2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/lib/packets.h
Madhu Challa ac6073e3cd ofproto: Add NXM_NX_TUN_GBP_ID and NXM_NX_TUN_GBP_FLAGS
Introduces two new NXMs to represent VXLAN-GBP [0] fields.

  actions=load:0x10->NXM_NX_TUN_GBP_ID[],NORMAL
  tun_gbp_id=0x10,actions=drop

This enables existing VXLAN tunnels to carry security label
information such as a SELinux context to other network peers.

The values are carried to/from the datapath using the attribute
OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS.

[0] https://tools.ietf.org/html/draft-smith-vxlan-group-policy-00

Signed-off-by: Madhu Challa <challa@noironetworks.com>
Acked-by: Ben Pfaff <blp@nicira.com>
Signed-off-by: Thomas Graf <tgraf@noironetworks.com>
2015-02-14 15:31:04 +01:00

792 lines
24 KiB
C

/*
* Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef PACKETS_H
#define PACKETS_H 1
#include <inttypes.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <stdint.h>
#include <string.h>
#include "compiler.h"
#include "openvswitch/types.h"
#include "random.h"
#include "hash.h"
#include "util.h"
struct ofpbuf;
struct ds;
/* Tunnel information used in flow key and metadata. */
struct flow_tnl {
ovs_be64 tun_id;
ovs_be32 ip_src;
ovs_be32 ip_dst;
uint16_t flags;
uint8_t ip_tos;
uint8_t ip_ttl;
ovs_be16 tp_src;
ovs_be16 tp_dst;
ovs_be16 gbp_id;
uint8_t gbp_flags;
uint8_t pad1[5]; /* Pad to 64 bits. */
};
/* Unfortunately, a "struct flow" sometimes has to handle OpenFlow port
* numbers and other times datapath (dpif) port numbers. This union allows
* access to both. */
union flow_in_port {
odp_port_t odp_port;
ofp_port_t ofp_port;
};
/* Datapath packet metadata */
struct pkt_metadata {
uint32_t recirc_id; /* Recirculation id carried with the
recirculating packets. 0 for packets
received from the wire. */
uint32_t dp_hash; /* hash value computed by the recirculation
action. */
struct flow_tnl tunnel; /* Encapsulating tunnel parameters. */
uint32_t skb_priority; /* Packet priority for QoS. */
uint32_t pkt_mark; /* Packet mark. */
union flow_in_port in_port; /* Input port. */
};
#define PKT_METADATA_INITIALIZER(PORT) \
(struct pkt_metadata){ .in_port.odp_port = PORT }
bool dpid_from_string(const char *s, uint64_t *dpidp);
#define ETH_ADDR_LEN 6
static const uint8_t eth_addr_broadcast[ETH_ADDR_LEN] OVS_UNUSED
= { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
static const uint8_t eth_addr_stp[ETH_ADDR_LEN] OVS_UNUSED
= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x00 };
static const uint8_t eth_addr_lacp[ETH_ADDR_LEN] OVS_UNUSED
= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x02 };
static const uint8_t eth_addr_bfd[ETH_ADDR_LEN] OVS_UNUSED
= { 0x00, 0x23, 0x20, 0x00, 0x00, 0x01 };
static inline bool eth_addr_is_broadcast(const uint8_t ea[ETH_ADDR_LEN])
{
return (ea[0] & ea[1] & ea[2] & ea[3] & ea[4] & ea[5]) == 0xff;
}
static inline bool eth_addr_is_multicast(const uint8_t ea[ETH_ADDR_LEN])
{
return ea[0] & 1;
}
static inline bool eth_addr_is_local(const uint8_t ea[ETH_ADDR_LEN])
{
/* Local if it is either a locally administered address or a Nicira random
* address. */
return ea[0] & 2
|| (ea[0] == 0x00 && ea[1] == 0x23 && ea[2] == 0x20 && ea[3] & 0x80);
}
static inline bool eth_addr_is_zero(const uint8_t ea[ETH_ADDR_LEN])
{
return !(ea[0] | ea[1] | ea[2] | ea[3] | ea[4] | ea[5]);
}
static inline int eth_mask_is_exact(const uint8_t ea[ETH_ADDR_LEN])
{
return (ea[0] & ea[1] & ea[2] & ea[3] & ea[4] & ea[5]) == 0xff;
}
static inline int eth_addr_compare_3way(const uint8_t a[ETH_ADDR_LEN],
const uint8_t b[ETH_ADDR_LEN])
{
return memcmp(a, b, ETH_ADDR_LEN);
}
static inline bool eth_addr_equals(const uint8_t a[ETH_ADDR_LEN],
const uint8_t b[ETH_ADDR_LEN])
{
return !eth_addr_compare_3way(a, b);
}
static inline bool eth_addr_equal_except(const uint8_t a[ETH_ADDR_LEN],
const uint8_t b[ETH_ADDR_LEN],
const uint8_t mask[ETH_ADDR_LEN])
{
return !(((a[0] ^ b[0]) & mask[0])
|| ((a[1] ^ b[1]) & mask[1])
|| ((a[2] ^ b[2]) & mask[2])
|| ((a[3] ^ b[3]) & mask[3])
|| ((a[4] ^ b[4]) & mask[4])
|| ((a[5] ^ b[5]) & mask[5]));
}
static inline uint64_t eth_addr_to_uint64(const uint8_t ea[ETH_ADDR_LEN])
{
return (((uint64_t) ea[0] << 40)
| ((uint64_t) ea[1] << 32)
| ((uint64_t) ea[2] << 24)
| ((uint64_t) ea[3] << 16)
| ((uint64_t) ea[4] << 8)
| ea[5]);
}
static inline uint64_t eth_addr_vlan_to_uint64(const uint8_t ea[ETH_ADDR_LEN],
uint16_t vlan)
{
return (((uint64_t)vlan << 48) | eth_addr_to_uint64(ea));
}
static inline void eth_addr_from_uint64(uint64_t x, uint8_t ea[ETH_ADDR_LEN])
{
ea[0] = x >> 40;
ea[1] = x >> 32;
ea[2] = x >> 24;
ea[3] = x >> 16;
ea[4] = x >> 8;
ea[5] = x;
}
static inline void eth_addr_mark_random(uint8_t ea[ETH_ADDR_LEN])
{
ea[0] &= ~1; /* Unicast. */
ea[0] |= 2; /* Private. */
}
static inline void eth_addr_random(uint8_t ea[ETH_ADDR_LEN])
{
random_bytes(ea, ETH_ADDR_LEN);
eth_addr_mark_random(ea);
}
static inline void eth_addr_nicira_random(uint8_t ea[ETH_ADDR_LEN])
{
eth_addr_random(ea);
/* Set the OUI to the Nicira one. */
ea[0] = 0x00;
ea[1] = 0x23;
ea[2] = 0x20;
/* Set the top bit to indicate random Nicira address. */
ea[3] |= 0x80;
}
static inline uint32_t hash_mac(const uint8_t ea[ETH_ADDR_LEN],
const uint16_t vlan, const uint32_t basis)
{
return hash_uint64_basis(eth_addr_vlan_to_uint64(ea, vlan), basis);
}
bool eth_addr_is_reserved(const uint8_t ea[ETH_ADDR_LEN]);
bool eth_addr_from_string(const char *, uint8_t ea[ETH_ADDR_LEN]);
void compose_rarp(struct ofpbuf *, const uint8_t eth_src[ETH_ADDR_LEN]);
void eth_push_vlan(struct ofpbuf *, ovs_be16 tpid, ovs_be16 tci);
void eth_pop_vlan(struct ofpbuf *);
const char *eth_from_hex(const char *hex, struct ofpbuf **packetp);
void eth_format_masked(const uint8_t eth[ETH_ADDR_LEN],
const uint8_t mask[ETH_ADDR_LEN], struct ds *s);
void eth_addr_bitand(const uint8_t src[ETH_ADDR_LEN],
const uint8_t mask[ETH_ADDR_LEN],
uint8_t dst[ETH_ADDR_LEN]);
void set_mpls_lse(struct ofpbuf *, ovs_be32 label);
void push_mpls(struct ofpbuf *packet, ovs_be16 ethtype, ovs_be32 lse);
void pop_mpls(struct ofpbuf *, ovs_be16 ethtype);
void set_mpls_lse_ttl(ovs_be32 *lse, uint8_t ttl);
void set_mpls_lse_tc(ovs_be32 *lse, uint8_t tc);
void set_mpls_lse_label(ovs_be32 *lse, ovs_be32 label);
void set_mpls_lse_bos(ovs_be32 *lse, uint8_t bos);
ovs_be32 set_mpls_lse_values(uint8_t ttl, uint8_t tc, uint8_t bos,
ovs_be32 label);
/* Example:
*
* uint8_t mac[ETH_ADDR_LEN];
* [...]
* printf("The Ethernet address is "ETH_ADDR_FMT"\n", ETH_ADDR_ARGS(mac));
*
*/
#define ETH_ADDR_FMT \
"%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8
#define ETH_ADDR_ARGS(ea) \
(ea)[0], (ea)[1], (ea)[2], (ea)[3], (ea)[4], (ea)[5]
/* Example:
*
* char *string = "1 00:11:22:33:44:55 2";
* uint8_t mac[ETH_ADDR_LEN];
* int a, b;
*
* if (ovs_scan(string, "%d"ETH_ADDR_SCAN_FMT"%d",
* &a, ETH_ADDR_SCAN_ARGS(mac), &b)) {
* ...
* }
*/
#define ETH_ADDR_SCAN_FMT "%"SCNx8":%"SCNx8":%"SCNx8":%"SCNx8":%"SCNx8":%"SCNx8
#define ETH_ADDR_SCAN_ARGS(ea) \
&(ea)[0], &(ea)[1], &(ea)[2], &(ea)[3], &(ea)[4], &(ea)[5]
#define ETH_TYPE_IP 0x0800
#define ETH_TYPE_ARP 0x0806
#define ETH_TYPE_TEB 0x6558
#define ETH_TYPE_VLAN_8021Q 0x8100
#define ETH_TYPE_VLAN ETH_TYPE_VLAN_8021Q
#define ETH_TYPE_VLAN_8021AD 0x88a8
#define ETH_TYPE_IPV6 0x86dd
#define ETH_TYPE_LACP 0x8809
#define ETH_TYPE_RARP 0x8035
#define ETH_TYPE_MPLS 0x8847
#define ETH_TYPE_MPLS_MCAST 0x8848
static inline bool eth_type_mpls(ovs_be16 eth_type)
{
return eth_type == htons(ETH_TYPE_MPLS) ||
eth_type == htons(ETH_TYPE_MPLS_MCAST);
}
/* Minimum value for an Ethernet type. Values below this are IEEE 802.2 frame
* lengths. */
#define ETH_TYPE_MIN 0x600
#define ETH_HEADER_LEN 14
#define ETH_PAYLOAD_MIN 46
#define ETH_PAYLOAD_MAX 1500
#define ETH_TOTAL_MIN (ETH_HEADER_LEN + ETH_PAYLOAD_MIN)
#define ETH_TOTAL_MAX (ETH_HEADER_LEN + ETH_PAYLOAD_MAX)
#define ETH_VLAN_TOTAL_MAX (ETH_HEADER_LEN + VLAN_HEADER_LEN + ETH_PAYLOAD_MAX)
OVS_PACKED(
struct eth_header {
uint8_t eth_dst[ETH_ADDR_LEN];
uint8_t eth_src[ETH_ADDR_LEN];
ovs_be16 eth_type;
});
BUILD_ASSERT_DECL(ETH_HEADER_LEN == sizeof(struct eth_header));
#define LLC_DSAP_SNAP 0xaa
#define LLC_SSAP_SNAP 0xaa
#define LLC_CNTL_SNAP 3
#define LLC_HEADER_LEN 3
OVS_PACKED(
struct llc_header {
uint8_t llc_dsap;
uint8_t llc_ssap;
uint8_t llc_cntl;
});
BUILD_ASSERT_DECL(LLC_HEADER_LEN == sizeof(struct llc_header));
/* LLC field values used for STP frames. */
#define STP_LLC_SSAP 0x42
#define STP_LLC_DSAP 0x42
#define STP_LLC_CNTL 0x03
#define SNAP_ORG_ETHERNET "\0\0" /* The compiler adds a null byte, so
sizeof(SNAP_ORG_ETHERNET) == 3. */
#define SNAP_HEADER_LEN 5
OVS_PACKED(
struct snap_header {
uint8_t snap_org[3];
ovs_be16 snap_type;
});
BUILD_ASSERT_DECL(SNAP_HEADER_LEN == sizeof(struct snap_header));
#define LLC_SNAP_HEADER_LEN (LLC_HEADER_LEN + SNAP_HEADER_LEN)
OVS_PACKED(
struct llc_snap_header {
struct llc_header llc;
struct snap_header snap;
});
BUILD_ASSERT_DECL(LLC_SNAP_HEADER_LEN == sizeof(struct llc_snap_header));
#define VLAN_VID_MASK 0x0fff
#define VLAN_VID_SHIFT 0
#define VLAN_PCP_MASK 0xe000
#define VLAN_PCP_SHIFT 13
#define VLAN_CFI 0x1000
#define VLAN_CFI_SHIFT 12
/* Given the vlan_tci field from an 802.1Q header, in network byte order,
* returns the VLAN ID in host byte order. */
static inline uint16_t
vlan_tci_to_vid(ovs_be16 vlan_tci)
{
return (ntohs(vlan_tci) & VLAN_VID_MASK) >> VLAN_VID_SHIFT;
}
/* Given the vlan_tci field from an 802.1Q header, in network byte order,
* returns the priority code point (PCP) in host byte order. */
static inline int
vlan_tci_to_pcp(ovs_be16 vlan_tci)
{
return (ntohs(vlan_tci) & VLAN_PCP_MASK) >> VLAN_PCP_SHIFT;
}
/* Given the vlan_tci field from an 802.1Q header, in network byte order,
* returns the Canonical Format Indicator (CFI). */
static inline int
vlan_tci_to_cfi(ovs_be16 vlan_tci)
{
return (vlan_tci & htons(VLAN_CFI)) != 0;
}
#define VLAN_HEADER_LEN 4
struct vlan_header {
ovs_be16 vlan_tci; /* Lowest 12 bits are VLAN ID. */
ovs_be16 vlan_next_type;
};
BUILD_ASSERT_DECL(VLAN_HEADER_LEN == sizeof(struct vlan_header));
#define VLAN_ETH_HEADER_LEN (ETH_HEADER_LEN + VLAN_HEADER_LEN)
OVS_PACKED(
struct vlan_eth_header {
uint8_t veth_dst[ETH_ADDR_LEN];
uint8_t veth_src[ETH_ADDR_LEN];
ovs_be16 veth_type; /* Always htons(ETH_TYPE_VLAN). */
ovs_be16 veth_tci; /* Lowest 12 bits are VLAN ID. */
ovs_be16 veth_next_type;
});
BUILD_ASSERT_DECL(VLAN_ETH_HEADER_LEN == sizeof(struct vlan_eth_header));
/* MPLS related definitions */
#define MPLS_TTL_MASK 0x000000ff
#define MPLS_TTL_SHIFT 0
#define MPLS_BOS_MASK 0x00000100
#define MPLS_BOS_SHIFT 8
#define MPLS_TC_MASK 0x00000e00
#define MPLS_TC_SHIFT 9
#define MPLS_LABEL_MASK 0xfffff000
#define MPLS_LABEL_SHIFT 12
#define MPLS_HLEN 4
struct mpls_hdr {
ovs_16aligned_be32 mpls_lse;
};
BUILD_ASSERT_DECL(MPLS_HLEN == sizeof(struct mpls_hdr));
/* Given a mpls label stack entry in network byte order
* return mpls label in host byte order */
static inline uint32_t
mpls_lse_to_label(ovs_be32 mpls_lse)
{
return (ntohl(mpls_lse) & MPLS_LABEL_MASK) >> MPLS_LABEL_SHIFT;
}
/* Given a mpls label stack entry in network byte order
* return mpls tc */
static inline uint8_t
mpls_lse_to_tc(ovs_be32 mpls_lse)
{
return (ntohl(mpls_lse) & MPLS_TC_MASK) >> MPLS_TC_SHIFT;
}
/* Given a mpls label stack entry in network byte order
* return mpls ttl */
static inline uint8_t
mpls_lse_to_ttl(ovs_be32 mpls_lse)
{
return (ntohl(mpls_lse) & MPLS_TTL_MASK) >> MPLS_TTL_SHIFT;
}
/* Set TTL in mpls lse. */
static inline void
flow_set_mpls_lse_ttl(ovs_be32 *mpls_lse, uint8_t ttl)
{
*mpls_lse &= ~htonl(MPLS_TTL_MASK);
*mpls_lse |= htonl(ttl << MPLS_TTL_SHIFT);
}
/* Given a mpls label stack entry in network byte order
* return mpls BoS bit */
static inline uint8_t
mpls_lse_to_bos(ovs_be32 mpls_lse)
{
return (mpls_lse & htonl(MPLS_BOS_MASK)) != 0;
}
#define IP_FMT "%"PRIu32".%"PRIu32".%"PRIu32".%"PRIu32
#define IP_ARGS(ip) \
ntohl(ip) >> 24, \
(ntohl(ip) >> 16) & 0xff, \
(ntohl(ip) >> 8) & 0xff, \
ntohl(ip) & 0xff
/* Example:
*
* char *string = "1 33.44.55.66 2";
* ovs_be32 ip;
* int a, b;
*
* if (ovs_scan(string, "%d"IP_SCAN_FMT"%d", &a, IP_SCAN_ARGS(&ip), &b)) {
* ...
* }
*/
#define IP_SCAN_FMT "%"SCNu8".%"SCNu8".%"SCNu8".%"SCNu8
#define IP_SCAN_ARGS(ip) \
((void) (ovs_be32) *(ip), &((uint8_t *) ip)[0]), \
&((uint8_t *) ip)[1], \
&((uint8_t *) ip)[2], \
&((uint8_t *) ip)[3]
/* Returns true if 'netmask' is a CIDR netmask, that is, if it consists of N
* high-order 1-bits and 32-N low-order 0-bits. */
static inline bool
ip_is_cidr(ovs_be32 netmask)
{
uint32_t x = ~ntohl(netmask);
return !(x & (x + 1));
}
static inline bool
ip_is_multicast(ovs_be32 ip)
{
return (ip & htonl(0xf0000000)) == htonl(0xe0000000);
}
static inline bool
ip_is_local_multicast(ovs_be32 ip)
{
return (ip & htonl(0xffffff00)) == htonl(0xe0000000);
}
int ip_count_cidr_bits(ovs_be32 netmask);
void ip_format_masked(ovs_be32 ip, ovs_be32 mask, struct ds *);
#define IP_VER(ip_ihl_ver) ((ip_ihl_ver) >> 4)
#define IP_IHL(ip_ihl_ver) ((ip_ihl_ver) & 15)
#define IP_IHL_VER(ihl, ver) (((ver) << 4) | (ihl))
#ifndef IPPROTO_SCTP
#define IPPROTO_SCTP 132
#endif
/* TOS fields. */
#define IP_ECN_NOT_ECT 0x0
#define IP_ECN_ECT_1 0x01
#define IP_ECN_ECT_0 0x02
#define IP_ECN_CE 0x03
#define IP_ECN_MASK 0x03
#define IP_DSCP_MASK 0xfc
#define IP_VERSION 4
#define IP_DONT_FRAGMENT 0x4000 /* Don't fragment. */
#define IP_MORE_FRAGMENTS 0x2000 /* More fragments. */
#define IP_FRAG_OFF_MASK 0x1fff /* Fragment offset. */
#define IP_IS_FRAGMENT(ip_frag_off) \
((ip_frag_off) & htons(IP_MORE_FRAGMENTS | IP_FRAG_OFF_MASK))
#define IP_HEADER_LEN 20
struct ip_header {
uint8_t ip_ihl_ver;
uint8_t ip_tos;
ovs_be16 ip_tot_len;
ovs_be16 ip_id;
ovs_be16 ip_frag_off;
uint8_t ip_ttl;
uint8_t ip_proto;
ovs_be16 ip_csum;
ovs_16aligned_be32 ip_src;
ovs_16aligned_be32 ip_dst;
};
BUILD_ASSERT_DECL(IP_HEADER_LEN == sizeof(struct ip_header));
#define ICMP_HEADER_LEN 8
struct icmp_header {
uint8_t icmp_type;
uint8_t icmp_code;
ovs_be16 icmp_csum;
union {
struct {
ovs_be16 id;
ovs_be16 seq;
} echo;
struct {
ovs_be16 empty;
ovs_be16 mtu;
} frag;
ovs_16aligned_be32 gateway;
} icmp_fields;
};
BUILD_ASSERT_DECL(ICMP_HEADER_LEN == sizeof(struct icmp_header));
#define IGMP_HEADER_LEN 8
struct igmp_header {
uint8_t igmp_type;
uint8_t igmp_code;
ovs_be16 igmp_csum;
ovs_16aligned_be32 group;
};
BUILD_ASSERT_DECL(IGMP_HEADER_LEN == sizeof(struct igmp_header));
#define IGMP_HOST_MEMBERSHIP_QUERY 0x11 /* From RFC1112 */
#define IGMP_HOST_MEMBERSHIP_REPORT 0x12 /* Ditto */
#define IGMPV2_HOST_MEMBERSHIP_REPORT 0x16 /* V2 version of 0x12 */
#define IGMP_HOST_LEAVE_MESSAGE 0x17
#define IGMPV3_HOST_MEMBERSHIP_REPORT 0x22 /* V3 version of 0x12 */
#define SCTP_HEADER_LEN 12
struct sctp_header {
ovs_be16 sctp_src;
ovs_be16 sctp_dst;
ovs_16aligned_be32 sctp_vtag;
ovs_16aligned_be32 sctp_csum;
};
BUILD_ASSERT_DECL(SCTP_HEADER_LEN == sizeof(struct sctp_header));
#define UDP_HEADER_LEN 8
struct udp_header {
ovs_be16 udp_src;
ovs_be16 udp_dst;
ovs_be16 udp_len;
ovs_be16 udp_csum;
};
BUILD_ASSERT_DECL(UDP_HEADER_LEN == sizeof(struct udp_header));
#define TCP_FIN 0x001
#define TCP_SYN 0x002
#define TCP_RST 0x004
#define TCP_PSH 0x008
#define TCP_ACK 0x010
#define TCP_URG 0x020
#define TCP_ECE 0x040
#define TCP_CWR 0x080
#define TCP_NS 0x100
#define TCP_CTL(flags, offset) (htons((flags) | ((offset) << 12)))
#define TCP_FLAGS(tcp_ctl) (ntohs(tcp_ctl) & 0x0fff)
#define TCP_FLAGS_BE16(tcp_ctl) ((tcp_ctl) & htons(0x0fff))
#define TCP_OFFSET(tcp_ctl) (ntohs(tcp_ctl) >> 12)
#define TCP_HEADER_LEN 20
struct tcp_header {
ovs_be16 tcp_src;
ovs_be16 tcp_dst;
ovs_16aligned_be32 tcp_seq;
ovs_16aligned_be32 tcp_ack;
ovs_be16 tcp_ctl;
ovs_be16 tcp_winsz;
ovs_be16 tcp_csum;
ovs_be16 tcp_urg;
};
BUILD_ASSERT_DECL(TCP_HEADER_LEN == sizeof(struct tcp_header));
#define ARP_HRD_ETHERNET 1
#define ARP_PRO_IP 0x0800
#define ARP_OP_REQUEST 1
#define ARP_OP_REPLY 2
#define ARP_OP_RARP 3
#define ARP_ETH_HEADER_LEN 28
struct arp_eth_header {
/* Generic members. */
ovs_be16 ar_hrd; /* Hardware type. */
ovs_be16 ar_pro; /* Protocol type. */
uint8_t ar_hln; /* Hardware address length. */
uint8_t ar_pln; /* Protocol address length. */
ovs_be16 ar_op; /* Opcode. */
/* Ethernet+IPv4 specific members. */
uint8_t ar_sha[ETH_ADDR_LEN]; /* Sender hardware address. */
ovs_16aligned_be32 ar_spa; /* Sender protocol address. */
uint8_t ar_tha[ETH_ADDR_LEN]; /* Target hardware address. */
ovs_16aligned_be32 ar_tpa; /* Target protocol address. */
};
BUILD_ASSERT_DECL(ARP_ETH_HEADER_LEN == sizeof(struct arp_eth_header));
/* Like struct in6_addr, but whereas that struct requires 32-bit alignment on
* most implementations, this one only requires 16-bit alignment. */
union ovs_16aligned_in6_addr {
ovs_be16 be16[8];
ovs_16aligned_be32 be32[4];
};
/* Like struct in6_hdr, but whereas that struct requires 32-bit alignment, this
* one only requires 16-bit alignment. */
struct ovs_16aligned_ip6_hdr {
union {
struct ovs_16aligned_ip6_hdrctl {
ovs_16aligned_be32 ip6_un1_flow;
ovs_be16 ip6_un1_plen;
uint8_t ip6_un1_nxt;
uint8_t ip6_un1_hlim;
} ip6_un1;
uint8_t ip6_un2_vfc;
} ip6_ctlun;
union ovs_16aligned_in6_addr ip6_src;
union ovs_16aligned_in6_addr ip6_dst;
};
/* Like struct in6_frag, but whereas that struct requires 32-bit alignment,
* this one only requires 16-bit alignment. */
struct ovs_16aligned_ip6_frag {
uint8_t ip6f_nxt;
uint8_t ip6f_reserved;
ovs_be16 ip6f_offlg;
ovs_16aligned_be32 ip6f_ident;
};
#define ICMP6_HEADER_LEN 4
struct icmp6_header {
uint8_t icmp6_type;
uint8_t icmp6_code;
ovs_be16 icmp6_cksum;
};
BUILD_ASSERT_DECL(ICMP6_HEADER_LEN == sizeof(struct icmp6_header));
/* Neighbor Discovery option field.
* ND options are always a multiple of 8 bytes in size. */
#define ND_OPT_LEN 8
struct ovs_nd_opt {
uint8_t nd_opt_type; /* Values defined in icmp6.h */
uint8_t nd_opt_len; /* in units of 8 octets (the size of this struct) */
uint8_t nd_opt_data[6]; /* Ethernet address in the case of SLL or TLL options */
};
BUILD_ASSERT_DECL(ND_OPT_LEN == sizeof(struct ovs_nd_opt));
/* Like struct nd_msg (from ndisc.h), but whereas that struct requires 32-bit
* alignment, this one only requires 16-bit alignment. */
#define ND_MSG_LEN 24
struct ovs_nd_msg {
struct icmp6_header icmph;
ovs_16aligned_be32 rco_flags;
union ovs_16aligned_in6_addr target;
struct ovs_nd_opt options[0];
};
BUILD_ASSERT_DECL(ND_MSG_LEN == sizeof(struct ovs_nd_msg));
/* The IPv6 flow label is in the lower 20 bits of the first 32-bit word. */
#define IPV6_LABEL_MASK 0x000fffff
/* Example:
*
* char *string = "1 ::1 2";
* char ipv6_s[IPV6_SCAN_LEN + 1];
* struct in6_addr ipv6;
*
* if (ovs_scan(string, "%d"IPV6_SCAN_FMT"%d", &a, ipv6_s, &b)
* && inet_pton(AF_INET6, ipv6_s, &ipv6) == 1) {
* ...
* }
*/
#define IPV6_SCAN_FMT "%46[0123456789abcdefABCDEF:.]"
#define IPV6_SCAN_LEN 46
extern const struct in6_addr in6addr_exact;
#define IN6ADDR_EXACT_INIT { { { 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, \
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff } } }
static inline bool ipv6_addr_equals(const struct in6_addr *a,
const struct in6_addr *b)
{
#ifdef IN6_ARE_ADDR_EQUAL
return IN6_ARE_ADDR_EQUAL(a, b);
#else
return !memcmp(a, b, sizeof(*a));
#endif
}
static inline bool ipv6_mask_is_any(const struct in6_addr *mask) {
return ipv6_addr_equals(mask, &in6addr_any);
}
static inline bool ipv6_mask_is_exact(const struct in6_addr *mask) {
return ipv6_addr_equals(mask, &in6addr_exact);
}
static inline bool dl_type_is_ip_any(ovs_be16 dl_type)
{
return dl_type == htons(ETH_TYPE_IP)
|| dl_type == htons(ETH_TYPE_IPV6);
}
/* Tunnel header */
#define GENEVE_CRIT_OPT_TYPE (1 << 7)
struct geneve_opt {
ovs_be16 opt_class;
uint8_t type;
#ifdef WORDS_BIGENDIAN
uint8_t r1:1;
uint8_t r2:1;
uint8_t r3:1;
uint8_t length:5;
#else
uint8_t length:5;
uint8_t r3:1;
uint8_t r2:1;
uint8_t r1:1;
#endif
uint8_t opt_data[];
};
/* GRE protocol header */
struct gre_base_hdr {
ovs_be16 flags;
ovs_be16 protocol;
};
#define GRE_CSUM 0x8000
#define GRE_ROUTING 0x4000
#define GRE_KEY 0x2000
#define GRE_SEQ 0x1000
#define GRE_STRICT 0x0800
#define GRE_REC 0x0700
#define GRE_FLAGS 0x00F8
#define GRE_VERSION 0x0007
/* VXLAN protocol header */
struct vxlanhdr {
ovs_16aligned_be32 vx_flags;
ovs_16aligned_be32 vx_vni;
};
#define VXLAN_FLAGS 0x08000000 /* struct vxlanhdr.vx_flags required value. */
void format_ipv6_addr(char *addr_str, const struct in6_addr *addr);
void print_ipv6_addr(struct ds *string, const struct in6_addr *addr);
void print_ipv6_masked(struct ds *string, const struct in6_addr *addr,
const struct in6_addr *mask);
struct in6_addr ipv6_addr_bitand(const struct in6_addr *src,
const struct in6_addr *mask);
struct in6_addr ipv6_create_mask(int mask);
int ipv6_count_cidr_bits(const struct in6_addr *netmask);
bool ipv6_is_cidr(const struct in6_addr *netmask);
void *eth_compose(struct ofpbuf *, const uint8_t eth_dst[ETH_ADDR_LEN],
const uint8_t eth_src[ETH_ADDR_LEN], uint16_t eth_type,
size_t size);
void *snap_compose(struct ofpbuf *, const uint8_t eth_dst[ETH_ADDR_LEN],
const uint8_t eth_src[ETH_ADDR_LEN],
unsigned int oui, uint16_t snap_type, size_t size);
void packet_set_ipv4(struct ofpbuf *, ovs_be32 src, ovs_be32 dst, uint8_t tos,
uint8_t ttl);
void packet_set_ipv6(struct ofpbuf *, uint8_t proto, const ovs_be32 src[4],
const ovs_be32 dst[4], uint8_t tc,
ovs_be32 fl, uint8_t hlmit);
void packet_set_tcp_port(struct ofpbuf *, ovs_be16 src, ovs_be16 dst);
void packet_set_udp_port(struct ofpbuf *, ovs_be16 src, ovs_be16 dst);
void packet_set_sctp_port(struct ofpbuf *, ovs_be16 src, ovs_be16 dst);
void packet_set_nd(struct ofpbuf *, const ovs_be32 target[4],
const uint8_t sll[6], const uint8_t tll[6]);
void packet_format_tcp_flags(struct ds *, uint16_t);
const char *packet_tcp_flag_to_string(uint32_t flag);
void compose_arp(struct ofpbuf *b, const uint8_t eth_src[ETH_ADDR_LEN],
ovs_be32 ip_src, ovs_be32 ip_dst);
#endif /* packets.h */