mirror of
https://github.com/openvswitch/ovs
synced 2025-08-29 05:18:13 +00:00
902 lines
22 KiB
C
902 lines
22 KiB
C
/*
|
|
* Copyright (c) 2008, 2009, 2010, 2011, 2012 Nicira Networks.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at:
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include "util.h"
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <limits.h>
|
|
#include <stdarg.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include "byte-order.h"
|
|
#include "coverage.h"
|
|
#include "openvswitch/types.h"
|
|
#include "vlog.h"
|
|
|
|
VLOG_DEFINE_THIS_MODULE(util);
|
|
|
|
COVERAGE_DEFINE(util_xalloc);
|
|
|
|
const char *program_name;
|
|
static char *program_version;
|
|
|
|
void
|
|
out_of_memory(void)
|
|
{
|
|
ovs_abort(0, "virtual memory exhausted");
|
|
}
|
|
|
|
void *
|
|
xcalloc(size_t count, size_t size)
|
|
{
|
|
void *p = count && size ? calloc(count, size) : malloc(1);
|
|
COVERAGE_INC(util_xalloc);
|
|
if (p == NULL) {
|
|
out_of_memory();
|
|
}
|
|
return p;
|
|
}
|
|
|
|
void *
|
|
xzalloc(size_t size)
|
|
{
|
|
return xcalloc(1, size);
|
|
}
|
|
|
|
void *
|
|
xmalloc(size_t size)
|
|
{
|
|
void *p = malloc(size ? size : 1);
|
|
COVERAGE_INC(util_xalloc);
|
|
if (p == NULL) {
|
|
out_of_memory();
|
|
}
|
|
return p;
|
|
}
|
|
|
|
void *
|
|
xrealloc(void *p, size_t size)
|
|
{
|
|
p = realloc(p, size ? size : 1);
|
|
COVERAGE_INC(util_xalloc);
|
|
if (p == NULL) {
|
|
out_of_memory();
|
|
}
|
|
return p;
|
|
}
|
|
|
|
void *
|
|
xmemdup(const void *p_, size_t size)
|
|
{
|
|
void *p = xmalloc(size);
|
|
memcpy(p, p_, size);
|
|
return p;
|
|
}
|
|
|
|
char *
|
|
xmemdup0(const char *p_, size_t length)
|
|
{
|
|
char *p = xmalloc(length + 1);
|
|
memcpy(p, p_, length);
|
|
p[length] = '\0';
|
|
return p;
|
|
}
|
|
|
|
char *
|
|
xstrdup(const char *s)
|
|
{
|
|
return xmemdup0(s, strlen(s));
|
|
}
|
|
|
|
char *
|
|
xvasprintf(const char *format, va_list args)
|
|
{
|
|
va_list args2;
|
|
size_t needed;
|
|
char *s;
|
|
|
|
va_copy(args2, args);
|
|
needed = vsnprintf(NULL, 0, format, args);
|
|
|
|
s = xmalloc(needed + 1);
|
|
|
|
vsnprintf(s, needed + 1, format, args2);
|
|
va_end(args2);
|
|
|
|
return s;
|
|
}
|
|
|
|
void *
|
|
x2nrealloc(void *p, size_t *n, size_t s)
|
|
{
|
|
*n = *n == 0 ? 1 : 2 * *n;
|
|
return xrealloc(p, *n * s);
|
|
}
|
|
|
|
char *
|
|
xasprintf(const char *format, ...)
|
|
{
|
|
va_list args;
|
|
char *s;
|
|
|
|
va_start(args, format);
|
|
s = xvasprintf(format, args);
|
|
va_end(args);
|
|
|
|
return s;
|
|
}
|
|
|
|
/* Similar to strlcpy() from OpenBSD, but it never reads more than 'size - 1'
|
|
* bytes from 'src' and doesn't return anything. */
|
|
void
|
|
ovs_strlcpy(char *dst, const char *src, size_t size)
|
|
{
|
|
if (size > 0) {
|
|
size_t len = strnlen(src, size - 1);
|
|
memcpy(dst, src, len);
|
|
dst[len] = '\0';
|
|
}
|
|
}
|
|
|
|
/* Copies 'src' to 'dst'. Reads no more than 'size - 1' bytes from 'src'.
|
|
* Always null-terminates 'dst' (if 'size' is nonzero), and writes a zero byte
|
|
* to every otherwise unused byte in 'dst'.
|
|
*
|
|
* Except for performance, the following call:
|
|
* ovs_strzcpy(dst, src, size);
|
|
* is equivalent to these two calls:
|
|
* memset(dst, '\0', size);
|
|
* ovs_strlcpy(dst, src, size);
|
|
*
|
|
* (Thus, ovs_strzcpy() is similar to strncpy() without some of the pitfalls.)
|
|
*/
|
|
void
|
|
ovs_strzcpy(char *dst, const char *src, size_t size)
|
|
{
|
|
if (size > 0) {
|
|
size_t len = strnlen(src, size - 1);
|
|
memcpy(dst, src, len);
|
|
memset(dst + len, '\0', size - len);
|
|
}
|
|
}
|
|
|
|
/* Prints 'format' on stderr, formatting it like printf() does. If 'err_no' is
|
|
* nonzero, then it is formatted with ovs_retval_to_string() and appended to
|
|
* the message inside parentheses. Then, terminates with abort().
|
|
*
|
|
* This function is preferred to ovs_fatal() in a situation where it would make
|
|
* sense for a monitoring process to restart the daemon.
|
|
*
|
|
* 'format' should not end with a new-line, because this function will add one
|
|
* itself. */
|
|
void
|
|
ovs_abort(int err_no, const char *format, ...)
|
|
{
|
|
va_list args;
|
|
|
|
va_start(args, format);
|
|
ovs_error_valist(err_no, format, args);
|
|
va_end(args);
|
|
|
|
abort();
|
|
}
|
|
|
|
/* Prints 'format' on stderr, formatting it like printf() does. If 'err_no' is
|
|
* nonzero, then it is formatted with ovs_retval_to_string() and appended to
|
|
* the message inside parentheses. Then, terminates with EXIT_FAILURE.
|
|
*
|
|
* 'format' should not end with a new-line, because this function will add one
|
|
* itself. */
|
|
void
|
|
ovs_fatal(int err_no, const char *format, ...)
|
|
{
|
|
va_list args;
|
|
|
|
va_start(args, format);
|
|
ovs_fatal_valist(err_no, format, args);
|
|
}
|
|
|
|
/* Same as ovs_fatal() except that the arguments are supplied as a va_list. */
|
|
void
|
|
ovs_fatal_valist(int err_no, const char *format, va_list args)
|
|
{
|
|
ovs_error_valist(err_no, format, args);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
/* Prints 'format' on stderr, formatting it like printf() does. If 'err_no' is
|
|
* nonzero, then it is formatted with ovs_retval_to_string() and appended to
|
|
* the message inside parentheses.
|
|
*
|
|
* 'format' should not end with a new-line, because this function will add one
|
|
* itself. */
|
|
void
|
|
ovs_error(int err_no, const char *format, ...)
|
|
{
|
|
va_list args;
|
|
|
|
va_start(args, format);
|
|
ovs_error_valist(err_no, format, args);
|
|
va_end(args);
|
|
}
|
|
|
|
/* Same as ovs_error() except that the arguments are supplied as a va_list. */
|
|
void
|
|
ovs_error_valist(int err_no, const char *format, va_list args)
|
|
{
|
|
int save_errno = errno;
|
|
|
|
fprintf(stderr, "%s: ", program_name);
|
|
vfprintf(stderr, format, args);
|
|
if (err_no != 0) {
|
|
fprintf(stderr, " (%s)", ovs_retval_to_string(err_no));
|
|
}
|
|
putc('\n', stderr);
|
|
|
|
errno = save_errno;
|
|
}
|
|
|
|
/* Many OVS functions return an int which is one of:
|
|
* - 0: no error yet
|
|
* - >0: errno value
|
|
* - EOF: end of file (not necessarily an error; depends on the function called)
|
|
*
|
|
* Returns the appropriate human-readable string. The caller must copy the
|
|
* string if it wants to hold onto it, as the storage may be overwritten on
|
|
* subsequent function calls.
|
|
*/
|
|
const char *
|
|
ovs_retval_to_string(int retval)
|
|
{
|
|
static char unknown[48];
|
|
|
|
if (!retval) {
|
|
return "";
|
|
}
|
|
if (retval > 0) {
|
|
return strerror(retval);
|
|
}
|
|
if (retval == EOF) {
|
|
return "End of file";
|
|
}
|
|
snprintf(unknown, sizeof unknown, "***unknown return value: %d***", retval);
|
|
return unknown;
|
|
}
|
|
|
|
/* Sets global "program_name" and "program_version" variables. Should
|
|
* be called at the beginning of main() with "argv[0]" as the argument
|
|
* to 'argv0'.
|
|
*
|
|
* The 'date' and 'time' arguments should likely be called with
|
|
* "__DATE__" and "__TIME__" to use the time the binary was built.
|
|
* Alternatively, the "set_program_name" macro may be called to do this
|
|
* automatically.
|
|
*/
|
|
void
|
|
set_program_name__(const char *argv0, const char *date, const char *time)
|
|
{
|
|
const char *slash = strrchr(argv0, '/');
|
|
program_name = slash ? slash + 1 : argv0;
|
|
|
|
free(program_version);
|
|
program_version = xasprintf("%s (Open vSwitch) "VERSION BUILDNR"\n"
|
|
"Compiled %s %s\n",
|
|
program_name, date, time);
|
|
}
|
|
|
|
/* Returns a pointer to a string describing the program version. The
|
|
* caller must not modify or free the returned string.
|
|
*/
|
|
const char *
|
|
get_program_version(void)
|
|
{
|
|
return program_version;
|
|
}
|
|
|
|
/* Print the version information for the program. */
|
|
void
|
|
ovs_print_version(uint8_t min_ofp, uint8_t max_ofp)
|
|
{
|
|
printf("%s", program_version);
|
|
if (min_ofp || max_ofp) {
|
|
printf("OpenFlow versions %#x:%#x\n", min_ofp, max_ofp);
|
|
}
|
|
}
|
|
|
|
/* Writes the 'size' bytes in 'buf' to 'stream' as hex bytes arranged 16 per
|
|
* line. Numeric offsets are also included, starting at 'ofs' for the first
|
|
* byte in 'buf'. If 'ascii' is true then the corresponding ASCII characters
|
|
* are also rendered alongside. */
|
|
void
|
|
ovs_hex_dump(FILE *stream, const void *buf_, size_t size,
|
|
uintptr_t ofs, bool ascii)
|
|
{
|
|
const uint8_t *buf = buf_;
|
|
const size_t per_line = 16; /* Maximum bytes per line. */
|
|
|
|
while (size > 0)
|
|
{
|
|
size_t start, end, n;
|
|
size_t i;
|
|
|
|
/* Number of bytes on this line. */
|
|
start = ofs % per_line;
|
|
end = per_line;
|
|
if (end - start > size)
|
|
end = start + size;
|
|
n = end - start;
|
|
|
|
/* Print line. */
|
|
fprintf(stream, "%08jx ", (uintmax_t) ROUND_DOWN(ofs, per_line));
|
|
for (i = 0; i < start; i++)
|
|
fprintf(stream, " ");
|
|
for (; i < end; i++)
|
|
fprintf(stream, "%02hhx%c",
|
|
buf[i - start], i == per_line / 2 - 1? '-' : ' ');
|
|
if (ascii)
|
|
{
|
|
for (; i < per_line; i++)
|
|
fprintf(stream, " ");
|
|
fprintf(stream, "|");
|
|
for (i = 0; i < start; i++)
|
|
fprintf(stream, " ");
|
|
for (; i < end; i++) {
|
|
int c = buf[i - start];
|
|
putc(c >= 32 && c < 127 ? c : '.', stream);
|
|
}
|
|
for (; i < per_line; i++)
|
|
fprintf(stream, " ");
|
|
fprintf(stream, "|");
|
|
}
|
|
fprintf(stream, "\n");
|
|
|
|
ofs += n;
|
|
buf += n;
|
|
size -= n;
|
|
}
|
|
}
|
|
|
|
bool
|
|
str_to_int(const char *s, int base, int *i)
|
|
{
|
|
long long ll;
|
|
bool ok = str_to_llong(s, base, &ll);
|
|
*i = ll;
|
|
return ok;
|
|
}
|
|
|
|
bool
|
|
str_to_long(const char *s, int base, long *li)
|
|
{
|
|
long long ll;
|
|
bool ok = str_to_llong(s, base, &ll);
|
|
*li = ll;
|
|
return ok;
|
|
}
|
|
|
|
bool
|
|
str_to_llong(const char *s, int base, long long *x)
|
|
{
|
|
int save_errno = errno;
|
|
char *tail;
|
|
errno = 0;
|
|
*x = strtoll(s, &tail, base);
|
|
if (errno == EINVAL || errno == ERANGE || tail == s || *tail != '\0') {
|
|
errno = save_errno;
|
|
*x = 0;
|
|
return false;
|
|
} else {
|
|
errno = save_errno;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool
|
|
str_to_uint(const char *s, int base, unsigned int *u)
|
|
{
|
|
return str_to_int(s, base, (int *) u);
|
|
}
|
|
|
|
bool
|
|
str_to_ulong(const char *s, int base, unsigned long *ul)
|
|
{
|
|
return str_to_long(s, base, (long *) ul);
|
|
}
|
|
|
|
bool
|
|
str_to_ullong(const char *s, int base, unsigned long long *ull)
|
|
{
|
|
return str_to_llong(s, base, (long long *) ull);
|
|
}
|
|
|
|
/* Converts floating-point string 's' into a double. If successful, stores
|
|
* the double in '*d' and returns true; on failure, stores 0 in '*d' and
|
|
* returns false.
|
|
*
|
|
* Underflow (e.g. "1e-9999") is not considered an error, but overflow
|
|
* (e.g. "1e9999)" is. */
|
|
bool
|
|
str_to_double(const char *s, double *d)
|
|
{
|
|
int save_errno = errno;
|
|
char *tail;
|
|
errno = 0;
|
|
*d = strtod(s, &tail);
|
|
if (errno == EINVAL || (errno == ERANGE && *d != 0)
|
|
|| tail == s || *tail != '\0') {
|
|
errno = save_errno;
|
|
*d = 0;
|
|
return false;
|
|
} else {
|
|
errno = save_errno;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* Returns the value of 'c' as a hexadecimal digit. */
|
|
int
|
|
hexit_value(int c)
|
|
{
|
|
switch (c) {
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
return c - '0';
|
|
|
|
case 'a': case 'A':
|
|
return 0xa;
|
|
|
|
case 'b': case 'B':
|
|
return 0xb;
|
|
|
|
case 'c': case 'C':
|
|
return 0xc;
|
|
|
|
case 'd': case 'D':
|
|
return 0xd;
|
|
|
|
case 'e': case 'E':
|
|
return 0xe;
|
|
|
|
case 'f': case 'F':
|
|
return 0xf;
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Returns the integer value of the 'n' hexadecimal digits starting at 's', or
|
|
* UINT_MAX if one of those "digits" is not really a hex digit. If 'ok' is
|
|
* nonnull, '*ok' is set to true if the conversion succeeds or to false if a
|
|
* non-hex digit is detected. */
|
|
unsigned int
|
|
hexits_value(const char *s, size_t n, bool *ok)
|
|
{
|
|
unsigned int value;
|
|
size_t i;
|
|
|
|
value = 0;
|
|
for (i = 0; i < n; i++) {
|
|
int hexit = hexit_value(s[i]);
|
|
if (hexit < 0) {
|
|
if (ok) {
|
|
*ok = false;
|
|
}
|
|
return UINT_MAX;
|
|
}
|
|
value = (value << 4) + hexit;
|
|
}
|
|
if (ok) {
|
|
*ok = true;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
/* Returns the current working directory as a malloc()'d string, or a null
|
|
* pointer if the current working directory cannot be determined. */
|
|
char *
|
|
get_cwd(void)
|
|
{
|
|
long int path_max;
|
|
size_t size;
|
|
|
|
/* Get maximum path length or at least a reasonable estimate. */
|
|
path_max = pathconf(".", _PC_PATH_MAX);
|
|
size = (path_max < 0 ? 1024
|
|
: path_max > 10240 ? 10240
|
|
: path_max);
|
|
|
|
/* Get current working directory. */
|
|
for (;;) {
|
|
char *buf = xmalloc(size);
|
|
if (getcwd(buf, size)) {
|
|
return xrealloc(buf, strlen(buf) + 1);
|
|
} else {
|
|
int error = errno;
|
|
free(buf);
|
|
if (error != ERANGE) {
|
|
VLOG_WARN("getcwd failed (%s)", strerror(error));
|
|
return NULL;
|
|
}
|
|
size *= 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
static char *
|
|
all_slashes_name(const char *s)
|
|
{
|
|
return xstrdup(s[0] == '/' && s[1] == '/' && s[2] != '/' ? "//"
|
|
: s[0] == '/' ? "/"
|
|
: ".");
|
|
}
|
|
|
|
/* Returns the directory name portion of 'file_name' as a malloc()'d string,
|
|
* similar to the POSIX dirname() function but thread-safe. */
|
|
char *
|
|
dir_name(const char *file_name)
|
|
{
|
|
size_t len = strlen(file_name);
|
|
while (len > 0 && file_name[len - 1] == '/') {
|
|
len--;
|
|
}
|
|
while (len > 0 && file_name[len - 1] != '/') {
|
|
len--;
|
|
}
|
|
while (len > 0 && file_name[len - 1] == '/') {
|
|
len--;
|
|
}
|
|
return len ? xmemdup0(file_name, len) : all_slashes_name(file_name);
|
|
}
|
|
|
|
/* Returns the file name portion of 'file_name' as a malloc()'d string,
|
|
* similar to the POSIX basename() function but thread-safe. */
|
|
char *
|
|
base_name(const char *file_name)
|
|
{
|
|
size_t end, start;
|
|
|
|
end = strlen(file_name);
|
|
while (end > 0 && file_name[end - 1] == '/') {
|
|
end--;
|
|
}
|
|
|
|
if (!end) {
|
|
return all_slashes_name(file_name);
|
|
}
|
|
|
|
start = end;
|
|
while (start > 0 && file_name[start - 1] != '/') {
|
|
start--;
|
|
}
|
|
|
|
return xmemdup0(file_name + start, end - start);
|
|
}
|
|
|
|
/* If 'file_name' starts with '/', returns a copy of 'file_name'. Otherwise,
|
|
* returns an absolute path to 'file_name' considering it relative to 'dir',
|
|
* which itself must be absolute. 'dir' may be null or the empty string, in
|
|
* which case the current working directory is used.
|
|
*
|
|
* Returns a null pointer if 'dir' is null and getcwd() fails. */
|
|
char *
|
|
abs_file_name(const char *dir, const char *file_name)
|
|
{
|
|
if (file_name[0] == '/') {
|
|
return xstrdup(file_name);
|
|
} else if (dir && dir[0]) {
|
|
char *separator = dir[strlen(dir) - 1] == '/' ? "" : "/";
|
|
return xasprintf("%s%s%s", dir, separator, file_name);
|
|
} else {
|
|
char *cwd = get_cwd();
|
|
if (cwd) {
|
|
char *abs_name = xasprintf("%s/%s", cwd, file_name);
|
|
free(cwd);
|
|
return abs_name;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Pass a value to this function if it is marked with
|
|
* __attribute__((warn_unused_result)) and you genuinely want to ignore
|
|
* its return value. (Note that every scalar type can be implicitly
|
|
* converted to bool.) */
|
|
void ignore(bool x OVS_UNUSED) { }
|
|
|
|
/* Returns an appropriate delimiter for inserting just before the 0-based item
|
|
* 'index' in a list that has 'total' items in it. */
|
|
const char *
|
|
english_list_delimiter(size_t index, size_t total)
|
|
{
|
|
return (index == 0 ? ""
|
|
: index < total - 1 ? ", "
|
|
: total > 2 ? ", and "
|
|
: " and ");
|
|
}
|
|
|
|
/* Given a 32 bit word 'n', calculates floor(log_2('n')). This is equivalent
|
|
* to finding the bit position of the most significant one bit in 'n'. It is
|
|
* an error to call this function with 'n' == 0. */
|
|
int
|
|
log_2_floor(uint32_t n)
|
|
{
|
|
assert(n);
|
|
|
|
#if !defined(UINT_MAX) || !defined(UINT32_MAX)
|
|
#error "Someone screwed up the #includes."
|
|
#elif __GNUC__ >= 4 && UINT_MAX == UINT32_MAX
|
|
return 31 - __builtin_clz(n);
|
|
#else
|
|
{
|
|
int log = 0;
|
|
|
|
#define BIN_SEARCH_STEP(BITS) \
|
|
if (n >= (1 << BITS)) { \
|
|
log += BITS; \
|
|
n >>= BITS; \
|
|
}
|
|
BIN_SEARCH_STEP(16);
|
|
BIN_SEARCH_STEP(8);
|
|
BIN_SEARCH_STEP(4);
|
|
BIN_SEARCH_STEP(2);
|
|
BIN_SEARCH_STEP(1);
|
|
#undef BIN_SEARCH_STEP
|
|
return log;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Given a 32 bit word 'n', calculates ceil(log_2('n')). It is an error to
|
|
* call this function with 'n' == 0. */
|
|
int
|
|
log_2_ceil(uint32_t n)
|
|
{
|
|
return log_2_floor(n) + !IS_POW2(n);
|
|
}
|
|
|
|
/* Returns the number of trailing 0-bits in 'n', or 32 if 'n' is 0. */
|
|
int
|
|
ctz(uint32_t n)
|
|
{
|
|
if (!n) {
|
|
return 32;
|
|
} else {
|
|
#if !defined(UINT_MAX) || !defined(UINT32_MAX)
|
|
#error "Someone screwed up the #includes."
|
|
#elif __GNUC__ >= 4 && UINT_MAX == UINT32_MAX
|
|
return __builtin_ctz(n);
|
|
#else
|
|
unsigned int k;
|
|
int count = 31;
|
|
|
|
#define CTZ_STEP(X) \
|
|
k = n << (X); \
|
|
if (k) { \
|
|
count -= X; \
|
|
n = k; \
|
|
}
|
|
CTZ_STEP(16);
|
|
CTZ_STEP(8);
|
|
CTZ_STEP(4);
|
|
CTZ_STEP(2);
|
|
CTZ_STEP(1);
|
|
#undef CTZ_STEP
|
|
|
|
return count;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* Returns true if the 'n' bytes starting at 'p' are zeros. */
|
|
bool
|
|
is_all_zeros(const uint8_t *p, size_t n)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
if (p[i] != 0x00) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Returns true if the 'n' bytes starting at 'p' are 0xff. */
|
|
bool
|
|
is_all_ones(const uint8_t *p, size_t n)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
if (p[i] != 0xff) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Copies 'n_bits' bits starting from bit 'src_ofs' in 'src' to the 'n_bits'
|
|
* starting from bit 'dst_ofs' in 'dst'. 'src' is 'src_len' bytes long and
|
|
* 'dst' is 'dst_len' bytes long.
|
|
*
|
|
* If you consider all of 'src' to be a single unsigned integer in network byte
|
|
* order, then bit N is the bit with value 2**N. That is, bit 0 is the bit
|
|
* with value 1 in src[src_len - 1], bit 1 is the bit with value 2, bit 2 is
|
|
* the bit with value 4, ..., bit 8 is the bit with value 1 in src[src_len -
|
|
* 2], and so on. Similarly for 'dst'.
|
|
*
|
|
* Required invariants:
|
|
* src_ofs + n_bits <= src_len * 8
|
|
* dst_ofs + n_bits <= dst_len * 8
|
|
* 'src' and 'dst' must not overlap.
|
|
*/
|
|
void
|
|
bitwise_copy(const void *src_, unsigned int src_len, unsigned int src_ofs,
|
|
void *dst_, unsigned int dst_len, unsigned int dst_ofs,
|
|
unsigned int n_bits)
|
|
{
|
|
const uint8_t *src = src_;
|
|
uint8_t *dst = dst_;
|
|
|
|
src += src_len - (src_ofs / 8 + 1);
|
|
src_ofs %= 8;
|
|
|
|
dst += dst_len - (dst_ofs / 8 + 1);
|
|
dst_ofs %= 8;
|
|
|
|
if (src_ofs == 0 && dst_ofs == 0) {
|
|
unsigned int n_bytes = n_bits / 8;
|
|
if (n_bytes) {
|
|
dst -= n_bytes - 1;
|
|
src -= n_bytes - 1;
|
|
memcpy(dst, src, n_bytes);
|
|
|
|
n_bits %= 8;
|
|
src--;
|
|
dst--;
|
|
}
|
|
if (n_bits) {
|
|
uint8_t mask = (1 << n_bits) - 1;
|
|
*dst = (*dst & ~mask) | (*src & mask);
|
|
}
|
|
} else {
|
|
while (n_bits > 0) {
|
|
unsigned int max_copy = 8 - MAX(src_ofs, dst_ofs);
|
|
unsigned int chunk = MIN(n_bits, max_copy);
|
|
uint8_t mask = ((1 << chunk) - 1) << dst_ofs;
|
|
|
|
*dst &= ~mask;
|
|
*dst |= ((*src >> src_ofs) << dst_ofs) & mask;
|
|
|
|
src_ofs += chunk;
|
|
if (src_ofs == 8) {
|
|
src--;
|
|
src_ofs = 0;
|
|
}
|
|
dst_ofs += chunk;
|
|
if (dst_ofs == 8) {
|
|
dst--;
|
|
dst_ofs = 0;
|
|
}
|
|
n_bits -= chunk;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Zeros the 'n_bits' bits starting from bit 'dst_ofs' in 'dst'. 'dst' is
|
|
* 'dst_len' bytes long.
|
|
*
|
|
* If you consider all of 'dst' to be a single unsigned integer in network byte
|
|
* order, then bit N is the bit with value 2**N. That is, bit 0 is the bit
|
|
* with value 1 in dst[dst_len - 1], bit 1 is the bit with value 2, bit 2 is
|
|
* the bit with value 4, ..., bit 8 is the bit with value 1 in dst[dst_len -
|
|
* 2], and so on.
|
|
*
|
|
* Required invariant:
|
|
* dst_ofs + n_bits <= dst_len * 8
|
|
*/
|
|
void
|
|
bitwise_zero(void *dst_, unsigned int dst_len, unsigned dst_ofs,
|
|
unsigned int n_bits)
|
|
{
|
|
uint8_t *dst = dst_;
|
|
|
|
if (!n_bits) {
|
|
return;
|
|
}
|
|
|
|
dst += dst_len - (dst_ofs / 8 + 1);
|
|
dst_ofs %= 8;
|
|
|
|
if (dst_ofs) {
|
|
unsigned int chunk = MIN(n_bits, 8 - dst_ofs);
|
|
|
|
*dst &= ~(((1 << chunk) - 1) << dst_ofs);
|
|
|
|
n_bits -= chunk;
|
|
if (!n_bits) {
|
|
return;
|
|
}
|
|
|
|
dst--;
|
|
}
|
|
|
|
while (n_bits >= 8) {
|
|
*dst-- = 0;
|
|
n_bits -= 8;
|
|
}
|
|
|
|
if (n_bits) {
|
|
*dst &= ~((1 << n_bits) - 1);
|
|
}
|
|
}
|
|
|
|
/* Copies the 'n_bits' low-order bits of 'value' into the 'n_bits' bits
|
|
* starting at bit 'dst_ofs' in 'dst', which is 'dst_len' bytes long.
|
|
*
|
|
* If you consider all of 'dst' to be a single unsigned integer in network byte
|
|
* order, then bit N is the bit with value 2**N. That is, bit 0 is the bit
|
|
* with value 1 in dst[dst_len - 1], bit 1 is the bit with value 2, bit 2 is
|
|
* the bit with value 4, ..., bit 8 is the bit with value 1 in dst[dst_len -
|
|
* 2], and so on.
|
|
*
|
|
* Required invariants:
|
|
* dst_ofs + n_bits <= dst_len * 8
|
|
* n_bits <= 64
|
|
*/
|
|
void
|
|
bitwise_put(uint64_t value,
|
|
void *dst, unsigned int dst_len, unsigned int dst_ofs,
|
|
unsigned int n_bits)
|
|
{
|
|
ovs_be64 n_value = htonll(value);
|
|
bitwise_copy(&n_value, sizeof n_value, 0,
|
|
dst, dst_len, dst_ofs,
|
|
n_bits);
|
|
}
|
|
|
|
/* Returns the value of the 'n_bits' bits starting at bit 'src_ofs' in 'src',
|
|
* which is 'src_len' bytes long.
|
|
*
|
|
* If you consider all of 'src' to be a single unsigned integer in network byte
|
|
* order, then bit N is the bit with value 2**N. That is, bit 0 is the bit
|
|
* with value 1 in src[src_len - 1], bit 1 is the bit with value 2, bit 2 is
|
|
* the bit with value 4, ..., bit 8 is the bit with value 1 in src[src_len -
|
|
* 2], and so on.
|
|
*
|
|
* Required invariants:
|
|
* src_ofs + n_bits <= src_len * 8
|
|
* n_bits <= 64
|
|
*/
|
|
uint64_t
|
|
bitwise_get(const void *src, unsigned int src_len,
|
|
unsigned int src_ofs, unsigned int n_bits)
|
|
{
|
|
ovs_be64 value = htonll(0);
|
|
|
|
bitwise_copy(src, src_len, src_ofs,
|
|
&value, sizeof value, 0,
|
|
n_bits);
|
|
return ntohll(value);
|
|
}
|