2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-28 21:07:47 +00:00
ovs/lib/dpif-netdev.c
Jarno Rajahalme 3c33f0ffe7 lib/dpif-netdev: Make emc_mutex recursive.
dpif_netdev_execute may be called while doing upcall processing.
Since the context of the input port is not tracked upto this point, we
use the shared dp->emc_cache for packet execution, where the emc_cache
is needed for recirculation.

While recursive mutexes can make thread safety analysis hard, for now
we change emc_mutex to be recursive.  Forthcoming new unit tests will
fail with the current non-recursive mutex.  Later improvements may
remove the need for this recursion.

Signed-off-by: Jarno Rajahalme <jrajahalme@nicira.com>
Acked-by: Daniele Di Proietto <ddiproietto@vmware.com>
2014-09-08 15:33:00 -07:00

2727 lines
78 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "dpif-netdev.h"
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <net/if.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <unistd.h>
#include "classifier.h"
#include "cmap.h"
#include "csum.h"
#include "dpif.h"
#include "dpif-provider.h"
#include "dummy.h"
#include "dynamic-string.h"
#include "fat-rwlock.h"
#include "flow.h"
#include "cmap.h"
#include "latch.h"
#include "list.h"
#include "meta-flow.h"
#include "netdev.h"
#include "netdev-dpdk.h"
#include "netdev-vport.h"
#include "netlink.h"
#include "odp-execute.h"
#include "odp-util.h"
#include "ofp-print.h"
#include "ofpbuf.h"
#include "ovs-rcu.h"
#include "packet-dpif.h"
#include "packets.h"
#include "poll-loop.h"
#include "random.h"
#include "seq.h"
#include "shash.h"
#include "sset.h"
#include "timeval.h"
#include "unixctl.h"
#include "util.h"
#include "vlog.h"
VLOG_DEFINE_THIS_MODULE(dpif_netdev);
/* By default, choose a priority in the middle. */
#define NETDEV_RULE_PRIORITY 0x8000
#define FLOW_DUMP_MAX_BATCH 50
/* Use per thread recirc_depth to prevent recirculation loop. */
#define MAX_RECIRC_DEPTH 5
DEFINE_STATIC_PER_THREAD_DATA(uint32_t, recirc_depth, 0)
/* Configuration parameters. */
enum { MAX_FLOWS = 65536 }; /* Maximum number of flows in flow table. */
/* Protects against changes to 'dp_netdevs'. */
static struct ovs_mutex dp_netdev_mutex = OVS_MUTEX_INITIALIZER;
/* Contains all 'struct dp_netdev's. */
static struct shash dp_netdevs OVS_GUARDED_BY(dp_netdev_mutex)
= SHASH_INITIALIZER(&dp_netdevs);
static struct vlog_rate_limit upcall_rl = VLOG_RATE_LIMIT_INIT(600, 600);
/* Stores a miniflow */
/* There are fields in the flow structure that we never use. Therefore we can
* save a few words of memory */
#define NETDEV_KEY_BUF_SIZE_U32 (FLOW_U32S \
- MINI_N_INLINE \
- FLOW_U32_SIZE(regs) \
- FLOW_U32_SIZE(metadata) \
)
struct netdev_flow_key {
struct miniflow flow;
uint32_t buf[NETDEV_KEY_BUF_SIZE_U32];
};
/* Exact match cache for frequently used flows
*
* The cache uses a 32-bit hash of the packet (which can be the RSS hash) to
* search its entries for a miniflow that matches exactly the miniflow of the
* packet. It stores the 'cls_rule'(rule) that matches the miniflow.
*
* A cache entry holds a reference to its 'dp_netdev_flow'.
*
* A miniflow with a given hash can be in one of EM_FLOW_HASH_SEGS different
* entries. The 32-bit hash is split into EM_FLOW_HASH_SEGS values (each of
* them is EM_FLOW_HASH_SHIFT bits wide and the remainder is thrown away). Each
* value is the index of a cache entry where the miniflow could be.
*
*
* Thread-safety
* =============
*
* Each pmd_thread has its own private exact match cache.
* If dp_netdev_input is not called from a pmd thread, a mutex is used.
*/
#define EM_FLOW_HASH_SHIFT 10
#define EM_FLOW_HASH_ENTRIES (1u << EM_FLOW_HASH_SHIFT)
#define EM_FLOW_HASH_MASK (EM_FLOW_HASH_ENTRIES - 1)
#define EM_FLOW_HASH_SEGS 2
struct emc_entry {
uint32_t hash;
struct netdev_flow_key mf;
struct dp_netdev_flow *flow;
};
struct emc_cache {
struct emc_entry entries[EM_FLOW_HASH_ENTRIES];
};
/* Iterate in the exact match cache through every entry that might contain a
* miniflow with hash 'HASH'. */
#define EMC_FOR_EACH_POS_WITH_HASH(EMC, CURRENT_ENTRY, HASH) \
for (uint32_t i__ = 0, srch_hash__ = (HASH); \
(CURRENT_ENTRY) = &(EMC)->entries[srch_hash__ & EM_FLOW_HASH_MASK], \
i__ < EM_FLOW_HASH_SEGS; \
i__++, srch_hash__ >>= EM_FLOW_HASH_SHIFT)
/* Datapath based on the network device interface from netdev.h.
*
*
* Thread-safety
* =============
*
* Some members, marked 'const', are immutable. Accessing other members
* requires synchronization, as noted in more detail below.
*
* Acquisition order is, from outermost to innermost:
*
* dp_netdev_mutex (global)
* port_mutex
* emc_mutex
* flow_mutex
*/
struct dp_netdev {
const struct dpif_class *const class;
const char *const name;
struct dpif *dpif;
struct ovs_refcount ref_cnt;
atomic_flag destroyed;
/* Flows.
*
* Writers of 'flow_table' must take the 'flow_mutex'. Corresponding
* changes to 'cls' must be made while still holding the 'flow_mutex'.
*/
struct ovs_mutex flow_mutex;
struct classifier cls;
struct cmap flow_table OVS_GUARDED; /* Flow table. */
/* Statistics.
*
* ovsthread_stats is internally synchronized. */
struct ovsthread_stats stats; /* Contains 'struct dp_netdev_stats *'. */
/* Ports.
*
* Protected by RCU. Take the mutex to add or remove ports. */
struct ovs_mutex port_mutex;
struct cmap ports;
struct seq *port_seq; /* Incremented whenever a port changes. */
/* Protects access to ofproto-dpif-upcall interface during revalidator
* thread synchronization. */
struct fat_rwlock upcall_rwlock;
upcall_callback *upcall_cb; /* Callback function for executing upcalls. */
void *upcall_aux;
/* Forwarding threads. */
struct latch exit_latch;
struct pmd_thread *pmd_threads;
size_t n_pmd_threads;
int pmd_count;
/* Exact match cache for non-pmd devices.
* Pmd devices use instead each thread's flow_cache for this purpose.
* Protected by emc_mutex */
struct emc_cache flow_cache OVS_GUARDED;
struct ovs_mutex emc_mutex;
};
static struct dp_netdev_port *dp_netdev_lookup_port(const struct dp_netdev *dp,
odp_port_t);
enum dp_stat_type {
DP_STAT_HIT, /* Packets that matched in the flow table. */
DP_STAT_MISS, /* Packets that did not match. */
DP_STAT_LOST, /* Packets not passed up to the client. */
DP_N_STATS
};
/* Contained by struct dp_netdev's 'stats' member. */
struct dp_netdev_stats {
struct ovs_mutex mutex; /* Protects 'n'. */
/* Indexed by DP_STAT_*, protected by 'mutex'. */
unsigned long long int n[DP_N_STATS] OVS_GUARDED;
};
/* A port in a netdev-based datapath. */
struct dp_netdev_port {
struct cmap_node node; /* Node in dp_netdev's 'ports'. */
odp_port_t port_no;
struct netdev *netdev;
struct netdev_saved_flags *sf;
struct netdev_rxq **rxq;
struct ovs_refcount ref_cnt;
char *type; /* Port type as requested by user. */
};
/* A flow in dp_netdev's 'flow_table'.
*
*
* Thread-safety
* =============
*
* Except near the beginning or ending of its lifespan, rule 'rule' belongs to
* its dp_netdev's classifier. The text below calls this classifier 'cls'.
*
* Motivation
* ----------
*
* The thread safety rules described here for "struct dp_netdev_flow" are
* motivated by two goals:
*
* - Prevent threads that read members of "struct dp_netdev_flow" from
* reading bad data due to changes by some thread concurrently modifying
* those members.
*
* - Prevent two threads making changes to members of a given "struct
* dp_netdev_flow" from interfering with each other.
*
*
* Rules
* -----
*
* A flow 'flow' may be accessed without a risk of being freed during an RCU
* grace period. Code that needs to hold onto a flow for a while
* should try incrementing 'flow->ref_cnt' with dp_netdev_flow_ref().
*
* 'flow->ref_cnt' protects 'flow' from being freed. It doesn't protect the
* flow from being deleted from 'cls' and it doesn't protect members of 'flow'
* from modification.
*
* Some members, marked 'const', are immutable. Accessing other members
* requires synchronization, as noted in more detail below.
*/
struct dp_netdev_flow {
bool dead;
/* Packet classification. */
const struct cls_rule cr; /* In owning dp_netdev's 'cls'. */
/* Hash table index by unmasked flow. */
const struct cmap_node node; /* In owning dp_netdev's 'flow_table'. */
const struct flow flow; /* The flow that created this entry. */
/* Number of references.
* The classifier owns one reference.
* Any thread trying to keep a rule from being freed should hold its own
* reference. */
struct ovs_refcount ref_cnt;
/* Statistics.
*
* Reading or writing these members requires 'mutex'. */
struct ovsthread_stats stats; /* Contains "struct dp_netdev_flow_stats". */
/* Actions. */
OVSRCU_TYPE(struct dp_netdev_actions *) actions;
};
static void dp_netdev_flow_unref(struct dp_netdev_flow *);
static bool dp_netdev_flow_ref(struct dp_netdev_flow *);
/* Contained by struct dp_netdev_flow's 'stats' member. */
struct dp_netdev_flow_stats {
struct ovs_mutex mutex; /* Guards all the other members. */
long long int used OVS_GUARDED; /* Last used time, in monotonic msecs. */
long long int packet_count OVS_GUARDED; /* Number of packets matched. */
long long int byte_count OVS_GUARDED; /* Number of bytes matched. */
uint16_t tcp_flags OVS_GUARDED; /* Bitwise-OR of seen tcp_flags values. */
};
/* A set of datapath actions within a "struct dp_netdev_flow".
*
*
* Thread-safety
* =============
*
* A struct dp_netdev_actions 'actions' is protected with RCU. */
struct dp_netdev_actions {
/* These members are immutable: they do not change during the struct's
* lifetime. */
struct nlattr *actions; /* Sequence of OVS_ACTION_ATTR_* attributes. */
unsigned int size; /* Size of 'actions', in bytes. */
};
struct dp_netdev_actions *dp_netdev_actions_create(const struct nlattr *,
size_t);
struct dp_netdev_actions *dp_netdev_flow_get_actions(
const struct dp_netdev_flow *);
static void dp_netdev_actions_free(struct dp_netdev_actions *);
/* PMD: Poll modes drivers. PMD accesses devices via polling to eliminate
* the performance overhead of interrupt processing. Therefore netdev can
* not implement rx-wait for these devices. dpif-netdev needs to poll
* these device to check for recv buffer. pmd-thread does polling for
* devices assigned to itself thread.
*
* DPDK used PMD for accessing NIC.
*
* A thread that receives packets from PMD ports, looks them up in the flow
* table, and executes the actions it finds.
**/
struct pmd_thread {
struct dp_netdev *dp;
struct emc_cache flow_cache;
pthread_t thread;
int id;
atomic_uint change_seq;
};
#define PMD_INITIAL_SEQ 1
/* Interface to netdev-based datapath. */
struct dpif_netdev {
struct dpif dpif;
struct dp_netdev *dp;
uint64_t last_port_seq;
};
static int get_port_by_number(struct dp_netdev *dp, odp_port_t port_no,
struct dp_netdev_port **portp);
static int get_port_by_name(struct dp_netdev *dp, const char *devname,
struct dp_netdev_port **portp);
static void dp_netdev_free(struct dp_netdev *)
OVS_REQUIRES(dp_netdev_mutex);
static void dp_netdev_flow_flush(struct dp_netdev *);
static int do_add_port(struct dp_netdev *dp, const char *devname,
const char *type, odp_port_t port_no)
OVS_REQUIRES(dp->port_mutex);
static void do_del_port(struct dp_netdev *dp, struct dp_netdev_port *)
OVS_REQUIRES(dp->port_mutex);
static int dpif_netdev_open(const struct dpif_class *, const char *name,
bool create, struct dpif **);
static void dp_netdev_execute_actions(struct dp_netdev *dp,
struct dpif_packet **, int c,
bool may_steal, struct pkt_metadata *,
struct emc_cache *flow_cache,
const struct nlattr *actions,
size_t actions_len);
static void dp_netdev_input(struct dp_netdev *, struct emc_cache *,
struct dpif_packet **, int cnt,
struct pkt_metadata *);
static void dp_netdev_set_pmd_threads(struct dp_netdev *, int n);
static void dp_netdev_disable_upcall(struct dp_netdev *);
static void emc_clear_entry(struct emc_entry *ce);
static void
emc_cache_init(struct emc_cache *flow_cache)
{
int i;
for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
flow_cache->entries[i].flow = NULL;
flow_cache->entries[i].hash = 0;
miniflow_initialize(&flow_cache->entries[i].mf.flow,
flow_cache->entries[i].mf.buf);
}
}
static void
emc_cache_uninit(struct emc_cache *flow_cache)
{
int i;
for (i = 0; i < ARRAY_SIZE(flow_cache->entries); i++) {
emc_clear_entry(&flow_cache->entries[i]);
}
}
static struct dpif_netdev *
dpif_netdev_cast(const struct dpif *dpif)
{
ovs_assert(dpif->dpif_class->open == dpif_netdev_open);
return CONTAINER_OF(dpif, struct dpif_netdev, dpif);
}
static struct dp_netdev *
get_dp_netdev(const struct dpif *dpif)
{
return dpif_netdev_cast(dpif)->dp;
}
static int
dpif_netdev_enumerate(struct sset *all_dps,
const struct dpif_class *dpif_class)
{
struct shash_node *node;
ovs_mutex_lock(&dp_netdev_mutex);
SHASH_FOR_EACH(node, &dp_netdevs) {
struct dp_netdev *dp = node->data;
if (dpif_class != dp->class) {
/* 'dp_netdevs' contains both "netdev" and "dummy" dpifs.
* If the class doesn't match, skip this dpif. */
continue;
}
sset_add(all_dps, node->name);
}
ovs_mutex_unlock(&dp_netdev_mutex);
return 0;
}
static bool
dpif_netdev_class_is_dummy(const struct dpif_class *class)
{
return class != &dpif_netdev_class;
}
static const char *
dpif_netdev_port_open_type(const struct dpif_class *class, const char *type)
{
return strcmp(type, "internal") ? type
: dpif_netdev_class_is_dummy(class) ? "dummy"
: "tap";
}
static struct dpif *
create_dpif_netdev(struct dp_netdev *dp)
{
uint16_t netflow_id = hash_string(dp->name, 0);
struct dpif_netdev *dpif;
ovs_refcount_ref(&dp->ref_cnt);
dpif = xmalloc(sizeof *dpif);
dpif_init(&dpif->dpif, dp->class, dp->name, netflow_id >> 8, netflow_id);
dpif->dp = dp;
dpif->last_port_seq = seq_read(dp->port_seq);
return &dpif->dpif;
}
/* Choose an unused, non-zero port number and return it on success.
* Return ODPP_NONE on failure. */
static odp_port_t
choose_port(struct dp_netdev *dp, const char *name)
OVS_REQUIRES(dp->port_mutex)
{
uint32_t port_no;
if (dp->class != &dpif_netdev_class) {
const char *p;
int start_no = 0;
/* If the port name begins with "br", start the number search at
* 100 to make writing tests easier. */
if (!strncmp(name, "br", 2)) {
start_no = 100;
}
/* If the port name contains a number, try to assign that port number.
* This can make writing unit tests easier because port numbers are
* predictable. */
for (p = name; *p != '\0'; p++) {
if (isdigit((unsigned char) *p)) {
port_no = start_no + strtol(p, NULL, 10);
if (port_no > 0 && port_no != odp_to_u32(ODPP_NONE)
&& !dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
return u32_to_odp(port_no);
}
break;
}
}
}
for (port_no = 1; port_no <= UINT16_MAX; port_no++) {
if (!dp_netdev_lookup_port(dp, u32_to_odp(port_no))) {
return u32_to_odp(port_no);
}
}
return ODPP_NONE;
}
static int
create_dp_netdev(const char *name, const struct dpif_class *class,
struct dp_netdev **dpp)
OVS_REQUIRES(dp_netdev_mutex)
{
struct dp_netdev *dp;
int error;
dp = xzalloc(sizeof *dp);
shash_add(&dp_netdevs, name, dp);
*CONST_CAST(const struct dpif_class **, &dp->class) = class;
*CONST_CAST(const char **, &dp->name) = xstrdup(name);
ovs_refcount_init(&dp->ref_cnt);
atomic_flag_clear(&dp->destroyed);
ovs_mutex_init(&dp->flow_mutex);
classifier_init(&dp->cls, NULL);
cmap_init(&dp->flow_table);
ovsthread_stats_init(&dp->stats);
ovs_mutex_init(&dp->port_mutex);
cmap_init(&dp->ports);
dp->port_seq = seq_create();
latch_init(&dp->exit_latch);
fat_rwlock_init(&dp->upcall_rwlock);
/* Disable upcalls by default. */
dp_netdev_disable_upcall(dp);
dp->upcall_aux = NULL;
dp->upcall_cb = NULL;
ovs_mutex_lock(&dp->port_mutex);
error = do_add_port(dp, name, "internal", ODPP_LOCAL);
ovs_mutex_unlock(&dp->port_mutex);
if (error) {
dp_netdev_free(dp);
return error;
}
ovs_mutex_init_recursive(&dp->emc_mutex);
emc_cache_init(&dp->flow_cache);
*dpp = dp;
return 0;
}
static int
dpif_netdev_open(const struct dpif_class *class, const char *name,
bool create, struct dpif **dpifp)
{
struct dp_netdev *dp;
int error;
ovs_mutex_lock(&dp_netdev_mutex);
dp = shash_find_data(&dp_netdevs, name);
if (!dp) {
error = create ? create_dp_netdev(name, class, &dp) : ENODEV;
} else {
error = (dp->class != class ? EINVAL
: create ? EEXIST
: 0);
}
if (!error) {
*dpifp = create_dpif_netdev(dp);
dp->dpif = *dpifp;
}
ovs_mutex_unlock(&dp_netdev_mutex);
return error;
}
/* Requires dp_netdev_mutex so that we can't get a new reference to 'dp'
* through the 'dp_netdevs' shash while freeing 'dp'. */
static void
dp_netdev_free(struct dp_netdev *dp)
OVS_REQUIRES(dp_netdev_mutex)
{
struct dp_netdev_port *port;
struct dp_netdev_stats *bucket;
int i;
shash_find_and_delete(&dp_netdevs, dp->name);
dp_netdev_set_pmd_threads(dp, 0);
free(dp->pmd_threads);
dp_netdev_flow_flush(dp);
ovs_mutex_lock(&dp->port_mutex);
CMAP_FOR_EACH (port, node, &dp->ports) {
do_del_port(dp, port);
}
ovs_mutex_unlock(&dp->port_mutex);
OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &dp->stats) {
ovs_mutex_destroy(&bucket->mutex);
free_cacheline(bucket);
}
ovsthread_stats_destroy(&dp->stats);
classifier_destroy(&dp->cls);
cmap_destroy(&dp->flow_table);
ovs_mutex_destroy(&dp->flow_mutex);
seq_destroy(dp->port_seq);
cmap_destroy(&dp->ports);
fat_rwlock_destroy(&dp->upcall_rwlock);
latch_destroy(&dp->exit_latch);
emc_cache_uninit(&dp->flow_cache);
ovs_mutex_destroy(&dp->emc_mutex);
free(CONST_CAST(char *, dp->name));
free(dp);
}
static void
dp_netdev_unref(struct dp_netdev *dp)
{
if (dp) {
/* Take dp_netdev_mutex so that, if dp->ref_cnt falls to zero, we can't
* get a new reference to 'dp' through the 'dp_netdevs' shash. */
ovs_mutex_lock(&dp_netdev_mutex);
if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
dp_netdev_free(dp);
}
ovs_mutex_unlock(&dp_netdev_mutex);
}
}
static void
dpif_netdev_close(struct dpif *dpif)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
dp_netdev_unref(dp);
free(dpif);
}
static int
dpif_netdev_destroy(struct dpif *dpif)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
if (!atomic_flag_test_and_set(&dp->destroyed)) {
if (ovs_refcount_unref_relaxed(&dp->ref_cnt) == 1) {
/* Can't happen: 'dpif' still owns a reference to 'dp'. */
OVS_NOT_REACHED();
}
}
return 0;
}
static int
dpif_netdev_get_stats(const struct dpif *dpif, struct dpif_dp_stats *stats)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_stats *bucket;
size_t i;
stats->n_flows = cmap_count(&dp->flow_table);
stats->n_hit = stats->n_missed = stats->n_lost = 0;
OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &dp->stats) {
ovs_mutex_lock(&bucket->mutex);
stats->n_hit += bucket->n[DP_STAT_HIT];
stats->n_missed += bucket->n[DP_STAT_MISS];
stats->n_lost += bucket->n[DP_STAT_LOST];
ovs_mutex_unlock(&bucket->mutex);
}
stats->n_masks = UINT32_MAX;
stats->n_mask_hit = UINT64_MAX;
return 0;
}
static void
dp_netdev_reload_pmd_threads(struct dp_netdev *dp)
{
int i;
for (i = 0; i < dp->n_pmd_threads; i++) {
struct pmd_thread *f = &dp->pmd_threads[i];
int old_seq;
atomic_add_relaxed(&f->change_seq, 1, &old_seq);
}
}
static uint32_t
hash_port_no(odp_port_t port_no)
{
return hash_int(odp_to_u32(port_no), 0);
}
static int
do_add_port(struct dp_netdev *dp, const char *devname, const char *type,
odp_port_t port_no)
OVS_REQUIRES(dp->port_mutex)
{
struct netdev_saved_flags *sf;
struct dp_netdev_port *port;
struct netdev *netdev;
enum netdev_flags flags;
const char *open_type;
int error;
int i;
/* XXX reject devices already in some dp_netdev. */
/* Open and validate network device. */
open_type = dpif_netdev_port_open_type(dp->class, type);
error = netdev_open(devname, open_type, &netdev);
if (error) {
return error;
}
/* XXX reject non-Ethernet devices */
netdev_get_flags(netdev, &flags);
if (flags & NETDEV_LOOPBACK) {
VLOG_ERR("%s: cannot add a loopback device", devname);
netdev_close(netdev);
return EINVAL;
}
port = xzalloc(sizeof *port);
port->port_no = port_no;
port->netdev = netdev;
port->rxq = xmalloc(sizeof *port->rxq * netdev_n_rxq(netdev));
port->type = xstrdup(type);
for (i = 0; i < netdev_n_rxq(netdev); i++) {
error = netdev_rxq_open(netdev, &port->rxq[i], i);
if (error
&& !(error == EOPNOTSUPP && dpif_netdev_class_is_dummy(dp->class))) {
VLOG_ERR("%s: cannot receive packets on this network device (%s)",
devname, ovs_strerror(errno));
netdev_close(netdev);
free(port->type);
free(port->rxq);
free(port);
return error;
}
}
error = netdev_turn_flags_on(netdev, NETDEV_PROMISC, &sf);
if (error) {
for (i = 0; i < netdev_n_rxq(netdev); i++) {
netdev_rxq_close(port->rxq[i]);
}
netdev_close(netdev);
free(port->type);
free(port->rxq);
free(port);
return error;
}
port->sf = sf;
if (netdev_is_pmd(netdev)) {
dp->pmd_count++;
dp_netdev_set_pmd_threads(dp, NR_PMD_THREADS);
dp_netdev_reload_pmd_threads(dp);
}
ovs_refcount_init(&port->ref_cnt);
cmap_insert(&dp->ports, &port->node, hash_port_no(port_no));
seq_change(dp->port_seq);
return 0;
}
static int
dpif_netdev_port_add(struct dpif *dpif, struct netdev *netdev,
odp_port_t *port_nop)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
const char *dpif_port;
odp_port_t port_no;
int error;
ovs_mutex_lock(&dp->port_mutex);
dpif_port = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
if (*port_nop != ODPP_NONE) {
port_no = *port_nop;
error = dp_netdev_lookup_port(dp, *port_nop) ? EBUSY : 0;
} else {
port_no = choose_port(dp, dpif_port);
error = port_no == ODPP_NONE ? EFBIG : 0;
}
if (!error) {
*port_nop = port_no;
error = do_add_port(dp, dpif_port, netdev_get_type(netdev), port_no);
}
ovs_mutex_unlock(&dp->port_mutex);
return error;
}
static int
dpif_netdev_port_del(struct dpif *dpif, odp_port_t port_no)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
int error;
ovs_mutex_lock(&dp->port_mutex);
if (port_no == ODPP_LOCAL) {
error = EINVAL;
} else {
struct dp_netdev_port *port;
error = get_port_by_number(dp, port_no, &port);
if (!error) {
do_del_port(dp, port);
}
}
ovs_mutex_unlock(&dp->port_mutex);
return error;
}
static bool
is_valid_port_number(odp_port_t port_no)
{
return port_no != ODPP_NONE;
}
static struct dp_netdev_port *
dp_netdev_lookup_port(const struct dp_netdev *dp, odp_port_t port_no)
{
struct dp_netdev_port *port;
CMAP_FOR_EACH_WITH_HASH (port, node, hash_port_no(port_no), &dp->ports) {
if (port->port_no == port_no) {
return port;
}
}
return NULL;
}
static int
get_port_by_number(struct dp_netdev *dp,
odp_port_t port_no, struct dp_netdev_port **portp)
{
if (!is_valid_port_number(port_no)) {
*portp = NULL;
return EINVAL;
} else {
*portp = dp_netdev_lookup_port(dp, port_no);
return *portp ? 0 : ENOENT;
}
}
static void
port_ref(struct dp_netdev_port *port)
{
if (port) {
ovs_refcount_ref(&port->ref_cnt);
}
}
static bool
port_try_ref(struct dp_netdev_port *port)
{
if (port) {
return ovs_refcount_try_ref_rcu(&port->ref_cnt);
}
return false;
}
static void
port_destroy__(struct dp_netdev_port *port)
{
int n_rxq = netdev_n_rxq(port->netdev);
int i;
netdev_close(port->netdev);
netdev_restore_flags(port->sf);
for (i = 0; i < n_rxq; i++) {
netdev_rxq_close(port->rxq[i]);
}
free(port->rxq);
free(port->type);
free(port);
}
static void
port_unref(struct dp_netdev_port *port)
{
if (port && ovs_refcount_unref_relaxed(&port->ref_cnt) == 1) {
ovsrcu_postpone(port_destroy__, port);
}
}
static int
get_port_by_name(struct dp_netdev *dp,
const char *devname, struct dp_netdev_port **portp)
OVS_REQUIRES(dp->port_mutex)
{
struct dp_netdev_port *port;
CMAP_FOR_EACH (port, node, &dp->ports) {
if (!strcmp(netdev_get_name(port->netdev), devname)) {
*portp = port;
return 0;
}
}
return ENOENT;
}
static void
do_del_port(struct dp_netdev *dp, struct dp_netdev_port *port)
OVS_REQUIRES(dp->port_mutex)
{
cmap_remove(&dp->ports, &port->node, hash_odp_port(port->port_no));
seq_change(dp->port_seq);
if (netdev_is_pmd(port->netdev)) {
dp_netdev_reload_pmd_threads(dp);
}
port_unref(port);
}
static void
answer_port_query(const struct dp_netdev_port *port,
struct dpif_port *dpif_port)
{
dpif_port->name = xstrdup(netdev_get_name(port->netdev));
dpif_port->type = xstrdup(port->type);
dpif_port->port_no = port->port_no;
}
static int
dpif_netdev_port_query_by_number(const struct dpif *dpif, odp_port_t port_no,
struct dpif_port *dpif_port)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_port *port;
int error;
error = get_port_by_number(dp, port_no, &port);
if (!error && dpif_port) {
answer_port_query(port, dpif_port);
}
return error;
}
static int
dpif_netdev_port_query_by_name(const struct dpif *dpif, const char *devname,
struct dpif_port *dpif_port)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_port *port;
int error;
ovs_mutex_lock(&dp->port_mutex);
error = get_port_by_name(dp, devname, &port);
if (!error && dpif_port) {
answer_port_query(port, dpif_port);
}
ovs_mutex_unlock(&dp->port_mutex);
return error;
}
static void
dp_netdev_flow_free(struct dp_netdev_flow *flow)
{
struct dp_netdev_flow_stats *bucket;
size_t i;
OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &flow->stats) {
ovs_mutex_destroy(&bucket->mutex);
free_cacheline(bucket);
}
ovsthread_stats_destroy(&flow->stats);
cls_rule_destroy(CONST_CAST(struct cls_rule *, &flow->cr));
dp_netdev_actions_free(dp_netdev_flow_get_actions(flow));
free(flow);
}
static void dp_netdev_flow_unref(struct dp_netdev_flow *flow)
{
if (ovs_refcount_unref_relaxed(&flow->ref_cnt) == 1) {
ovsrcu_postpone(dp_netdev_flow_free, flow);
}
}
static void
dp_netdev_remove_flow(struct dp_netdev *dp, struct dp_netdev_flow *flow)
OVS_REQUIRES(dp->flow_mutex)
{
struct cls_rule *cr = CONST_CAST(struct cls_rule *, &flow->cr);
struct cmap_node *node = CONST_CAST(struct cmap_node *, &flow->node);
classifier_remove(&dp->cls, cr);
cmap_remove(&dp->flow_table, node, flow_hash(&flow->flow, 0));
flow->dead = true;
dp_netdev_flow_unref(flow);
}
static void
dp_netdev_flow_flush(struct dp_netdev *dp)
{
struct dp_netdev_flow *netdev_flow;
ovs_mutex_lock(&dp->flow_mutex);
CMAP_FOR_EACH (netdev_flow, node, &dp->flow_table) {
dp_netdev_remove_flow(dp, netdev_flow);
}
ovs_mutex_unlock(&dp->flow_mutex);
}
static int
dpif_netdev_flow_flush(struct dpif *dpif)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
dp_netdev_flow_flush(dp);
return 0;
}
struct dp_netdev_port_state {
struct cmap_position position;
char *name;
};
static int
dpif_netdev_port_dump_start(const struct dpif *dpif OVS_UNUSED, void **statep)
{
*statep = xzalloc(sizeof(struct dp_netdev_port_state));
return 0;
}
static int
dpif_netdev_port_dump_next(const struct dpif *dpif, void *state_,
struct dpif_port *dpif_port)
{
struct dp_netdev_port_state *state = state_;
struct dp_netdev *dp = get_dp_netdev(dpif);
struct cmap_node *node;
int retval;
node = cmap_next_position(&dp->ports, &state->position);
if (node) {
struct dp_netdev_port *port;
port = CONTAINER_OF(node, struct dp_netdev_port, node);
free(state->name);
state->name = xstrdup(netdev_get_name(port->netdev));
dpif_port->name = state->name;
dpif_port->type = port->type;
dpif_port->port_no = port->port_no;
retval = 0;
} else {
retval = EOF;
}
return retval;
}
static int
dpif_netdev_port_dump_done(const struct dpif *dpif OVS_UNUSED, void *state_)
{
struct dp_netdev_port_state *state = state_;
free(state->name);
free(state);
return 0;
}
static int
dpif_netdev_port_poll(const struct dpif *dpif_, char **devnamep OVS_UNUSED)
{
struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
uint64_t new_port_seq;
int error;
new_port_seq = seq_read(dpif->dp->port_seq);
if (dpif->last_port_seq != new_port_seq) {
dpif->last_port_seq = new_port_seq;
error = ENOBUFS;
} else {
error = EAGAIN;
}
return error;
}
static void
dpif_netdev_port_poll_wait(const struct dpif *dpif_)
{
struct dpif_netdev *dpif = dpif_netdev_cast(dpif_);
seq_wait(dpif->dp->port_seq, dpif->last_port_seq);
}
static struct dp_netdev_flow *
dp_netdev_flow_cast(const struct cls_rule *cr)
{
return cr ? CONTAINER_OF(cr, struct dp_netdev_flow, cr) : NULL;
}
static bool dp_netdev_flow_ref(struct dp_netdev_flow *flow)
{
return ovs_refcount_try_ref_rcu(&flow->ref_cnt);
}
static inline bool
emc_entry_alive(struct emc_entry *ce)
{
return ce->flow && !ce->flow->dead;
}
static void
emc_clear_entry(struct emc_entry *ce)
{
if (ce->flow) {
dp_netdev_flow_unref(ce->flow);
ce->flow = NULL;
}
}
static inline void
emc_change_entry(struct emc_entry *ce, struct dp_netdev_flow *flow,
const struct miniflow *mf, uint32_t hash)
{
if (ce->flow != flow) {
if (ce->flow) {
dp_netdev_flow_unref(ce->flow);
}
if (dp_netdev_flow_ref(flow)) {
ce->flow = flow;
} else {
ce->flow = NULL;
}
}
if (mf) {
miniflow_clone_inline(&ce->mf.flow, mf, count_1bits(mf->map));
ce->hash = hash;
}
}
static inline void
emc_insert(struct emc_cache *cache, const struct miniflow *mf, uint32_t hash,
struct dp_netdev_flow *flow)
{
struct emc_entry *to_be_replaced = NULL;
struct emc_entry *current_entry;
EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, hash) {
if (current_entry->hash == hash
&& miniflow_equal(&current_entry->mf.flow, mf)) {
/* We found the entry with the 'mf' miniflow */
emc_change_entry(current_entry, flow, NULL, 0);
return;
}
/* Replacement policy: put the flow in an empty (not alive) entry, or
* in the first entry where it can be */
if (!to_be_replaced
|| (emc_entry_alive(to_be_replaced)
&& !emc_entry_alive(current_entry))
|| current_entry->hash < to_be_replaced->hash) {
to_be_replaced = current_entry;
}
}
/* We didn't find the miniflow in the cache.
* The 'to_be_replaced' entry is where the new flow will be stored */
emc_change_entry(to_be_replaced, flow, mf, hash);
}
static inline struct dp_netdev_flow *
emc_lookup(struct emc_cache *cache, const struct miniflow *mf, uint32_t hash)
{
struct emc_entry *current_entry;
EMC_FOR_EACH_POS_WITH_HASH(cache, current_entry, hash) {
if (current_entry->hash == hash && emc_entry_alive(current_entry)
&& miniflow_equal(&current_entry->mf.flow, mf)) {
/* We found the entry with the 'mf' miniflow */
return current_entry->flow;
}
}
return NULL;
}
static struct dp_netdev_flow *
dp_netdev_lookup_flow(const struct dp_netdev *dp, const struct miniflow *key)
{
struct dp_netdev_flow *netdev_flow;
struct cls_rule *rule;
classifier_lookup_miniflow_batch(&dp->cls, &key, &rule, 1);
netdev_flow = dp_netdev_flow_cast(rule);
return netdev_flow;
}
static struct dp_netdev_flow *
dp_netdev_find_flow(const struct dp_netdev *dp, const struct flow *flow)
{
struct dp_netdev_flow *netdev_flow;
CMAP_FOR_EACH_WITH_HASH (netdev_flow, node, flow_hash(flow, 0),
&dp->flow_table) {
if (flow_equal(&netdev_flow->flow, flow)) {
return netdev_flow;
}
}
return NULL;
}
static void
get_dpif_flow_stats(const struct dp_netdev_flow *netdev_flow,
struct dpif_flow_stats *stats)
{
struct dp_netdev_flow_stats *bucket;
size_t i;
memset(stats, 0, sizeof *stats);
OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &netdev_flow->stats) {
ovs_mutex_lock(&bucket->mutex);
stats->n_packets += bucket->packet_count;
stats->n_bytes += bucket->byte_count;
stats->used = MAX(stats->used, bucket->used);
stats->tcp_flags |= bucket->tcp_flags;
ovs_mutex_unlock(&bucket->mutex);
}
}
static void
dp_netdev_flow_to_dpif_flow(const struct dp_netdev_flow *netdev_flow,
struct ofpbuf *buffer, struct dpif_flow *flow)
{
struct flow_wildcards wc;
struct dp_netdev_actions *actions;
minimask_expand(&netdev_flow->cr.match.mask, &wc);
odp_flow_key_from_mask(buffer, &wc.masks, &netdev_flow->flow,
odp_to_u32(wc.masks.in_port.odp_port),
SIZE_MAX, true);
flow->mask = ofpbuf_data(buffer);
flow->mask_len = ofpbuf_size(buffer);
actions = dp_netdev_flow_get_actions(netdev_flow);
flow->actions = actions->actions;
flow->actions_len = actions->size;
get_dpif_flow_stats(netdev_flow, &flow->stats);
}
static int
dpif_netdev_mask_from_nlattrs(const struct nlattr *key, uint32_t key_len,
const struct nlattr *mask_key,
uint32_t mask_key_len, const struct flow *flow,
struct flow *mask)
{
if (mask_key_len) {
enum odp_key_fitness fitness;
fitness = odp_flow_key_to_mask(mask_key, mask_key_len, mask, flow);
if (fitness) {
/* This should not happen: it indicates that
* odp_flow_key_from_mask() and odp_flow_key_to_mask()
* disagree on the acceptable form of a mask. Log the problem
* as an error, with enough details to enable debugging. */
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
if (!VLOG_DROP_ERR(&rl)) {
struct ds s;
ds_init(&s);
odp_flow_format(key, key_len, mask_key, mask_key_len, NULL, &s,
true);
VLOG_ERR("internal error parsing flow mask %s (%s)",
ds_cstr(&s), odp_key_fitness_to_string(fitness));
ds_destroy(&s);
}
return EINVAL;
}
} else {
enum mf_field_id id;
/* No mask key, unwildcard everything except fields whose
* prerequisities are not met. */
memset(mask, 0x0, sizeof *mask);
for (id = 0; id < MFF_N_IDS; ++id) {
/* Skip registers and metadata. */
if (!(id >= MFF_REG0 && id < MFF_REG0 + FLOW_N_REGS)
&& id != MFF_METADATA) {
const struct mf_field *mf = mf_from_id(id);
if (mf_are_prereqs_ok(mf, flow)) {
mf_mask_field(mf, mask);
}
}
}
}
/* Force unwildcard the in_port.
*
* We need to do this even in the case where we unwildcard "everything"
* above because "everything" only includes the 16-bit OpenFlow port number
* mask->in_port.ofp_port, which only covers half of the 32-bit datapath
* port number mask->in_port.odp_port. */
mask->in_port.odp_port = u32_to_odp(UINT32_MAX);
return 0;
}
static int
dpif_netdev_flow_from_nlattrs(const struct nlattr *key, uint32_t key_len,
struct flow *flow)
{
odp_port_t in_port;
if (odp_flow_key_to_flow(key, key_len, flow)) {
/* This should not happen: it indicates that odp_flow_key_from_flow()
* and odp_flow_key_to_flow() disagree on the acceptable form of a
* flow. Log the problem as an error, with enough details to enable
* debugging. */
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
if (!VLOG_DROP_ERR(&rl)) {
struct ds s;
ds_init(&s);
odp_flow_format(key, key_len, NULL, 0, NULL, &s, true);
VLOG_ERR("internal error parsing flow key %s", ds_cstr(&s));
ds_destroy(&s);
}
return EINVAL;
}
in_port = flow->in_port.odp_port;
if (!is_valid_port_number(in_port) && in_port != ODPP_NONE) {
return EINVAL;
}
return 0;
}
static int
dpif_netdev_flow_get(const struct dpif *dpif, const struct dpif_flow_get *get)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_flow *netdev_flow;
struct flow key;
int error;
error = dpif_netdev_flow_from_nlattrs(get->key, get->key_len, &key);
if (error) {
return error;
}
netdev_flow = dp_netdev_find_flow(dp, &key);
if (netdev_flow) {
dp_netdev_flow_to_dpif_flow(netdev_flow, get->buffer, get->flow);
} else {
error = ENOENT;
}
return error;
}
static int
dp_netdev_flow_add(struct dp_netdev *dp, struct match *match,
const struct nlattr *actions, size_t actions_len)
OVS_REQUIRES(dp->flow_mutex)
{
struct dp_netdev_flow *netdev_flow;
netdev_flow = xzalloc(sizeof *netdev_flow);
*CONST_CAST(struct flow *, &netdev_flow->flow) = match->flow;
ovs_refcount_init(&netdev_flow->ref_cnt);
ovsthread_stats_init(&netdev_flow->stats);
ovsrcu_set(&netdev_flow->actions,
dp_netdev_actions_create(actions, actions_len));
cls_rule_init(CONST_CAST(struct cls_rule *, &netdev_flow->cr),
match, NETDEV_RULE_PRIORITY);
cmap_insert(&dp->flow_table,
CONST_CAST(struct cmap_node *, &netdev_flow->node),
flow_hash(&match->flow, 0));
classifier_insert(&dp->cls,
CONST_CAST(struct cls_rule *, &netdev_flow->cr));
if (OVS_UNLIKELY(VLOG_IS_DBG_ENABLED())) {
struct ds ds = DS_EMPTY_INITIALIZER;
ds_put_cstr(&ds, "flow_add: ");
match_format(match, &ds, OFP_DEFAULT_PRIORITY);
ds_put_cstr(&ds, ", actions:");
format_odp_actions(&ds, actions, actions_len);
VLOG_DBG_RL(&upcall_rl, "%s", ds_cstr(&ds));
ds_destroy(&ds);
}
return 0;
}
static void
clear_stats(struct dp_netdev_flow *netdev_flow)
{
struct dp_netdev_flow_stats *bucket;
size_t i;
OVSTHREAD_STATS_FOR_EACH_BUCKET (bucket, i, &netdev_flow->stats) {
ovs_mutex_lock(&bucket->mutex);
bucket->used = 0;
bucket->packet_count = 0;
bucket->byte_count = 0;
bucket->tcp_flags = 0;
ovs_mutex_unlock(&bucket->mutex);
}
}
static int
dpif_netdev_flow_put(struct dpif *dpif, const struct dpif_flow_put *put)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_flow *netdev_flow;
struct miniflow miniflow;
struct match match;
int error;
error = dpif_netdev_flow_from_nlattrs(put->key, put->key_len, &match.flow);
if (error) {
return error;
}
error = dpif_netdev_mask_from_nlattrs(put->key, put->key_len,
put->mask, put->mask_len,
&match.flow, &match.wc.masks);
if (error) {
return error;
}
miniflow_init(&miniflow, &match.flow);
ovs_mutex_lock(&dp->flow_mutex);
netdev_flow = dp_netdev_lookup_flow(dp, &miniflow);
if (!netdev_flow) {
if (put->flags & DPIF_FP_CREATE) {
if (cmap_count(&dp->flow_table) < MAX_FLOWS) {
if (put->stats) {
memset(put->stats, 0, sizeof *put->stats);
}
error = dp_netdev_flow_add(dp, &match, put->actions,
put->actions_len);
} else {
error = EFBIG;
}
} else {
error = ENOENT;
}
} else {
if (put->flags & DPIF_FP_MODIFY
&& flow_equal(&match.flow, &netdev_flow->flow)) {
struct dp_netdev_actions *new_actions;
struct dp_netdev_actions *old_actions;
new_actions = dp_netdev_actions_create(put->actions,
put->actions_len);
old_actions = dp_netdev_flow_get_actions(netdev_flow);
ovsrcu_set(&netdev_flow->actions, new_actions);
if (put->stats) {
get_dpif_flow_stats(netdev_flow, put->stats);
}
if (put->flags & DPIF_FP_ZERO_STATS) {
clear_stats(netdev_flow);
}
ovsrcu_postpone(dp_netdev_actions_free, old_actions);
} else if (put->flags & DPIF_FP_CREATE) {
error = EEXIST;
} else {
/* Overlapping flow. */
error = EINVAL;
}
}
ovs_mutex_unlock(&dp->flow_mutex);
miniflow_destroy(&miniflow);
return error;
}
static int
dpif_netdev_flow_del(struct dpif *dpif, const struct dpif_flow_del *del)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dp_netdev_flow *netdev_flow;
struct flow key;
int error;
error = dpif_netdev_flow_from_nlattrs(del->key, del->key_len, &key);
if (error) {
return error;
}
ovs_mutex_lock(&dp->flow_mutex);
netdev_flow = dp_netdev_find_flow(dp, &key);
if (netdev_flow) {
if (del->stats) {
get_dpif_flow_stats(netdev_flow, del->stats);
}
dp_netdev_remove_flow(dp, netdev_flow);
} else {
error = ENOENT;
}
ovs_mutex_unlock(&dp->flow_mutex);
return error;
}
struct dpif_netdev_flow_dump {
struct dpif_flow_dump up;
struct cmap_position pos;
int status;
struct ovs_mutex mutex;
};
static struct dpif_netdev_flow_dump *
dpif_netdev_flow_dump_cast(struct dpif_flow_dump *dump)
{
return CONTAINER_OF(dump, struct dpif_netdev_flow_dump, up);
}
static struct dpif_flow_dump *
dpif_netdev_flow_dump_create(const struct dpif *dpif_)
{
struct dpif_netdev_flow_dump *dump;
dump = xmalloc(sizeof *dump);
dpif_flow_dump_init(&dump->up, dpif_);
memset(&dump->pos, 0, sizeof dump->pos);
dump->status = 0;
ovs_mutex_init(&dump->mutex);
return &dump->up;
}
static int
dpif_netdev_flow_dump_destroy(struct dpif_flow_dump *dump_)
{
struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
ovs_mutex_destroy(&dump->mutex);
free(dump);
return 0;
}
struct dpif_netdev_flow_dump_thread {
struct dpif_flow_dump_thread up;
struct dpif_netdev_flow_dump *dump;
struct odputil_keybuf keybuf[FLOW_DUMP_MAX_BATCH];
struct odputil_keybuf maskbuf[FLOW_DUMP_MAX_BATCH];
};
static struct dpif_netdev_flow_dump_thread *
dpif_netdev_flow_dump_thread_cast(struct dpif_flow_dump_thread *thread)
{
return CONTAINER_OF(thread, struct dpif_netdev_flow_dump_thread, up);
}
static struct dpif_flow_dump_thread *
dpif_netdev_flow_dump_thread_create(struct dpif_flow_dump *dump_)
{
struct dpif_netdev_flow_dump *dump = dpif_netdev_flow_dump_cast(dump_);
struct dpif_netdev_flow_dump_thread *thread;
thread = xmalloc(sizeof *thread);
dpif_flow_dump_thread_init(&thread->up, &dump->up);
thread->dump = dump;
return &thread->up;
}
static void
dpif_netdev_flow_dump_thread_destroy(struct dpif_flow_dump_thread *thread_)
{
struct dpif_netdev_flow_dump_thread *thread
= dpif_netdev_flow_dump_thread_cast(thread_);
free(thread);
}
static int
dpif_netdev_flow_dump_next(struct dpif_flow_dump_thread *thread_,
struct dpif_flow *flows, int max_flows)
{
struct dpif_netdev_flow_dump_thread *thread
= dpif_netdev_flow_dump_thread_cast(thread_);
struct dpif_netdev_flow_dump *dump = thread->dump;
struct dpif_netdev *dpif = dpif_netdev_cast(thread->up.dpif);
struct dp_netdev_flow *netdev_flows[FLOW_DUMP_MAX_BATCH];
struct dp_netdev *dp = get_dp_netdev(&dpif->dpif);
int n_flows = 0;
int i;
ovs_mutex_lock(&dump->mutex);
if (!dump->status) {
for (n_flows = 0; n_flows < MIN(max_flows, FLOW_DUMP_MAX_BATCH);
n_flows++) {
struct cmap_node *node;
node = cmap_next_position(&dp->flow_table, &dump->pos);
if (!node) {
dump->status = EOF;
break;
}
netdev_flows[n_flows] = CONTAINER_OF(node, struct dp_netdev_flow,
node);
}
}
ovs_mutex_unlock(&dump->mutex);
for (i = 0; i < n_flows; i++) {
struct odputil_keybuf *maskbuf = &thread->maskbuf[i];
struct odputil_keybuf *keybuf = &thread->keybuf[i];
struct dp_netdev_flow *netdev_flow = netdev_flows[i];
struct dpif_flow *f = &flows[i];
struct dp_netdev_actions *dp_actions;
struct flow_wildcards wc;
struct ofpbuf buf;
minimask_expand(&netdev_flow->cr.match.mask, &wc);
/* Key. */
ofpbuf_use_stack(&buf, keybuf, sizeof *keybuf);
odp_flow_key_from_flow(&buf, &netdev_flow->flow, &wc.masks,
netdev_flow->flow.in_port.odp_port, true);
f->key = ofpbuf_data(&buf);
f->key_len = ofpbuf_size(&buf);
/* Mask. */
ofpbuf_use_stack(&buf, maskbuf, sizeof *maskbuf);
odp_flow_key_from_mask(&buf, &wc.masks, &netdev_flow->flow,
odp_to_u32(wc.masks.in_port.odp_port),
SIZE_MAX, true);
f->mask = ofpbuf_data(&buf);
f->mask_len = ofpbuf_size(&buf);
/* Actions. */
dp_actions = dp_netdev_flow_get_actions(netdev_flow);
f->actions = dp_actions->actions;
f->actions_len = dp_actions->size;
/* Stats. */
get_dpif_flow_stats(netdev_flow, &f->stats);
}
return n_flows;
}
static int
dpif_netdev_execute(struct dpif *dpif, struct dpif_execute *execute)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
struct dpif_packet packet, *pp;
struct pkt_metadata *md = &execute->md;
if (ofpbuf_size(execute->packet) < ETH_HEADER_LEN ||
ofpbuf_size(execute->packet) > UINT16_MAX) {
return EINVAL;
}
packet.ofpbuf = *execute->packet;
pp = &packet;
ovs_mutex_lock(&dp->emc_mutex);
dp_netdev_execute_actions(dp, &pp, 1, false, md,
&dp->flow_cache, execute->actions,
execute->actions_len);
ovs_mutex_unlock(&dp->emc_mutex);
/* Even though may_steal is set to false, some actions could modify or
* reallocate the ofpbuf memory. We need to pass those changes to the
* caller */
*execute->packet = packet.ofpbuf;
return 0;
}
static void
dpif_netdev_operate(struct dpif *dpif, struct dpif_op **ops, size_t n_ops)
{
size_t i;
for (i = 0; i < n_ops; i++) {
struct dpif_op *op = ops[i];
switch (op->type) {
case DPIF_OP_FLOW_PUT:
op->error = dpif_netdev_flow_put(dpif, &op->u.flow_put);
break;
case DPIF_OP_FLOW_DEL:
op->error = dpif_netdev_flow_del(dpif, &op->u.flow_del);
break;
case DPIF_OP_EXECUTE:
op->error = dpif_netdev_execute(dpif, &op->u.execute);
break;
case DPIF_OP_FLOW_GET:
op->error = dpif_netdev_flow_get(dpif, &op->u.flow_get);
break;
}
}
}
static int
dpif_netdev_queue_to_priority(const struct dpif *dpif OVS_UNUSED,
uint32_t queue_id, uint32_t *priority)
{
*priority = queue_id;
return 0;
}
/* Creates and returns a new 'struct dp_netdev_actions', with a reference count
* of 1, whose actions are a copy of from the 'ofpacts_len' bytes of
* 'ofpacts'. */
struct dp_netdev_actions *
dp_netdev_actions_create(const struct nlattr *actions, size_t size)
{
struct dp_netdev_actions *netdev_actions;
netdev_actions = xmalloc(sizeof *netdev_actions);
netdev_actions->actions = xmemdup(actions, size);
netdev_actions->size = size;
return netdev_actions;
}
struct dp_netdev_actions *
dp_netdev_flow_get_actions(const struct dp_netdev_flow *flow)
{
return ovsrcu_get(struct dp_netdev_actions *, &flow->actions);
}
static void
dp_netdev_actions_free(struct dp_netdev_actions *actions)
{
free(actions->actions);
free(actions);
}
static void
dp_netdev_process_rxq_port(struct dp_netdev *dp,
struct emc_cache *flow_cache,
struct dp_netdev_port *port,
struct netdev_rxq *rxq)
{
struct dpif_packet *packets[NETDEV_MAX_RX_BATCH];
int error, cnt;
error = netdev_rxq_recv(rxq, packets, &cnt);
if (!error) {
struct pkt_metadata md = PKT_METADATA_INITIALIZER(port->port_no);
*recirc_depth_get() = 0;
dp_netdev_input(dp, flow_cache, packets, cnt, &md);
} else if (error != EAGAIN && error != EOPNOTSUPP) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
VLOG_ERR_RL(&rl, "error receiving data from %s: %s",
netdev_get_name(port->netdev), ovs_strerror(error));
}
}
static void
dpif_netdev_run(struct dpif *dpif)
{
struct dp_netdev_port *port;
struct dp_netdev *dp = get_dp_netdev(dpif);
ovs_mutex_lock(&dp->emc_mutex);
CMAP_FOR_EACH (port, node, &dp->ports) {
if (!netdev_is_pmd(port->netdev)) {
int i;
for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
dp_netdev_process_rxq_port(dp, &dp->flow_cache, port,
port->rxq[i]);
}
}
}
ovs_mutex_unlock(&dp->emc_mutex);
}
static void
dpif_netdev_wait(struct dpif *dpif)
{
struct dp_netdev_port *port;
struct dp_netdev *dp = get_dp_netdev(dpif);
ovs_mutex_lock(&dp_netdev_mutex);
CMAP_FOR_EACH (port, node, &dp->ports) {
if (!netdev_is_pmd(port->netdev)) {
int i;
for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
netdev_rxq_wait(port->rxq[i]);
}
}
}
ovs_mutex_unlock(&dp_netdev_mutex);
}
struct rxq_poll {
struct dp_netdev_port *port;
struct netdev_rxq *rx;
};
static int
pmd_load_queues(struct pmd_thread *f,
struct rxq_poll **ppoll_list, int poll_cnt)
{
struct dp_netdev *dp = f->dp;
struct rxq_poll *poll_list = *ppoll_list;
struct dp_netdev_port *port;
int id = f->id;
int index;
int i;
/* Simple scheduler for netdev rx polling. */
for (i = 0; i < poll_cnt; i++) {
port_unref(poll_list[i].port);
}
poll_cnt = 0;
index = 0;
CMAP_FOR_EACH (port, node, &f->dp->ports) {
/* Calls port_try_ref() to prevent the main thread
* from deleting the port. */
if (port_try_ref(port)) {
if (netdev_is_pmd(port->netdev)) {
int i;
for (i = 0; i < netdev_n_rxq(port->netdev); i++) {
if ((index % dp->n_pmd_threads) == id) {
poll_list = xrealloc(poll_list,
sizeof *poll_list * (poll_cnt + 1));
port_ref(port);
poll_list[poll_cnt].port = port;
poll_list[poll_cnt].rx = port->rxq[i];
poll_cnt++;
}
index++;
}
}
/* Unrefs the port_try_ref(). */
port_unref(port);
}
}
*ppoll_list = poll_list;
return poll_cnt;
}
static void *
pmd_thread_main(void *f_)
{
struct pmd_thread *f = f_;
struct dp_netdev *dp = f->dp;
unsigned int lc = 0;
struct rxq_poll *poll_list;
unsigned int port_seq = PMD_INITIAL_SEQ;
int poll_cnt;
int i;
poll_cnt = 0;
poll_list = NULL;
pmd_thread_setaffinity_cpu(f->id);
reload:
emc_cache_init(&f->flow_cache);
poll_cnt = pmd_load_queues(f, &poll_list, poll_cnt);
for (;;) {
int i;
for (i = 0; i < poll_cnt; i++) {
dp_netdev_process_rxq_port(dp, &f->flow_cache, poll_list[i].port,
poll_list[i].rx);
}
if (lc++ > 1024) {
unsigned int seq;
lc = 0;
ovsrcu_quiesce();
atomic_read_relaxed(&f->change_seq, &seq);
if (seq != port_seq) {
port_seq = seq;
break;
}
}
}
emc_cache_uninit(&f->flow_cache);
if (!latch_is_set(&f->dp->exit_latch)){
goto reload;
}
for (i = 0; i < poll_cnt; i++) {
port_unref(poll_list[i].port);
}
free(poll_list);
return NULL;
}
static void
dp_netdev_disable_upcall(struct dp_netdev *dp)
OVS_ACQUIRES(dp->upcall_rwlock)
{
fat_rwlock_wrlock(&dp->upcall_rwlock);
}
static void
dpif_netdev_disable_upcall(struct dpif *dpif)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct dp_netdev *dp = get_dp_netdev(dpif);
dp_netdev_disable_upcall(dp);
}
static void
dp_netdev_enable_upcall(struct dp_netdev *dp)
OVS_RELEASES(dp->upcall_rwlock)
{
fat_rwlock_unlock(&dp->upcall_rwlock);
}
static void
dpif_netdev_enable_upcall(struct dpif *dpif)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct dp_netdev *dp = get_dp_netdev(dpif);
dp_netdev_enable_upcall(dp);
}
static void
dp_netdev_set_pmd_threads(struct dp_netdev *dp, int n)
{
int i;
if (n == dp->n_pmd_threads) {
return;
}
/* Stop existing threads. */
latch_set(&dp->exit_latch);
dp_netdev_reload_pmd_threads(dp);
for (i = 0; i < dp->n_pmd_threads; i++) {
struct pmd_thread *f = &dp->pmd_threads[i];
xpthread_join(f->thread, NULL);
}
latch_poll(&dp->exit_latch);
free(dp->pmd_threads);
/* Start new threads. */
dp->pmd_threads = xmalloc(n * sizeof *dp->pmd_threads);
dp->n_pmd_threads = n;
for (i = 0; i < n; i++) {
struct pmd_thread *f = &dp->pmd_threads[i];
f->dp = dp;
f->id = i;
atomic_init(&f->change_seq, PMD_INITIAL_SEQ);
/* Each thread will distribute all devices rx-queues among
* themselves. */
f->thread = ovs_thread_create("pmd", pmd_thread_main, f);
}
}
static void *
dp_netdev_flow_stats_new_cb(void)
{
struct dp_netdev_flow_stats *bucket = xzalloc_cacheline(sizeof *bucket);
ovs_mutex_init(&bucket->mutex);
return bucket;
}
static void
dp_netdev_flow_used(struct dp_netdev_flow *netdev_flow,
int cnt, int size,
uint16_t tcp_flags)
{
long long int now = time_msec();
struct dp_netdev_flow_stats *bucket;
bucket = ovsthread_stats_bucket_get(&netdev_flow->stats,
dp_netdev_flow_stats_new_cb);
ovs_mutex_lock(&bucket->mutex);
bucket->used = MAX(now, bucket->used);
bucket->packet_count += cnt;
bucket->byte_count += size;
bucket->tcp_flags |= tcp_flags;
ovs_mutex_unlock(&bucket->mutex);
}
static void *
dp_netdev_stats_new_cb(void)
{
struct dp_netdev_stats *bucket = xzalloc_cacheline(sizeof *bucket);
ovs_mutex_init(&bucket->mutex);
return bucket;
}
static void
dp_netdev_count_packet(struct dp_netdev *dp, enum dp_stat_type type, int cnt)
{
struct dp_netdev_stats *bucket;
bucket = ovsthread_stats_bucket_get(&dp->stats, dp_netdev_stats_new_cb);
ovs_mutex_lock(&bucket->mutex);
bucket->n[type] += cnt;
ovs_mutex_unlock(&bucket->mutex);
}
static int
dp_netdev_upcall(struct dp_netdev *dp, struct dpif_packet *packet_,
struct flow *flow, struct flow_wildcards *wc,
enum dpif_upcall_type type, const struct nlattr *userdata,
struct ofpbuf *actions, struct ofpbuf *put_actions)
{
struct ofpbuf *packet = &packet_->ofpbuf;
if (type == DPIF_UC_MISS) {
dp_netdev_count_packet(dp, DP_STAT_MISS, 1);
}
if (OVS_UNLIKELY(!dp->upcall_cb)) {
return ENODEV;
}
if (OVS_UNLIKELY(!VLOG_DROP_DBG(&upcall_rl))) {
struct ds ds = DS_EMPTY_INITIALIZER;
struct ofpbuf key;
char *packet_str;
ofpbuf_init(&key, 0);
odp_flow_key_from_flow(&key, flow, &wc->masks, flow->in_port.odp_port,
true);
packet_str = ofp_packet_to_string(ofpbuf_data(packet),
ofpbuf_size(packet));
odp_flow_key_format(ofpbuf_data(&key), ofpbuf_size(&key), &ds);
VLOG_DBG("%s: %s upcall:\n%s\n%s", dp->name,
dpif_upcall_type_to_string(type), ds_cstr(&ds), packet_str);
ofpbuf_uninit(&key);
free(packet_str);
ds_destroy(&ds);
}
return dp->upcall_cb(packet, flow, type, userdata, actions, wc,
put_actions, dp->upcall_aux);
}
static inline uint32_t
dpif_netdev_packet_get_dp_hash(struct dpif_packet *packet,
const struct miniflow *mf)
{
uint32_t hash;
hash = dpif_packet_get_dp_hash(packet);
if (OVS_UNLIKELY(!hash)) {
hash = miniflow_hash_5tuple(mf, 0);
dpif_packet_set_dp_hash(packet, hash);
}
return hash;
}
struct packet_batch {
unsigned int packet_count;
unsigned int byte_count;
uint16_t tcp_flags;
struct dp_netdev_flow *flow;
struct dpif_packet *packets[NETDEV_MAX_RX_BATCH];
struct pkt_metadata md;
};
static inline void
packet_batch_update(struct packet_batch *batch, struct dpif_packet *packet,
const struct miniflow *mf)
{
batch->tcp_flags |= miniflow_get_tcp_flags(mf);
batch->packets[batch->packet_count++] = packet;
batch->byte_count += ofpbuf_size(&packet->ofpbuf);
}
static inline void
packet_batch_init(struct packet_batch *batch, struct dp_netdev_flow *flow,
struct pkt_metadata *md)
{
batch->flow = flow;
batch->md = *md;
batch->packet_count = 0;
batch->byte_count = 0;
batch->tcp_flags = 0;
}
static inline void
packet_batch_execute(struct packet_batch *batch, struct dp_netdev *dp,
struct emc_cache *flow_cache)
{
struct dp_netdev_actions *actions;
struct dp_netdev_flow *flow = batch->flow;
dp_netdev_flow_used(batch->flow, batch->packet_count, batch->byte_count,
batch->tcp_flags);
actions = dp_netdev_flow_get_actions(flow);
dp_netdev_execute_actions(dp, batch->packets, batch->packet_count, true,
&batch->md, flow_cache,
actions->actions, actions->size);
dp_netdev_count_packet(dp, DP_STAT_HIT, batch->packet_count);
}
static inline bool
dp_netdev_queue_batches(struct dpif_packet *pkt, struct pkt_metadata *md,
struct dp_netdev_flow *flow, const struct miniflow *mf,
struct packet_batch *batches, size_t *n_batches,
size_t max_batches)
{
struct packet_batch *batch = NULL;
int j;
if (OVS_UNLIKELY(!flow)) {
return false;
}
/* XXX: This O(n^2) algortihm makes sense if we're operating under the
* assumption that the number of distinct flows (and therefore the
* number of distinct batches) is quite small. If this turns out not
* to be the case, it may make sense to pre sort based on the
* netdev_flow pointer. That done we can get the appropriate batching
* in O(n * log(n)) instead. */
for (j = *n_batches - 1; j >= 0; j--) {
if (batches[j].flow == flow) {
batch = &batches[j];
packet_batch_update(batch, pkt, mf);
return true;
}
}
if (OVS_UNLIKELY(*n_batches >= max_batches)) {
return false;
}
batch = &batches[(*n_batches)++];
packet_batch_init(batch, flow, md);
packet_batch_update(batch, pkt, mf);
return true;
}
static inline void
dpif_packet_swap(struct dpif_packet **a, struct dpif_packet **b)
{
struct dpif_packet *tmp = *a;
*a = *b;
*b = tmp;
}
/* Try to process all ('cnt') the 'packets' using only the exact match cache
* 'flow_cache'. If a flow is not found for a packet 'packets[i]', or if there
* is no matching batch for a packet's flow, the miniflow is copied into 'keys'
* and the packet pointer is moved at the beginning of the 'packets' array.
*
* The function returns the number of packets that needs to be processed in the
* 'packets' array (they have been moved to the beginning of the vector).
*/
static inline size_t
emc_processing(struct dp_netdev *dp, struct emc_cache *flow_cache,
struct dpif_packet **packets, size_t cnt,
struct pkt_metadata *md, struct netdev_flow_key *keys)
{
struct netdev_flow_key key;
struct packet_batch batches[4];
size_t n_batches, i;
size_t notfound_cnt = 0;
n_batches = 0;
miniflow_initialize(&key.flow, key.buf);
for (i = 0; i < cnt; i++) {
struct dp_netdev_flow *flow;
uint32_t hash;
if (OVS_UNLIKELY(ofpbuf_size(&packets[i]->ofpbuf) < ETH_HEADER_LEN)) {
dpif_packet_delete(packets[i]);
continue;
}
miniflow_extract(&packets[i]->ofpbuf, md, &key.flow);
hash = dpif_netdev_packet_get_dp_hash(packets[i], &key.flow);
flow = emc_lookup(flow_cache, &key.flow, hash);
if (OVS_UNLIKELY(!dp_netdev_queue_batches(packets[i], md,
flow, &key.flow,
batches, &n_batches,
ARRAY_SIZE(batches)))) {
if (i != notfound_cnt) {
dpif_packet_swap(&packets[i], &packets[notfound_cnt]);
}
keys[notfound_cnt++] = key;
}
}
for (i = 0; i < n_batches; i++) {
packet_batch_execute(&batches[i], dp, flow_cache);
}
return notfound_cnt;
}
static inline void
fast_path_processing(struct dp_netdev *dp, struct emc_cache *flow_cache,
struct dpif_packet **packets, size_t cnt,
struct pkt_metadata *md, struct netdev_flow_key *keys)
{
#if !defined(__CHECKER__) && !defined(_WIN32)
const size_t PKT_ARRAY_SIZE = cnt;
#else
/* Sparse or MSVC doesn't like variable length array. */
enum { PKT_ARRAY_SIZE = NETDEV_MAX_RX_BATCH };
#endif
struct packet_batch batches[PKT_ARRAY_SIZE];
const struct miniflow *mfs[PKT_ARRAY_SIZE]; /* NULL at bad packets. */
struct cls_rule *rules[PKT_ARRAY_SIZE];
size_t n_batches, i;
bool any_miss;
for (i = 0; i < cnt; i++) {
mfs[i] = &keys[i].flow;
}
any_miss = !classifier_lookup_miniflow_batch(&dp->cls, mfs, rules, cnt);
if (OVS_UNLIKELY(any_miss) && !fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
uint64_t actions_stub[512 / 8], slow_stub[512 / 8];
struct ofpbuf actions, put_actions;
struct match match;
ofpbuf_use_stub(&actions, actions_stub, sizeof actions_stub);
ofpbuf_use_stub(&put_actions, slow_stub, sizeof slow_stub);
for (i = 0; i < cnt; i++) {
const struct dp_netdev_flow *netdev_flow;
struct ofpbuf *add_actions;
int error;
if (OVS_LIKELY(rules[i] || !mfs[i])) {
continue;
}
/* It's possible that an earlier slow path execution installed
* the rule this flow needs. In this case, it's a lot cheaper
* to catch it here than execute a miss. */
netdev_flow = dp_netdev_lookup_flow(dp, mfs[i]);
if (netdev_flow) {
rules[i] = CONST_CAST(struct cls_rule *, &netdev_flow->cr);
continue;
}
miniflow_expand(mfs[i], &match.flow);
ofpbuf_clear(&actions);
ofpbuf_clear(&put_actions);
error = dp_netdev_upcall(dp, packets[i], &match.flow, &match.wc,
DPIF_UC_MISS, NULL, &actions,
&put_actions);
if (OVS_UNLIKELY(error && error != ENOSPC)) {
continue;
}
/* We can't allow the packet batching in the next loop to execute
* the actions. Otherwise, if there are any slow path actions,
* we'll send the packet up twice. */
dp_netdev_execute_actions(dp, &packets[i], 1, false, md,
flow_cache, ofpbuf_data(&actions),
ofpbuf_size(&actions));
add_actions = ofpbuf_size(&put_actions)
? &put_actions
: &actions;
ovs_mutex_lock(&dp->flow_mutex);
/* XXX: There's a brief race where this flow could have already
* been installed since we last did the flow lookup. This could be
* solved by moving the mutex lock outside the loop, but that's an
* awful long time to be locking everyone out of making flow
* installs. If we move to a per-core classifier, it would be
* reasonable. */
if (OVS_LIKELY(error != ENOSPC)
&& !dp_netdev_lookup_flow(dp, mfs[i])) {
dp_netdev_flow_add(dp, &match, ofpbuf_data(add_actions),
ofpbuf_size(add_actions));
}
ovs_mutex_unlock(&dp->flow_mutex);
}
ofpbuf_uninit(&actions);
ofpbuf_uninit(&put_actions);
fat_rwlock_unlock(&dp->upcall_rwlock);
}
n_batches = 0;
for (i = 0; i < cnt; i++) {
struct dpif_packet *packet = packets[i];
struct dp_netdev_flow *flow;
if (OVS_UNLIKELY(!rules[i] || !mfs[i])) {
continue;
}
flow = dp_netdev_flow_cast(rules[i]);
emc_insert(flow_cache, mfs[i], dpif_packet_get_dp_hash(packet), flow);
dp_netdev_queue_batches(packet, md, flow, mfs[i], batches, &n_batches,
ARRAY_SIZE(batches));
}
for (i = 0; i < n_batches; i++) {
packet_batch_execute(&batches[i], dp, flow_cache);
}
}
static void
dp_netdev_input(struct dp_netdev *dp, struct emc_cache *flow_cache,
struct dpif_packet **packets, int cnt, struct pkt_metadata *md)
{
#if !defined(__CHECKER__) && !defined(_WIN32)
const size_t PKT_ARRAY_SIZE = cnt;
#else
/* Sparse or MSVC doesn't like variable length array. */
enum { PKT_ARRAY_SIZE = NETDEV_MAX_RX_BATCH };
#endif
struct netdev_flow_key keys[PKT_ARRAY_SIZE];
size_t newcnt;
newcnt = emc_processing(dp, flow_cache, packets, cnt, md, keys);
if (OVS_UNLIKELY(newcnt)) {
fast_path_processing(dp, flow_cache, packets, newcnt, md, keys);
}
}
struct dp_netdev_execute_aux {
struct dp_netdev *dp;
struct emc_cache *flow_cache;
};
static void
dpif_netdev_register_upcall_cb(struct dpif *dpif, upcall_callback *cb,
void *aux)
{
struct dp_netdev *dp = get_dp_netdev(dpif);
dp->upcall_aux = aux;
dp->upcall_cb = cb;
}
static void
dp_execute_cb(void *aux_, struct dpif_packet **packets, int cnt,
struct pkt_metadata *md,
const struct nlattr *a, bool may_steal)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct dp_netdev_execute_aux *aux = aux_;
uint32_t *depth = recirc_depth_get();
struct dp_netdev *dp = aux->dp;
int type = nl_attr_type(a);
struct dp_netdev_port *p;
int i;
switch ((enum ovs_action_attr)type) {
case OVS_ACTION_ATTR_OUTPUT:
p = dp_netdev_lookup_port(dp, u32_to_odp(nl_attr_get_u32(a)));
if (OVS_LIKELY(p)) {
netdev_send(p->netdev, packets, cnt, may_steal);
} else if (may_steal) {
for (i = 0; i < cnt; i++) {
dpif_packet_delete(packets[i]);
}
}
break;
case OVS_ACTION_ATTR_USERSPACE:
if (!fat_rwlock_tryrdlock(&dp->upcall_rwlock)) {
const struct nlattr *userdata;
struct ofpbuf actions;
struct flow flow;
userdata = nl_attr_find_nested(a, OVS_USERSPACE_ATTR_USERDATA);
ofpbuf_init(&actions, 0);
for (i = 0; i < cnt; i++) {
int error;
ofpbuf_clear(&actions);
flow_extract(&packets[i]->ofpbuf, md, &flow);
error = dp_netdev_upcall(dp, packets[i], &flow, NULL,
DPIF_UC_ACTION, userdata, &actions,
NULL);
if (!error || error == ENOSPC) {
dp_netdev_execute_actions(dp, &packets[i], 1, false, md,
aux->flow_cache,
ofpbuf_data(&actions),
ofpbuf_size(&actions));
}
if (may_steal) {
dpif_packet_delete(packets[i]);
}
}
ofpbuf_uninit(&actions);
fat_rwlock_unlock(&dp->upcall_rwlock);
}
break;
case OVS_ACTION_ATTR_HASH: {
const struct ovs_action_hash *hash_act;
uint32_t hash;
hash_act = nl_attr_get(a);
for (i = 0; i < cnt; i++) {
if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
/* Hash need not be symmetric, nor does it need to include
* L2 fields. */
hash = hash_2words(dpif_packet_get_dp_hash(packets[i]),
hash_act->hash_basis);
} else {
VLOG_WARN("Unknown hash algorithm specified "
"for the hash action.");
hash = 2;
}
if (!hash) {
hash = 1; /* 0 is not valid */
}
if (i == 0) {
md->dp_hash = hash;
}
dpif_packet_set_dp_hash(packets[i], hash);
}
break;
}
case OVS_ACTION_ATTR_RECIRC:
if (*depth < MAX_RECIRC_DEPTH) {
(*depth)++;
for (i = 0; i < cnt; i++) {
struct dpif_packet *recirc_pkt;
struct pkt_metadata recirc_md = *md;
recirc_pkt = (may_steal) ? packets[i]
: dpif_packet_clone(packets[i]);
recirc_md.recirc_id = nl_attr_get_u32(a);
/* Hash is private to each packet */
recirc_md.dp_hash = dpif_packet_get_dp_hash(packets[i]);
dp_netdev_input(dp, aux->flow_cache, &recirc_pkt, 1,
&recirc_md);
}
(*depth)--;
break;
} else {
VLOG_WARN("Packet dropped. Max recirculation depth exceeded.");
if (may_steal) {
for (i = 0; i < cnt; i++) {
dpif_packet_delete(packets[i]);
}
}
}
break;
case OVS_ACTION_ATTR_PUSH_VLAN:
case OVS_ACTION_ATTR_POP_VLAN:
case OVS_ACTION_ATTR_PUSH_MPLS:
case OVS_ACTION_ATTR_POP_MPLS:
case OVS_ACTION_ATTR_SET:
case OVS_ACTION_ATTR_SET_MASKED:
case OVS_ACTION_ATTR_SAMPLE:
case OVS_ACTION_ATTR_UNSPEC:
case __OVS_ACTION_ATTR_MAX:
OVS_NOT_REACHED();
}
}
static void
dp_netdev_execute_actions(struct dp_netdev *dp,
struct dpif_packet **packets, int cnt,
bool may_steal, struct pkt_metadata *md,
struct emc_cache *flow_cache,
const struct nlattr *actions, size_t actions_len)
{
struct dp_netdev_execute_aux aux = {dp, flow_cache};
odp_execute_actions(&aux, packets, cnt, may_steal, md, actions,
actions_len, dp_execute_cb);
}
const struct dpif_class dpif_netdev_class = {
"netdev",
dpif_netdev_enumerate,
dpif_netdev_port_open_type,
dpif_netdev_open,
dpif_netdev_close,
dpif_netdev_destroy,
dpif_netdev_run,
dpif_netdev_wait,
dpif_netdev_get_stats,
dpif_netdev_port_add,
dpif_netdev_port_del,
dpif_netdev_port_query_by_number,
dpif_netdev_port_query_by_name,
NULL, /* port_get_pid */
dpif_netdev_port_dump_start,
dpif_netdev_port_dump_next,
dpif_netdev_port_dump_done,
dpif_netdev_port_poll,
dpif_netdev_port_poll_wait,
dpif_netdev_flow_flush,
dpif_netdev_flow_dump_create,
dpif_netdev_flow_dump_destroy,
dpif_netdev_flow_dump_thread_create,
dpif_netdev_flow_dump_thread_destroy,
dpif_netdev_flow_dump_next,
dpif_netdev_operate,
NULL, /* recv_set */
NULL, /* handlers_set */
dpif_netdev_queue_to_priority,
NULL, /* recv */
NULL, /* recv_wait */
NULL, /* recv_purge */
dpif_netdev_register_upcall_cb,
dpif_netdev_enable_upcall,
dpif_netdev_disable_upcall,
};
static void
dpif_dummy_change_port_number(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[], void *aux OVS_UNUSED)
{
struct dp_netdev_port *old_port;
struct dp_netdev_port *new_port;
struct dp_netdev *dp;
odp_port_t port_no;
ovs_mutex_lock(&dp_netdev_mutex);
dp = shash_find_data(&dp_netdevs, argv[1]);
if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
ovs_mutex_unlock(&dp_netdev_mutex);
unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
return;
}
ovs_refcount_ref(&dp->ref_cnt);
ovs_mutex_unlock(&dp_netdev_mutex);
ovs_mutex_lock(&dp->port_mutex);
if (get_port_by_name(dp, argv[2], &old_port)) {
unixctl_command_reply_error(conn, "unknown port");
goto exit;
}
port_no = u32_to_odp(atoi(argv[3]));
if (!port_no || port_no == ODPP_NONE) {
unixctl_command_reply_error(conn, "bad port number");
goto exit;
}
if (dp_netdev_lookup_port(dp, port_no)) {
unixctl_command_reply_error(conn, "port number already in use");
goto exit;
}
/* Remove old port. */
cmap_remove(&dp->ports, &old_port->node, hash_port_no(old_port->port_no));
ovsrcu_postpone(free, old_port);
/* Insert new port (cmap semantics mean we cannot re-insert 'old_port'). */
new_port = xmemdup(old_port, sizeof *old_port);
new_port->port_no = port_no;
cmap_insert(&dp->ports, &new_port->node, hash_port_no(port_no));
seq_change(dp->port_seq);
unixctl_command_reply(conn, NULL);
exit:
ovs_mutex_unlock(&dp->port_mutex);
dp_netdev_unref(dp);
}
static void
dpif_dummy_delete_port(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[], void *aux OVS_UNUSED)
{
struct dp_netdev_port *port;
struct dp_netdev *dp;
ovs_mutex_lock(&dp_netdev_mutex);
dp = shash_find_data(&dp_netdevs, argv[1]);
if (!dp || !dpif_netdev_class_is_dummy(dp->class)) {
ovs_mutex_unlock(&dp_netdev_mutex);
unixctl_command_reply_error(conn, "unknown datapath or not a dummy");
return;
}
ovs_refcount_ref(&dp->ref_cnt);
ovs_mutex_unlock(&dp_netdev_mutex);
ovs_mutex_lock(&dp->port_mutex);
if (get_port_by_name(dp, argv[2], &port)) {
unixctl_command_reply_error(conn, "unknown port");
} else if (port->port_no == ODPP_LOCAL) {
unixctl_command_reply_error(conn, "can't delete local port");
} else {
do_del_port(dp, port);
unixctl_command_reply(conn, NULL);
}
ovs_mutex_unlock(&dp->port_mutex);
dp_netdev_unref(dp);
}
static void
dpif_dummy_register__(const char *type)
{
struct dpif_class *class;
class = xmalloc(sizeof *class);
*class = dpif_netdev_class;
class->type = xstrdup(type);
dp_register_provider(class);
}
void
dpif_dummy_register(bool override)
{
if (override) {
struct sset types;
const char *type;
sset_init(&types);
dp_enumerate_types(&types);
SSET_FOR_EACH (type, &types) {
if (!dp_unregister_provider(type)) {
dpif_dummy_register__(type);
}
}
sset_destroy(&types);
}
dpif_dummy_register__("dummy");
unixctl_command_register("dpif-dummy/change-port-number",
"DP PORT NEW-NUMBER",
3, 3, dpif_dummy_change_port_number, NULL);
unixctl_command_register("dpif-dummy/delete-port", "DP PORT",
2, 2, dpif_dummy_delete_port, NULL);
}