2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-28 21:07:47 +00:00
ovs/lib/flow.c

510 lines
16 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2008, 2009, 2010 Nicira Networks.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include <sys/types.h>
#include "flow.h"
#include <inttypes.h>
#include <netinet/in.h>
#include <stdlib.h>
#include <string.h>
#include "byte-order.h"
#include "coverage.h"
#include "dynamic-string.h"
#include "hash.h"
#include "ofpbuf.h"
#include "openflow/openflow.h"
#include "openvswitch/datapath-protocol.h"
#include "packets.h"
#include "unaligned.h"
#include "vlog.h"
VLOG_DEFINE_THIS_MODULE(flow);
static struct arp_eth_header *
pull_arp(struct ofpbuf *packet)
{
return ofpbuf_try_pull(packet, ARP_ETH_HEADER_LEN);
}
static struct ip_header *
pull_ip(struct ofpbuf *packet)
{
if (packet->size >= IP_HEADER_LEN) {
struct ip_header *ip = packet->data;
int ip_len = IP_IHL(ip->ip_ihl_ver) * 4;
if (ip_len >= IP_HEADER_LEN && packet->size >= ip_len) {
return ofpbuf_pull(packet, ip_len);
}
}
return NULL;
}
static struct tcp_header *
pull_tcp(struct ofpbuf *packet)
{
if (packet->size >= TCP_HEADER_LEN) {
struct tcp_header *tcp = packet->data;
int tcp_len = TCP_OFFSET(tcp->tcp_ctl) * 4;
if (tcp_len >= TCP_HEADER_LEN && packet->size >= tcp_len) {
return ofpbuf_pull(packet, tcp_len);
}
}
return NULL;
}
static struct udp_header *
pull_udp(struct ofpbuf *packet)
{
return ofpbuf_try_pull(packet, UDP_HEADER_LEN);
}
static struct icmp_header *
pull_icmp(struct ofpbuf *packet)
{
return ofpbuf_try_pull(packet, ICMP_HEADER_LEN);
}
static void
parse_vlan(struct ofpbuf *b, struct flow *flow)
{
struct qtag_prefix {
ovs_be16 eth_type; /* ETH_TYPE_VLAN */
ovs_be16 tci;
};
if (b->size >= sizeof(struct qtag_prefix) + sizeof(ovs_be16)) {
struct qtag_prefix *qp = ofpbuf_pull(b, sizeof *qp);
flow->dl_vlan = qp->tci & htons(VLAN_VID_MASK);
flow->dl_vlan_pcp = vlan_tci_to_pcp(qp->tci);
}
}
static ovs_be16
parse_ethertype(struct ofpbuf *b)
{
struct llc_snap_header *llc;
ovs_be16 proto;
proto = *(ovs_be16 *) ofpbuf_pull(b, sizeof proto);
if (ntohs(proto) >= ODP_DL_TYPE_ETH2_CUTOFF) {
return proto;
}
if (b->size < sizeof *llc) {
return htons(ODP_DL_TYPE_NOT_ETH_TYPE);
}
llc = b->data;
if (llc->llc.llc_dsap != LLC_DSAP_SNAP
|| llc->llc.llc_ssap != LLC_SSAP_SNAP
|| llc->llc.llc_cntl != LLC_CNTL_SNAP
|| memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
sizeof llc->snap.snap_org)) {
return htons(ODP_DL_TYPE_NOT_ETH_TYPE);
}
ofpbuf_pull(b, sizeof *llc);
return llc->snap.snap_type;
}
/* Initializes 'flow' members from 'packet', 'tun_id', and 'in_port.
* Initializes 'packet' header pointers as follows:
*
* - packet->l2 to the start of the Ethernet header.
*
* - packet->l3 to just past the Ethernet header, or just past the
* vlan_header if one is present, to the first byte of the payload of the
* Ethernet frame.
*
* - packet->l4 to just past the IPv4 header, if one is present and has a
* correct length, and otherwise NULL.
*
* - packet->l7 to just past the TCP or UDP or ICMP header, if one is
* present and has a correct length, and otherwise NULL.
*/
int
flow_extract(struct ofpbuf *packet, ovs_be32 tun_id, uint16_t in_port,
struct flow *flow)
{
struct ofpbuf b = *packet;
struct eth_header *eth;
int retval = 0;
COVERAGE_INC(flow_extract);
memset(flow, 0, sizeof *flow);
flow->tun_id = tun_id;
flow->in_port = in_port;
flow->dl_vlan = htons(OFP_VLAN_NONE);
packet->l2 = b.data;
packet->l3 = NULL;
packet->l4 = NULL;
packet->l7 = NULL;
if (b.size < sizeof *eth) {
return 0;
}
/* Link layer. */
eth = b.data;
memcpy(flow->dl_src, eth->eth_src, ETH_ADDR_LEN);
memcpy(flow->dl_dst, eth->eth_dst, ETH_ADDR_LEN);
/* dl_type, dl_vlan, dl_vlan_pcp. */
ofpbuf_pull(&b, ETH_ADDR_LEN * 2);
if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
parse_vlan(&b, flow);
}
flow->dl_type = parse_ethertype(&b);
/* Network layer. */
packet->l3 = b.data;
if (flow->dl_type == htons(ETH_TYPE_IP)) {
const struct ip_header *nh = pull_ip(&b);
if (nh) {
flow->nw_src = get_unaligned_u32(&nh->ip_src);
flow->nw_dst = get_unaligned_u32(&nh->ip_dst);
flow->nw_tos = nh->ip_tos & IP_DSCP_MASK;
flow->nw_proto = nh->ip_proto;
packet->l4 = b.data;
if (!IP_IS_FRAGMENT(nh->ip_frag_off)) {
if (flow->nw_proto == IP_TYPE_TCP) {
const struct tcp_header *tcp = pull_tcp(&b);
if (tcp) {
flow->tp_src = tcp->tcp_src;
flow->tp_dst = tcp->tcp_dst;
packet->l7 = b.data;
}
} else if (flow->nw_proto == IP_TYPE_UDP) {
const struct udp_header *udp = pull_udp(&b);
if (udp) {
flow->tp_src = udp->udp_src;
flow->tp_dst = udp->udp_dst;
packet->l7 = b.data;
}
} else if (flow->nw_proto == IP_TYPE_ICMP) {
const struct icmp_header *icmp = pull_icmp(&b);
if (icmp) {
flow->icmp_type = htons(icmp->icmp_type);
flow->icmp_code = htons(icmp->icmp_code);
packet->l7 = b.data;
}
}
} else {
retval = 1;
}
}
} else if (flow->dl_type == htons(ETH_TYPE_ARP)) {
const struct arp_eth_header *arp = pull_arp(&b);
if (arp && arp->ar_hrd == htons(1)
&& arp->ar_pro == htons(ETH_TYPE_IP)
&& arp->ar_hln == ETH_ADDR_LEN
&& arp->ar_pln == 4) {
/* We only match on the lower 8 bits of the opcode. */
if (ntohs(arp->ar_op) <= 0xff) {
flow->nw_proto = ntohs(arp->ar_op);
}
if ((flow->nw_proto == ARP_OP_REQUEST)
|| (flow->nw_proto == ARP_OP_REPLY)) {
flow->nw_src = arp->ar_spa;
flow->nw_dst = arp->ar_tpa;
}
}
}
return retval;
}
/* Extracts the flow stats for a packet. The 'flow' and 'packet'
* arguments must have been initialized through a call to flow_extract().
*/
void
flow_extract_stats(const struct flow *flow, struct ofpbuf *packet,
struct odp_flow_stats *stats)
{
memset(stats, '\0', sizeof(*stats));
if ((flow->dl_type == htons(ETH_TYPE_IP)) && packet->l4) {
if ((flow->nw_proto == IP_TYPE_TCP) && packet->l7) {
struct tcp_header *tcp = packet->l4;
stats->tcp_flags = TCP_FLAGS(tcp->tcp_ctl);
}
}
stats->n_bytes = packet->size;
stats->n_packets = 1;
}
/* Extract 'flow' with 'wildcards' into the OpenFlow match structure
* 'match'. 'flow_format' should be one of NXFF_*. */
void
flow_to_match(const struct flow *flow, uint32_t wildcards,
int flow_format, struct ofp_match *match)
{
if (flow_format != NXFF_TUN_ID_FROM_COOKIE) {
wildcards &= OFPFW_ALL;
}
match->wildcards = htonl(wildcards);
match->in_port = htons(flow->in_port == ODPP_LOCAL ? OFPP_LOCAL
: flow->in_port);
match->dl_vlan = flow->dl_vlan;
match->dl_vlan_pcp = flow->dl_vlan_pcp;
memcpy(match->dl_src, flow->dl_src, ETH_ADDR_LEN);
memcpy(match->dl_dst, flow->dl_dst, ETH_ADDR_LEN);
match->dl_type = flow->dl_type;
match->nw_src = flow->nw_src;
match->nw_dst = flow->nw_dst;
match->nw_tos = flow->nw_tos;
match->nw_proto = flow->nw_proto;
match->tp_src = flow->tp_src;
match->tp_dst = flow->tp_dst;
memset(match->pad1, '\0', sizeof match->pad1);
memset(match->pad2, '\0', sizeof match->pad2);
}
void
flow_from_match(const struct ofp_match *match, int flow_format,
ovs_be64 cookie, struct flow *flow,
struct flow_wildcards *wc)
{
flow_wildcards_init(wc, ntohl(match->wildcards));
if (flow_format == NXFF_TUN_ID_FROM_COOKIE
&& !(wc->wildcards & NXFW_TUN_ID)) {
flow->tun_id = htonl(ntohll(cookie) >> 32);
} else {
wc->wildcards |= NXFW_TUN_ID;
flow->tun_id = 0;
}
flow->nw_src = match->nw_src;
flow->nw_dst = match->nw_dst;
flow->in_port = (match->in_port == htons(OFPP_LOCAL) ? ODPP_LOCAL
: ntohs(match->in_port));
flow->dl_vlan = match->dl_vlan;
flow->dl_vlan_pcp = match->dl_vlan_pcp;
flow->dl_type = match->dl_type;
flow->tp_src = match->tp_src;
flow->tp_dst = match->tp_dst;
memcpy(flow->dl_src, match->dl_src, ETH_ADDR_LEN);
memcpy(flow->dl_dst, match->dl_dst, ETH_ADDR_LEN);
flow->nw_tos = match->nw_tos;
flow->nw_proto = match->nw_proto;
}
char *
flow_to_string(const struct flow *flow)
{
struct ds ds = DS_EMPTY_INITIALIZER;
flow_format(&ds, flow);
return ds_cstr(&ds);
}
void
flow_format(struct ds *ds, const struct flow *flow)
{
ds_put_format(ds, "tunnel%08"PRIx32":in_port%04"PRIx16
":vlan%"PRIu16":pcp%"PRIu8
" mac"ETH_ADDR_FMT"->"ETH_ADDR_FMT
" type%04"PRIx16
" proto%"PRIu8
" tos%"PRIu8
" ip"IP_FMT"->"IP_FMT
" port%"PRIu16"->%"PRIu16,
ntohl(flow->tun_id),
flow->in_port,
ntohs(flow->dl_vlan),
flow->dl_vlan_pcp,
ETH_ADDR_ARGS(flow->dl_src),
ETH_ADDR_ARGS(flow->dl_dst),
ntohs(flow->dl_type),
flow->nw_proto,
flow->nw_tos,
IP_ARGS(&flow->nw_src),
IP_ARGS(&flow->nw_dst),
ntohs(flow->tp_src),
ntohs(flow->tp_dst));
}
void
flow_print(FILE *stream, const struct flow *flow)
{
char *s = flow_to_string(flow);
fputs(s, stream);
free(s);
}
/* flow_wildcards functions. */
/* Given the wildcard bit count in bits 'shift' through 'shift + 5' (inclusive)
* of 'wildcards', returns a 32-bit bit mask with a 1 in each bit that must
* match and a 0 in each bit that is wildcarded.
*
* The bits in 'wildcards' are in the format used in enum ofp_flow_wildcards: 0
* is exact match, 1 ignores the LSB, 2 ignores the 2 least-significant bits,
* ..., 32 and higher wildcard the entire field. This is the *opposite* of the
* usual convention where e.g. /24 indicates that 8 bits (not 24 bits) are
* wildcarded. */
ovs_be32
flow_nw_bits_to_mask(uint32_t wildcards, int shift)
{
wildcards = (wildcards >> shift) & 0x3f;
return wildcards < 32 ? htonl(~((1u << wildcards) - 1)) : 0;
}
/* Return 'wildcards' in "normal form":
*
* - Forces unknown bits to 0.
*
* - Forces nw_src and nw_dst masks greater than 32 to exactly 32.
*/
static inline uint32_t
flow_wildcards_normalize(uint32_t wildcards)
{
wildcards &= wildcards & OVSFW_ALL;
if (wildcards & (0x20 << OFPFW_NW_SRC_SHIFT)) {
wildcards &= ~(0x1f << OFPFW_NW_SRC_SHIFT);
}
if (wildcards & (0x20 << OFPFW_NW_DST_SHIFT)) {
wildcards &= ~(0x1f << OFPFW_NW_DST_SHIFT);
}
return wildcards;
}
/* Initializes 'wc' from 'wildcards', which may be any combination of the
* OFPFW_* and OVSFW_* wildcard bits. */
void
flow_wildcards_init(struct flow_wildcards *wc, uint32_t wildcards)
{
wc->wildcards = flow_wildcards_normalize(wildcards);
wc->nw_src_mask = flow_nw_bits_to_mask(wc->wildcards, OFPFW_NW_SRC_SHIFT);
wc->nw_dst_mask = flow_nw_bits_to_mask(wc->wildcards, OFPFW_NW_DST_SHIFT);
}
/* Initializes 'wc' as an exact-match set of wildcards; that is, 'wc' does not
* wildcard any bits or fields. */
void
flow_wildcards_init_exact(struct flow_wildcards *wc)
{
flow_wildcards_init(wc, 0);
}
static inline uint32_t
combine_nw_bits(uint32_t wb1, uint32_t wb2, int shift)
{
uint32_t sb1 = (wb1 >> shift) & 0x3f;
uint32_t sb2 = (wb2 >> shift) & 0x3f;
return MAX(sb1, sb2) << shift;
}
/* Initializes 'dst' as the combination of wildcards in 'src1' and 'src2'.
* That is, a bit or a field is wildcarded in 'dst' if it is wildcarded in
* 'src1' or 'src2' or both. */
void
flow_wildcards_combine(struct flow_wildcards *dst,
const struct flow_wildcards *src1,
const struct flow_wildcards *src2)
{
uint32_t wb1 = src1->wildcards;
uint32_t wb2 = src2->wildcards;
dst->wildcards = (wb1 | wb2) & ~(OFPFW_NW_SRC_MASK | OFPFW_NW_DST_MASK);
dst->wildcards |= combine_nw_bits(wb1, wb2, OFPFW_NW_SRC_SHIFT);
dst->wildcards |= combine_nw_bits(wb1, wb2, OFPFW_NW_DST_SHIFT);
dst->nw_src_mask = src1->nw_src_mask & src2->nw_src_mask;
dst->nw_dst_mask = src1->nw_dst_mask & src2->nw_dst_mask;
}
/* Returns a hash of the wildcards in 'wc'. */
uint32_t
flow_wildcards_hash(const struct flow_wildcards *wc)
{
/* There is no need to include nw_src_mask or nw_dst_mask because they do
* not add any information (they can be computed from wc->wildcards). */
return hash_int(wc->wildcards, 0);
}
/* Returns true if 'a' and 'b' represent the same wildcards, false if they are
* different. */
bool
flow_wildcards_equal(const struct flow_wildcards *a,
const struct flow_wildcards *b)
{
return a->wildcards == b->wildcards;
}
/* Returns true if at least one bit or field is wildcarded in 'a' but not in
* 'b', false otherwise. */
bool
flow_wildcards_has_extra(const struct flow_wildcards *a,
const struct flow_wildcards *b)
{
#define OFPFW_NW_MASK (OFPFW_NW_SRC_MASK | OFPFW_NW_DST_MASK)
return ((a->wildcards & ~(b->wildcards | OFPFW_NW_MASK))
|| (a->nw_src_mask & b->nw_src_mask) != b->nw_src_mask
|| (a->nw_dst_mask & b->nw_dst_mask) != b->nw_dst_mask);
}
static int
count_ones(ovs_be32 mask)
{
#if __GNUC__ >= 4
return __builtin_popcount(mask);
#else
int bits;
for (bits = 0; mask; bits++) {
mask &= mask - 1;
}
return bits;
#endif
}
static bool
set_nw_mask(struct flow_wildcards *wc, ovs_be32 mask,
ovs_be32 *maskp, int shift)
{
int wcbits = 32 - count_ones(mask);
if (flow_nw_bits_to_mask(wcbits, 0) == mask) {
wc->wildcards &= ~(0x3f << shift);
wc->wildcards |= wcbits << shift;
*maskp = mask;
return true;
} else {
return false;
}
}
/* Sets the IP (or ARP) source wildcard mask to CIDR 'mask' (consisting of N
* high-order 1-bit and 32-N low-order 0-bits). Returns true if successful,
* false if 'mask' is not a CIDR mask. */
bool
flow_wildcards_set_nw_src_mask(struct flow_wildcards *wc, ovs_be32 mask)
{
return set_nw_mask(wc, mask, &wc->nw_src_mask, OFPFW_NW_SRC_SHIFT);
}
/* Sets the IP (or ARP) destination wildcard mask to CIDR 'mask' (consisting of
* N high-order 1-bit and 32-N low-order 0-bits). Returns true if successful,
* false if 'mask' is not a CIDR mask. */
bool
flow_wildcards_set_nw_dst_mask(struct flow_wildcards *wc, ovs_be32 mask)
{
return set_nw_mask(wc, mask, &wc->nw_dst_mask, OFPFW_NW_DST_SHIFT);
}