY_ENC_IPV4_SRC]);
}
if (attrs[TCA_FLOWER_KEY_ENC_IPV4_DST_MASK]) {
flower->tunnel.ipv4.ipv4_dst =
nl_attr_get_be32(attrs[TCA_FLOWER_KEY_ENC_IPV4_DST]);
}
if (attrs[TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK]) {
flower->tunnel.ipv6.ipv6_src =
nl_attr_get_in6_addr(attrs[TCA_FLOWER_KEY_ENC_IPV6_SRC]);
}
if (attrs[TCA_FLOWER_KEY_ENC_IPV6_DST_MASK]) {
flower->tunnel.ipv6.ipv6_dst =
nl_attr_get_in6_addr(attrs[TCA_FLOWER_KEY_ENC_IPV6_DST]);
}
if (attrs[TCA_FLOWER_KEY_ENC_UDP_DST_PORT]) {
flower->tunnel.tp_dst =
nl_attr_get_be16(attrs[TCA_FLOWER_KEY_ENC_UDP_DST_PORT]);
}
}
static void
nl_parse_flower_ip(struct nlattr **attrs, struct tc_flower *flower) {
uint8_t ip_proto = 0;
struct tc_flower_key *key = &flower->key;
struct tc_flower_key *mask = &flower->mask;
if (attrs[TCA_FLOWER_KEY_IP_PROTO]) {
ip_proto = nl_attr_get_u8(attrs[TCA_FLOWER_KEY_IP_PROTO]);
key->ip_proto = ip_proto;
mask->ip_proto = UINT8_MAX;
}
if (attrs[TCA_FLOWER_KEY_FLAGS_MASK]) {
key->flags = ntohl(nl_attr_get_u32(attrs[TCA_FLOWER_KEY_FLAGS]));
mask->flags = ntohl(nl_attr_get_u32(attrs[TCA_FLOWER_KEY_FLAGS_MASK]));
}
if (attrs[TCA_FLOWER_KEY_IPV4_SRC_MASK]) {
key->ipv4.ipv4_src =
nl_attr_get_be32(attrs[TCA_FLOWER_KEY_IPV4_SRC]);
mask->ipv4.ipv4_src =
nl_attr_get_be32(attrs[TCA_FLOWER_KEY_IPV4_SRC_MASK]);
}
if (attrs[TCA_FLOWER_KEY_IPV4_DST_MASK]) {
key->ipv4.ipv4_dst =
nl_attr_get_be32(attrs[TCA_FLOWER_KEY_IPV4_DST]);
mask->ipv4.ipv4_dst =
nl_attr_get_be32(attrs[TCA_FLOWER_KEY_IPV4_DST_MASK]);
}
if (attrs[TCA_FLOWER_KEY_IPV6_SRC_MASK]) {
struct nlattr *attr = attrs[TCA_FLOWER_KEY_IPV6_SRC];
struct nlattr *attr_mask = attrs[TCA_FLOWER_KEY_IPV6_SRC_MASK];
key->ipv6.ipv6_src = nl_attr_get_in6_addr(attr);
mask->ipv6.ipv6_src = nl_attr_get_in6_addr(attr_mask);
}
if (attrs[TCA_FLOWER_KEY_IPV6_DST_MASK]) {
struct nlattr *attr = attrs[TCA_FLOWER_KEY_IPV6_DST];
struct nlattr *attr_mask = attrs[TCA_FLOWER_KEY_IPV6_DST_MASK];
key->ipv6.ipv6_dst = nl_attr_get_in6_addr(attr);
mask->ipv6.ipv6_dst = nl_attr_get_in6_addr(attr_mask);
}
if (ip_proto == IPPROTO_TCP) {
if (attrs[TCA_FLOWER_KEY_TCP_SRC_MASK]) {
key->tcp_src =
nl_attr_get_be16(attrs[TCA_FLOWER_KEY_TCP_SRC]);
mask->tcp_src =
nl_attr_get_be16(attrs[TCA_FLOWER_KEY_TCP_SRC_MASK]);
}
if (attrs[TCA_FLOWER_KEY_TCP_DST_MASK]) {
key->tcp_dst =
nl_attr_get_be16(attrs[TCA_FLOWER_KEY_TCP_DST]);
mask->tcp_dst =
nl_attr_get_be16(attrs[TCA_FLOWER_KEY_TCP_DST_MASK]);
}
if (attrs[TCA_FLOWER_KEY_TCP_FLAGS_MASK]) {
key->tcp_flags =
nl_attr_get_be16(attrs[TCA_FLOWER_KEY_TCP_FLAGS]);
mask->tcp_flags =
nl_attr_get_be16(attrs[TCA_FLOWER_KEY_TCP_FLAGS_MASK]);
}
} else if (ip_proto == IPPROTO_UDP) {
if (attrs[TCA_FLOWER_KEY_UDP_SRC_MASK]) {
key->udp_src = nl_attr_get_be16(attrs[TCA_FLOWER_KEY_UDP_SRC]);
mask->udp_src =
nl_attr_get_be16(attrs[TCA_FLOWER_KEY_UDP_SRC_MASK]);
}
if (attrs[TCA_FLOWER_KEY_UDP_DST_MASK]) {
key->udp_dst = nl_attr_get_be16(attrs[TCA_FLOWER_KEY_UDP_DST]);
mask->udp_dst =
nl_attr_get_be16(attrs[TCA_FLOWER_KEY_UDP_DST_MASK]);
}
} else if (ip_proto == IPPROTO_SCTP) {
if (attrs[TCA_FLOWER_KEY_SCTP_SRC_MASK]) {
key->sctp_src = nl_attr_get_be16(attrs[TCA_FLOWER_KEY_SCTP_SRC]);
mask->sctp_src =
nl_attr_get_be16(attrs[TCA_FLOWER_KEY_SCTP_SRC_MASK]);
}
if (attrs[TCA_FLOWER_KEY_SCTP_DST_MASK]) {
key->sctp_dst = nl_attr_get_be16(attrs[TCA_FLOWER_KEY_SCTP_DST]);
mask->sctp_dst =
nl_attr_get_be16(attrs[TCA_FLOWER_KEY_SCTP_DST_MASK]);
}
}
if (attrs[TCA_FLOWER_KEY_IP_TTL_MASK]) {
key->ip_ttl = nl_attr_get_u8(attrs[TCA_FLOWER_KEY_IP_TTL]);
mask->ip_ttl = nl_attr_get_u8(attrs[TCA_FLOWER_KEY_IP_TTL_MASK]);
}
}
static const struct nl_policy pedit_policy[] = {
[TCA_PEDIT_PARMS_EX] = { .type = NL_A_UNSPEC,
.min_len = sizeof(struct tc_pedit),
.optional = false, },
[TCA_PEDIT_KEYS_EX] = { .type = NL_A_NESTED,
.optional = false, },
};
static int
nl_parse_act_pedit(struct nlattr *options, struct tc_flower *flower)
{
struct nlattr *pe_attrs[ARRAY_SIZE(pedit_policy)];
const struct tc_pedit *pe;
const struct tc_pedit_key *keys;
const struct nlattr *nla, *keys_ex, *ex_type;
const void *keys_attr;
char *rewrite_key = (void *) &flower->rewrite.key;
char *rewrite_mask = (void *) &flower->rewrite.mask;
size_t keys_ex_size, left;
int type, i = 0, err;
if (!nl_parse_nested(options, pedit_policy, pe_attrs,
ARRAY_SIZE(pedit_policy))) {
VLOG_ERR_RL(&error_rl, "failed to parse pedit action options");
return EPROTO;
}
pe = nl_attr_get_unspec(pe_attrs[TCA_PEDIT_PARMS_EX], sizeof *pe);
keys = pe->keys;
keys_attr = pe_attrs[TCA_PEDIT_KEYS_EX];
keys_ex = nl_attr_get(keys_attr);
keys_ex_size = nl_attr_get_size(keys_attr);
NL_ATTR_FOR_EACH (nla, left, keys_ex, keys_ex_size) {
if (i >= pe->nkeys) {
break;
}
if (nl_attr_type(nla) != TCA_PEDIT_KEY_EX) {
VLOG_ERR_RL(&error_rl, "unable to parse legacy pedit type: %d",
nl_attr_type(nla));
return EOPNOTSUPP;
}
ex_type = nl_attr_find_nested(nla, TCA_PEDIT_KEY_EX_HTYPE);
type = nl_attr_get_u16(ex_type);
err = csum_update_flag(flower, type);
if (err) {
return err;
}
for (int j = 0; j < ARRAY_SIZE(flower_pedit_map); j++) {
struct flower_key_to_pedit *m = &flower_pedit_map[j];
int flower_off = m->flower_offset;
int sz = m->size;
int mf = m->offset;
if (m->htype != type) {
continue;
}
/* check overlap between current pedit key, which is always
* 4 bytes (range [off, off + 3]), and a map entry in
* flower_pedit_map (range [mf, mf + sz - 1]) */
if ((keys->off >= mf && keys->off < mf + sz)
|| (keys->off + 3 >= mf && keys->off + 3 < mf + sz)) {
int diff = flower_off + (keys->off - mf);
uint32_t *dst = (void *) (rewrite_key + diff);
uint32_t *dst_m = (void *) (rewrite_mask + diff);
uint32_t mask = ~(keys->mask);
uint32_t zero_bits;
if (keys->off < mf) {
zero_bits = 8 * (mf - keys->off);
mask &= UINT32_MAX << zero_bits;
} else if (keys->off + 4 > mf + m->size) {
zero_bits = 8 * (keys->off + 4 - mf - m->size);
mask &= UINT32_MAX >> zero_bits;
}
*dst_m |= mask;
*dst |= keys->val & mask;
}
}
keys++;
i++;
}
flower->rewrite.rewrite = true;
return 0;
}
static const struct nl_policy tunnel_key_policy[] = {
[TCA_TUNNEL_KEY_PARMS] = { .type = NL_A_UNSPEC,
.min_len = sizeof(struct tc_tunnel_key),
.optional = false, },
[TCA_TUNNEL_KEY_ENC_IPV4_SRC] = { .type = NL_A_U32, .optional = true, },
[TCA_TUNNEL_KEY_ENC_IPV4_DST] = { .type = NL_A_U32, .optional = true, },
[TCA_TUNNEL_KEY_ENC_IPV6_SRC] = { .type = NL_A_UNSPEC,
.min_len = sizeof(struct in6_addr),
.optional = true, },
[TCA_TUNNEL_KEY_ENC_IPV6_DST] = { .type = NL_A_UNSPEC,
.min_len = sizeof(struct in6_addr),
.optional = true, },
[TCA_TUNNEL_KEY_ENC_KEY_ID] = { .type = NL_A_U32, .optional = true, },
[TCA_TUNNEL_KEY_ENC_DST_PORT] = { .type = NL_A_U16, .optional = true, },
};
static int
nl_parse_act_tunnel_key(struct nlattr *options, struct tc_flower *flower)
{
struct nlattr *tun_attrs[ARRAY_SIZE(tunnel_key_policy)];
const struct nlattr *tun_parms;
const struct tc_tunnel_key *tun;
if (!nl_parse_nested(options, tunnel_key_policy, tun_attrs,
ARRAY_SIZE(tunnel_key_policy))) {
VLOG_ERR_RL(&error_rl, "failed to parse tunnel_key action options");
return EPROTO;
}
tun_parms = tun_attrs[TCA_TUNNEL_KEY_PARMS];
tun = nl_attr_get_unspec(tun_parms, sizeof *tun);
if (tun->t_action == TCA_TUNNEL_KEY_ACT_SET) {
struct nlattr *id = tun_attrs[TCA_TUNNEL_KEY_ENC_KEY_ID];
struct nlattr *dst_port = tun_attrs[TCA_TUNNEL_KEY_ENC_DST_PORT];
struct nlattr *ipv4_src = tun_attrs[TCA_TUNNEL_KEY_ENC_IPV4_SRC];
struct nlattr *ipv4_dst = tun_attrs[TCA_TUNNEL_KEY_ENC_IPV4_DST];
struct nlattr *ipv6_src = tun_attrs[TCA_TUNNEL_KEY_ENC_IPV6_SRC];
struct nlattr *ipv6_dst = tun_attrs[TCA_TUNNEL_KEY_ENC_IPV6_DST];
flower->set.set = true;
flower->set.ipv4.ipv4_src = ipv4_src ? nl_attr_get_be32(ipv4_src) : 0;
flower->set.ipv4.ipv4_dst = ipv4_dst ? nl_attr_get_be32(ipv4_dst) : 0;
if (ipv6_src) {
flower->set.ipv6.ipv6_src = nl_attr_get_in6_addr(ipv6_src);
}
if (ipv6_dst) {
flower->set.ipv6.ipv6_dst = nl_attr_get_in6_addr(ipv6_dst);
}
flower->set.id = id ? be32_to_be64(nl_attr_get_be32(id)) : 0;
flower->set.tp_dst = dst_port ? nl_attr_get_be16(dst_port) : 0;
} else if (tun->t_action == TCA_TUNNEL_KEY_ACT_RELEASE) {
flower->tunnel.tunnel = true;
} else {
VLOG_ERR_RL(&error_rl, "unknown tunnel actions: %d, %d",
tun->action, tun->t_action);
return EINVAL;
}
return 0;
}
static const struct nl_policy gact_policy[] = {
[TCA_GACT_PARMS] = { .type = NL_A_UNSPEC,
.min_len = sizeof(struct tc_gact),
.optional = false, },
[TCA_GACT_TM] = { .type = NL_A_UNSPEC,
.min_len = sizeof(struct tcf_t),
.optional = false, },
};
static int
get_user_hz(void)
{
static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
static int user_hz = 100;
if (ovsthread_once_start(&once)) {
user_hz = sysconf(_SC_CLK_TCK);
ovsthread_once_done(&once);
}
return user_hz;
}
static void
nl_parse_tcf(const struct tcf_t *tm, struct tc_flower *flower)
{
flower->lastused = time_msec() - (tm->lastuse * 1000 / get_user_hz());
}
static int
nl_parse_act_drop(struct nlattr *options, struct tc_flower *flower)
{
struct nlattr *gact_attrs[ARRAY_SIZE(gact_policy)];
const struct tc_gact *p;
struct nlattr *gact_parms;
const struct tcf_t *tm;
if (!nl_parse_nested(options, gact_policy, gact_attrs,
ARRAY_SIZE(gact_policy))) {
VLOG_ERR_RL(&error_rl, "failed to parse gact action options");
return EPROTO;
}
gact_parms = gact_attrs[TCA_GACT_PARMS];
p = nl_attr_get_unspec(gact_parms, sizeof *p);
if (p->action != TC_ACT_SHOT) {
VLOG_ERR_RL(&error_rl, "unknown gact action: %d", p->action);
return EINVAL;
}
tm = nl_attr_get_unspec(gact_attrs[TCA_GACT_TM], sizeof *tm);
nl_parse_tcf(tm, flower);
return 0;
}
static const struct nl_policy mirred_policy[] = {
[TCA_MIRRED_PARMS] = { .type = NL_A_UNSPEC,
.min_len = sizeof(struct tc_mirred),
.optional = false, },
[TCA_MIRRED_TM] = { .type = NL_A_UNSPEC,
.min_len = sizeof(struct tcf_t),
.optional = false, },
};
static int
nl_parse_act_mirred(struct nlattr *options, struct tc_flower *flower)
{
struct nlattr *mirred_attrs[ARRAY_SIZE(mirred_policy)];
const struct tc_mirred *m;
const struct nlattr *mirred_parms;
const struct tcf_t *tm;
struct nlattr *mirred_tm;
if (!nl_parse_nested(options, mirred_policy, mirred_attrs,
ARRAY_SIZE(mirred_policy))) {
VLOG_ERR_RL(&error_rl, "failed to parse mirred action options");
return EPROTO;
}
mirred_parms = mirred_attrs[TCA_MIRRED_PARMS];
m = nl_attr_get_unspec(mirred_parms, sizeof *m);
if (m->action != TC_ACT_STOLEN || m->eaction != TCA_EGRESS_REDIR) {
VLOG_ERR_RL(&error_rl, "unknown mirred action: %d, %d, %d",
m->action, m->eaction, m->ifindex);
return EINVAL;
}
flower->ifindex_out = m->ifindex;
mirred_tm = mirred_attrs[TCA_MIRRED_TM];
tm = nl_attr_get_unspec(mirred_tm, sizeof *tm);
nl_parse_tcf(tm, flower);
return 0;
}
static const struct nl_policy vlan_policy[] = {
[TCA_VLAN_PARMS] = { .type = NL_A_UNSPEC,
.min_len = sizeof(struct tc_vlan),
.optional = false, },
[TCA_VLAN_PUSH_VLAN_ID] = { .type = NL_A_U16, .optional = true, },
[TCA_VLAN_PUSH_VLAN_PROTOCOL] = { .type = NL_A_U16, .optional = true, },
[TCA_VLAN_PUSH_VLAN_PRIORITY] = { .type = NL_A_U8, .optional = true, },
};
static int
nl_parse_act_vlan(struct nlattr *options, struct tc_flower *flower)
{
struct nlattr *vlan_attrs[ARRAY_SIZE(vlan_policy)];
const struct tc_vlan *v;
const struct nlattr *vlan_parms;
if (!nl_parse_nested(options, vlan_policy, vlan_attrs,
ARRAY_SIZE(vlan_policy))) {
VLOG_ERR_RL(&error_rl, "failed to parse vlan action options");
return EPROTO;
}
vlan_parms = vlan_attrs[TCA_VLAN_PARMS];
v = nl_attr_get_unspec(vlan_parms, sizeof *v);
if (v->v_action == TCA_VLAN_ACT_PUSH) {
struct nlattr *vlan_id = vlan_attrs[TCA_VLAN_PUSH_VLAN_ID];
struct nlattr *vlan_prio = vlan_attrs[TCA_VLAN_PUSH_VLAN_PRIORITY];
flower->vlan_push_id = nl_attr_get_u16(vlan_id);
flower->vlan_push_prio = vlan_prio ? nl_attr_get_u8(vlan_prio) : 0;
} else if (v->v_action == TCA_VLAN_ACT_POP) {
flower->vlan_pop = 1;
} else {
VLOG_ERR_RL(&error_rl, "unknown vlan action: %d, %d",
v->action, v->v_action);
return EINVAL;
}
return 0;
}
static const struct nl_policy csum_policy[] = {
[TCA_CSUM_PARMS] = { .type = NL_A_UNSPEC,
.min_len = sizeof(struct tc_csum),
.optional = false, },
};
static int
nl_parse_act_csum(struct nlattr *options, struct tc_flower *flower)
{
struct nlattr *csum_attrs[ARRAY_SIZE(csum_policy)];
const struct tc_csum *c;
const struct nlattr *csum_parms;
if (!nl_parse_nested(options, csum_policy, csum_attrs,
ARRAY_SIZE(csum_policy))) {
VLOG_ERR_RL(&error_rl, "failed to parse csum action options");
return EPROTO;
}
csum_parms = csum_attrs[TCA_CSUM_PARMS];
c = nl_attr_get_unspec(csum_parms, sizeof *c);
/* sanity checks */
if (c->update_flags != flower->csum_update_flags) {
VLOG_WARN_RL(&error_rl,
"expected different act csum flags: 0x%x != 0x%x",
flower->csum_update_flags, c->update_flags);
return EINVAL;
}
flower->csum_update_flags = 0; /* so we know csum was handled */
if (flower->needs_full_ip_proto_mask
&& flower->mask.ip_proto != UINT8_MAX) {
VLOG_WARN_RL(&error_rl, "expected full matching on flower ip_proto");
return EINVAL;
}
return 0;
}
static const struct nl_policy act_policy[] = {
[TCA_ACT_KIND] = { .type = NL_A_STRING, .optional = false, },
[TCA_ACT_COOKIE] = { .type = NL_A_UNSPEC, .optional = true, },
[TCA_ACT_OPTIONS] = { .type = NL_A_NESTED, .optional = false, },
[TCA_ACT_STATS] = { .type = NL_A_NESTED, .optional = false, },
};
static const struct nl_policy stats_policy[] = {
[TCA_STATS_BASIC] = { .type = NL_A_UNSPEC,
.min_len = sizeof(struct gnet_stats_basic),
.optional = false, },
};
static int
nl_parse_single_action(struct nlattr *action, struct tc_flower *flower)
{
struct nlattr *act_options;
struct nlattr *act_stats;
struct nlattr *act_cookie;
const char *act_kind;
struct nlattr *action_attrs[ARRAY_SIZE(act_policy)];
struct nlattr *stats_attrs[ARRAY_SIZE(stats_policy)];
struct ovs_flow_stats *stats = &flower->stats;
const struct gnet_stats_basic *bs;
int err = 0;
if (!nl_parse_nested(action, act_policy, action_attrs,
ARRAY_SIZE(act_policy))) {
VLOG_ERR_RL(&error_rl, "failed to parse single action options");
return EPROTO;
}
act_kind = nl_attr_get_string(action_attrs[TCA_ACT_KIND]);
act_options = action_attrs[TCA_ACT_OPTIONS];
act_cookie = action_attrs[TCA_ACT_COOKIE];
if (!strcmp(act_kind, "gact")) {
err = nl_parse_act_drop(act_options, flower);
} else if (!strcmp(act_kind, "mirred")) {
err = nl_parse_act_mirred(act_options, flower);
} else if (!strcmp(act_kind, "vlan")) {
err = nl_parse_act_vlan(act_options, flower);
} else if (!strcmp(act_kind, "tunnel_key")) {
err = nl_parse_act_tunnel_key(act_options, flower);
} else if (!strcmp(act_kind, "pedit")) {
err = nl_parse_act_pedit(act_options, flower);
} else if (!strcmp(act_kind, "csum")) {
nl_parse_act_csum(act_options, flower);
} else {
VLOG_ERR_RL(&error_rl, "unknown tc action kind: %s", act_kind);
err = EINVAL;
}
if (err) {
return err;
}
if (act_cookie) {
flower->act_cookie.data = nl_attr_get(act_cookie);
flower->act_cookie.len = nl_attr_get_size(act_cookie);
}
act_stats = action_attrs[TCA_ACT_STATS];
if (!nl_parse_nested(act_stats, stats_policy, stats_attrs,
ARRAY_SIZE(stats_policy))) {
VLOG_ERR_RL(&error_rl, "failed to parse action stats policy");
return EPROTO;
}
bs = nl_attr_get_unspec(stats_attrs[TCA_STATS_BASIC], sizeof *bs);
put_32aligned_u64(&stats->n_packets, bs->packets);
put_32aligned_u64(&stats->n_bytes, bs->bytes);
return 0;
}
#define TCA_ACT_MIN_PRIO 1
static int
nl_parse_flower_actions(struct nlattr **attrs, struct tc_flower *flower)
{
const struct nlattr *actions = attrs[TCA_FLOWER_ACT];
static struct nl_policy actions_orders_policy[TCA_ACT_MAX_PRIO + 1] = {};
struct nlattr *actions_orders[ARRAY_SIZE(actions_orders_policy)];
const int max_size = ARRAY_SIZE(actions_orders_policy);
for (int i = TCA_ACT_MIN_PRIO; i < max_size; i++) {
actions_orders_policy[i].type = NL_A_NESTED;
actions_orders_policy[i].optional = true;
}
if (!nl_parse_nested(actions, actions_orders_policy, actions_orders,
ARRAY_SIZE(actions_orders_policy))) {
VLOG_ERR_RL(&error_rl, "failed to parse flower order of actions");
return EPROTO;
}
for (int i = TCA_ACT_MIN_PRIO; i < max_size; i++) {
if (actions_orders[i]) {
int err = nl_parse_single_action(actions_orders[i], flower);
if (err) {
return err;
}
}
}
if (flower->csum_update_flags) {
VLOG_WARN_RL(&error_rl,
"expected act csum with flags: 0x%x",
flower->csum_update_flags);
return EINVAL;
}
return 0;
}
static int
nl_parse_flower_options(struct nlattr *nl_options, struct tc_flower *flower)
{
struct nlattr *attrs[ARRAY_SIZE(tca_flower_policy)];
if (!nl_parse_nested(nl_options, tca_flower_policy,
attrs, ARRAY_SIZE(tca_flower_policy))) {
VLOG_ERR_RL(&error_rl, "failed to parse flower classifier options");
return EPROTO;
}
nl_parse_flower_eth(attrs, flower);
nl_parse_flower_vlan(attrs, flower);
nl_parse_flower_ip(attrs, flower);
nl_parse_flower_tunnel(attrs, flower);
return nl_parse_flower_actions(attrs, flower);
}
int
parse_netlink_to_tc_flower(struct ofpbuf *reply, struct tc_flower *flower)
{
struct tcmsg *tc;
struct nlattr *ta[ARRAY_SIZE(tca_policy)];
const char *kind;
if (NLMSG_HDRLEN + sizeof *tc > reply->size) {
return EPROTO;
}
memset(flower, 0, sizeof *flower);
tc = ofpbuf_at_assert(reply, NLMSG_HDRLEN, sizeof *tc);
flower->handle = tc->tcm_handle;
flower->key.eth_type = (OVS_FORCE ovs_be16) tc_get_minor(tc->tcm_info);
flower->mask.eth_type = OVS_BE16_MAX;
flower->prio = tc_get_major(tc->tcm_info);
if (!flower->handle) {
return EAGAIN;
}
if (!nl_policy_parse(reply, NLMSG_HDRLEN + sizeof *tc,
tca_policy, ta, ARRAY_SIZE(ta))) {
VLOG_ERR_RL(&error_rl, "failed to parse tca policy");
return EPROTO;
}
kind = nl_attr_get_string(ta[TCA_KIND]);
if (strcmp(kind, "flower")) {
VLOG_ERR_RL(&error_rl, "failed to parse filter: %s", kind);
return EPROTO;
}
return nl_parse_flower_options(ta[TCA_OPTIONS], flower);
}
int
tc_dump_flower_start(int ifindex, struct nl_dump *dump)
{
struct ofpbuf request;
struct tcmsg *tcmsg;
tcmsg = tc_make_request(ifindex, RTM_GETTFILTER, NLM_F_DUMP, &request);
tcmsg->tcm_parent = TC_INGRESS_PARENT;
tcmsg->tcm_info = TC_H_UNSPEC;
tcmsg->tcm_handle = 0;
nl_dump_start(dump, NETLINK_ROUTE, &request);
ofpbuf_uninit(&request);
return 0;
}
int
tc_flush(int ifindex)
{
struct ofpbuf request;
struct tcmsg *tcmsg;
tcmsg = tc_make_request(ifindex, RTM_DELTFILTER, NLM_F_ACK, &request);
tcmsg->tcm_parent = TC_INGRESS_PARENT;
tcmsg->tcm_info = TC_H_UNSPEC;
return tc_transact(&request, NULL);
}
int
tc_del_filter(int ifindex, int prio, int handle)
{
struct ofpbuf request;
struct tcmsg *tcmsg;
struct ofpbuf *reply;
int error;
tcmsg = tc_make_request(ifindex, RTM_DELTFILTER, NLM_F_ECHO, &request);
tcmsg->tcm_parent = TC_INGRESS_PARENT;
tcmsg->tcm_info = tc_make_handle(prio, 0);
tcmsg->tcm_handle = handle;
error = tc_transact(&request, &reply);
if (!error) {
ofpbuf_delete(reply);
}
return error;
}
int
tc_get_flower(int ifindex, int prio, int handle, struct tc_flower *flower)
{
struct ofpbuf request;
struct tcmsg *tcmsg;
struct ofpbuf *reply;
int error;
tcmsg = tc_make_request(ifindex, RTM_GETTFILTER, NLM_F_ECHO, &request);
tcmsg->tcm_parent = TC_INGRESS_PARENT;
tcmsg->tcm_info = tc_make_handle(prio, 0);
tcmsg->tcm_handle = handle;
error = tc_transact(&request, &reply);
if (error) {
return error;
}
error = parse_netlink_to_tc_flower(reply, flower);
ofpbuf_delete(reply);
return error;
}
static int
tc_get_tc_cls_policy(enum tc_offload_policy policy)
{
if (policy == TC_POLICY_SKIP_HW) {
return TCA_CLS_FLAGS_SKIP_HW;
} else if (policy == TC_POLICY_SKIP_SW) {
return TCA_CLS_FLAGS_SKIP_SW;
}
return 0;
}
static void
nl_msg_put_act_csum(struct ofpbuf *request, uint32_t flags)
{
size_t offset;
nl_msg_put_string(request, TCA_ACT_KIND, "csum");
offset = nl_msg_start_nested(request, TCA_ACT_OPTIONS);
{
struct tc_csum parm = { .action = TC_ACT_PIPE,
.update_flags = flags };
nl_msg_put_unspec(request, TCA_CSUM_PARMS, &parm, sizeof parm);
}
nl_msg_end_nested(request, offset);
}
static void
nl_msg_put_act_pedit(struct ofpbuf *request, struct tc_pedit *parm,
struct tc_pedit_key_ex *ex)
{
size_t ksize = sizeof *parm + parm->nkeys * sizeof(struct tc_pedit_key);
size_t offset, offset_keys_ex, offset_key;
int i;
nl_msg_put_string(request, TCA_ACT_KIND, "pedit");
offset = nl_msg_start_nested(request, TCA_ACT_OPTIONS);
{
parm->action = TC_ACT_PIPE;
nl_msg_put_unspec(request, TCA_PEDIT_PARMS_EX, parm, ksize);
offset_keys_ex = nl_msg_start_nested(request, TCA_PEDIT_KEYS_EX);
for (i = 0; i < parm->nkeys; i++, ex++) {
offset_key = nl_msg_start_nested(request, TCA_PEDIT_KEY_EX);
nl_msg_put_u16(request, TCA_PEDIT_KEY_EX_HTYPE, ex->htype);
nl_msg_put_u16(request, TCA_PEDIT_KEY_EX_CMD, ex->cmd);
nl_msg_end_nested(request, offset_key);
}
nl_msg_end_nested(request, offset_keys_ex);
}
nl_msg_end_nested(request, offset);
}
static void
nl_msg_put_act_push_vlan(struct ofpbuf *request, uint16_t vid, uint8_t prio)
{
size_t offset;
nl_msg_put_string(request, TCA_ACT_KIND, "vlan");
offset = nl_msg_start_nested(request, TCA_ACT_OPTIONS);
{
struct tc_vlan parm = { .action = TC_ACT_PIPE,
.v_action = TCA_VLAN_ACT_PUSH };
nl_msg_put_unspec(request, TCA_VLAN_PARMS, &parm, sizeof parm);
nl_msg_put_u16(request, TCA_VLAN_PUSH_VLAN_ID, vid);
nl_msg_put_u8(request, TCA_VLAN_PUSH_VLAN_PRIORITY, prio);
}
nl_msg_end_nested(request, offset);
}
static void
nl_msg_put_act_pop_vlan(struct ofpbuf *request)
{
size_t offset;
nl_msg_put_string(request, TCA_ACT_KIND, "vlan");
offset = nl_msg_start_nested(request, TCA_ACT_OPTIONS);
{
struct tc_vlan parm = { .action = TC_ACT_PIPE,
.v_action = TCA_VLAN_ACT_POP };
nl_msg_put_unspec(request, TCA_VLAN_PARMS, &parm, sizeof parm);
}
nl_msg_end_nested(request, offset);
}
static void
nl_msg_put_act_tunnel_key_release(struct ofpbuf *request)
{
size_t offset;
nl_msg_put_string(request, TCA_ACT_KIND, "tunnel_key");
offset = nl_msg_start_nested(request, TCA_ACT_OPTIONS);
{
struct tc_tunnel_key tun = { .action = TC_ACT_PIPE,
.t_action = TCA_TUNNEL_KEY_ACT_RELEASE };
nl_msg_put_unspec(request, TCA_TUNNEL_KEY_PARMS, &tun, sizeof tun);
}
nl_msg_end_nested(request, offset);
}
static void
nl_msg_put_act_tunnel_key_set(struct ofpbuf *request, ovs_be64 id,
ovs_be32 ipv4_src, ovs_be32 ipv4_dst,
struct in6_addr *ipv6_src,
struct in6_addr *ipv6_dst,
ovs_be16 tp_dst)
{
size_t offset;
nl_msg_put_string(request, TCA_ACT_KIND, "tunnel_key");
offset = nl_msg_start_nested(request, TCA_ACT_OPTIONS);
{
struct tc_tunnel_key tun = { .action = TC_ACT_PIPE,
.t_action = TCA_TUNNEL_KEY_ACT_SET };
nl_msg_put_unspec(request, TCA_TUNNEL_KEY_PARMS, &tun, sizeof tun);
ovs_be32 id32 = be64_to_be32(id);
nl_msg_put_be32(request, TCA_TUNNEL_KEY_ENC_KEY_ID, id32);
if (ipv4_dst) {
nl_msg_put_be32(request, TCA_TUNNEL_KEY_ENC_IPV4_SRC, ipv4_src);
nl_msg_put_be32(request, TCA_TUNNEL_KEY_ENC_IPV4_DST, ipv4_dst);
} else if (!is_all_zeros(ipv6_dst, sizeof *ipv6_dst)) {
nl_msg_put_in6_addr(request, TCA_TUNNEL_KEY_ENC_IPV6_DST,
ipv6_dst);
nl_msg_put_in6_addr(request, TCA_TUNNEL_KEY_ENC_IPV6_SRC,
ipv6_src);
}
nl_msg_put_be16(request, TCA_TUNNEL_KEY_ENC_DST_PORT, tp_dst);
}
nl_msg_end_nested(request, offset);
}
static void
nl_msg_put_act_drop(struct ofpbuf *request)
{
size_t offset;
nl_msg_put_string(request, TCA_ACT_KIND, "gact");
offset = nl_msg_start_nested(request, TCA_ACT_OPTIONS);
{
struct tc_gact p = { .action = TC_ACT_SHOT };
nl_msg_put_unspec(request, TCA_GACT_PARMS, &p, sizeof p);
}
nl_msg_end_nested(request, offset);
}
static void
nl_msg_put_act_redirect(struct ofpbuf *request, int ifindex)
{
size_t offset;
nl_msg_put_string(request, TCA_ACT_KIND, "mirred");
offset = nl_msg_start_nested(request, TCA_ACT_OPTIONS);
{
struct tc_mirred m = { .action = TC_ACT_STOLEN,
.eaction = TCA_EGRESS_REDIR,
.ifindex = ifindex };
nl_msg_put_unspec(request, TCA_MIRRED_PARMS, &m, sizeof m);
}
nl_msg_end_nested(request, offset);
}
static inline void
nl_msg_put_act_cookie(struct ofpbuf *request, struct tc_cookie *ck) {
if (ck->len) {
nl_msg_put_unspec(request, TCA_ACT_COOKIE, ck->data, ck->len);
}
}
/* Given flower, a key_to_pedit map entry, calculates the rest,
* where:
*
* mask, data - pointers of where read the first word of flower->key/mask.
* current_offset - which offset to use for the first pedit action.
* cnt - max pedits actions to use.
* first_word_mask/last_word_mask - the mask to use for the first/last read
* (as we read entire words). */
static void
calc_offsets(struct tc_flower *flower, struct flower_key_to_pedit *m,
int *cur_offset, int *cnt, uint32_t *last_word_mask,
uint32_t *first_word_mask, uint32_t **mask, uint32_t **data)
{
int start_offset, max_offset, total_size;
int diff, right_zero_bits, left_zero_bits;
char *rewrite_key = (void *) &flower->rewrite.key;
char *rewrite_mask = (void *) &flower->rewrite.mask;
max_offset = m->offset + m->size;
start_offset = ROUND_DOWN(m->offset, 4);
diff = m->offset - start_offset;
total_size = max_offset - start_offset;
right_zero_bits = 8 * (4 - (max_offset % 4));
left_zero_bits = 8 * (m->offset - start_offset);
*cur_offset = start_offset;
*cnt = (total_size / 4) + (total_size % 4 ? 1 : 0);
*last_word_mask = UINT32_MAX >> right_zero_bits;
*first_word_mask = UINT32_MAX << left_zero_bits;
*data = (void *) (rewrite_key + m->flower_offset - diff);
*mask = (void *) (rewrite_mask + m->flower_offset - diff);
}
static inline int
csum_update_flag(struct tc_flower *flower,
enum pedit_header_type htype) {
/* Explictily specifiy the csum flags so HW can return EOPNOTSUPP
* if it doesn't support a checksum recalculation of some headers.
* And since OVS allows a flow such as
* eth(dst=<mac>),eth_type(0x0800) actions=set(ipv4(src=<new_ip>))
* we need to force a more specific flow as this can, for example,
* need a recalculation of icmp checksum if the packet that passes
* is icmp and tcp checksum if its tcp. */
switch (htype) {
case TCA_PEDIT_KEY_EX_HDR_TYPE_IP4:
flower->csum_update_flags |= TCA_CSUM_UPDATE_FLAG_IPV4HDR;
/* Fall through. */
case TCA_PEDIT_KEY_EX_HDR_TYPE_IP6:
case TCA_PEDIT_KEY_EX_HDR_TYPE_TCP:
case TCA_PEDIT_KEY_EX_HDR_TYPE_UDP:
if (flower->key.ip_proto == IPPROTO_TCP) {
flower->needs_full_ip_proto_mask = true;
flower->csum_update_flags |= TCA_CSUM_UPDATE_FLAG_TCP;
} else if (flower->key.ip_proto == IPPROTO_UDP) {
flower->needs_full_ip_proto_mask = true;
flower->csum_update_flags |= TCA_CSUM_UPDATE_FLAG_UDP;
} else if (flower->key.ip_proto == IPPROTO_ICMP
|| flower->key.ip_proto == IPPROTO_ICMPV6) {
flower->needs_full_ip_proto_mask = true;
flower->csum_update_flags |= TCA_CSUM_UPDATE_FLAG_ICMP;
} else {
VLOG_WARN_RL(&error_rl,
"can't offload rewrite of IP/IPV6 with ip_proto: %d",
flower->key.ip_proto);
break;
}
/* Fall through. */
case TCA_PEDIT_KEY_EX_HDR_TYPE_ETH:
return 0; /* success */
case TCA_PEDIT_KEY_EX_HDR_TYPE_NETWORK:
case __PEDIT_HDR_TYPE_MAX:
default:
break;
}
return EOPNOTSUPP;
}
static int
nl_msg_put_flower_rewrite_pedits(struct ofpbuf *request,
struct tc_flower *flower)
{
struct {
struct tc_pedit sel;
struct tc_pedit_key keys[MAX_PEDIT_OFFSETS];
struct tc_pedit_key_ex keys_ex[MAX_PEDIT_OFFSETS];
} sel = {
.sel = {
.nkeys = 0
}
};
int i, j, err;
for (i = 0; i < ARRAY_SIZE(flower_pedit_map); i++) {
struct flower_key_to_pedit *m = &flower_pedit_map[i];
struct tc_pedit_key *pedit_key = NULL;
struct tc_pedit_key_ex *pedit_key_ex = NULL;
uint32_t *mask, *data, first_word_mask, last_word_mask;
int cnt = 0, cur_offset = 0;
if (!m->size) {
continue;
}
calc_offsets(flower, m, &cur_offset, &cnt, &last_word_mask,
&first_word_mask, &mask, &data);
for (j = 0; j < cnt; j++, mask++, data++, cur_offset += 4) {
uint32_t mask_word = *mask;
if (j == 0) {
mask_word &= first_word_mask;
}
if (j == cnt - 1) {
mask_word &= last_word_mask;
}
if (!mask_word) {
continue;
}
if (sel.sel.nkeys == MAX_PEDIT_OFFSETS) {
VLOG_WARN_RL(&error_rl, "reached too many pedit offsets: %d",
MAX_PEDIT_OFFSETS);
return EOPNOTSUPP;
}
pedit_key = &sel.keys[sel.sel.nkeys];
pedit_key_ex = &sel.keys_ex[sel.sel.nkeys];
pedit_key_ex->cmd = TCA_PEDIT_KEY_EX_CMD_SET;
pedit_key_ex->htype = m->htype;
pedit_key->off = cur_offset;
pedit_key->mask = ~mask_word;
pedit_key->val = *data & mask_word;
sel.sel.nkeys++;
err = csum_update_flag(flower, m->htype);
if (err) {
return err;
}
if (flower->needs_full_ip_proto_mask) {
flower->mask.ip_proto = UINT8_MAX;
}
}
}
nl_msg_put_act_pedit(request, &sel.sel, sel.keys_ex);
return 0;
}
static int
nl_msg_put_flower_acts(struct ofpbuf *request, struct tc_flower *flower)
{
size_t offset;
size_t act_offset;
offset = nl_msg_start_nested(request, TCA_FLOWER_ACT);
{
uint16_t act_index = 1;
int error;
if (flower->rewrite.rewrite) {
act_offset = nl_msg_start_nested(request, act_index++);
error = nl_msg_put_flower_rewrite_pedits(request, flower);
if (error) {
return error;
}
nl_msg_end_nested(request, act_offset);
if (flower->csum_update_flags) {
act_offset = nl_msg_start_nested(request, act_index++);
nl_msg_put_act_csum(request, flower->csum_update_flags);
nl_msg_end_nested(request, act_offset);
}
}
if (flower->tunnel.tunnel) {
act_offset = nl_msg_start_nested(request, act_index++);
nl_msg_put_act_tunnel_key_release(request);
nl_msg_end_nested(request, act_offset);
}
if (flower->set.set) {
act_offset = nl_msg_start_nested(request, act_index++);
nl_msg_put_act_tunnel_key_set(request, flower->set.id,
flower->set.ipv4.ipv4_src,
flower->set.ipv4.ipv4_dst,
&flower->set.ipv6.ipv6_src,
&flower->set.ipv6.ipv6_dst,
flower->set.tp_dst);
nl_msg_end_nested(request, act_offset);
}
if (flower->vlan_pop) {
act_offset = nl_msg_start_nested(request, act_index++);
nl_msg_put_act_pop_vlan(request);
nl_msg_end_nested(request, act_offset);
}
if (flower->vlan_push_id) {
act_offset = nl_msg_start_nested(request, act_index++);
nl_msg_put_act_push_vlan(request,
flower->vlan_push_id,
flower->vlan_push_prio);
nl_msg_end_nested(request, act_offset);
}
if (flower->ifindex_out) {
act_offset = nl_msg_start_nested(request, act_index++);
nl_msg_put_act_redirect(request, flower->ifindex_out);
nl_msg_put_act_cookie(request, &flower->act_cookie);
nl_msg_end_nested(request, act_offset);
} else {
act_offset = nl_msg_start_nested(request, act_index++);
nl_msg_put_act_drop(request);
nl_msg_put_act_cookie(request, &flower->act_cookie);
nl_msg_end_nested(request, act_offset);
}
}
nl_msg_end_nested(request, offset);
return 0;
}
static void
nl_msg_put_masked_value(struct ofpbuf *request, uint16_t type,
uint16_t mask_type, const void *data,
const void *mask_data, size_t len)
{
if (mask_type != TCA_FLOWER_UNSPEC) {
if (is_all_zeros(mask_data, len)) {
return;
}
nl_msg_put_unspec(request, mask_type, mask_data, len);
}
nl_msg_put_unspec(request, type, data, len);
}
static void
nl_msg_put_flower_tunnel(struct ofpbuf *request, struct tc_flower *flower)
{
ovs_be32 ipv4_src = flower->tunnel.ipv4.ipv4_src;
ovs_be32 ipv4_dst = flower->tunnel.ipv4.ipv4_dst;
struct in6_addr *ipv6_src = &flower->tunnel.ipv6.ipv6_src;
struct in6_addr *ipv6_dst = &flower->tunnel.ipv6.ipv6_dst;
ovs_be16 tp_dst = flower->tunnel.tp_dst;
ovs_be32 id = be64_to_be32(flower->tunnel.id);
nl_msg_put_be32(request, TCA_FLOWER_KEY_ENC_KEY_ID, id);
if (ipv4_dst) {
nl_msg_put_be32(request, TCA_FLOWER_KEY_ENC_IPV4_SRC, ipv4_src);
nl_msg_put_be32(request, TCA_FLOWER_KEY_ENC_IPV4_DST, ipv4_dst);
} else if (!is_all_zeros(ipv6_dst, sizeof *ipv6_dst)) {
nl_msg_put_in6_addr(request, TCA_FLOWER_KEY_ENC_IPV6_SRC, ipv6_src);
nl_msg_put_in6_addr(request, TCA_FLOWER_KEY_ENC_IPV6_DST, ipv6_dst);
}
nl_msg_put_be16(request, TCA_FLOWER_KEY_ENC_UDP_DST_PORT, tp_dst);
}
#define FLOWER_PUT_MASKED_VALUE(member, type) \
nl_msg_put_masked_value(request, type, type##_MASK, &flower->key.member, \
&flower->mask.member, sizeof flower->key.member)
static int
nl_msg_put_flower_options(struct ofpbuf *request, struct tc_flower *flower)
{
uint16_t host_eth_type = ntohs(flower->key.eth_type);
bool is_vlan = (host_eth_type == ETH_TYPE_VLAN);
int err;
/* need to parse acts first as some acts require changing the matching
* see csum_update_flag() */
err = nl_msg_put_flower_acts(request, flower);
if (err) {
return err;
}
if (is_vlan) {
host_eth_type = ntohs(flower->key.encap_eth_type);
}
FLOWER_PUT_MASKED_VALUE(dst_mac, TCA_FLOWER_KEY_ETH_DST);
FLOWER_PUT_MASKED_VALUE(src_mac, TCA_FLOWER_KEY_ETH_SRC);
if (host_eth_type == ETH_P_IP || host_eth_type == ETH_P_IPV6) {
if (flower->mask.ip_proto && flower->key.ip_proto) {
nl_msg_put_u8(request, TCA_FLOWER_KEY_IP_PROTO,
flower->key.ip_proto);
}
if (flower->mask.flags) {
nl_msg_put_u32(request, TCA_FLOWER_KEY_FLAGS,
htonl(flower->key.flags));
nl_msg_put_u32(request, TCA_FLOWER_KEY_FLAGS_MASK,
htonl(flower->mask.flags));
}
if (flower->key.ip_proto == IPPROTO_UDP) {
FLOWER_PUT_MASKED_VALUE(udp_src, TCA_FLOWER_KEY_UDP_SRC);
FLOWER_PUT_MASKED_VALUE(udp_dst, TCA_FLOWER_KEY_UDP_DST);
} else if (flower->key.ip_proto == IPPROTO_TCP) {
FLOWER_PUT_MASKED_VALUE(tcp_src, TCA_FLOWER_KEY_TCP_SRC);
FLOWER_PUT_MASKED_VALUE(tcp_dst, TCA_FLOWER_KEY_TCP_DST);
FLOWER_PUT_MASKED_VALUE(tcp_flags, TCA_FLOWER_KEY_TCP_FLAGS);
} else if (flower->key.ip_proto == IPPROTO_SCTP) {
FLOWER_PUT_MASKED_VALUE(sctp_src, TCA_FLOWER_KEY_SCTP_SRC);
FLOWER_PUT_MASKED_VALUE(sctp_dst, TCA_FLOWER_KEY_SCTP_DST);
}
}
if (host_eth_type == ETH_P_IP) {
FLOWER_PUT_MASKED_VALUE(ipv4.ipv4_src, TCA_FLOWER_KEY_IPV4_SRC);
FLOWER_PUT_MASKED_VALUE(ipv4.ipv4_dst, TCA_FLOWER_KEY_IPV4_DST);
FLOWER_PUT_MASKED_VALUE(ip_ttl, TCA_FLOWER_KEY_IP_TTL);
} else if (host_eth_type == ETH_P_IPV6) {
FLOWER_PUT_MASKED_VALUE(ipv6.ipv6_src, TCA_FLOWER_KEY_IPV6_SRC);
FLOWER_PUT_MASKED_VALUE(ipv6.ipv6_dst, TCA_FLOWER_KEY_IPV6_DST);
}
nl_msg_put_be16(request, TCA_FLOWER_KEY_ETH_TYPE, flower->key.eth_type);
if (is_vlan) {
if (flower->key.vlan_id || flower->key.vlan_prio) {
nl_msg_put_u16(request, TCA_FLOWER_KEY_VLAN_ID,
flower->key.vlan_id);
nl_msg_put_u8(request, TCA_FLOWER_KEY_VLAN_PRIO,
flower->key.vlan_prio);
}
if (flower->key.encap_eth_type) {
nl_msg_put_be16(request, TCA_FLOWER_KEY_VLAN_ETH_TYPE,
flower->key.encap_eth_type);
}
}
nl_msg_put_u32(request, TCA_FLOWER_FLAGS, tc_get_tc_cls_policy(tc_policy));
if (flower->tunnel.tunnel) {
nl_msg_put_flower_tunnel(request, flower);
}
return 0;
}
int
tc_replace_flower(int ifindex, uint16_t prio, uint32_t handle,
struct tc_flower *flower)
{
struct ofpbuf request;
struct tcmsg *tcmsg;
struct ofpbuf *reply;
int error = 0;
size_t basic_offset;
uint16_t eth_type = (OVS_FORCE uint16_t) flower->key.eth_type;
tcmsg = tc_make_request(ifindex, RTM_NEWTFILTER,
NLM_F_CREATE | NLM_F_ECHO, &request);
tcmsg->tcm_parent = TC_INGRESS_PARENT;
tcmsg->tcm_info = tc_make_handle(prio, eth_type);
tcmsg->tcm_handle = handle;
nl_msg_put_string(&request, TCA_KIND, "flower");
basic_offset = nl_msg_start_nested(&request, TCA_OPTIONS);
{
error = nl_msg_put_flower_options(&request, flower);
if (error) {
ofpbuf_uninit(&request);
return error;
}
}
nl_msg_end_nested(&request, basic_offset);
error = tc_transact(&request, &reply);
if (!error) {
struct tcmsg *tc =
ofpbuf_at_assert(reply, NLMSG_HDRLEN, sizeof *tc);
flower->prio = tc_get_major(tc->tcm_info);
flower->handle = tc->tcm_handle;
ofpbuf_delete(reply);
}
return error;
}
void
tc_set_policy(const char *policy)
{
if (!policy) {
return;
}
if (!strcmp(policy, "skip_sw")) {
tc_policy = TC_POLICY_SKIP_SW;
} else if (!strcmp(policy, "skip_hw")) {
tc_policy = TC_POLICY_SKIP_HW;
} else if (!strcmp(policy, "none")) {
tc_policy = TC_POLICY_NONE;
} else {
VLOG_WARN("tc: Invalid policy '%s'", policy);
return;
}
VLOG_INFO("tc: Using policy '%s'", policy);
}