2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 01:51:26 +00:00
ovs/ofproto/ofproto-dpif-sflow.c
Ben Pfaff 91fc374a9c Eliminate use of term "slave" in bond, LACP, and bundle contexts.
The new term is "member".

Most of these changes should not change user-visible behavior.  One
place where they do is in "ovs-ofctl dump-flows", which will now output
"members:..." inside "bundle" actions instead of "slaves:...".  I don't
expect this to cause real problems in most systems.  The old syntax
is still supported on input for backward compatibility.

Signed-off-by: Ben Pfaff <blp@ovn.org>
Acked-by: Alin Gabriel Serdean <aserdean@cloudbasesolutions.com>
2020-10-21 11:28:24 -07:00

1436 lines
48 KiB
C

/*
* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc.
* Copyright (c) 2009 InMon Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "ofproto-dpif-sflow.h"
#include <inttypes.h>
#include <sys/resource.h>
#include <sys/socket.h>
#include <net/if.h>
#include <stdlib.h>
#include "collectors.h"
#include "compiler.h"
#include "dpif.h"
#include "hash.h"
#include "openvswitch/hmap.h"
#include "netdev.h"
#include "netlink.h"
#include "openvswitch/ofpbuf.h"
#include "ofproto.h"
#include "packets.h"
#include "openvswitch/poll-loop.h"
#include "ovs-router.h"
#include "route-table.h"
#include "sflow_api.h"
#include "socket-util.h"
#include "timeval.h"
#include "openvswitch/vlog.h"
#include "lib/odp-util.h"
#include "lib/unaligned.h"
#include "ofproto-provider.h"
#include "lacp.h"
VLOG_DEFINE_THIS_MODULE(sflow);
static struct ovs_mutex mutex;
/* This global var is used to determine which sFlow
sub-agent should send the datapath counters. */
#define SFLOW_GC_SUBID_UNCLAIMED (uint32_t)-1
static uint32_t sflow_global_counters_subid = SFLOW_GC_SUBID_UNCLAIMED;
/*
* The enum dpif_sflow_tunnel_type is to declare the types supported
*/
enum dpif_sflow_tunnel_type {
DPIF_SFLOW_TUNNEL_UNKNOWN = 0,
DPIF_SFLOW_TUNNEL_VXLAN,
DPIF_SFLOW_TUNNEL_GRE,
DPIF_SFLOW_TUNNEL_LISP,
DPIF_SFLOW_TUNNEL_GENEVE
};
struct dpif_sflow_port {
struct hmap_node hmap_node; /* In struct dpif_sflow's "ports" hmap. */
SFLDataSource_instance dsi; /* sFlow library's notion of port number. */
struct ofport *ofport; /* To retrive port stats. */
odp_port_t odp_port;
enum dpif_sflow_tunnel_type tunnel_type;
};
struct dpif_sflow {
struct collectors *collectors;
SFLAgent *sflow_agent;
struct ofproto_sflow_options *options;
time_t next_tick;
size_t n_flood, n_all;
struct hmap ports; /* Contains "struct dpif_sflow_port"s. */
uint32_t probability;
struct ovs_refcount ref_cnt;
};
static void dpif_sflow_del_port__(struct dpif_sflow *,
struct dpif_sflow_port *);
#define RECEIVER_INDEX 1
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
static bool
ofproto_sflow_options_equal(const struct ofproto_sflow_options *a,
const struct ofproto_sflow_options *b)
{
return (sset_equals(&a->targets, &b->targets)
&& a->sampling_rate == b->sampling_rate
&& a->polling_interval == b->polling_interval
&& a->header_len == b->header_len
&& a->sub_id == b->sub_id
&& nullable_string_is_equal(a->agent_device, b->agent_device)
&& nullable_string_is_equal(a->control_ip, b->control_ip));
}
static struct ofproto_sflow_options *
ofproto_sflow_options_clone(const struct ofproto_sflow_options *old)
{
struct ofproto_sflow_options *new = xmemdup(old, sizeof *old);
sset_clone(&new->targets, &old->targets);
new->agent_device = nullable_xstrdup(old->agent_device);
new->control_ip = nullable_xstrdup(old->control_ip);
return new;
}
static void
ofproto_sflow_options_destroy(struct ofproto_sflow_options *options)
{
if (options) {
sset_destroy(&options->targets);
free(options->agent_device);
free(options->control_ip);
free(options);
}
}
/* sFlow library callback to allocate memory. */
static void *
sflow_agent_alloc_cb(void *magic OVS_UNUSED, SFLAgent *agent OVS_UNUSED,
size_t bytes)
{
return xzalloc(bytes);
}
/* sFlow library callback to free memory. */
static int
sflow_agent_free_cb(void *magic OVS_UNUSED, SFLAgent *agent OVS_UNUSED,
void *obj)
{
free(obj);
return 0;
}
/* sFlow library callback to report error. */
static void
sflow_agent_error_cb(void *magic OVS_UNUSED, SFLAgent *agent OVS_UNUSED,
char *msg)
{
VLOG_WARN("sFlow agent error: %s", msg);
}
/* sFlow library callback to send datagram. */
static void
sflow_agent_send_packet_cb(void *ds_, SFLAgent *agent OVS_UNUSED,
SFLReceiver *receiver OVS_UNUSED, u_char *pkt,
uint32_t pktLen)
{
struct dpif_sflow *ds = ds_;
collectors_send(ds->collectors, pkt, pktLen);
}
static struct dpif_sflow_port *
dpif_sflow_find_port(const struct dpif_sflow *ds, odp_port_t odp_port)
OVS_REQUIRES(mutex)
{
struct dpif_sflow_port *dsp;
HMAP_FOR_EACH_IN_BUCKET (dsp, hmap_node, hash_odp_port(odp_port),
&ds->ports) {
if (dsp->odp_port == odp_port) {
return dsp;
}
}
return NULL;
}
/* Call to get the datapath stats. Modeled after the dpctl utility.
*
* It might be more efficient for this module to be given a handle it can use
* to get these stats more efficiently, but this is only going to be called
* once every 20-30 seconds. Return number of datapaths found (normally expect
* 1). */
static int
sflow_get_dp_stats(struct dpif_sflow *ds OVS_UNUSED,
struct dpif_dp_stats *dp_totals)
{
struct sset types;
const char *type;
int count = 0;
memset(dp_totals, 0, sizeof *dp_totals);
sset_init(&types);
dp_enumerate_types(&types);
SSET_FOR_EACH (type, &types) {
struct sset names;
const char *name;
sset_init(&names);
if (dp_enumerate_names(type, &names) == 0) {
SSET_FOR_EACH (name, &names) {
struct dpif *dpif;
if (dpif_open(name, type, &dpif) == 0) {
struct dpif_dp_stats dp_stats;
if (dpif_get_dp_stats(dpif, &dp_stats) == 0) {
count++;
dp_totals->n_hit += dp_stats.n_hit;
dp_totals->n_missed += dp_stats.n_missed;
dp_totals->n_lost += dp_stats.n_lost;
dp_totals->n_flows += dp_stats.n_flows;
dp_totals->n_mask_hit += dp_stats.n_mask_hit;
dp_totals->n_masks += dp_stats.n_masks;
}
dpif_close(dpif);
}
}
sset_destroy(&names);
}
}
sset_destroy(&types);
return count;
}
/* If there are multiple bridges defined then we need some
minimal artibration to decide which one should send the
global counters. This function allows each sub-agent to
ask if he should do it or not. */
static bool
sflow_global_counters_subid_test(uint32_t subid)
OVS_REQUIRES(mutex)
{
if (sflow_global_counters_subid == SFLOW_GC_SUBID_UNCLAIMED) {
/* The role is up for grabs. */
sflow_global_counters_subid = subid;
}
return (sflow_global_counters_subid == subid);
}
static void
sflow_global_counters_subid_clear(uint32_t subid)
OVS_REQUIRES(mutex)
{
if (sflow_global_counters_subid == subid) {
/* The sub-agent that was sending global counters
is going away, so reset to allow another
to take over. */
sflow_global_counters_subid = SFLOW_GC_SUBID_UNCLAIMED;
}
}
static void
sflow_agent_get_global_counters(void *ds_, SFLPoller *poller,
SFL_COUNTERS_SAMPLE_TYPE *cs)
OVS_REQUIRES(mutex)
{
struct dpif_sflow *ds = ds_;
SFLCounters_sample_element dp_elem, res_elem;
struct dpif_dp_stats dp_totals;
struct rusage usage;
if (!sflow_global_counters_subid_test(poller->agent->subId)) {
/* Another sub-agent is currently responsible for this. */
return;
}
/* datapath stats */
if (sflow_get_dp_stats(ds, &dp_totals)) {
dp_elem.tag = SFLCOUNTERS_OVSDP;
dp_elem.counterBlock.ovsdp.n_hit = dp_totals.n_hit;
dp_elem.counterBlock.ovsdp.n_missed = dp_totals.n_missed;
dp_elem.counterBlock.ovsdp.n_lost = dp_totals.n_lost;
dp_elem.counterBlock.ovsdp.n_mask_hit = dp_totals.n_mask_hit;
dp_elem.counterBlock.ovsdp.n_flows = dp_totals.n_flows;
dp_elem.counterBlock.ovsdp.n_masks = dp_totals.n_masks;
SFLADD_ELEMENT(cs, &dp_elem);
}
/* resource usage */
getrusage(RUSAGE_SELF, &usage);
res_elem.tag = SFLCOUNTERS_APP_RESOURCES;
res_elem.counterBlock.appResources.user_time
= timeval_to_msec(&usage.ru_utime);
res_elem.counterBlock.appResources.system_time
= timeval_to_msec(&usage.ru_stime);
res_elem.counterBlock.appResources.mem_used = (usage.ru_maxrss * 1024);
SFL_UNDEF_GAUGE(res_elem.counterBlock.appResources.mem_max);
SFL_UNDEF_GAUGE(res_elem.counterBlock.appResources.fd_open);
SFL_UNDEF_GAUGE(res_elem.counterBlock.appResources.fd_max);
SFL_UNDEF_GAUGE(res_elem.counterBlock.appResources.conn_open);
SFL_UNDEF_GAUGE(res_elem.counterBlock.appResources.conn_max);
SFLADD_ELEMENT(cs, &res_elem);
sfl_poller_writeCountersSample(poller, cs);
}
static void
sflow_agent_get_counters(void *ds_, SFLPoller *poller,
SFL_COUNTERS_SAMPLE_TYPE *cs)
OVS_REQUIRES(mutex)
{
struct dpif_sflow *ds = ds_;
SFLCounters_sample_element elem, lacp_elem, of_elem, name_elem;
SFLCounters_sample_element eth_elem;
enum netdev_features current;
struct dpif_sflow_port *dsp;
SFLIf_counters *counters;
SFLEthernet_counters* eth_counters;
struct netdev_stats stats;
enum netdev_flags flags;
struct lacp_member_stats lacp_stats;
const char *ifName;
dsp = dpif_sflow_find_port(ds, u32_to_odp(poller->bridgePort));
if (!dsp) {
return;
}
elem.tag = SFLCOUNTERS_GENERIC;
counters = &elem.counterBlock.generic;
counters->ifIndex = SFL_DS_INDEX(poller->dsi);
counters->ifType = 6;
if (!netdev_get_features(dsp->ofport->netdev, &current, NULL, NULL, NULL)) {
/* The values of ifDirection come from MAU MIB (RFC 2668): 0 = unknown,
1 = full-duplex, 2 = half-duplex, 3 = in, 4=out */
counters->ifSpeed = netdev_features_to_bps(current, 0);
counters->ifDirection = (netdev_features_is_full_duplex(current)
? 1 : 2);
} else {
counters->ifSpeed = 100000000;
counters->ifDirection = 0;
}
if (!netdev_get_flags(dsp->ofport->netdev, &flags) && flags & NETDEV_UP) {
counters->ifStatus = 1; /* ifAdminStatus up. */
if (netdev_get_carrier(dsp->ofport->netdev)) {
counters->ifStatus |= 2; /* ifOperStatus us. */
}
} else {
counters->ifStatus = 0; /* Down. */
}
/* XXX
1. Is the multicast counter filled in?
2. Does the multicast counter include broadcasts?
3. Does the rx_packets counter include multicasts/broadcasts?
*/
ofproto_port_get_stats(dsp->ofport, &stats);
counters->ifInOctets = stats.rx_bytes;
counters->ifInUcastPkts = stats.rx_packets;
counters->ifInMulticastPkts = stats.multicast;
counters->ifInBroadcastPkts = stats.rx_broadcast_packets;
counters->ifInDiscards = stats.rx_dropped;
counters->ifInErrors = stats.rx_errors;
counters->ifInUnknownProtos = -1;
counters->ifOutOctets = stats.tx_bytes;
counters->ifOutUcastPkts = stats.tx_packets;
counters->ifOutMulticastPkts = stats.tx_multicast_packets;
counters->ifOutBroadcastPkts = stats.tx_broadcast_packets;
counters->ifOutDiscards = stats.tx_dropped;
counters->ifOutErrors = stats.tx_errors;
counters->ifPromiscuousMode = 0;
SFLADD_ELEMENT(cs, &elem);
/* Include LACP counters and identifiers if this port is part of a LAG. */
if (ofproto_port_get_lacp_stats(dsp->ofport, &lacp_stats) == 0) {
memset(&lacp_elem, 0, sizeof lacp_elem);
lacp_elem.tag = SFLCOUNTERS_LACP;
lacp_elem.counterBlock.lacp.actorSystemID =
lacp_stats.dot3adAggPortActorSystemID;
lacp_elem.counterBlock.lacp.partnerSystemID =
lacp_stats.dot3adAggPortPartnerOperSystemID;
lacp_elem.counterBlock.lacp.attachedAggID =
lacp_stats.dot3adAggPortAttachedAggID;
lacp_elem.counterBlock.lacp.portState.v.actorAdmin =
lacp_stats.dot3adAggPortActorAdminState;
lacp_elem.counterBlock.lacp.portState.v.actorOper =
lacp_stats.dot3adAggPortActorOperState;
lacp_elem.counterBlock.lacp.portState.v.partnerAdmin =
lacp_stats.dot3adAggPortPartnerAdminState;
lacp_elem.counterBlock.lacp.portState.v.partnerOper =
lacp_stats.dot3adAggPortPartnerOperState;
lacp_elem.counterBlock.lacp.LACPDUsRx =
lacp_stats.dot3adAggPortStatsLACPDUsRx;
SFL_UNDEF_COUNTER(lacp_elem.counterBlock.lacp.markerPDUsRx);
SFL_UNDEF_COUNTER(lacp_elem.counterBlock.lacp.markerResponsePDUsRx);
SFL_UNDEF_COUNTER(lacp_elem.counterBlock.lacp.unknownRx);
lacp_elem.counterBlock.lacp.illegalRx =
lacp_stats.dot3adAggPortStatsIllegalRx;
lacp_elem.counterBlock.lacp.LACPDUsTx =
lacp_stats.dot3adAggPortStatsLACPDUsTx;
SFL_UNDEF_COUNTER(lacp_elem.counterBlock.lacp.markerPDUsTx);
SFL_UNDEF_COUNTER(lacp_elem.counterBlock.lacp.markerResponsePDUsTx);
SFLADD_ELEMENT(cs, &lacp_elem);
}
/* Include Port name. */
if ((ifName = netdev_get_name(dsp->ofport->netdev)) != NULL) {
memset(&name_elem, 0, sizeof name_elem);
name_elem.tag = SFLCOUNTERS_PORTNAME;
name_elem.counterBlock.portName.portName.str = (char *)ifName;
name_elem.counterBlock.portName.portName.len = strlen(ifName);
SFLADD_ELEMENT(cs, &name_elem);
}
/* Include OpenFlow DPID and openflow port number. */
memset(&of_elem, 0, sizeof of_elem);
of_elem.tag = SFLCOUNTERS_OPENFLOWPORT;
of_elem.counterBlock.ofPort.datapath_id =
ofproto_get_datapath_id(dsp->ofport->ofproto);
of_elem.counterBlock.ofPort.port_no =
(OVS_FORCE uint32_t)dsp->ofport->ofp_port;
SFLADD_ELEMENT(cs, &of_elem);
/* Include ethernet counters */
memset(&eth_elem, 0, sizeof eth_elem);
eth_elem.tag = SFLCOUNTERS_ETHERNET;
eth_counters = &eth_elem.counterBlock.ethernet;
eth_counters->dot3StatsAlignmentErrors = stats.rx_frame_errors;
eth_counters->dot3StatsFCSErrors = stats.rx_crc_errors;
eth_counters->dot3StatsFrameTooLongs = stats.rx_oversize_errors;
SFL_UNDEF_COUNTER(eth_counters->dot3StatsSingleCollisionFrames);
SFL_UNDEF_COUNTER(eth_counters->dot3StatsMultipleCollisionFrames);
SFL_UNDEF_COUNTER(eth_counters->dot3StatsSQETestErrors);
SFL_UNDEF_COUNTER(eth_counters->dot3StatsDeferredTransmissions);
SFL_UNDEF_COUNTER(eth_counters->dot3StatsLateCollisions);
SFL_UNDEF_COUNTER(eth_counters->dot3StatsExcessiveCollisions);
SFL_UNDEF_COUNTER(eth_counters->dot3StatsInternalMacTransmitErrors);
SFL_UNDEF_COUNTER(eth_counters->dot3StatsCarrierSenseErrors);
SFL_UNDEF_COUNTER(eth_counters->dot3StatsInternalMacReceiveErrors);
SFL_UNDEF_COUNTER(eth_counters->dot3StatsSymbolErrors);
SFLADD_ELEMENT(cs, &eth_elem);
sfl_poller_writeCountersSample(poller, cs);
}
/* Obtains an address to use for the local sFlow agent and stores it into
* '*agent_addr'. Returns true if successful, false on failure.
*
* The sFlow agent address should be a local IP address that is persistent and
* reachable over the network, if possible. The IP address associated with
* 'agent_device' is used if it has one, and otherwise 'control_ip', the IP
* address used to talk to the controller. If the agent device is not
* specified then it is figured out by taking a look at the routing table based
* on 'targets'. */
static bool
sflow_choose_agent_address(const char *agent_device,
const struct sset *targets,
const char *control_ip,
SFLAddress *agent_addr)
{
struct in6_addr ip;
if (agent_device) {
/* If 'agent_device' is the name of a network device, use its IP
* address. */
if (!netdev_get_ip_by_name(agent_device, &ip)) {
goto success;
}
/* If 'agent_device' is itself an IP address, use it. */
struct sockaddr_storage ss;
if (inet_parse_address(agent_device, &ss)) {
ip = ss_get_address(&ss);
goto success;
}
}
/* Otherwise, use an appropriate local IP address for one of the
* collectors' remote IP addresses. */
const char *target;
SSET_FOR_EACH (target, targets) {
struct sockaddr_storage ss;
if (inet_parse_active(target, SFL_DEFAULT_COLLECTOR_PORT, &ss, true)) {
/* sFlow only supports target in default routing table with
* packet mark zero.
*/
struct in6_addr target_ip = ss_get_address(&ss);
struct in6_addr gw, src = in6addr_any;
char name[IFNAMSIZ];
if (ovs_router_lookup(0, &target_ip, name, &src, &gw)) {
ip = src;
goto success;
}
}
}
struct sockaddr_storage ss;
if (control_ip && inet_parse_address(control_ip, &ss)) {
ip = ss_get_address(&ss);
goto success;
}
VLOG_ERR("could not determine IP address for sFlow agent");
return false;
success:
memset(agent_addr, 0, sizeof *agent_addr);
if (IN6_IS_ADDR_V4MAPPED(&ip)) {
agent_addr->type = SFLADDRESSTYPE_IP_V4;
agent_addr->address.ip_v4.addr
= (OVS_FORCE uint32_t) in6_addr_get_mapped_ipv4(&ip);
} else {
agent_addr->type = SFLADDRESSTYPE_IP_V6;
memcpy(agent_addr->address.ip_v6.addr, ip.s6_addr,
sizeof agent_addr->address.ip_v6.addr);
}
return true;
}
static void
dpif_sflow_clear__(struct dpif_sflow *ds) OVS_REQUIRES(mutex)
{
if (ds->sflow_agent) {
sflow_global_counters_subid_clear(ds->sflow_agent->subId);
sfl_agent_release(ds->sflow_agent);
free(ds->sflow_agent);
ds->sflow_agent = NULL;
}
collectors_destroy(ds->collectors);
ds->collectors = NULL;
ofproto_sflow_options_destroy(ds->options);
ds->options = NULL;
/* Turn off sampling to save CPU cycles. */
ds->probability = 0;
}
void
dpif_sflow_clear(struct dpif_sflow *ds) OVS_EXCLUDED(mutex)
{
ovs_mutex_lock(&mutex);
dpif_sflow_clear__(ds);
ovs_mutex_unlock(&mutex);
}
bool
dpif_sflow_is_enabled(const struct dpif_sflow *ds) OVS_EXCLUDED(mutex)
{
bool enabled;
ovs_mutex_lock(&mutex);
enabled = ds->collectors != NULL;
ovs_mutex_unlock(&mutex);
return enabled;
}
struct dpif_sflow *
dpif_sflow_create(void)
{
static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
struct dpif_sflow *ds;
if (ovsthread_once_start(&once)) {
ovs_mutex_init_recursive(&mutex);
ovsthread_once_done(&once);
}
ds = xcalloc(1, sizeof *ds);
ds->next_tick = time_now() + 1;
hmap_init(&ds->ports);
ds->probability = 0;
ovs_refcount_init(&ds->ref_cnt);
return ds;
}
struct dpif_sflow *
dpif_sflow_ref(const struct dpif_sflow *ds_)
{
struct dpif_sflow *ds = CONST_CAST(struct dpif_sflow *, ds_);
if (ds) {
ovs_refcount_ref(&ds->ref_cnt);
}
return ds;
}
/* 32-bit fraction of packets to sample with. A value of 0 samples no packets,
* a value of %UINT32_MAX samples all packets and intermediate values sample
* intermediate fractions of packets. */
uint32_t
dpif_sflow_get_probability(const struct dpif_sflow *ds) OVS_EXCLUDED(mutex)
{
uint32_t probability;
ovs_mutex_lock(&mutex);
probability = ds->probability;
ovs_mutex_unlock(&mutex);
return probability;
}
void
dpif_sflow_unref(struct dpif_sflow *ds) OVS_EXCLUDED(mutex)
{
if (ds && ovs_refcount_unref_relaxed(&ds->ref_cnt) == 1) {
struct dpif_sflow_port *dsp, *next;
dpif_sflow_clear(ds);
HMAP_FOR_EACH_SAFE (dsp, next, hmap_node, &ds->ports) {
dpif_sflow_del_port__(ds, dsp);
}
hmap_destroy(&ds->ports);
free(ds);
}
}
static void
dpif_sflow_add_poller(struct dpif_sflow *ds, struct dpif_sflow_port *dsp)
OVS_REQUIRES(mutex)
{
SFLPoller *poller = sfl_agent_addPoller(ds->sflow_agent, &dsp->dsi, ds,
sflow_agent_get_counters);
sfl_poller_set_sFlowCpInterval(poller, ds->options->polling_interval);
sfl_poller_set_sFlowCpReceiver(poller, RECEIVER_INDEX);
sfl_poller_set_bridgePort(poller, odp_to_u32(dsp->odp_port));
}
static enum dpif_sflow_tunnel_type
dpif_sflow_tunnel_type(struct ofport *ofport) {
const char *type = netdev_get_type(ofport->netdev);
if (type) {
if (strcmp(type, "gre") == 0) {
return DPIF_SFLOW_TUNNEL_GRE;
} else if (strcmp(type, "vxlan") == 0) {
return DPIF_SFLOW_TUNNEL_VXLAN;
} else if (strcmp(type, "lisp") == 0) {
return DPIF_SFLOW_TUNNEL_LISP;
} else if (strcmp(type, "geneve") == 0) {
return DPIF_SFLOW_TUNNEL_GENEVE;
}
}
return DPIF_SFLOW_TUNNEL_UNKNOWN;
}
static uint8_t
dpif_sflow_tunnel_proto(enum dpif_sflow_tunnel_type tunnel_type)
{
/* Default to 0 (IPPROTO_IP), meaning "unknown". */
uint8_t ipproto = 0;
switch(tunnel_type) {
case DPIF_SFLOW_TUNNEL_GRE:
ipproto = IPPROTO_GRE;
break;
case DPIF_SFLOW_TUNNEL_VXLAN:
case DPIF_SFLOW_TUNNEL_LISP:
case DPIF_SFLOW_TUNNEL_GENEVE:
ipproto = IPPROTO_UDP;
case DPIF_SFLOW_TUNNEL_UNKNOWN:
break;
}
return ipproto;
}
void
dpif_sflow_add_port(struct dpif_sflow *ds, struct ofport *ofport,
odp_port_t odp_port) OVS_EXCLUDED(mutex)
{
struct dpif_sflow_port *dsp;
int ifindex;
enum dpif_sflow_tunnel_type tunnel_type;
ovs_mutex_lock(&mutex);
dpif_sflow_del_port(ds, odp_port);
tunnel_type = dpif_sflow_tunnel_type(ofport);
ifindex = netdev_get_ifindex(ofport->netdev);
if (ifindex <= 0
&& tunnel_type == DPIF_SFLOW_TUNNEL_UNKNOWN) {
/* Not an ifindex port, and not a tunnel port either
* so do not add a cross-reference to it here.
*/
goto out;
}
/* Add to table of ports. */
dsp = xmalloc(sizeof *dsp);
dsp->ofport = ofport;
dsp->odp_port = odp_port;
dsp->tunnel_type = tunnel_type;
hmap_insert(&ds->ports, &dsp->hmap_node, hash_odp_port(odp_port));
if (ifindex > 0) {
/* Add poller for ports that have ifindex. */
SFL_DS_SET(dsp->dsi, SFL_DSCLASS_IFINDEX, ifindex, 0);
if (ds->sflow_agent) {
dpif_sflow_add_poller(ds, dsp);
}
} else {
/* Record "ifindex unknown" for the others */
SFL_DS_SET(dsp->dsi, SFL_DSCLASS_IFINDEX, 0, 0);
}
out:
ovs_mutex_unlock(&mutex);
}
static void
dpif_sflow_del_port__(struct dpif_sflow *ds, struct dpif_sflow_port *dsp)
OVS_REQUIRES(mutex)
{
if (ds->sflow_agent
&& SFL_DS_INDEX(dsp->dsi)) {
sfl_agent_removePoller(ds->sflow_agent, &dsp->dsi);
sfl_agent_removeSampler(ds->sflow_agent, &dsp->dsi);
}
hmap_remove(&ds->ports, &dsp->hmap_node);
free(dsp);
}
void
dpif_sflow_del_port(struct dpif_sflow *ds, odp_port_t odp_port)
OVS_EXCLUDED(mutex)
{
struct dpif_sflow_port *dsp;
ovs_mutex_lock(&mutex);
dsp = dpif_sflow_find_port(ds, odp_port);
if (dsp) {
dpif_sflow_del_port__(ds, dsp);
}
ovs_mutex_unlock(&mutex);
}
void
dpif_sflow_set_options(struct dpif_sflow *ds,
const struct ofproto_sflow_options *options)
OVS_EXCLUDED(mutex)
{
struct dpif_sflow_port *dsp;
bool options_changed;
SFLReceiver *receiver;
SFLAddress agentIP;
time_t now;
SFLDataSource_instance dsi;
uint32_t dsIndex;
SFLSampler *sampler;
SFLPoller *poller;
ovs_mutex_lock(&mutex);
if (sset_is_empty(&options->targets) || !options->sampling_rate) {
/* No point in doing any work if there are no targets or nothing to
* sample. */
dpif_sflow_clear__(ds);
goto out;
}
options_changed = (!ds->options
|| !ofproto_sflow_options_equal(options, ds->options));
/* Configure collectors if options have changed or if we're shortchanged in
* collectors (which indicates that opening one or more of the configured
* collectors failed, so that we should retry). */
if (options_changed
|| collectors_count(ds->collectors) < sset_count(&options->targets)) {
collectors_destroy(ds->collectors);
collectors_create(&options->targets, SFL_DEFAULT_COLLECTOR_PORT,
&ds->collectors);
if (ds->collectors == NULL) {
VLOG_WARN_RL(&rl, "no collectors could be initialized, "
"sFlow disabled");
dpif_sflow_clear__(ds);
goto out;
}
}
/* Choose agent IP address and agent device (if not yet setup) */
if (!sflow_choose_agent_address(options->agent_device,
&options->targets,
options->control_ip, &agentIP)) {
dpif_sflow_clear__(ds);
goto out;
}
/* Avoid reconfiguring if options didn't change. */
if (!options_changed) {
goto out;
}
ofproto_sflow_options_destroy(ds->options);
ds->options = ofproto_sflow_options_clone(options);
/* Create agent. */
VLOG_INFO("creating sFlow agent %d", options->sub_id);
if (ds->sflow_agent) {
sflow_global_counters_subid_clear(ds->sflow_agent->subId);
sfl_agent_release(ds->sflow_agent);
}
ds->sflow_agent = xcalloc(1, sizeof *ds->sflow_agent);
now = time_wall();
sfl_agent_init(ds->sflow_agent,
&agentIP,
options->sub_id,
now, /* Boot time. */
now, /* Current time. */
ds, /* Pointer supplied to callbacks. */
sflow_agent_alloc_cb,
sflow_agent_free_cb,
sflow_agent_error_cb,
sflow_agent_send_packet_cb);
receiver = sfl_agent_addReceiver(ds->sflow_agent);
sfl_receiver_set_sFlowRcvrOwner(receiver, "Open vSwitch sFlow");
sfl_receiver_set_sFlowRcvrTimeout(receiver, 0xffffffff);
/* Set the sampling_rate down in the datapath. */
ds->probability = MAX(1, UINT32_MAX / ds->options->sampling_rate);
/* Add a single sampler for the bridge. This appears as a PHYSICAL_ENTITY
because it is associated with the hypervisor, and interacts with the server
hardware directly. The sub_id is used to distinguish this sampler from
others on other bridges within the same agent. */
dsIndex = 1000 + options->sub_id;
SFL_DS_SET(dsi, SFL_DSCLASS_PHYSICAL_ENTITY, dsIndex, 0);
sampler = sfl_agent_addSampler(ds->sflow_agent, &dsi);
sfl_sampler_set_sFlowFsPacketSamplingRate(sampler, ds->options->sampling_rate);
sfl_sampler_set_sFlowFsMaximumHeaderSize(sampler, ds->options->header_len);
sfl_sampler_set_sFlowFsReceiver(sampler, RECEIVER_INDEX);
/* Add a counter poller for the bridge so we can use it to send
global counters such as datapath cache hit/miss stats. */
poller = sfl_agent_addPoller(ds->sflow_agent, &dsi, ds,
sflow_agent_get_global_counters);
sfl_poller_set_sFlowCpInterval(poller, ds->options->polling_interval);
sfl_poller_set_sFlowCpReceiver(poller, RECEIVER_INDEX);
/* Add pollers for the currently known ifindex-ports */
HMAP_FOR_EACH (dsp, hmap_node, &ds->ports) {
if (SFL_DS_INDEX(dsp->dsi)) {
dpif_sflow_add_poller(ds, dsp);
}
}
out:
ovs_mutex_unlock(&mutex);
}
int
dpif_sflow_odp_port_to_ifindex(const struct dpif_sflow *ds,
odp_port_t odp_port) OVS_EXCLUDED(mutex)
{
struct dpif_sflow_port *dsp;
int ret;
ovs_mutex_lock(&mutex);
dsp = dpif_sflow_find_port(ds, odp_port);
ret = dsp ? SFL_DS_INDEX(dsp->dsi) : 0;
ovs_mutex_unlock(&mutex);
return ret;
}
static void
dpif_sflow_tunnel_v4(uint8_t tunnel_ipproto,
const struct flow_tnl *tunnel,
SFLSampled_ipv4 *ipv4)
{
ipv4->protocol = tunnel_ipproto;
ipv4->tos = tunnel->ip_tos;
ipv4->src_ip.addr = (OVS_FORCE uint32_t) tunnel->ip_src;
ipv4->dst_ip.addr = (OVS_FORCE uint32_t) tunnel->ip_dst;
ipv4->src_port = (OVS_FORCE uint16_t) tunnel->tp_src;
ipv4->dst_port = (OVS_FORCE uint16_t) tunnel->tp_dst;
}
static void
dpif_sflow_push_mpls_lse(struct dpif_sflow_actions *sflow_actions,
ovs_be32 lse)
{
if (sflow_actions->mpls_stack_depth >= FLOW_MAX_MPLS_LABELS) {
sflow_actions->mpls_err = true;
return;
}
/* Record the new lse in host-byte-order. */
/* BOS flag will be fixed later when we send stack to sFlow library. */
sflow_actions->mpls_lse[sflow_actions->mpls_stack_depth++] = ntohl(lse);
}
static void
dpif_sflow_pop_mpls_lse(struct dpif_sflow_actions *sflow_actions)
{
if (sflow_actions->mpls_stack_depth == 0) {
sflow_actions->mpls_err = true;
return;
}
sflow_actions->mpls_stack_depth--;
}
static void
dpif_sflow_set_mpls(struct dpif_sflow_actions *sflow_actions,
const struct ovs_key_mpls *mpls_key, int n)
{
int ii;
if (n > FLOW_MAX_MPLS_LABELS) {
sflow_actions->mpls_err = true;
return;
}
for (ii = 0; ii < n; ii++) {
/* Reverse stack order, and use host-byte-order for each lse. */
sflow_actions->mpls_lse[n - ii - 1] = ntohl(mpls_key[ii].mpls_lse);
}
sflow_actions->mpls_stack_depth = n;
}
static void
sflow_read_tnl_push_action(const struct nlattr *attr,
struct dpif_sflow_actions *sflow_actions)
{
/* Modeled on lib/odp-util.c: format_odp_tnl_push_header */
const struct ovs_action_push_tnl *data = nl_attr_get(attr);
const struct eth_header *eth = (const struct eth_header *) data->header;
const struct ip_header *ip
= ALIGNED_CAST(const struct ip_header *, eth + 1);
sflow_actions->out_port = data->out_port;
/* Ethernet. */
/* TODO: SFlow does not currently define a MAC-in-MAC
* encapsulation structure. We could use an extension
* structure to report this.
*/
/* IPv4 */
/* Cannot assume alignment so just use memcpy. */
sflow_actions->tunnel.ip_src = get_16aligned_be32(&ip->ip_src);
sflow_actions->tunnel.ip_dst = get_16aligned_be32(&ip->ip_dst);
sflow_actions->tunnel.ip_tos = ip->ip_tos;
sflow_actions->tunnel.ip_ttl = ip->ip_ttl;
/* The tnl_push action can supply the ip_protocol too. */
sflow_actions->tunnel_ipproto = ip->ip_proto;
/* Layer 4 */
if (data->tnl_type == OVS_VPORT_TYPE_VXLAN
|| data->tnl_type == OVS_VPORT_TYPE_GENEVE) {
const struct udp_header *udp = (const struct udp_header *) (ip + 1);
sflow_actions->tunnel.tp_src = udp->udp_src;
sflow_actions->tunnel.tp_dst = udp->udp_dst;
if (data->tnl_type == OVS_VPORT_TYPE_VXLAN) {
const struct vxlanhdr *vxh = (const struct vxlanhdr *) (udp + 1);
uint64_t tun_id = ntohl(get_16aligned_be32(&vxh->vx_vni)) >> 8;
sflow_actions->tunnel.tun_id = htonll(tun_id);
} else {
const struct genevehdr *gnh = (const struct genevehdr *) (udp + 1);
uint64_t tun_id = ntohl(get_16aligned_be32(&gnh->vni)) >> 8;
sflow_actions->tunnel.tun_id = htonll(tun_id);
}
} else if (data->tnl_type == OVS_VPORT_TYPE_GRE) {
const void *l4 = ip + 1;
const struct gre_base_hdr *greh = (const struct gre_base_hdr *) l4;
ovs_16aligned_be32 *options = (ovs_16aligned_be32 *)(greh + 1);
if (greh->flags & htons(GRE_CSUM)) {
options++;
}
if (greh->flags & htons(GRE_KEY)) {
uint64_t tun_id = ntohl(get_16aligned_be32(options));
sflow_actions->tunnel.tun_id = htonll(tun_id);
}
}
}
static void
sflow_read_set_action(const struct nlattr *attr,
struct dpif_sflow_actions *sflow_actions)
{
enum ovs_key_attr type = nl_attr_type(attr);
switch (type) {
case OVS_KEY_ATTR_ENCAP:
if (++sflow_actions->encap_depth > 1) {
/* Do not handle multi-encap for now. */
sflow_actions->tunnel_err = true;
} else {
dpif_sflow_read_actions(NULL,
nl_attr_get(attr), nl_attr_get_size(attr),
sflow_actions, true);
}
break;
case OVS_KEY_ATTR_PRIORITY:
case OVS_KEY_ATTR_SKB_MARK:
case OVS_KEY_ATTR_DP_HASH:
case OVS_KEY_ATTR_RECIRC_ID:
break;
case OVS_KEY_ATTR_TUNNEL: {
if (++sflow_actions->encap_depth > 1) {
/* Do not handle multi-encap for now. */
sflow_actions->tunnel_err = true;
} else {
if (odp_tun_key_from_attr(attr, &sflow_actions->tunnel, NULL)
== ODP_FIT_ERROR) {
/* Tunnel parsing error. */
sflow_actions->tunnel_err = true;
}
}
break;
}
case OVS_KEY_ATTR_IN_PORT:
case OVS_KEY_ATTR_ETHERNET:
case OVS_KEY_ATTR_VLAN:
break;
case OVS_KEY_ATTR_MPLS: {
const struct ovs_key_mpls *mpls_key = nl_attr_get(attr);
size_t size = nl_attr_get_size(attr);
dpif_sflow_set_mpls(sflow_actions, mpls_key, size / sizeof *mpls_key);
break;
}
case OVS_KEY_ATTR_ETHERTYPE:
case OVS_KEY_ATTR_IPV4:
if (sflow_actions->encap_depth == 1) {
const struct ovs_key_ipv4 *key = nl_attr_get(attr);
if (key->ipv4_src) {
sflow_actions->tunnel.ip_src = key->ipv4_src;
}
if (key->ipv4_dst) {
sflow_actions->tunnel.ip_dst = key->ipv4_dst;
}
if (key->ipv4_proto) {
sflow_actions->tunnel_ipproto = key->ipv4_proto;
}
if (key->ipv4_tos) {
sflow_actions->tunnel.ip_tos = key->ipv4_tos;
}
if (key->ipv4_ttl) {
sflow_actions->tunnel.ip_ttl = key->ipv4_ttl;
}
}
break;
case OVS_KEY_ATTR_IPV6:
/* TODO: parse IPv6 encap. */
break;
/* These have the same structure and format. */
case OVS_KEY_ATTR_TCP:
case OVS_KEY_ATTR_UDP:
case OVS_KEY_ATTR_SCTP:
if (sflow_actions->encap_depth == 1) {
const struct ovs_key_tcp *key = nl_attr_get(attr);
if (key->tcp_src) {
sflow_actions->tunnel.tp_src = key->tcp_src;
}
if (key->tcp_dst) {
sflow_actions->tunnel.tp_dst = key->tcp_dst;
}
}
break;
case OVS_KEY_ATTR_TCP_FLAGS:
case OVS_KEY_ATTR_ICMP:
case OVS_KEY_ATTR_ICMPV6:
case OVS_KEY_ATTR_ARP:
case OVS_KEY_ATTR_ND:
case OVS_KEY_ATTR_ND_EXTENSIONS:
case OVS_KEY_ATTR_CT_STATE:
case OVS_KEY_ATTR_CT_ZONE:
case OVS_KEY_ATTR_CT_MARK:
case OVS_KEY_ATTR_CT_LABELS:
case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
case OVS_KEY_ATTR_UNSPEC:
case OVS_KEY_ATTR_PACKET_TYPE:
case OVS_KEY_ATTR_NSH:
case __OVS_KEY_ATTR_MAX:
default:
break;
}
}
static void
dpif_sflow_capture_input_mpls(const struct flow *flow,
struct dpif_sflow_actions *sflow_actions)
{
if (eth_type_mpls(flow->dl_type)) {
int depth = 0;
int ii;
ovs_be32 lse;
/* Calculate depth by detecting BOS. */
for (ii = 0; ii < FLOW_MAX_MPLS_LABELS; ii++) {
lse = flow->mpls_lse[ii];
depth++;
if (lse & htonl(MPLS_BOS_MASK)) {
break;
}
}
/* Capture stack, reversing stack order, and
* using host-byte-order for each lse. BOS flag
* is ignored for now. It is set later when
* the output stack is encoded.
*/
for (ii = 0; ii < depth; ii++) {
lse = flow->mpls_lse[ii];
sflow_actions->mpls_lse[depth - ii - 1] = ntohl(lse);
}
sflow_actions->mpls_stack_depth = depth;
}
}
void
dpif_sflow_read_actions(const struct flow *flow,
const struct nlattr *actions, size_t actions_len,
struct dpif_sflow_actions *sflow_actions,
bool capture_mpls)
{
const struct nlattr *a;
unsigned int left;
if (actions_len == 0) {
/* Packet dropped.*/
return;
}
if (flow != NULL && capture_mpls == true) {
/* Make sure the MPLS output stack
* is seeded with the input stack.
*/
dpif_sflow_capture_input_mpls(flow, sflow_actions);
/* XXX when 802.1AD(QinQ) is supported then
* we can do the same with VLAN stacks here
*/
}
NL_ATTR_FOR_EACH (a, left, actions, actions_len) {
enum ovs_action_attr type = nl_attr_type(a);
switch (type) {
case OVS_ACTION_ATTR_OUTPUT:
/* Capture the output port in case we need it
* to get the output tunnel type.
*/
sflow_actions->out_port = nl_attr_get_odp_port(a);
break;
case OVS_ACTION_ATTR_TUNNEL_POP:
/* XXX: Do not handle this for now. It's not clear
* if we should start with encap_depth == 1 when we
* see an input tunnel, or if we should assume
* that the input tunnel was always "popped" if it
* was presented to us decoded in flow->tunnel?
*
* If we do handle this it might look like this,
* as we clear the captured tunnel info and decrement
* the encap_depth:
*
* memset(&sflow_actions->tunnel, 0, sizeof struct flow_tnl);
* sflow_actions->tunnel_ipproto = 0;
* --sflow_actions->encap_depth;
*
* but for now just disable the tunnel annotation:
*/
sflow_actions->tunnel_err = true;
break;
case OVS_ACTION_ATTR_TUNNEL_PUSH:
/* XXX: This actions appears to come with it's own
* OUTPUT action, so should it be regarded as having
* an implicit "pop" following it too? Put another
* way, would two tnl_push() actions in succession
* result in a packet with two layers of encap?
*/
if (++sflow_actions->encap_depth > 1) {
/* Do not handle multi-encap for now. */
sflow_actions->tunnel_err = true;
} else {
sflow_read_tnl_push_action(a, sflow_actions);
}
break;
case OVS_ACTION_ATTR_TRUNC:
case OVS_ACTION_ATTR_USERSPACE:
case OVS_ACTION_ATTR_RECIRC:
case OVS_ACTION_ATTR_HASH:
case OVS_ACTION_ATTR_CT:
case OVS_ACTION_ATTR_CT_CLEAR:
case OVS_ACTION_ATTR_METER:
case OVS_ACTION_ATTR_LB_OUTPUT:
break;
case OVS_ACTION_ATTR_SET_MASKED:
/* TODO: apply mask. XXX: Are we likely to see this? */
break;
case OVS_ACTION_ATTR_SET:
sflow_read_set_action(nl_attr_get(a), sflow_actions);
break;
case OVS_ACTION_ATTR_PUSH_VLAN:
case OVS_ACTION_ATTR_POP_VLAN:
/* TODO: 802.1AD(QinQ) is not supported by OVS (yet), so do not
* construct a VLAN-stack. The sFlow user-action cookie already
* captures the egress VLAN ID so there is nothing more to do here.
*/
break;
case OVS_ACTION_ATTR_PUSH_MPLS: {
const struct ovs_action_push_mpls *mpls = nl_attr_get(a);
if (mpls) {
dpif_sflow_push_mpls_lse(sflow_actions, mpls->mpls_lse);
}
break;
}
case OVS_ACTION_ATTR_POP_MPLS: {
dpif_sflow_pop_mpls_lse(sflow_actions);
break;
}
case OVS_ACTION_ATTR_PUSH_ETH:
case OVS_ACTION_ATTR_POP_ETH:
/* TODO: SFlow does not currently define a MAC-in-MAC
* encapsulation structure. We could use an extension
* structure to report this.
*/
break;
case OVS_ACTION_ATTR_CLONE:
if (flow != NULL) {
dpif_sflow_read_actions(flow, nl_attr_get(a), nl_attr_get_size(a),
sflow_actions, false);
}
break;
case OVS_ACTION_ATTR_SAMPLE:
case OVS_ACTION_ATTR_PUSH_NSH:
case OVS_ACTION_ATTR_POP_NSH:
case OVS_ACTION_ATTR_UNSPEC:
case OVS_ACTION_ATTR_CHECK_PKT_LEN:
case OVS_ACTION_ATTR_DROP:
case __OVS_ACTION_ATTR_MAX:
default:
break;
}
}
}
static void
dpif_sflow_encode_mpls_stack(SFLLabelStack *stack,
uint32_t *mpls_lse_buf,
const struct dpif_sflow_actions *sflow_actions)
{
/* Put the MPLS stack back into "packet header" order,
* and make sure the BOS flag is set correctly on the last
* one. Each lse is still in host-byte-order.
*/
int ii;
uint32_t lse;
stack->depth = sflow_actions->mpls_stack_depth;
stack->stack = mpls_lse_buf;
for (ii = 0; ii < stack->depth; ii++) {
lse = sflow_actions->mpls_lse[stack->depth - ii - 1];
stack->stack[ii] = (lse & ~MPLS_BOS_MASK);
}
stack->stack[stack->depth - 1] |= MPLS_BOS_MASK;
}
/* Extract the output port count from the user action cookie.
* See http://sflow.org/sflow_version_5.txt "Input/Output port information"
*/
static uint32_t
dpif_sflow_cookie_num_outputs(const struct user_action_cookie *cookie)
{
uint32_t format = cookie->sflow.output & 0xC0000000;
uint32_t port_n = cookie->sflow.output & 0x3FFFFFFF;
if (format == 0) {
return port_n ? 1 : 0;
}
else if (format == 0x80000000) {
return port_n;
}
return 0;
}
void
dpif_sflow_received(struct dpif_sflow *ds, const struct dp_packet *packet,
const struct flow *flow, odp_port_t odp_in_port,
const struct user_action_cookie *cookie,
const struct dpif_sflow_actions *sflow_actions)
OVS_EXCLUDED(mutex)
{
SFL_FLOW_SAMPLE_TYPE fs;
SFLFlow_sample_element hdrElem;
SFLSampled_header *header;
SFLFlow_sample_element switchElem;
uint8_t tnlInProto, tnlOutProto;
SFLFlow_sample_element tnlInElem, tnlOutElem;
SFLFlow_sample_element vniInElem, vniOutElem;
SFLFlow_sample_element mplsElem;
uint32_t mpls_lse_buf[FLOW_MAX_MPLS_LABELS];
SFLSampler *sampler;
struct dpif_sflow_port *in_dsp;
struct dpif_sflow_port *out_dsp;
ovs_be16 vlan_tci;
ovs_mutex_lock(&mutex);
sampler = ds->sflow_agent->samplers;
if (!sampler) {
goto out;
}
/* Build a flow sample. */
memset(&fs, 0, sizeof fs);
/* Look up the input ifIndex if this port has one. Otherwise just
* leave it as 0 (meaning 'unknown') and continue. */
in_dsp = dpif_sflow_find_port(ds, odp_in_port);
if (in_dsp) {
fs.input = SFL_DS_INDEX(in_dsp->dsi);
}
/* Make the assumption that the random number generator in the
* datapath converges to the configured mean, and just increment the
* samplePool by the configured sampling rate every time. */
sampler->samplePool += sfl_sampler_get_sFlowFsPacketSamplingRate(sampler);
/* Sampled header. */
memset(&hdrElem, 0, sizeof hdrElem);
hdrElem.tag = SFLFLOW_HEADER;
header = &hdrElem.flowType.header;
header->header_protocol = SFLHEADER_ETHERNET_ISO8023;
/* The frame_length should include the Ethernet FCS (4 bytes),
* but it has already been stripped, so we need to add 4 here. */
header->frame_length = dp_packet_size(packet) + 4;
/* Ethernet FCS stripped off. */
header->stripped = 4;
header->header_length = MIN(dp_packet_size(packet),
sampler->sFlowFsMaximumHeaderSize);
header->header_bytes = dp_packet_data(packet);
/* Add extended switch element. */
memset(&switchElem, 0, sizeof(switchElem));
switchElem.tag = SFLFLOW_EX_SWITCH;
switchElem.flowType.sw.src_vlan = vlan_tci_to_vid(flow->vlans[0].tci);
switchElem.flowType.sw.src_priority = vlan_tci_to_pcp(flow->vlans[0].tci);
/* Retrieve data from user_action_cookie. */
vlan_tci = cookie->sflow.vlan_tci;
switchElem.flowType.sw.dst_vlan = vlan_tci_to_vid(vlan_tci);
switchElem.flowType.sw.dst_priority = vlan_tci_to_pcp(vlan_tci);
fs.output = cookie->sflow.output;
/* Input tunnel. */
if (flow->tunnel.ip_dst) {
memset(&tnlInElem, 0, sizeof(tnlInElem));
tnlInElem.tag = SFLFLOW_EX_IPV4_TUNNEL_INGRESS;
tnlInProto = in_dsp ? dpif_sflow_tunnel_proto(in_dsp->tunnel_type) : 0;
dpif_sflow_tunnel_v4(tnlInProto,
&flow->tunnel,
&tnlInElem.flowType.ipv4);
SFLADD_ELEMENT(&fs, &tnlInElem);
if (flow->tunnel.tun_id) {
memset(&vniInElem, 0, sizeof(vniInElem));
vniInElem.tag = SFLFLOW_EX_VNI_INGRESS;
vniInElem.flowType.tunnel_vni.vni
= ntohll(flow->tunnel.tun_id);
SFLADD_ELEMENT(&fs, &vniInElem);
}
}
/* Output tunnel. */
if (sflow_actions
&& sflow_actions->encap_depth == 1
&& !sflow_actions->tunnel_err
&& dpif_sflow_cookie_num_outputs(cookie) == 1) {
tnlOutProto = sflow_actions->tunnel_ipproto;
if (tnlOutProto == 0) {
/* Try to infer the ip-protocol from the output port. */
if (sflow_actions->out_port != ODPP_NONE) {
out_dsp = dpif_sflow_find_port(ds, sflow_actions->out_port);
if (out_dsp) {
tnlOutProto = dpif_sflow_tunnel_proto(out_dsp->tunnel_type);
}
}
}
memset(&tnlOutElem, 0, sizeof(tnlOutElem));
tnlOutElem.tag = SFLFLOW_EX_IPV4_TUNNEL_EGRESS;
dpif_sflow_tunnel_v4(tnlOutProto,
&sflow_actions->tunnel,
&tnlOutElem.flowType.ipv4);
SFLADD_ELEMENT(&fs, &tnlOutElem);
if (sflow_actions->tunnel.tun_id) {
memset(&vniOutElem, 0, sizeof(vniOutElem));
vniOutElem.tag = SFLFLOW_EX_VNI_EGRESS;
vniOutElem.flowType.tunnel_vni.vni
= ntohll(sflow_actions->tunnel.tun_id);
SFLADD_ELEMENT(&fs, &vniOutElem);
}
}
/* MPLS output label stack. */
if (sflow_actions
&& sflow_actions->mpls_stack_depth > 0
&& !sflow_actions->mpls_err
&& dpif_sflow_cookie_num_outputs(cookie) == 1) {
memset(&mplsElem, 0, sizeof(mplsElem));
mplsElem.tag = SFLFLOW_EX_MPLS;
dpif_sflow_encode_mpls_stack(&mplsElem.flowType.mpls.out_stack,
mpls_lse_buf,
sflow_actions);
SFLADD_ELEMENT(&fs, &mplsElem);
}
/* Submit the flow sample to be encoded into the next datagram. */
SFLADD_ELEMENT(&fs, &hdrElem);
SFLADD_ELEMENT(&fs, &switchElem);
sfl_sampler_writeFlowSample(sampler, &fs);
out:
ovs_mutex_unlock(&mutex);
}
void
dpif_sflow_run(struct dpif_sflow *ds) OVS_EXCLUDED(mutex)
{
ovs_mutex_lock(&mutex);
if (ds->collectors != NULL) {
time_t now = time_now();
route_table_run();
if (now >= ds->next_tick) {
sfl_agent_tick(ds->sflow_agent, time_wall());
ds->next_tick = now + 1;
}
}
ovs_mutex_unlock(&mutex);
}
void
dpif_sflow_wait(struct dpif_sflow *ds) OVS_EXCLUDED(mutex)
{
ovs_mutex_lock(&mutex);
if (ds->collectors != NULL) {
poll_timer_wait_until(ds->next_tick * 1000LL);
}
ovs_mutex_unlock(&mutex);
}