2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 01:51:26 +00:00
ovs/lib/cfm.c
Ben Pfaff 91fc374a9c Eliminate use of term "slave" in bond, LACP, and bundle contexts.
The new term is "member".

Most of these changes should not change user-visible behavior.  One
place where they do is in "ovs-ofctl dump-flows", which will now output
"members:..." inside "bundle" actions instead of "slaves:...".  I don't
expect this to cause real problems in most systems.  The old syntax
is still supported on input for backward compatibility.

Signed-off-by: Ben Pfaff <blp@ovn.org>
Acked-by: Alin Gabriel Serdean <aserdean@cloudbasesolutions.com>
2020-10-21 11:28:24 -07:00

1129 lines
34 KiB
C

/*
* Copyright (c) 2010, 2011, 2012, 2013, 2014, 2015 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "cfm.h"
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "byte-order.h"
#include "connectivity.h"
#include "dp-packet.h"
#include "openvswitch/dynamic-string.h"
#include "flow.h"
#include "hash.h"
#include "openvswitch/hmap.h"
#include "netdev.h"
#include "ovs-atomic.h"
#include "packets.h"
#include "openvswitch/poll-loop.h"
#include "random.h"
#include "seq.h"
#include "timer.h"
#include "timeval.h"
#include "unixctl.h"
#include "openvswitch/vlog.h"
#include "util.h"
VLOG_DEFINE_THIS_MODULE(cfm);
#define CFM_MAX_RMPS 256
/* Ethernet destination address of CCM packets. */
static const struct eth_addr eth_addr_ccm = ETH_ADDR_C(01,80,c2,00,00,30);
static const struct eth_addr eth_addr_ccm_x = ETH_ADDR_C(01,23,20,00,00,30);
#define ETH_TYPE_CFM 0x8902
/* A 'ccm' represents a Continuity Check Message from the 802.1ag
* specification. Continuity Check Messages are broadcast periodically so that
* hosts can determine whom they have connectivity to.
*
* The minimum length of a CCM as specified by IEEE 802.1ag is 75 bytes.
* Previous versions of Open vSwitch generated 74-byte CCM messages, so we
* accept such messages too. */
#define CCM_LEN 75
#define CCM_ACCEPT_LEN 74
#define CCM_MAID_LEN 48
#define CCM_OPCODE 1 /* CFM message opcode meaning CCM. */
#define CCM_RDI_MASK 0x80
#define CFM_HEALTH_INTERVAL 6
OVS_PACKED(
struct ccm {
uint8_t mdlevel_version; /* MD Level and Version */
uint8_t opcode;
uint8_t flags;
uint8_t tlv_offset;
ovs_be32 seq;
ovs_be16 mpid;
uint8_t maid[CCM_MAID_LEN];
/* Defined by ITU-T Y.1731 should be zero */
ovs_be16 interval_ms_x; /* Transmission interval in ms. */
ovs_be64 mpid64; /* MPID in extended mode. */
uint8_t opdown; /* Operationally down. */
uint8_t zero[5];
/* TLV space. */
uint8_t end_tlv;
});
BUILD_ASSERT_DECL(CCM_LEN == sizeof(struct ccm));
struct cfm {
const char *name; /* Name of this CFM object. */
struct hmap_node hmap_node; /* Node in all_cfms list. */
struct netdev *netdev;
uint64_t rx_packets; /* Packets received by 'netdev'. */
uint64_t mpid;
bool demand; /* Demand mode. */
bool booted; /* A full fault interval has occurred. */
enum cfm_fault_reason fault; /* Connectivity fault status. */
enum cfm_fault_reason recv_fault; /* Bit mask of faults occurring on
receive. */
bool opup; /* Operational State. */
bool remote_opup; /* Remote Operational State. */
int fault_override; /* Manual override of 'fault' status.
Ignored if negative. */
uint32_t seq; /* The sequence number of our last CCM. */
uint8_t ccm_interval; /* The CCM transmission interval. */
int ccm_interval_ms; /* 'ccm_interval' in milliseconds. */
uint16_t ccm_vlan; /* Vlan tag of CCM PDUs. CFM_RANDOM_VLAN if
random. */
uint8_t ccm_pcp; /* Priority of CCM PDUs. */
uint8_t maid[CCM_MAID_LEN]; /* The MAID of this CFM. */
struct timer tx_timer; /* Send CCM when expired. */
struct timer fault_timer; /* Check for faults when expired. */
struct hmap remote_mps; /* Remote MPs. */
/* Result of cfm_get_remote_mpids(). Updated only during fault check to
* avoid flapping. */
uint64_t *rmps_array; /* Cache of remote_mps. */
size_t rmps_array_len; /* Number of rmps in 'rmps_array'. */
int health; /* Percentage of the number of CCM frames
received. */
int health_interval; /* Number of fault_intervals since health was
recomputed. */
long long int last_tx; /* Last CCM transmission time. */
/* These bools are atomic to allow readers to check their values
* without taking 'mutex'. Such readers do not assume the values they
* read are synchronized with any other members. */
atomic_bool check_tnl_key; /* Verify the tunnel key of inbound packets? */
atomic_bool extended; /* Extended mode. */
struct ovs_refcount ref_cnt;
uint64_t flap_count; /* Count the flaps since boot. */
/* True when the variables returned by cfm_get_*() are changed
* since last check. */
bool status_changed;
/* When 'cfm->demand' is set, at least one ccm is required to be received
* every 100 * cfm_interval. If ccm is not received within this interval,
* even if data packets are received, the cfm fault will be set. */
struct timer demand_rx_ccm_t;
};
/* Remote MPs represent foreign network entities that are configured to have
* the same MAID as this CFM instance. */
struct remote_mp {
uint64_t mpid; /* The Maintenance Point ID of this 'remote_mp'. */
struct hmap_node node; /* Node in 'remote_mps' map. */
bool recv; /* CCM was received since last fault check. */
bool opup; /* Operational State. */
uint32_t seq; /* Most recently received sequence number. */
uint8_t num_health_ccm; /* Number of received ccm frames every
CFM_HEALTH_INTERVAL * 'fault_interval'. */
long long int last_rx; /* Last CCM reception time. */
};
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(20, 30);
static struct ovs_mutex mutex = OVS_MUTEX_INITIALIZER;
static struct hmap all_cfms__ = HMAP_INITIALIZER(&all_cfms__);
static struct hmap *const all_cfms OVS_GUARDED_BY(mutex) = &all_cfms__;
static unixctl_cb_func cfm_unixctl_show;
static unixctl_cb_func cfm_unixctl_set_fault;
static uint64_t
cfm_rx_packets(const struct cfm *cfm) OVS_REQUIRES(mutex)
{
struct netdev_stats stats;
if (!netdev_get_stats(cfm->netdev, &stats)) {
return stats.rx_packets;
} else {
return 0;
}
}
static struct eth_addr
cfm_ccm_addr(struct cfm *cfm)
{
bool extended;
atomic_read_relaxed(&cfm->extended, &extended);
return extended ? eth_addr_ccm_x : eth_addr_ccm;
}
/* Returns the string representation of the given cfm_fault_reason 'reason'. */
const char *
cfm_fault_reason_to_str(int reason)
{
switch (reason) {
#define CFM_FAULT_REASON(NAME, STR) case CFM_FAULT_##NAME: return #STR;
CFM_FAULT_REASONS
#undef CFM_FAULT_REASON
default: return "<unknown>";
}
}
static void
ds_put_cfm_fault(struct ds *ds, int fault)
{
int i;
for (i = 0; i < CFM_FAULT_N_REASONS; i++) {
int reason = 1 << i;
if (fault & reason) {
ds_put_format(ds, "%s ", cfm_fault_reason_to_str(reason));
}
}
ds_chomp(ds, ' ');
}
static void
cfm_generate_maid(struct cfm *cfm) OVS_REQUIRES(mutex)
{
const char *ovs_md_name = "ovs";
const char *ovs_ma_name = "ovs";
uint8_t *ma_p;
size_t md_len, ma_len;
memset(cfm->maid, 0, CCM_MAID_LEN);
md_len = strlen(ovs_md_name);
ma_len = strlen(ovs_ma_name);
ovs_assert(md_len && ma_len && md_len + ma_len + 4 <= CCM_MAID_LEN);
cfm->maid[0] = 4; /* MD name string format. */
cfm->maid[1] = md_len; /* MD name size. */
memcpy(&cfm->maid[2], ovs_md_name, md_len); /* MD name. */
ma_p = cfm->maid + 2 + md_len;
ma_p[0] = 2; /* MA name string format. */
ma_p[1] = ma_len; /* MA name size. */
memcpy(&ma_p[2], ovs_ma_name, ma_len); /* MA name. */
}
static int
ccm_interval_to_ms(uint8_t interval)
{
switch (interval) {
case 0: OVS_NOT_REACHED(); /* Explicitly not supported by 802.1ag. */
case 1: return 3; /* Not recommended due to timer resolution. */
case 2: return 10; /* Not recommended due to timer resolution. */
case 3: return 100;
case 4: return 1000;
case 5: return 10000;
case 6: return 60000;
case 7: return 600000;
default: OVS_NOT_REACHED(); /* Explicitly not supported by 802.1ag. */
}
OVS_NOT_REACHED();
}
static long long int
cfm_fault_interval(struct cfm *cfm) OVS_REQUIRES(mutex)
{
/* According to the 802.1ag specification we should assume every other MP
* with the same MAID has the same transmission interval that we have. If
* an MP has a different interval, cfm_process_heartbeat will register it
* as a fault (likely due to a configuration error). Thus we can check all
* MPs at once making this quite a bit simpler.
*
* When cfm is not in demand mode, we check when (ccm_interval_ms * 3.5) ms
* have passed. When cfm is in demand mode, we check when
* (MAX(ccm_interval_ms, 500) * 3.5) ms have passed. This ensures that
* ovs-vswitchd has enough time to pull statistics from the datapath. */
return (MAX(cfm->ccm_interval_ms, cfm->demand ? 500 : cfm->ccm_interval_ms)
* 7) / 2;
}
static uint8_t
ms_to_ccm_interval(int interval_ms)
{
uint8_t i;
for (i = 7; i > 0; i--) {
if (ccm_interval_to_ms(i) <= interval_ms) {
return i;
}
}
return 1;
}
static uint32_t
hash_mpid(uint64_t mpid)
{
return hash_uint64(mpid);
}
static bool
cfm_is_valid_mpid(bool extended, uint64_t mpid)
{
/* 802.1ag specification requires MPIDs to be within the range [1, 8191].
* In extended mode we relax this requirement. */
return mpid >= 1 && (extended || mpid <= 8191);
}
static struct remote_mp *
lookup_remote_mp(const struct cfm *cfm, uint64_t mpid) OVS_REQUIRES(mutex)
{
struct remote_mp *rmp;
HMAP_FOR_EACH_IN_BUCKET (rmp, node, hash_mpid(mpid), &cfm->remote_mps) {
if (rmp->mpid == mpid) {
return rmp;
}
}
return NULL;
}
void
cfm_init(void)
{
unixctl_command_register("cfm/show", "[interface]", 0, 1, cfm_unixctl_show,
NULL);
unixctl_command_register("cfm/set-fault", "[interface] normal|false|true",
1, 2, cfm_unixctl_set_fault, NULL);
}
/* Records the status change and changes the global connectivity seq. */
static void
cfm_status_changed(struct cfm *cfm) OVS_REQUIRES(mutex)
{
seq_change(connectivity_seq_get());
cfm->status_changed = true;
}
/* Allocates a 'cfm' object called 'name'. 'cfm' should be initialized by
* cfm_configure() before use. */
struct cfm *
cfm_create(const struct netdev *netdev) OVS_EXCLUDED(mutex)
{
struct cfm *cfm;
cfm = xzalloc(sizeof *cfm);
cfm->netdev = netdev_ref(netdev);
cfm->name = netdev_get_name(cfm->netdev);
hmap_init(&cfm->remote_mps);
cfm->remote_opup = true;
cfm->fault_override = -1;
cfm->health = -1;
cfm->last_tx = 0;
cfm->flap_count = 0;
atomic_init(&cfm->extended, false);
atomic_init(&cfm->check_tnl_key, false);
ovs_refcount_init(&cfm->ref_cnt);
ovs_mutex_lock(&mutex);
cfm_status_changed(cfm);
cfm_generate_maid(cfm);
hmap_insert(all_cfms, &cfm->hmap_node, hash_string(cfm->name, 0));
ovs_mutex_unlock(&mutex);
return cfm;
}
void
cfm_unref(struct cfm *cfm) OVS_EXCLUDED(mutex)
{
struct remote_mp *rmp;
if (!cfm) {
return;
}
if (ovs_refcount_unref_relaxed(&cfm->ref_cnt) != 1) {
return;
}
ovs_mutex_lock(&mutex);
cfm_status_changed(cfm);
hmap_remove(all_cfms, &cfm->hmap_node);
ovs_mutex_unlock(&mutex);
HMAP_FOR_EACH_POP (rmp, node, &cfm->remote_mps) {
free(rmp);
}
hmap_destroy(&cfm->remote_mps);
netdev_close(cfm->netdev);
free(cfm->rmps_array);
free(cfm);
}
struct cfm *
cfm_ref(const struct cfm *cfm_)
{
struct cfm *cfm = CONST_CAST(struct cfm *, cfm_);
if (cfm) {
ovs_refcount_ref(&cfm->ref_cnt);
}
return cfm;
}
/* Should be run periodically to update fault statistics messages. */
void
cfm_run(struct cfm *cfm) OVS_EXCLUDED(mutex)
{
ovs_mutex_lock(&mutex);
if (timer_expired(&cfm->fault_timer)) {
long long int interval = cfm_fault_interval(cfm);
struct remote_mp *rmp, *rmp_next;
enum cfm_fault_reason old_cfm_fault = cfm->fault;
uint64_t old_flap_count = cfm->flap_count;
int old_health = cfm->health;
size_t old_rmps_array_len = cfm->rmps_array_len;
bool old_rmps_deleted = false;
bool old_rmp_opup = cfm->remote_opup;
bool demand_override;
bool rmp_set_opup = false;
bool rmp_set_opdown = false;
cfm->fault = cfm->recv_fault;
cfm->recv_fault = 0;
cfm->rmps_array_len = 0;
free(cfm->rmps_array);
cfm->rmps_array = xmalloc(hmap_count(&cfm->remote_mps) *
sizeof *cfm->rmps_array);
if (cfm->health_interval == CFM_HEALTH_INTERVAL) {
/* Calculate the cfm health of the interface. If the number of
* remote_mpids of a cfm interface is > 1, the cfm health is
* undefined. If the number of remote_mpids is 1, the cfm health is
* the percentage of the ccm frames received in the
* (CFM_HEALTH_INTERVAL * 3.5)ms, else it is 0. */
if (hmap_count(&cfm->remote_mps) > 1) {
cfm->health = -1;
} else if (hmap_is_empty(&cfm->remote_mps)) {
cfm->health = 0;
} else {
int exp_ccm_recvd;
rmp = CONTAINER_OF(hmap_first(&cfm->remote_mps),
struct remote_mp, node);
exp_ccm_recvd = (CFM_HEALTH_INTERVAL * 7) / 2;
/* Calculate the percentage of healthy ccm frames received.
* Since the 'fault_interval' is (3.5 * cfm_interval), and
* 1 CCM packet must be received every cfm_interval,
* the 'remote_mpid' health reports the percentage of
* healthy CCM frames received every
* 'CFM_HEALTH_INTERVAL'th 'fault_interval'. */
cfm->health = (rmp->num_health_ccm * 100) / exp_ccm_recvd;
cfm->health = MIN(cfm->health, 100);
rmp->num_health_ccm = 0;
ovs_assert(cfm->health >= 0 && cfm->health <= 100);
}
cfm->health_interval = 0;
}
cfm->health_interval++;
demand_override = false;
if (cfm->demand) {
uint64_t rx_packets = cfm_rx_packets(cfm);
demand_override = hmap_count(&cfm->remote_mps) == 1
&& rx_packets > cfm->rx_packets
&& !timer_expired(&cfm->demand_rx_ccm_t);
cfm->rx_packets = rx_packets;
}
HMAP_FOR_EACH_SAFE (rmp, rmp_next, node, &cfm->remote_mps) {
if (!rmp->recv) {
VLOG_INFO("%s: Received no CCM from RMP %"PRIu64" in the last"
" %lldms", cfm->name, rmp->mpid,
time_msec() - rmp->last_rx);
if (!demand_override) {
old_rmps_deleted = true;
hmap_remove(&cfm->remote_mps, &rmp->node);
free(rmp);
}
} else {
rmp->recv = false;
if (rmp->opup) {
rmp_set_opup = true;
} else {
rmp_set_opdown = true;
}
cfm->rmps_array[cfm->rmps_array_len++] = rmp->mpid;
}
}
if (rmp_set_opdown) {
cfm->remote_opup = false;
}
else if (rmp_set_opup) {
cfm->remote_opup = true;
}
if (hmap_is_empty(&cfm->remote_mps)) {
cfm->fault |= CFM_FAULT_RECV;
}
if (old_cfm_fault != cfm->fault) {
if (!VLOG_DROP_INFO(&rl)) {
struct ds ds = DS_EMPTY_INITIALIZER;
ds_put_cstr(&ds, "from [");
ds_put_cfm_fault(&ds, old_cfm_fault);
ds_put_cstr(&ds, "] to [");
ds_put_cfm_fault(&ds, cfm->fault);
ds_put_char(&ds, ']');
VLOG_INFO("%s: CFM faults changed %s.", cfm->name, ds_cstr(&ds));
ds_destroy(&ds);
}
/* If there is a flap, increments the counter. */
if (old_cfm_fault == 0 || cfm->fault == 0) {
cfm->flap_count++;
}
}
/* These variables represent the cfm session status, it is desirable
* to update them to database immediately after change. */
if (old_health != cfm->health
|| old_rmp_opup != cfm->remote_opup
|| (old_rmps_array_len != cfm->rmps_array_len || old_rmps_deleted)
|| old_cfm_fault != cfm->fault
|| old_flap_count != cfm->flap_count) {
cfm_status_changed(cfm);
}
cfm->booted = true;
timer_set_duration(&cfm->fault_timer, interval);
VLOG_DBG("%s: new fault interval", cfm->name);
}
ovs_mutex_unlock(&mutex);
}
/* Should be run periodically to check if the CFM module has a CCM message it
* wishes to send. */
bool
cfm_should_send_ccm(struct cfm *cfm) OVS_EXCLUDED(mutex)
{
bool ret;
ovs_mutex_lock(&mutex);
ret = timer_expired(&cfm->tx_timer);
ovs_mutex_unlock(&mutex);
return ret;
}
/* Composes a CCM message into 'packet'. Messages generated with this function
* should be sent whenever cfm_should_send_ccm() indicates. */
void
cfm_compose_ccm(struct cfm *cfm, struct dp_packet *packet,
const struct eth_addr eth_src) OVS_EXCLUDED(mutex)
{
uint16_t ccm_vlan;
struct ccm *ccm;
bool extended;
ovs_mutex_lock(&mutex);
timer_set_duration(&cfm->tx_timer, cfm->ccm_interval_ms);
eth_compose(packet, cfm_ccm_addr(cfm), eth_src, ETH_TYPE_CFM, sizeof *ccm);
ccm_vlan = (cfm->ccm_vlan != CFM_RANDOM_VLAN
? cfm->ccm_vlan
: random_uint16());
ccm_vlan = ccm_vlan & VLAN_VID_MASK;
if (ccm_vlan || cfm->ccm_pcp) {
uint16_t tci = ccm_vlan | (cfm->ccm_pcp << VLAN_PCP_SHIFT);
eth_push_vlan(packet, htons(ETH_TYPE_VLAN), htons(tci));
}
atomic_read_relaxed(&cfm->extended, &extended);
ccm = dp_packet_l3(packet);
ccm->mdlevel_version = 0;
ccm->opcode = CCM_OPCODE;
ccm->tlv_offset = 70;
ccm->seq = htonl(++cfm->seq);
ccm->flags = cfm->ccm_interval;
memcpy(ccm->maid, cfm->maid, sizeof ccm->maid);
memset(ccm->zero, 0, sizeof ccm->zero);
ccm->end_tlv = 0;
if (extended) {
ccm->mpid = htons(hash_mpid(cfm->mpid));
ccm->mpid64 = htonll(cfm->mpid);
ccm->opdown = !cfm->opup;
} else {
ccm->mpid = htons(cfm->mpid);
ccm->mpid64 = htonll(0);
ccm->opdown = 0;
}
if (cfm->ccm_interval == 0) {
ovs_assert(extended);
ccm->interval_ms_x = htons(cfm->ccm_interval_ms);
} else {
ccm->interval_ms_x = htons(0);
}
if (cfm->booted && hmap_is_empty(&cfm->remote_mps)) {
ccm->flags |= CCM_RDI_MASK;
}
if (cfm->last_tx) {
long long int delay = time_msec() - cfm->last_tx;
if (delay > (cfm->ccm_interval_ms * 3 / 2)) {
VLOG_INFO("%s: long delay of %lldms (expected %dms) sending CCM"
" seq %"PRIu32, cfm->name, delay, cfm->ccm_interval_ms,
cfm->seq);
}
}
cfm->last_tx = time_msec();
ovs_mutex_unlock(&mutex);
}
long long int
cfm_wait(struct cfm *cfm) OVS_EXCLUDED(mutex)
{
long long int wake_time = cfm_wake_time(cfm);
poll_timer_wait_until(wake_time);
return wake_time;
}
/* Returns the next cfm wakeup time. */
long long int
cfm_wake_time(struct cfm *cfm) OVS_EXCLUDED(mutex)
{
long long int retval;
if (!cfm) {
return LLONG_MAX;
}
ovs_mutex_lock(&mutex);
retval = MIN(cfm->tx_timer.t, cfm->fault_timer.t);
ovs_mutex_unlock(&mutex);
return retval;
}
/* Configures 'cfm' with settings from 's'. */
bool
cfm_configure(struct cfm *cfm, const struct cfm_settings *s)
OVS_EXCLUDED(mutex)
{
uint8_t interval;
int interval_ms;
if (!cfm_is_valid_mpid(s->extended, s->mpid) || s->interval <= 0) {
return false;
}
ovs_mutex_lock(&mutex);
cfm->mpid = s->mpid;
cfm->opup = s->opup;
interval = ms_to_ccm_interval(s->interval);
interval_ms = ccm_interval_to_ms(interval);
atomic_store_relaxed(&cfm->check_tnl_key, s->check_tnl_key);
atomic_store_relaxed(&cfm->extended, s->extended);
cfm->ccm_vlan = s->ccm_vlan;
cfm->ccm_pcp = s->ccm_pcp & (VLAN_PCP_MASK >> VLAN_PCP_SHIFT);
if (s->extended && interval_ms != s->interval) {
interval = 0;
interval_ms = MIN(s->interval, UINT16_MAX);
}
if (s->extended && s->demand) {
if (!cfm->demand) {
cfm->demand = true;
cfm->rx_packets = cfm_rx_packets(cfm);
}
} else {
cfm->demand = false;
}
if (interval != cfm->ccm_interval || interval_ms != cfm->ccm_interval_ms) {
cfm->ccm_interval = interval;
cfm->ccm_interval_ms = interval_ms;
timer_set_expired(&cfm->tx_timer);
timer_set_duration(&cfm->fault_timer, cfm_fault_interval(cfm));
}
ovs_mutex_unlock(&mutex);
return true;
}
/* Must be called when the netdev owned by 'cfm' should change. */
void
cfm_set_netdev(struct cfm *cfm, const struct netdev *netdev)
OVS_EXCLUDED(mutex)
{
ovs_mutex_lock(&mutex);
if (cfm->netdev != netdev) {
netdev_close(cfm->netdev);
cfm->netdev = netdev_ref(netdev);
}
ovs_mutex_unlock(&mutex);
}
/* Returns true if 'cfm' should process packets from 'flow'. Sets
* fields in 'wc' that were used to make the determination. */
bool
cfm_should_process_flow(const struct cfm *cfm_, const struct flow *flow,
struct flow_wildcards *wc)
{
struct cfm *cfm = CONST_CAST(struct cfm *, cfm_);
bool check_tnl_key;
/* Most packets are not CFM. */
if (OVS_LIKELY(flow->dl_type != htons(ETH_TYPE_CFM))) {
return false;
}
memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
if (OVS_UNLIKELY(!eth_addr_equals(flow->dl_dst, cfm_ccm_addr(cfm)))) {
return false;
}
atomic_read_relaxed(&cfm->check_tnl_key, &check_tnl_key);
if (check_tnl_key) {
memset(&wc->masks.tunnel.tun_id, 0xff, sizeof wc->masks.tunnel.tun_id);
return flow->tunnel.tun_id == htonll(0);
}
return true;
}
/* Updates internal statistics relevant to packet 'p'. Should be called on
* every packet whose flow returned true when passed to
* cfm_should_process_flow. */
void
cfm_process_heartbeat(struct cfm *cfm, const struct dp_packet *p)
OVS_EXCLUDED(mutex)
{
struct ccm *ccm;
struct eth_header *eth;
bool extended;
ovs_mutex_lock(&mutex);
atomic_read_relaxed(&cfm->extended, &extended);
eth = dp_packet_eth(p);
ccm = dp_packet_at(p, (uint8_t *)dp_packet_l3(p) - (uint8_t *)dp_packet_data(p),
CCM_ACCEPT_LEN);
if (!ccm) {
VLOG_INFO_RL(&rl, "%s: Received an unparseable 802.1ag CCM heartbeat.",
cfm->name);
goto out;
}
if (ccm->opcode != CCM_OPCODE) {
VLOG_INFO_RL(&rl, "%s: Received an unsupported 802.1ag message. "
"(opcode %u)", cfm->name, ccm->opcode);
goto out;
}
/* According to the 802.1ag specification, reception of a CCM with an
* incorrect ccm_interval, unexpected MAID, or unexpected MPID should
* trigger a fault. We ignore this requirement for several reasons.
*
* Faults can cause a controller or Open vSwitch to make potentially
* expensive changes to the network topology. It seems prudent to trigger
* them judiciously, especially when CFM is used to check status of bond
* members. Furthermore, faults can be maliciously triggered by crafting
* unexpected CCMs. */
if (memcmp(ccm->maid, cfm->maid, sizeof ccm->maid)) {
cfm->recv_fault |= CFM_FAULT_MAID;
VLOG_WARN_RL(&rl, "%s: Received unexpected remote MAID from MAC "
ETH_ADDR_FMT, cfm->name, ETH_ADDR_ARGS(eth->eth_src));
} else {
uint8_t ccm_interval = ccm->flags & 0x7;
bool ccm_rdi = ccm->flags & CCM_RDI_MASK;
uint16_t ccm_interval_ms_x = ntohs(ccm->interval_ms_x);
struct remote_mp *rmp;
uint64_t ccm_mpid;
uint32_t ccm_seq;
bool ccm_opdown;
enum cfm_fault_reason cfm_fault = 0;
if (extended) {
ccm_mpid = ntohll(ccm->mpid64);
ccm_opdown = ccm->opdown;
} else {
ccm_mpid = ntohs(ccm->mpid);
ccm_opdown = false;
}
ccm_seq = ntohl(ccm->seq);
if (ccm_interval != cfm->ccm_interval) {
VLOG_WARN_RL(&rl, "%s: received a CCM with an unexpected interval"
" (%"PRIu8") from RMP %"PRIu64, cfm->name,
ccm_interval, ccm_mpid);
}
if (extended && ccm_interval == 0
&& ccm_interval_ms_x != cfm->ccm_interval_ms) {
VLOG_WARN_RL(&rl, "%s: received a CCM with an unexpected extended"
" interval (%"PRIu16"ms) from RMP %"PRIu64, cfm->name,
ccm_interval_ms_x, ccm_mpid);
}
rmp = lookup_remote_mp(cfm, ccm_mpid);
if (!rmp) {
if (hmap_count(&cfm->remote_mps) < CFM_MAX_RMPS) {
rmp = xzalloc(sizeof *rmp);
hmap_insert(&cfm->remote_mps, &rmp->node, hash_mpid(ccm_mpid));
} else {
cfm_fault |= CFM_FAULT_OVERFLOW;
VLOG_WARN_RL(&rl,
"%s: dropped CCM with MPID %"PRIu64" from MAC "
ETH_ADDR_FMT, cfm->name, ccm_mpid,
ETH_ADDR_ARGS(eth->eth_src));
}
}
if (ccm_rdi) {
cfm_fault |= CFM_FAULT_RDI;
VLOG_DBG("%s: RDI bit flagged from RMP %"PRIu64, cfm->name,
ccm_mpid);
}
VLOG_DBG("%s: received CCM (seq %"PRIu32") (mpid %"PRIu64")"
" (interval %"PRIu8") (RDI %s)", cfm->name, ccm_seq,
ccm_mpid, ccm_interval, ccm_rdi ? "true" : "false");
if (rmp) {
if (rmp->mpid == cfm->mpid) {
cfm_fault |= CFM_FAULT_LOOPBACK;
VLOG_WARN_RL(&rl,"%s: received CCM with local MPID"
" %"PRIu64, cfm->name, rmp->mpid);
}
if (rmp->seq && ccm_seq != (rmp->seq + 1)) {
VLOG_WARN_RL(&rl, "%s: (mpid %"PRIu64") detected sequence"
" numbers which indicate possible connectivity"
" problems (previous %"PRIu32") (current %"PRIu32
")", cfm->name, ccm_mpid, rmp->seq, ccm_seq);
}
rmp->mpid = ccm_mpid;
if (!cfm_fault) {
rmp->num_health_ccm++;
if (cfm->demand) {
timer_set_duration(&cfm->demand_rx_ccm_t,
100 * cfm->ccm_interval_ms);
}
}
rmp->recv = true;
cfm->recv_fault |= cfm_fault;
rmp->seq = ccm_seq;
rmp->opup = !ccm_opdown;
rmp->last_rx = time_msec();
}
}
out:
ovs_mutex_unlock(&mutex);
}
/* Returns and resets the 'cfm->status_changed'. */
bool
cfm_check_status_change(struct cfm *cfm) OVS_EXCLUDED(mutex)
{
bool ret;
ovs_mutex_lock(&mutex);
ret = cfm->status_changed;
cfm->status_changed = false;
ovs_mutex_unlock(&mutex);
return ret;
}
static int
cfm_get_fault__(const struct cfm *cfm) OVS_REQUIRES(mutex)
{
if (cfm->fault_override >= 0) {
return cfm->fault_override ? CFM_FAULT_OVERRIDE : 0;
}
return cfm->fault;
}
/* Gets the fault status of 'cfm'. Returns a bit mask of 'cfm_fault_reason's
* indicating the cause of the connectivity fault, or zero if there is no
* fault. */
int
cfm_get_fault(const struct cfm *cfm) OVS_EXCLUDED(mutex)
{
int fault;
ovs_mutex_lock(&mutex);
fault = cfm_get_fault__(cfm);
ovs_mutex_unlock(&mutex);
return fault;
}
/* Gets the number of cfm fault flapping since start. */
uint64_t
cfm_get_flap_count(const struct cfm *cfm) OVS_EXCLUDED(mutex)
{
uint64_t flap_count;
ovs_mutex_lock(&mutex);
flap_count = cfm->flap_count;
ovs_mutex_unlock(&mutex);
return flap_count;
}
/* Gets the health of 'cfm'. Returns an integer between 0 and 100 indicating
* the health of the link as a percentage of ccm frames received in
* CFM_HEALTH_INTERVAL * 'fault_interval' if there is only 1 remote_mpid,
* returns 0 if there are no remote_mpids, and returns -1 if there are more
* than 1 remote_mpids. */
int
cfm_get_health(const struct cfm *cfm) OVS_EXCLUDED(mutex)
{
int health;
ovs_mutex_lock(&mutex);
health = cfm->health;
ovs_mutex_unlock(&mutex);
return health;
}
static int
cfm_get_opup__(const struct cfm *cfm_) OVS_REQUIRES(mutex)
{
struct cfm *cfm = CONST_CAST(struct cfm *, cfm_);
bool extended;
atomic_read_relaxed(&cfm->extended, &extended);
return extended ? cfm->remote_opup : -1;
}
/* Gets the operational state of 'cfm'. 'cfm' is considered operationally down
* if it has received a CCM with the operationally down bit set from any of its
* remote maintenance points. Returns 1 if 'cfm' is operationally up, 0 if
* 'cfm' is operationally down, or -1 if 'cfm' has no operational state
* (because it isn't in extended mode). */
int
cfm_get_opup(const struct cfm *cfm) OVS_EXCLUDED(mutex)
{
int opup;
ovs_mutex_lock(&mutex);
opup = cfm_get_opup__(cfm);
ovs_mutex_unlock(&mutex);
return opup;
}
static void
cfm_get_remote_mpids__(const struct cfm *cfm, uint64_t **rmps, size_t *n_rmps)
OVS_REQUIRES(mutex)
{
*rmps = xmemdup(cfm->rmps_array, cfm->rmps_array_len * sizeof **rmps);
*n_rmps = cfm->rmps_array_len;
}
/* Populates 'rmps' with an array of remote maintenance points reachable by
* 'cfm'. The number of remote maintenance points is written to 'n_rmps'.
* 'cfm' retains ownership of the array written to 'rmps' */
void
cfm_get_remote_mpids(const struct cfm *cfm, uint64_t **rmps, size_t *n_rmps)
OVS_EXCLUDED(mutex)
{
ovs_mutex_lock(&mutex);
cfm_get_remote_mpids__(cfm, rmps, n_rmps);
ovs_mutex_unlock(&mutex);
}
/* Extracts the status of 'cfm' and fills in the 's'. */
void
cfm_get_status(const struct cfm *cfm, struct cfm_status *s) OVS_EXCLUDED(mutex)
{
ovs_mutex_lock(&mutex);
s->faults = cfm_get_fault__(cfm);
s->remote_opstate = cfm_get_opup__(cfm);
s->flap_count = cfm->flap_count;
s->health = cfm->health;
cfm_get_remote_mpids__(cfm, &s->rmps, &s->n_rmps);
ovs_mutex_unlock(&mutex);
}
static struct cfm *
cfm_find(const char *name) OVS_REQUIRES(mutex)
{
struct cfm *cfm;
HMAP_FOR_EACH_WITH_HASH (cfm, hmap_node, hash_string(name, 0), all_cfms) {
if (!strcmp(cfm->name, name)) {
return cfm;
}
}
return NULL;
}
static void
cfm_print_details(struct ds *ds, struct cfm *cfm) OVS_REQUIRES(mutex)
{
struct remote_mp *rmp;
bool extended;
int fault;
atomic_read_relaxed(&cfm->extended, &extended);
ds_put_format(ds, "---- %s ----\n", cfm->name);
ds_put_format(ds, "MPID %"PRIu64":%s%s\n", cfm->mpid,
extended ? " extended" : "",
cfm->fault_override >= 0 ? " fault_override" : "");
fault = cfm_get_fault__(cfm);
if (fault) {
ds_put_cstr(ds, " fault: ");
ds_put_cfm_fault(ds, fault);
ds_put_cstr(ds, "\n");
}
if (cfm->health == -1) {
ds_put_format(ds, " average health: undefined\n");
} else {
ds_put_format(ds, " average health: %d\n", cfm->health);
}
ds_put_format(ds, " opstate: %s\n", cfm->opup ? "up" : "down");
ds_put_format(ds, " remote_opstate: %s\n",
cfm->remote_opup ? "up" : "down");
ds_put_format(ds, " interval: %dms\n", cfm->ccm_interval_ms);
ds_put_format(ds, " next CCM tx: %lldms\n",
timer_msecs_until_expired(&cfm->tx_timer));
ds_put_format(ds, " next fault check: %lldms\n",
timer_msecs_until_expired(&cfm->fault_timer));
HMAP_FOR_EACH (rmp, node, &cfm->remote_mps) {
ds_put_format(ds, "Remote MPID %"PRIu64"\n", rmp->mpid);
ds_put_format(ds, " recv since check: %s\n",
rmp->recv ? "true" : "false");
ds_put_format(ds, " opstate: %s\n", rmp->opup? "up" : "down");
}
}
static void
cfm_unixctl_show(struct unixctl_conn *conn, int argc, const char *argv[],
void *aux OVS_UNUSED) OVS_EXCLUDED(mutex)
{
struct ds ds = DS_EMPTY_INITIALIZER;
struct cfm *cfm;
ovs_mutex_lock(&mutex);
if (argc > 1) {
cfm = cfm_find(argv[1]);
if (!cfm) {
unixctl_command_reply_error(conn, "no such CFM object");
goto out;
}
cfm_print_details(&ds, cfm);
} else {
HMAP_FOR_EACH (cfm, hmap_node, all_cfms) {
cfm_print_details(&ds, cfm);
}
}
unixctl_command_reply(conn, ds_cstr(&ds));
ds_destroy(&ds);
out:
ovs_mutex_unlock(&mutex);
}
static void
cfm_unixctl_set_fault(struct unixctl_conn *conn, int argc, const char *argv[],
void *aux OVS_UNUSED) OVS_EXCLUDED(mutex)
{
const char *fault_str = argv[argc - 1];
int fault_override;
struct cfm *cfm;
ovs_mutex_lock(&mutex);
if (!strcasecmp("true", fault_str)) {
fault_override = 1;
} else if (!strcasecmp("false", fault_str)) {
fault_override = 0;
} else if (!strcasecmp("normal", fault_str)) {
fault_override = -1;
} else {
unixctl_command_reply_error(conn, "unknown fault string");
goto out;
}
if (argc > 2) {
cfm = cfm_find(argv[1]);
if (!cfm) {
unixctl_command_reply_error(conn, "no such CFM object");
goto out;
}
cfm->fault_override = fault_override;
cfm_status_changed(cfm);
} else {
HMAP_FOR_EACH (cfm, hmap_node, all_cfms) {
cfm->fault_override = fault_override;
cfm_status_changed(cfm);
}
}
unixctl_command_reply(conn, "OK");
out:
ovs_mutex_unlock(&mutex);
}