2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-30 22:05:19 +00:00
Files
ovs/datapath/datapath.c
Justin Pettit a4af00400a Merge branch 'master' into next
Conflicts:
	COPYING
	datapath/datapath.h
	lib/automake.mk
	lib/dpif-provider.h
	lib/dpif.c
	lib/hmap.h
	lib/netdev-provider.h
	lib/netdev.c
	lib/stream-ssl.h
	ofproto/executer.c
	ofproto/ofproto.c
	ofproto/ofproto.h
	tests/automake.mk
	utilities/ovs-ofctl.c
	utilities/ovs-vsctl.in
	vswitchd/ovs-vswitchd.conf.5.in
	xenserver/etc_init.d_vswitch
	xenserver/etc_xensource_scripts_vif
	xenserver/opt_xensource_libexec_interface-reconfigure
2010-02-05 17:14:55 -08:00

1821 lines
44 KiB
C

/*
* Copyright (c) 2007, 2008, 2009, 2010 Nicira Networks.
* Distributed under the terms of the GNU GPL version 2.
*
* Significant portions of this file may be copied from parts of the Linux
* kernel, by Linus Torvalds and others.
*/
/* Functions for managing the dp interface/device. */
#include <linux/init.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/if_arp.h>
#include <linux/if_bridge.h>
#include <linux/if_vlan.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/delay.h>
#include <linux/time.h>
#include <linux/etherdevice.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/llc.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/rcupdate.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/version.h>
#include <linux/ethtool.h>
#include <linux/random.h>
#include <linux/wait.h>
#include <asm/system.h>
#include <asm/div64.h>
#include <asm/bug.h>
#include <linux/netfilter_bridge.h>
#include <linux/netfilter_ipv4.h>
#include <linux/inetdevice.h>
#include <linux/list.h>
#include <linux/rculist.h>
#include <linux/workqueue.h>
#include <linux/dmi.h>
#include <net/llc.h>
#include "openvswitch/datapath-protocol.h"
#include "datapath.h"
#include "actions.h"
#include "dp_dev.h"
#include "flow.h"
#include "compat.h"
int (*dp_ioctl_hook)(struct net_device *dev, struct ifreq *rq, int cmd);
EXPORT_SYMBOL(dp_ioctl_hook);
/* Datapaths. Protected on the read side by rcu_read_lock, on the write side
* by dp_mutex.
*
* dp_mutex nests inside the RTNL lock: if you need both you must take the RTNL
* lock first.
*
* It is safe to access the datapath and net_bridge_port structures with just
* dp_mutex.
*/
static struct datapath *dps[ODP_MAX];
static DEFINE_MUTEX(dp_mutex);
/* Number of milliseconds between runs of the maintenance thread. */
#define MAINT_SLEEP_MSECS 1000
static int new_nbp(struct datapath *, struct net_device *, int port_no);
/* Must be called with rcu_read_lock or dp_mutex. */
struct datapath *get_dp(int dp_idx)
{
if (dp_idx < 0 || dp_idx >= ODP_MAX)
return NULL;
return rcu_dereference(dps[dp_idx]);
}
EXPORT_SYMBOL_GPL(get_dp);
struct datapath *get_dp_locked(int dp_idx)
{
struct datapath *dp;
mutex_lock(&dp_mutex);
dp = get_dp(dp_idx);
if (dp)
mutex_lock(&dp->mutex);
mutex_unlock(&dp_mutex);
return dp;
}
static inline size_t br_nlmsg_size(void)
{
return NLMSG_ALIGN(sizeof(struct ifinfomsg))
+ nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
+ nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
+ nla_total_size(4) /* IFLA_MASTER */
+ nla_total_size(4) /* IFLA_MTU */
+ nla_total_size(4) /* IFLA_LINK */
+ nla_total_size(1); /* IFLA_OPERSTATE */
}
static int dp_fill_ifinfo(struct sk_buff *skb,
const struct net_bridge_port *port,
int event, unsigned int flags)
{
const struct datapath *dp = port->dp;
const struct net_device *dev = port->dev;
struct ifinfomsg *hdr;
struct nlmsghdr *nlh;
nlh = nlmsg_put(skb, 0, 0, event, sizeof(*hdr), flags);
if (nlh == NULL)
return -EMSGSIZE;
hdr = nlmsg_data(nlh);
hdr->ifi_family = AF_BRIDGE;
hdr->__ifi_pad = 0;
hdr->ifi_type = dev->type;
hdr->ifi_index = dev->ifindex;
hdr->ifi_flags = dev_get_flags(dev);
hdr->ifi_change = 0;
NLA_PUT_STRING(skb, IFLA_IFNAME, dev->name);
NLA_PUT_U32(skb, IFLA_MASTER, dp->ports[ODPP_LOCAL]->dev->ifindex);
NLA_PUT_U32(skb, IFLA_MTU, dev->mtu);
#ifdef IFLA_OPERSTATE
NLA_PUT_U8(skb, IFLA_OPERSTATE,
netif_running(dev) ? dev->operstate : IF_OPER_DOWN);
#endif
if (dev->addr_len)
NLA_PUT(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr);
if (dev->ifindex != dev->iflink)
NLA_PUT_U32(skb, IFLA_LINK, dev->iflink);
return nlmsg_end(skb, nlh);
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
static void dp_ifinfo_notify(int event, struct net_bridge_port *port)
{
struct net *net = dev_net(port->dev);
struct sk_buff *skb;
int err = -ENOBUFS;
skb = nlmsg_new(br_nlmsg_size(), GFP_KERNEL);
if (skb == NULL)
goto errout;
err = dp_fill_ifinfo(skb, port, event, 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in br_nlmsg_size() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, GFP_KERNEL);
return;
errout:
if (err < 0)
rtnl_set_sk_err(net, RTNLGRP_LINK, err);
}
static void release_dp(struct kobject *kobj)
{
struct datapath *dp = container_of(kobj, struct datapath, ifobj);
kfree(dp);
}
struct kobj_type dp_ktype = {
.release = release_dp
};
static int create_dp(int dp_idx, const char __user *devnamep)
{
struct net_device *dp_dev;
char devname[IFNAMSIZ];
struct datapath *dp;
int err;
int i;
if (devnamep) {
err = -EFAULT;
if (strncpy_from_user(devname, devnamep, IFNAMSIZ - 1) < 0)
goto err;
devname[IFNAMSIZ - 1] = '\0';
} else {
snprintf(devname, sizeof devname, "of%d", dp_idx);
}
rtnl_lock();
mutex_lock(&dp_mutex);
err = -ENODEV;
if (!try_module_get(THIS_MODULE))
goto err_unlock;
/* Exit early if a datapath with that number already exists.
* (We don't use -EEXIST because that's ambiguous with 'devname'
* conflicting with an existing network device name.) */
err = -EBUSY;
if (get_dp(dp_idx))
goto err_put_module;
err = -ENOMEM;
dp = kzalloc(sizeof *dp, GFP_KERNEL);
if (dp == NULL)
goto err_put_module;
INIT_LIST_HEAD(&dp->port_list);
mutex_init(&dp->mutex);
dp->dp_idx = dp_idx;
for (i = 0; i < DP_N_QUEUES; i++)
skb_queue_head_init(&dp->queues[i]);
init_waitqueue_head(&dp->waitqueue);
/* Initialize kobject for bridge. This will be added as
* /sys/class/net/<devname>/brif later, if sysfs is enabled. */
dp->ifobj.kset = NULL;
kobject_init(&dp->ifobj, &dp_ktype);
/* Allocate table. */
err = -ENOMEM;
rcu_assign_pointer(dp->table, dp_table_create(DP_L1_SIZE));
if (!dp->table)
goto err_free_dp;
/* Set up our datapath device. */
dp_dev = dp_dev_create(dp, devname, ODPP_LOCAL);
err = PTR_ERR(dp_dev);
if (IS_ERR(dp_dev))
goto err_destroy_table;
err = new_nbp(dp, dp_dev, ODPP_LOCAL);
if (err) {
dp_dev_destroy(dp_dev);
goto err_destroy_table;
}
dp->drop_frags = 0;
dp->stats_percpu = alloc_percpu(struct dp_stats_percpu);
if (!dp->stats_percpu)
goto err_destroy_local_port;
rcu_assign_pointer(dps[dp_idx], dp);
mutex_unlock(&dp_mutex);
rtnl_unlock();
dp_sysfs_add_dp(dp);
return 0;
err_destroy_local_port:
dp_del_port(dp->ports[ODPP_LOCAL]);
err_destroy_table:
dp_table_destroy(dp->table, 0);
err_free_dp:
kfree(dp);
err_put_module:
module_put(THIS_MODULE);
err_unlock:
mutex_unlock(&dp_mutex);
rtnl_unlock();
err:
return err;
}
static void do_destroy_dp(struct datapath *dp)
{
struct net_bridge_port *p, *n;
int i;
list_for_each_entry_safe (p, n, &dp->port_list, node)
if (p->port_no != ODPP_LOCAL)
dp_del_port(p);
dp_sysfs_del_dp(dp);
rcu_assign_pointer(dps[dp->dp_idx], NULL);
dp_del_port(dp->ports[ODPP_LOCAL]);
dp_table_destroy(dp->table, 1);
for (i = 0; i < DP_N_QUEUES; i++)
skb_queue_purge(&dp->queues[i]);
for (i = 0; i < DP_MAX_GROUPS; i++)
kfree(dp->groups[i]);
free_percpu(dp->stats_percpu);
kobject_put(&dp->ifobj);
module_put(THIS_MODULE);
}
static int destroy_dp(int dp_idx)
{
struct datapath *dp;
int err;
rtnl_lock();
mutex_lock(&dp_mutex);
dp = get_dp(dp_idx);
err = -ENODEV;
if (!dp)
goto err_unlock;
do_destroy_dp(dp);
err = 0;
err_unlock:
mutex_unlock(&dp_mutex);
rtnl_unlock();
return err;
}
static void release_nbp(struct kobject *kobj)
{
struct net_bridge_port *p = container_of(kobj, struct net_bridge_port, kobj);
kfree(p);
}
struct kobj_type brport_ktype = {
#ifdef CONFIG_SYSFS
.sysfs_ops = &brport_sysfs_ops,
#endif
.release = release_nbp
};
/* Called with RTNL lock and dp_mutex. */
static int new_nbp(struct datapath *dp, struct net_device *dev, int port_no)
{
struct net_bridge_port *p;
if (dev->br_port != NULL)
return -EBUSY;
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (!p)
return -ENOMEM;
dev_set_promiscuity(dev, 1);
dev_hold(dev);
p->port_no = port_no;
p->dp = dp;
p->dev = dev;
atomic_set(&p->sflow_pool, 0);
if (!is_dp_dev(dev))
rcu_assign_pointer(dev->br_port, p);
else {
/* It would make sense to assign dev->br_port here too, but
* that causes packets received on internal ports to get caught
* in dp_frame_hook(). In turn dp_frame_hook() can reject them
* back to network stack, but that's a waste of time. */
}
rcu_assign_pointer(dp->ports[port_no], p);
list_add_rcu(&p->node, &dp->port_list);
dp->n_ports++;
/* Initialize kobject for bridge. This will be added as
* /sys/class/net/<devname>/brport later, if sysfs is enabled. */
p->kobj.kset = NULL;
kobject_init(&p->kobj, &brport_ktype);
dp_ifinfo_notify(RTM_NEWLINK, p);
return 0;
}
static int add_port(int dp_idx, struct odp_port __user *portp)
{
struct net_device *dev;
struct datapath *dp;
struct odp_port port;
int port_no;
int err;
err = -EFAULT;
if (copy_from_user(&port, portp, sizeof port))
goto out;
port.devname[IFNAMSIZ - 1] = '\0';
rtnl_lock();
dp = get_dp_locked(dp_idx);
err = -ENODEV;
if (!dp)
goto out_unlock_rtnl;
for (port_no = 1; port_no < DP_MAX_PORTS; port_no++)
if (!dp->ports[port_no])
goto got_port_no;
err = -EFBIG;
goto out_unlock_dp;
got_port_no:
if (!(port.flags & ODP_PORT_INTERNAL)) {
err = -ENODEV;
dev = dev_get_by_name(&init_net, port.devname);
if (!dev)
goto out_unlock_dp;
err = -EINVAL;
if (dev->flags & IFF_LOOPBACK || dev->type != ARPHRD_ETHER ||
is_dp_dev(dev))
goto out_put;
} else {
dev = dp_dev_create(dp, port.devname, port_no);
err = PTR_ERR(dev);
if (IS_ERR(dev))
goto out_unlock_dp;
dev_hold(dev);
}
err = new_nbp(dp, dev, port_no);
if (err)
goto out_put;
set_dp_devs_mtu(dp, dev);
dp_sysfs_add_if(dp->ports[port_no]);
err = __put_user(port_no, &port.port);
out_put:
dev_put(dev);
out_unlock_dp:
mutex_unlock(&dp->mutex);
out_unlock_rtnl:
rtnl_unlock();
out:
return err;
}
int dp_del_port(struct net_bridge_port *p)
{
ASSERT_RTNL();
if (p->port_no != ODPP_LOCAL)
dp_sysfs_del_if(p);
dp_ifinfo_notify(RTM_DELLINK, p);
p->dp->n_ports--;
if (is_dp_dev(p->dev)) {
/* Make sure that no packets arrive from now on, since
* dp_dev_xmit() will try to find itself through
* p->dp->ports[], and we're about to set that to null. */
netif_tx_disable(p->dev);
}
/* First drop references to device. */
dev_set_promiscuity(p->dev, -1);
list_del_rcu(&p->node);
rcu_assign_pointer(p->dp->ports[p->port_no], NULL);
rcu_assign_pointer(p->dev->br_port, NULL);
/* Then wait until no one is still using it, and destroy it. */
synchronize_rcu();
if (is_dp_dev(p->dev))
dp_dev_destroy(p->dev);
dev_put(p->dev);
kobject_put(&p->kobj);
return 0;
}
static int del_port(int dp_idx, int port_no)
{
struct net_bridge_port *p;
struct datapath *dp;
LIST_HEAD(dp_devs);
int err;
err = -EINVAL;
if (port_no < 0 || port_no >= DP_MAX_PORTS || port_no == ODPP_LOCAL)
goto out;
rtnl_lock();
dp = get_dp_locked(dp_idx);
err = -ENODEV;
if (!dp)
goto out_unlock_rtnl;
p = dp->ports[port_no];
err = -ENOENT;
if (!p)
goto out_unlock_dp;
err = dp_del_port(p);
out_unlock_dp:
mutex_unlock(&dp->mutex);
out_unlock_rtnl:
rtnl_unlock();
out:
return err;
}
/* Must be called with rcu_read_lock. */
static void
do_port_input(struct net_bridge_port *p, struct sk_buff *skb)
{
/* Make our own copy of the packet. Otherwise we will mangle the
* packet for anyone who came before us (e.g. tcpdump via AF_PACKET).
* (No one comes after us, since we tell handle_bridge() that we took
* the packet.) */
skb = skb_share_check(skb, GFP_ATOMIC);
if (!skb)
return;
/* Push the Ethernet header back on. */
skb_push(skb, ETH_HLEN);
skb_reset_mac_header(skb);
dp_process_received_packet(skb, p);
}
/* Must be called with rcu_read_lock and with bottom-halves disabled. */
void dp_process_received_packet(struct sk_buff *skb, struct net_bridge_port *p)
{
struct datapath *dp = p->dp;
struct dp_stats_percpu *stats;
struct odp_flow_key key;
struct sw_flow *flow;
WARN_ON_ONCE(skb_shared(skb));
/* BHs are off so we don't have to use get_cpu()/put_cpu() here. */
stats = percpu_ptr(dp->stats_percpu, smp_processor_id());
if (flow_extract(skb, p ? p->port_no : ODPP_NONE, &key)) {
if (dp->drop_frags) {
kfree_skb(skb);
stats->n_frags++;
return;
}
}
flow = dp_table_lookup(rcu_dereference(dp->table), &key);
if (flow) {
struct sw_flow_actions *acts = rcu_dereference(flow->sf_acts);
flow_used(flow, skb);
execute_actions(dp, skb, &key, acts->actions, acts->n_actions,
GFP_ATOMIC);
stats->n_hit++;
} else {
stats->n_missed++;
dp_output_control(dp, skb, _ODPL_MISS_NR, 0);
}
}
/*
* Used as br_handle_frame_hook. (Cannot run bridge at the same time, even on
* different set of devices!)
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,22)
/* Called with rcu_read_lock and bottom-halves disabled. */
static struct sk_buff *dp_frame_hook(struct net_bridge_port *p,
struct sk_buff *skb)
{
do_port_input(p, skb);
return NULL;
}
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
/* Called with rcu_read_lock and bottom-halves disabled. */
static int dp_frame_hook(struct net_bridge_port *p, struct sk_buff **pskb)
{
do_port_input(p, *pskb);
return 1;
}
#else
#error
#endif
#if defined(CONFIG_XEN) && defined(HAVE_PROTO_DATA_VALID)
/* This code is based on a skb_checksum_setup from net/dev/core.c from a
* combination of Lenny's 2.6.26 Xen kernel and Xen's
* linux-2.6.18-92.1.10.el5.xs5.0.0.394.644. We can't call this function
* directly because it isn't exported in all versions. */
static int skb_pull_up_to(struct sk_buff *skb, void *ptr)
{
if (ptr < (void *)skb->tail)
return 1;
if (__pskb_pull_tail(skb,
ptr - (void *)skb->data - skb_headlen(skb))) {
return 1;
} else {
return 0;
}
}
int vswitch_skb_checksum_setup(struct sk_buff *skb)
{
struct iphdr *iph;
unsigned char *th;
int err = -EPROTO;
__u16 csum_start, csum_offset;
if (!skb->proto_csum_blank)
return 0;
if (skb->protocol != htons(ETH_P_IP))
goto out;
if (!skb_pull_up_to(skb, skb_network_header(skb) + 1))
goto out;
iph = ip_hdr(skb);
th = skb_network_header(skb) + 4 * iph->ihl;
csum_start = th - skb->head;
switch (iph->protocol) {
case IPPROTO_TCP:
csum_offset = offsetof(struct tcphdr, check);
break;
case IPPROTO_UDP:
csum_offset = offsetof(struct udphdr, check);
break;
default:
if (net_ratelimit())
printk(KERN_ERR "Attempting to checksum a non-"
"TCP/UDP packet, dropping a protocol"
" %d packet", iph->protocol);
goto out;
}
if (!skb_pull_up_to(skb, th + csum_offset + 2))
goto out;
skb->ip_summed = CHECKSUM_PARTIAL;
skb->proto_csum_blank = 0;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,22)
skb->csum_start = csum_start;
skb->csum_offset = csum_offset;
#else
skb_set_transport_header(skb, csum_start - skb_headroom(skb));
skb->csum = csum_offset;
#endif
err = 0;
out:
return err;
}
#endif /* CONFIG_XEN && HAVE_PROTO_DATA_VALID */
/* Types of checksums that we can receive (these all refer to L4 checksums):
* 1. CHECKSUM_NONE: Device that did not compute checksum, contains full
* (though not verified) checksum in packet but not in skb->csum. Packets
* from the bridge local port will also have this type.
* 2. CHECKSUM_COMPLETE (CHECKSUM_HW): Good device that computes checksums,
* also the GRE module. This is the same as CHECKSUM_NONE, except it has
* a valid skb->csum. Importantly, both contain a full checksum (not
* verified) in the packet itself. The only difference is that if the
* packet gets to L4 processing on this machine (not in DomU) we won't
* have to recompute the checksum to verify. Most hardware devices do not
* produce packets with this type, even if they support receive checksum
* offloading (they produce type #5).
* 3. CHECKSUM_PARTIAL (CHECKSUM_HW): Packet without full checksum and needs to
* be computed if it is sent off box. Unfortunately on earlier kernels,
* this case is impossible to distinguish from #2, despite having opposite
* meanings. Xen adds an extra field on earlier kernels (see #4) in order
* to distinguish the different states. The only real user of this type
* with bridging is Xen (on later kernels).
* 4. CHECKSUM_UNNECESSARY (with proto_csum_blank true): This packet was
* generated locally by a Xen DomU and has a partial checksum. If it is
* handled on this machine (Dom0 or DomU), then the checksum will not be
* computed. If it goes off box, the checksum in the packet needs to
* completed. Calling skb_checksum_setup converts this to CHECKSUM_HW
* (CHECKSUM_PARTIAL) so that the checksum can be completed. In later
* kernels, this combination is replaced with CHECKSUM_PARTIAL.
* 5. CHECKSUM_UNNECESSARY (with proto_csum_blank false): Packet with a correct
* full checksum or using a protocol without a checksum. skb->csum is
* undefined. This is common from devices with receive checksum
* offloading. This is somewhat similar to CHECKSUM_NONE, except that
* nobody will try to verify the checksum with CHECKSUM_UNNECESSARY.
*
* Note that on earlier kernels, CHECKSUM_COMPLETE and CHECKSUM_PARTIAL are
* both defined as CHECKSUM_HW. Normally the meaning of CHECKSUM_HW is clear
* based on whether it is on the transmit or receive path. After the datapath
* it will be intepreted as CHECKSUM_PARTIAL. If the packet already has a
* checksum, we will panic. Since we can receive packets with checksums, we
* assume that all CHECKSUM_HW packets have checksums and map them to
* CHECKSUM_NONE, which has a similar meaning (the it is only different if the
* packet is processed by the local IP stack, in which case it will need to
* be reverified). If we receive a packet with CHECKSUM_HW that really means
* CHECKSUM_PARTIAL, it will be sent with the wrong checksum. However, there
* shouldn't be any devices that do this with bridging.
*
* The bridge has similar behavior and this function closely resembles
* skb_forward_csum(). It is slightly different because we are only concerned
* with bridging and not other types of forwarding and can get away with
* slightly more optimal behavior.*/
void
forward_ip_summed(struct sk_buff *skb)
{
#ifdef CHECKSUM_HW
if (skb->ip_summed == CHECKSUM_HW)
skb->ip_summed = CHECKSUM_NONE;
#endif
}
/* Append each packet in 'skb' list to 'queue'. There will be only one packet
* unless we broke up a GSO packet. */
static int
queue_control_packets(struct sk_buff *skb, struct sk_buff_head *queue,
int queue_no, u32 arg)
{
struct sk_buff *nskb;
int port_no;
int err;
port_no = ODPP_LOCAL;
if (skb->dev) {
if (skb->dev->br_port)
port_no = skb->dev->br_port->port_no;
else if (is_dp_dev(skb->dev))
port_no = dp_dev_priv(skb->dev)->port_no;
}
do {
struct odp_msg *header;
nskb = skb->next;
skb->next = NULL;
/* If a checksum-deferred packet is forwarded to the
* controller, correct the pointers and checksum. This happens
* on a regular basis only on Xen, on which VMs can pass up
* packets that do not have their checksum computed.
*/
err = vswitch_skb_checksum_setup(skb);
if (err)
goto err_kfree_skbs;
#ifndef CHECKSUM_HW
if (skb->ip_summed == CHECKSUM_PARTIAL) {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,22)
/* Until 2.6.22, the start of the transport header was
* also the start of data to be checksummed. Linux
* 2.6.22 introduced the csum_start field for this
* purpose, but we should point the transport header to
* it anyway for backward compatibility, as
* dev_queue_xmit() does even in 2.6.28. */
skb_set_transport_header(skb, skb->csum_start -
skb_headroom(skb));
#endif
err = skb_checksum_help(skb);
if (err)
goto err_kfree_skbs;
}
#else
if (skb->ip_summed == CHECKSUM_HW) {
err = skb_checksum_help(skb, 0);
if (err)
goto err_kfree_skbs;
}
#endif
err = skb_cow(skb, sizeof *header);
if (err)
goto err_kfree_skbs;
header = (struct odp_msg*)__skb_push(skb, sizeof *header);
header->type = queue_no;
header->length = skb->len;
header->port = port_no;
header->reserved = 0;
header->arg = arg;
skb_queue_tail(queue, skb);
skb = nskb;
} while (skb);
return 0;
err_kfree_skbs:
kfree_skb(skb);
while ((skb = nskb) != NULL) {
nskb = skb->next;
kfree_skb(skb);
}
return err;
}
int
dp_output_control(struct datapath *dp, struct sk_buff *skb, int queue_no,
u32 arg)
{
struct dp_stats_percpu *stats;
struct sk_buff_head *queue;
int err;
WARN_ON_ONCE(skb_shared(skb));
BUG_ON(queue_no != _ODPL_MISS_NR && queue_no != _ODPL_ACTION_NR && queue_no != _ODPL_SFLOW_NR);
queue = &dp->queues[queue_no];
err = -ENOBUFS;
if (skb_queue_len(queue) >= DP_MAX_QUEUE_LEN)
goto err_kfree_skb;
forward_ip_summed(skb);
/* Break apart GSO packets into their component pieces. Otherwise
* userspace may try to stuff a 64kB packet into a 1500-byte MTU. */
if (skb_is_gso(skb)) {
struct sk_buff *nskb = skb_gso_segment(skb, 0);
if (nskb) {
kfree_skb(skb);
skb = nskb;
if (unlikely(IS_ERR(skb))) {
err = PTR_ERR(skb);
goto err;
}
} else {
/* XXX This case might not be possible. It's hard to
* tell from the skb_gso_segment() code and comment. */
}
}
err = queue_control_packets(skb, queue, queue_no, arg);
wake_up_interruptible(&dp->waitqueue);
return err;
err_kfree_skb:
kfree_skb(skb);
err:
stats = percpu_ptr(dp->stats_percpu, get_cpu());
stats->n_lost++;
put_cpu();
return err;
}
static int flush_flows(struct datapath *dp)
{
dp->n_flows = 0;
return dp_table_flush(dp);
}
static int validate_actions(const struct sw_flow_actions *actions)
{
unsigned int i;
for (i = 0; i < actions->n_actions; i++) {
const union odp_action *a = &actions->actions[i];
switch (a->type) {
case ODPAT_OUTPUT:
if (a->output.port >= DP_MAX_PORTS)
return -EINVAL;
break;
case ODPAT_OUTPUT_GROUP:
if (a->output_group.group >= DP_MAX_GROUPS)
return -EINVAL;
break;
case ODPAT_SET_VLAN_VID:
if (a->vlan_vid.vlan_vid & htons(~VLAN_VID_MASK))
return -EINVAL;
break;
case ODPAT_SET_VLAN_PCP:
if (a->vlan_pcp.vlan_pcp
& ~(VLAN_PCP_MASK >> VLAN_PCP_SHIFT))
return -EINVAL;
break;
default:
if (a->type >= ODPAT_N_ACTIONS)
return -EOPNOTSUPP;
break;
}
}
return 0;
}
static struct sw_flow_actions *get_actions(const struct odp_flow *flow)
{
struct sw_flow_actions *actions;
int error;
actions = flow_actions_alloc(flow->n_actions);
error = PTR_ERR(actions);
if (IS_ERR(actions))
goto error;
error = -EFAULT;
if (copy_from_user(actions->actions, flow->actions,
flow->n_actions * sizeof(union odp_action)))
goto error_free_actions;
error = validate_actions(actions);
if (error)
goto error_free_actions;
return actions;
error_free_actions:
kfree(actions);
error:
return ERR_PTR(error);
}
static void get_stats(struct sw_flow *flow, struct odp_flow_stats *stats)
{
if (flow->used.tv_sec) {
stats->used_sec = flow->used.tv_sec;
stats->used_nsec = flow->used.tv_nsec;
} else {
stats->used_sec = 0;
stats->used_nsec = 0;
}
stats->n_packets = flow->packet_count;
stats->n_bytes = flow->byte_count;
stats->ip_tos = flow->ip_tos;
stats->tcp_flags = flow->tcp_flags;
stats->error = 0;
}
static void clear_stats(struct sw_flow *flow)
{
flow->used.tv_sec = flow->used.tv_nsec = 0;
flow->tcp_flags = 0;
flow->ip_tos = 0;
flow->packet_count = 0;
flow->byte_count = 0;
}
static int put_flow(struct datapath *dp, struct odp_flow_put __user *ufp)
{
struct odp_flow_put uf;
struct sw_flow *flow;
struct dp_table *table;
struct odp_flow_stats stats;
int error;
error = -EFAULT;
if (copy_from_user(&uf, ufp, sizeof(struct odp_flow_put)))
goto error;
uf.flow.key.reserved = 0;
table = rcu_dereference(dp->table);
flow = dp_table_lookup(table, &uf.flow.key);
if (!flow) {
/* No such flow. */
struct sw_flow_actions *acts;
error = -ENOENT;
if (!(uf.flags & ODPPF_CREATE))
goto error;
/* Expand table, if necessary, to make room. */
if (dp->n_flows >= table->n_buckets) {
error = -ENOSPC;
if (table->n_buckets >= DP_MAX_BUCKETS)
goto error;
error = dp_table_expand(dp);
if (error)
goto error;
table = rcu_dereference(dp->table);
}
/* Allocate flow. */
error = -ENOMEM;
flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
if (flow == NULL)
goto error;
flow->key = uf.flow.key;
spin_lock_init(&flow->lock);
clear_stats(flow);
/* Obtain actions. */
acts = get_actions(&uf.flow);
error = PTR_ERR(acts);
if (IS_ERR(acts))
goto error_free_flow;
rcu_assign_pointer(flow->sf_acts, acts);
/* Put flow in bucket. */
error = dp_table_insert(table, flow);
if (error)
goto error_free_flow_acts;
dp->n_flows++;
memset(&stats, 0, sizeof(struct odp_flow_stats));
} else {
/* We found a matching flow. */
struct sw_flow_actions *old_acts, *new_acts;
unsigned long int flags;
/* Bail out if we're not allowed to modify an existing flow. */
error = -EEXIST;
if (!(uf.flags & ODPPF_MODIFY))
goto error;
/* Swap actions. */
new_acts = get_actions(&uf.flow);
error = PTR_ERR(new_acts);
if (IS_ERR(new_acts))
goto error;
old_acts = rcu_dereference(flow->sf_acts);
if (old_acts->n_actions != new_acts->n_actions ||
memcmp(old_acts->actions, new_acts->actions,
sizeof(union odp_action) * old_acts->n_actions)) {
rcu_assign_pointer(flow->sf_acts, new_acts);
flow_deferred_free_acts(old_acts);
} else {
kfree(new_acts);
}
/* Fetch stats, then clear them if necessary. */
spin_lock_irqsave(&flow->lock, flags);
get_stats(flow, &stats);
if (uf.flags & ODPPF_ZERO_STATS)
clear_stats(flow);
spin_unlock_irqrestore(&flow->lock, flags);
}
/* Copy stats to userspace. */
if (__copy_to_user(&ufp->flow.stats, &stats,
sizeof(struct odp_flow_stats)))
return -EFAULT;
return 0;
error_free_flow_acts:
kfree(flow->sf_acts);
error_free_flow:
kmem_cache_free(flow_cache, flow);
error:
return error;
}
static int put_actions(const struct sw_flow *flow, struct odp_flow __user *ufp)
{
union odp_action __user *actions;
struct sw_flow_actions *sf_acts;
u32 n_actions;
if (__get_user(actions, &ufp->actions) ||
__get_user(n_actions, &ufp->n_actions))
return -EFAULT;
if (!n_actions)
return 0;
sf_acts = rcu_dereference(flow->sf_acts);
if (__put_user(sf_acts->n_actions, &ufp->n_actions) ||
(actions && copy_to_user(actions, sf_acts->actions,
sizeof(union odp_action) *
min(sf_acts->n_actions, n_actions))))
return -EFAULT;
return 0;
}
static int answer_query(struct sw_flow *flow, u32 query_flags,
struct odp_flow __user *ufp)
{
struct odp_flow_stats stats;
unsigned long int flags;
spin_lock_irqsave(&flow->lock, flags);
get_stats(flow, &stats);
if (query_flags & ODPFF_ZERO_TCP_FLAGS) {
flow->tcp_flags = 0;
}
spin_unlock_irqrestore(&flow->lock, flags);
if (__copy_to_user(&ufp->stats, &stats, sizeof(struct odp_flow_stats)))
return -EFAULT;
return put_actions(flow, ufp);
}
static int del_flow(struct datapath *dp, struct odp_flow __user *ufp)
{
struct dp_table *table = rcu_dereference(dp->table);
struct odp_flow uf;
struct sw_flow *flow;
int error;
error = -EFAULT;
if (copy_from_user(&uf, ufp, sizeof uf))
goto error;
uf.key.reserved = 0;
flow = dp_table_lookup(table, &uf.key);
error = -ENOENT;
if (!flow)
goto error;
/* XXX redundant lookup */
error = dp_table_delete(table, flow);
if (error)
goto error;
/* XXX These statistics might lose a few packets, since other CPUs can
* be using this flow. We used to synchronize_rcu() to make sure that
* we get completely accurate stats, but that blows our performance,
* badly. */
dp->n_flows--;
error = answer_query(flow, 0, ufp);
flow_deferred_free(flow);
error:
return error;
}
static int query_flows(struct datapath *dp, const struct odp_flowvec *flowvec)
{
struct dp_table *table = rcu_dereference(dp->table);
int i;
for (i = 0; i < flowvec->n_flows; i++) {
struct __user odp_flow *ufp = &flowvec->flows[i];
struct odp_flow uf;
struct sw_flow *flow;
int error;
if (__copy_from_user(&uf, ufp, sizeof uf))
return -EFAULT;
uf.key.reserved = 0;
flow = dp_table_lookup(table, &uf.key);
if (!flow)
error = __put_user(ENOENT, &ufp->stats.error);
else
error = answer_query(flow, uf.flags, ufp);
if (error)
return -EFAULT;
}
return flowvec->n_flows;
}
struct list_flows_cbdata {
struct odp_flow __user *uflows;
int n_flows;
int listed_flows;
};
static int list_flow(struct sw_flow *flow, void *cbdata_)
{
struct list_flows_cbdata *cbdata = cbdata_;
struct odp_flow __user *ufp = &cbdata->uflows[cbdata->listed_flows++];
int error;
if (__copy_to_user(&ufp->key, &flow->key, sizeof flow->key))
return -EFAULT;
error = answer_query(flow, 0, ufp);
if (error)
return error;
if (cbdata->listed_flows >= cbdata->n_flows)
return cbdata->listed_flows;
return 0;
}
static int list_flows(struct datapath *dp, const struct odp_flowvec *flowvec)
{
struct list_flows_cbdata cbdata;
int error;
if (!flowvec->n_flows)
return 0;
cbdata.uflows = flowvec->flows;
cbdata.n_flows = flowvec->n_flows;
cbdata.listed_flows = 0;
error = dp_table_foreach(rcu_dereference(dp->table),
list_flow, &cbdata);
return error ? error : cbdata.listed_flows;
}
static int do_flowvec_ioctl(struct datapath *dp, unsigned long argp,
int (*function)(struct datapath *,
const struct odp_flowvec *))
{
struct odp_flowvec __user *uflowvec;
struct odp_flowvec flowvec;
int retval;
uflowvec = (struct odp_flowvec __user *)argp;
if (!access_ok(VERIFY_WRITE, uflowvec, sizeof *uflowvec) ||
copy_from_user(&flowvec, uflowvec, sizeof flowvec))
return -EFAULT;
if (flowvec.n_flows > INT_MAX / sizeof(struct odp_flow))
return -EINVAL;
if (!access_ok(VERIFY_WRITE, flowvec.flows,
flowvec.n_flows * sizeof(struct odp_flow)))
return -EFAULT;
retval = function(dp, &flowvec);
return (retval < 0 ? retval
: retval == flowvec.n_flows ? 0
: __put_user(retval, &uflowvec->n_flows));
}
static int do_execute(struct datapath *dp, const struct odp_execute *executep)
{
struct odp_execute execute;
struct odp_flow_key key;
struct sk_buff *skb;
struct sw_flow_actions *actions;
struct ethhdr *eth;
int err;
err = -EFAULT;
if (copy_from_user(&execute, executep, sizeof execute))
goto error;
err = -EINVAL;
if (execute.length < ETH_HLEN || execute.length > 65535)
goto error;
err = -ENOMEM;
actions = flow_actions_alloc(execute.n_actions);
if (!actions)
goto error;
err = -EFAULT;
if (copy_from_user(actions->actions, execute.actions,
execute.n_actions * sizeof *execute.actions))
goto error_free_actions;
err = validate_actions(actions);
if (err)
goto error_free_actions;
err = -ENOMEM;
skb = alloc_skb(execute.length, GFP_KERNEL);
if (!skb)
goto error_free_actions;
if (execute.in_port < DP_MAX_PORTS) {
struct net_bridge_port *p = dp->ports[execute.in_port];
if (p)
skb->dev = p->dev;
}
err = -EFAULT;
if (copy_from_user(skb_put(skb, execute.length), execute.data,
execute.length))
goto error_free_skb;
skb_reset_mac_header(skb);
eth = eth_hdr(skb);
/* Normally, setting the skb 'protocol' field would be handled by a
* call to eth_type_trans(), but it assumes there's a sending
* device, which we may not have. */
if (ntohs(eth->h_proto) >= 1536)
skb->protocol = eth->h_proto;
else
skb->protocol = htons(ETH_P_802_2);
flow_extract(skb, execute.in_port, &key);
err = execute_actions(dp, skb, &key, actions->actions,
actions->n_actions, GFP_KERNEL);
kfree(actions);
return err;
error_free_skb:
kfree_skb(skb);
error_free_actions:
kfree(actions);
error:
return err;
}
static int get_dp_stats(struct datapath *dp, struct odp_stats __user *statsp)
{
struct odp_stats stats;
int i;
stats.n_flows = dp->n_flows;
stats.cur_capacity = rcu_dereference(dp->table)->n_buckets;
stats.max_capacity = DP_MAX_BUCKETS;
stats.n_ports = dp->n_ports;
stats.max_ports = DP_MAX_PORTS;
stats.max_groups = DP_MAX_GROUPS;
stats.n_frags = stats.n_hit = stats.n_missed = stats.n_lost = 0;
for_each_possible_cpu(i) {
const struct dp_stats_percpu *s;
s = percpu_ptr(dp->stats_percpu, i);
stats.n_frags += s->n_frags;
stats.n_hit += s->n_hit;
stats.n_missed += s->n_missed;
stats.n_lost += s->n_lost;
}
stats.max_miss_queue = DP_MAX_QUEUE_LEN;
stats.max_action_queue = DP_MAX_QUEUE_LEN;
return copy_to_user(statsp, &stats, sizeof stats) ? -EFAULT : 0;
}
/* MTU of the dp pseudo-device: ETH_DATA_LEN or the minimum of the ports */
int dp_min_mtu(const struct datapath *dp)
{
struct net_bridge_port *p;
int mtu = 0;
ASSERT_RTNL();
list_for_each_entry_rcu (p, &dp->port_list, node) {
struct net_device *dev = p->dev;
/* Skip any internal ports, since that's what we're trying to
* set. */
if (is_dp_dev(dev))
continue;
if (!mtu || dev->mtu < mtu)
mtu = dev->mtu;
}
return mtu ? mtu : ETH_DATA_LEN;
}
/* Sets the MTU of all datapath devices to the minimum of the ports. 'dev'
* is the device whose MTU may have changed. Must be called with RTNL lock
* and dp_mutex. */
void set_dp_devs_mtu(const struct datapath *dp, struct net_device *dev)
{
struct net_bridge_port *p;
int mtu;
ASSERT_RTNL();
if (is_dp_dev(dev))
return;
mtu = dp_min_mtu(dp);
list_for_each_entry_rcu (p, &dp->port_list, node) {
struct net_device *br_dev = p->dev;
if (is_dp_dev(br_dev))
dev_set_mtu(br_dev, mtu);
}
}
static int
put_port(const struct net_bridge_port *p, struct odp_port __user *uop)
{
struct odp_port op;
memset(&op, 0, sizeof op);
strncpy(op.devname, p->dev->name, sizeof op.devname);
op.port = p->port_no;
op.flags = is_dp_dev(p->dev) ? ODP_PORT_INTERNAL : 0;
return copy_to_user(uop, &op, sizeof op) ? -EFAULT : 0;
}
static int
query_port(struct datapath *dp, struct odp_port __user *uport)
{
struct odp_port port;
if (copy_from_user(&port, uport, sizeof port))
return -EFAULT;
if (port.devname[0]) {
struct net_bridge_port *p;
struct net_device *dev;
int err;
port.devname[IFNAMSIZ - 1] = '\0';
dev = dev_get_by_name(&init_net, port.devname);
if (!dev)
return -ENODEV;
p = dev->br_port;
if (!p && is_dp_dev(dev)) {
struct dp_dev *dp_dev = dp_dev_priv(dev);
if (dp_dev->dp == dp)
p = dp->ports[dp_dev->port_no];
}
err = p && p->dp == dp ? put_port(p, uport) : -ENOENT;
dev_put(dev);
return err;
} else {
if (port.port >= DP_MAX_PORTS)
return -EINVAL;
if (!dp->ports[port.port])
return -ENOENT;
return put_port(dp->ports[port.port], uport);
}
}
static int
list_ports(struct datapath *dp, struct odp_portvec __user *pvp)
{
struct odp_portvec pv;
struct net_bridge_port *p;
int idx;
if (copy_from_user(&pv, pvp, sizeof pv))
return -EFAULT;
idx = 0;
if (pv.n_ports) {
list_for_each_entry_rcu (p, &dp->port_list, node) {
if (put_port(p, &pv.ports[idx]))
return -EFAULT;
if (idx++ >= pv.n_ports)
break;
}
}
return put_user(dp->n_ports, &pvp->n_ports);
}
/* RCU callback for freeing a dp_port_group */
static void free_port_group(struct rcu_head *rcu)
{
struct dp_port_group *g = container_of(rcu, struct dp_port_group, rcu);
kfree(g);
}
static int
set_port_group(struct datapath *dp, const struct odp_port_group __user *upg)
{
struct odp_port_group pg;
struct dp_port_group *new_group, *old_group;
int error;
error = -EFAULT;
if (copy_from_user(&pg, upg, sizeof pg))
goto error;
error = -EINVAL;
if (pg.n_ports > DP_MAX_PORTS || pg.group >= DP_MAX_GROUPS)
goto error;
error = -ENOMEM;
new_group = kmalloc(sizeof *new_group + sizeof(u16) * pg.n_ports,
GFP_KERNEL);
if (!new_group)
goto error;
new_group->n_ports = pg.n_ports;
error = -EFAULT;
if (copy_from_user(new_group->ports, pg.ports,
sizeof(u16) * pg.n_ports))
goto error_free;
old_group = rcu_dereference(dp->groups[pg.group]);
rcu_assign_pointer(dp->groups[pg.group], new_group);
if (old_group)
call_rcu(&old_group->rcu, free_port_group);
return 0;
error_free:
kfree(new_group);
error:
return error;
}
static int
get_port_group(struct datapath *dp, struct odp_port_group *upg)
{
struct odp_port_group pg;
struct dp_port_group *g;
u16 n_copy;
if (copy_from_user(&pg, upg, sizeof pg))
return -EFAULT;
if (pg.group >= DP_MAX_GROUPS)
return -EINVAL;
g = dp->groups[pg.group];
n_copy = g ? min_t(int, g->n_ports, pg.n_ports) : 0;
if (n_copy && copy_to_user(pg.ports, g->ports, n_copy * sizeof(u16)))
return -EFAULT;
if (put_user(g ? g->n_ports : 0, &upg->n_ports))
return -EFAULT;
return 0;
}
static int get_listen_mask(const struct file *f)
{
return (long)f->private_data;
}
static void set_listen_mask(struct file *f, int listen_mask)
{
f->private_data = (void*)(long)listen_mask;
}
static long openvswitch_ioctl(struct file *f, unsigned int cmd,
unsigned long argp)
{
int dp_idx = iminor(f->f_dentry->d_inode);
struct datapath *dp;
int drop_frags, listeners, port_no;
unsigned int sflow_probability;
int err;
/* Handle commands with special locking requirements up front. */
switch (cmd) {
case ODP_DP_CREATE:
err = create_dp(dp_idx, (char __user *)argp);
goto exit;
case ODP_DP_DESTROY:
err = destroy_dp(dp_idx);
goto exit;
case ODP_PORT_ADD:
err = add_port(dp_idx, (struct odp_port __user *)argp);
goto exit;
case ODP_PORT_DEL:
err = get_user(port_no, (int __user *)argp);
if (!err)
err = del_port(dp_idx, port_no);
goto exit;
}
dp = get_dp_locked(dp_idx);
err = -ENODEV;
if (!dp)
goto exit;
switch (cmd) {
case ODP_DP_STATS:
err = get_dp_stats(dp, (struct odp_stats __user *)argp);
break;
case ODP_GET_DROP_FRAGS:
err = put_user(dp->drop_frags, (int __user *)argp);
break;
case ODP_SET_DROP_FRAGS:
err = get_user(drop_frags, (int __user *)argp);
if (err)
break;
err = -EINVAL;
if (drop_frags != 0 && drop_frags != 1)
break;
dp->drop_frags = drop_frags;
err = 0;
break;
case ODP_GET_LISTEN_MASK:
err = put_user(get_listen_mask(f), (int __user *)argp);
break;
case ODP_SET_LISTEN_MASK:
err = get_user(listeners, (int __user *)argp);
if (err)
break;
err = -EINVAL;
if (listeners & ~ODPL_ALL)
break;
err = 0;
set_listen_mask(f, listeners);
break;
case ODP_GET_SFLOW_PROBABILITY:
err = put_user(dp->sflow_probability, (unsigned int __user *)argp);
break;
case ODP_SET_SFLOW_PROBABILITY:
err = get_user(sflow_probability, (unsigned int __user *)argp);
if (!err)
dp->sflow_probability = sflow_probability;
break;
case ODP_PORT_QUERY:
err = query_port(dp, (struct odp_port __user *)argp);
break;
case ODP_PORT_LIST:
err = list_ports(dp, (struct odp_portvec __user *)argp);
break;
case ODP_PORT_GROUP_SET:
err = set_port_group(dp, (struct odp_port_group __user *)argp);
break;
case ODP_PORT_GROUP_GET:
err = get_port_group(dp, (struct odp_port_group __user *)argp);
break;
case ODP_FLOW_FLUSH:
err = flush_flows(dp);
break;
case ODP_FLOW_PUT:
err = put_flow(dp, (struct odp_flow_put __user *)argp);
break;
case ODP_FLOW_DEL:
err = del_flow(dp, (struct odp_flow __user *)argp);
break;
case ODP_FLOW_GET:
err = do_flowvec_ioctl(dp, argp, query_flows);
break;
case ODP_FLOW_LIST:
err = do_flowvec_ioctl(dp, argp, list_flows);
break;
case ODP_EXECUTE:
err = do_execute(dp, (struct odp_execute __user *)argp);
break;
default:
err = -ENOIOCTLCMD;
break;
}
mutex_unlock(&dp->mutex);
exit:
return err;
}
static int dp_has_packet_of_interest(struct datapath *dp, int listeners)
{
int i;
for (i = 0; i < DP_N_QUEUES; i++) {
if (listeners & (1 << i) && !skb_queue_empty(&dp->queues[i]))
return 1;
}
return 0;
}
ssize_t openvswitch_read(struct file *f, char __user *buf, size_t nbytes,
loff_t *ppos)
{
/* XXX is there sufficient synchronization here? */
int listeners = get_listen_mask(f);
int dp_idx = iminor(f->f_dentry->d_inode);
struct datapath *dp = get_dp(dp_idx);
struct sk_buff *skb;
struct iovec __user iov;
size_t copy_bytes;
int retval;
if (!dp)
return -ENODEV;
if (nbytes == 0 || !listeners)
return 0;
for (;;) {
int i;
for (i = 0; i < DP_N_QUEUES; i++) {
if (listeners & (1 << i)) {
skb = skb_dequeue(&dp->queues[i]);
if (skb)
goto success;
}
}
if (f->f_flags & O_NONBLOCK) {
retval = -EAGAIN;
goto error;
}
wait_event_interruptible(dp->waitqueue,
dp_has_packet_of_interest(dp,
listeners));
if (signal_pending(current)) {
retval = -ERESTARTSYS;
goto error;
}
}
success:
copy_bytes = min_t(size_t, skb->len, nbytes);
iov.iov_base = buf;
iov.iov_len = copy_bytes;
retval = skb_copy_datagram_iovec(skb, 0, &iov, iov.iov_len);
if (!retval)
retval = copy_bytes;
kfree_skb(skb);
error:
return retval;
}
static unsigned int openvswitch_poll(struct file *file, poll_table *wait)
{
/* XXX is there sufficient synchronization here? */
int dp_idx = iminor(file->f_dentry->d_inode);
struct datapath *dp = get_dp(dp_idx);
unsigned int mask;
if (dp) {
mask = 0;
poll_wait(file, &dp->waitqueue, wait);
if (dp_has_packet_of_interest(dp, get_listen_mask(file)))
mask |= POLLIN | POLLRDNORM;
} else {
mask = POLLIN | POLLRDNORM | POLLHUP;
}
return mask;
}
struct file_operations openvswitch_fops = {
/* XXX .aio_read = openvswitch_aio_read, */
.read = openvswitch_read,
.poll = openvswitch_poll,
.unlocked_ioctl = openvswitch_ioctl,
/* XXX .fasync = openvswitch_fasync, */
};
static int major;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,27)
static struct llc_sap *dp_stp_sap;
static int dp_stp_rcv(struct sk_buff *skb, struct net_device *dev,
struct packet_type *pt, struct net_device *orig_dev)
{
/* We don't really care about STP packets, we just listen for them for
* mutual exclusion with the bridge module, so this just discards
* them. */
kfree_skb(skb);
return 0;
}
static int dp_avoid_bridge_init(void)
{
/* Register to receive STP packets because the bridge module also
* attempts to do so. Since there can only be a single listener for a
* given protocol, this provides mutual exclusion against the bridge
* module, preventing both of them from being loaded at the same
* time. */
dp_stp_sap = llc_sap_open(LLC_SAP_BSPAN, dp_stp_rcv);
if (!dp_stp_sap) {
printk(KERN_ERR "openvswitch: can't register sap for STP (probably the bridge module is loaded)\n");
return -EADDRINUSE;
}
return 0;
}
static void dp_avoid_bridge_exit(void)
{
llc_sap_put(dp_stp_sap);
}
#else /* Linux 2.6.27 or later. */
static int dp_avoid_bridge_init(void)
{
/* Linux 2.6.27 introduces a way for multiple clients to register for
* STP packets, which interferes with what we try to do above.
* Instead, just check whether there's a bridge hook defined. This is
* not as safe--the bridge module is willing to load over the top of
* us--but it provides a little bit of protection. */
if (br_handle_frame_hook) {
printk(KERN_ERR "openvswitch: bridge module is loaded, cannot load over it\n");
return -EADDRINUSE;
}
return 0;
}
static void dp_avoid_bridge_exit(void)
{
/* Nothing to do. */
}
#endif /* Linux 2.6.27 or later */
static int __init dp_init(void)
{
int err;
printk("Open vSwitch %s, built "__DATE__" "__TIME__"\n", VERSION BUILDNR);
err = dp_avoid_bridge_init();
if (err)
return err;
err = flow_init();
if (err)
goto error;
err = register_netdevice_notifier(&dp_device_notifier);
if (err)
goto error_flow_exit;
major = register_chrdev(0, "openvswitch", &openvswitch_fops);
if (err < 0)
goto error_unreg_notifier;
/* Hook into callback used by the bridge to intercept packets.
* Parasites we are. */
br_handle_frame_hook = dp_frame_hook;
return 0;
error_unreg_notifier:
unregister_netdevice_notifier(&dp_device_notifier);
error_flow_exit:
flow_exit();
error:
return err;
}
static void dp_cleanup(void)
{
rcu_barrier();
unregister_chrdev(major, "openvswitch");
unregister_netdevice_notifier(&dp_device_notifier);
flow_exit();
br_handle_frame_hook = NULL;
dp_avoid_bridge_exit();
}
module_init(dp_init);
module_exit(dp_cleanup);
MODULE_DESCRIPTION("Open vSwitch switching datapath");
MODULE_LICENSE("GPL");