2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-29 05:18:13 +00:00
ovs/lib/timeval.c
Ben Pfaff e2afa7cd68 timeval: Call coverage_clear() before coverage_log() in time_poll().
time_poll() calls log_poll_interval(), which in some circumstances calls
coverage_log().  Before this commit, time_poll() also called
coverage_clear() after log_poll_interval().  This made sense before commit
857165b5fd26 (coverage: Make thread-safe.), because coverage_log() would
log the most recent main loop's coverage counters separately and calling
coverage_clear() beforehand would zero out those counters.  However, it
doesn't make sense any longer because the most recent loop's counters are
no longer separately logged and in fact this practice now means that the
most recent loop's counters are omitted from the logged counters.

Therefore, this commit moves the call to coverage_clear() earlier, so that
the most recent loop's counters are included.

Signed-off-by: Ben Pfaff <blp@nicira.com>
2013-10-09 17:02:57 -07:00

595 lines
16 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "timeval.h"
#include <errno.h>
#include <poll.h>
#include <pthread.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <unistd.h>
#include "coverage.h"
#include "dummy.h"
#include "dynamic-string.h"
#include "fatal-signal.h"
#include "hash.h"
#include "hmap.h"
#include "ovs-thread.h"
#include "signals.h"
#include "seq.h"
#include "unixctl.h"
#include "util.h"
#include "vlog.h"
VLOG_DEFINE_THIS_MODULE(timeval);
struct clock {
clockid_t id; /* CLOCK_MONOTONIC or CLOCK_REALTIME. */
/* Features for use by unit tests. Protected by 'mutex'. */
struct ovs_mutex mutex;
atomic_bool slow_path; /* True if warped or stopped. */
struct timespec warp OVS_GUARDED; /* Offset added for unit tests. */
bool stopped OVS_GUARDED; /* Disable real-time updates if true. */
struct timespec cache OVS_GUARDED; /* Last time read from kernel. */
};
/* Our clocks. */
static struct clock monotonic_clock; /* CLOCK_MONOTONIC, if available. */
static struct clock wall_clock; /* CLOCK_REALTIME. */
/* The monotonic time at which the time module was initialized. */
static long long int boot_time;
/* True only when timeval_dummy_register() is called. */
static bool timewarp_enabled;
/* Reference to the seq struct. Threads other than main thread can
* wait on timewarp_seq and be waken up when time is warped. */
static struct seq *timewarp_seq;
/* Last value of 'timewarp_seq'. */
DEFINE_STATIC_PER_THREAD_DATA(uint64_t, last_seq, 0);
/* Monotonic time in milliseconds at which to die with SIGALRM (if not
* LLONG_MAX). */
static long long int deadline = LLONG_MAX;
/* Monotonic time, in milliseconds, at which the last call to time_poll() woke
* up. */
DEFINE_STATIC_PER_THREAD_DATA(long long int, last_wakeup, 0);
static void log_poll_interval(long long int last_wakeup);
static struct rusage *get_recent_rusage(void);
static void refresh_rusage(void);
static void timespec_add(struct timespec *sum,
const struct timespec *a, const struct timespec *b);
static void
init_clock(struct clock *c, clockid_t id)
{
memset(c, 0, sizeof *c);
c->id = id;
ovs_mutex_init(&c->mutex);
atomic_init(&c->slow_path, false);
xclock_gettime(c->id, &c->cache);
timewarp_seq = seq_create();
}
static void
do_init_time(void)
{
struct timespec ts;
coverage_init();
init_clock(&monotonic_clock, (!clock_gettime(CLOCK_MONOTONIC, &ts)
? CLOCK_MONOTONIC
: CLOCK_REALTIME));
init_clock(&wall_clock, CLOCK_REALTIME);
boot_time = timespec_to_msec(&monotonic_clock.cache);
}
/* Initializes the timetracking module, if not already initialized. */
static void
time_init(void)
{
static pthread_once_t once = PTHREAD_ONCE_INIT;
pthread_once(&once, do_init_time);
}
static void
time_timespec__(struct clock *c, struct timespec *ts)
{
bool slow_path;
time_init();
atomic_read_explicit(&c->slow_path, &slow_path, memory_order_relaxed);
if (!slow_path) {
xclock_gettime(c->id, ts);
} else {
struct timespec warp;
struct timespec cache;
bool stopped;
ovs_mutex_lock(&c->mutex);
stopped = c->stopped;
warp = c->warp;
cache = c->cache;
ovs_mutex_unlock(&c->mutex);
if (!stopped) {
xclock_gettime(c->id, &cache);
}
timespec_add(ts, &cache, &warp);
}
}
/* Stores a monotonic timer, accurate within TIME_UPDATE_INTERVAL ms, into
* '*ts'. */
void
time_timespec(struct timespec *ts)
{
time_timespec__(&monotonic_clock, ts);
}
/* Stores the current time, accurate within TIME_UPDATE_INTERVAL ms, into
* '*ts'. */
void
time_wall_timespec(struct timespec *ts)
{
time_timespec__(&wall_clock, ts);
}
static time_t
time_sec__(struct clock *c)
{
struct timespec ts;
time_timespec__(c, &ts);
return ts.tv_sec;
}
/* Returns a monotonic timer, in seconds. */
time_t
time_now(void)
{
return time_sec__(&monotonic_clock);
}
/* Returns the current time, in seconds. */
time_t
time_wall(void)
{
return time_sec__(&wall_clock);
}
static long long int
time_msec__(struct clock *c)
{
struct timespec ts;
time_timespec__(c, &ts);
return timespec_to_msec(&ts);
}
/* Returns a monotonic timer, in ms (within TIME_UPDATE_INTERVAL ms). */
long long int
time_msec(void)
{
return time_msec__(&monotonic_clock);
}
/* Returns the current time, in ms (within TIME_UPDATE_INTERVAL ms). */
long long int
time_wall_msec(void)
{
return time_msec__(&wall_clock);
}
/* Configures the program to die with SIGALRM 'secs' seconds from now, if
* 'secs' is nonzero, or disables the feature if 'secs' is zero. */
void
time_alarm(unsigned int secs)
{
long long int now;
long long int msecs;
assert_single_threaded();
time_init();
now = time_msec();
msecs = secs * 1000LL;
deadline = now < LLONG_MAX - msecs ? now + msecs : LLONG_MAX;
}
/* Like poll(), except:
*
* - The timeout is specified as an absolute time, as defined by
* time_msec(), instead of a duration.
*
* - On error, returns a negative error code (instead of setting errno).
*
* - If interrupted by a signal, retries automatically until the original
* timeout is reached. (Because of this property, this function will
* never return -EINTR.)
*
* Stores the number of milliseconds elapsed during poll in '*elapsed'. */
int
time_poll(struct pollfd *pollfds, int n_pollfds, long long int timeout_when,
int *elapsed)
{
long long int *last_wakeup = last_wakeup_get();
long long int start;
int retval;
time_init();
coverage_clear();
coverage_run();
if (*last_wakeup) {
log_poll_interval(*last_wakeup);
}
start = time_msec();
timeout_when = MIN(timeout_when, deadline);
for (;;) {
long long int now = time_msec();
int time_left;
if (now >= timeout_when) {
time_left = 0;
} else if ((unsigned long long int) timeout_when - now > INT_MAX) {
time_left = INT_MAX;
} else {
time_left = timeout_when - now;
}
retval = poll(pollfds, n_pollfds, time_left);
if (retval < 0) {
retval = -errno;
}
if (deadline <= time_msec()) {
fatal_signal_handler(SIGALRM);
if (retval < 0) {
retval = 0;
}
break;
}
if (retval != -EINTR) {
break;
}
}
*last_wakeup = time_msec();
refresh_rusage();
*elapsed = *last_wakeup - start;
return retval;
}
long long int
timespec_to_msec(const struct timespec *ts)
{
return (long long int) ts->tv_sec * 1000 + ts->tv_nsec / (1000 * 1000);
}
long long int
timeval_to_msec(const struct timeval *tv)
{
return (long long int) tv->tv_sec * 1000 + tv->tv_usec / 1000;
}
/* Returns the monotonic time at which the "time" module was initialized, in
* milliseconds. */
long long int
time_boot_msec(void)
{
time_init();
return boot_time;
}
void
xgettimeofday(struct timeval *tv)
{
if (gettimeofday(tv, NULL) == -1) {
VLOG_FATAL("gettimeofday failed (%s)", ovs_strerror(errno));
}
}
void
xclock_gettime(clock_t id, struct timespec *ts)
{
if (clock_gettime(id, ts) == -1) {
/* It seems like a bad idea to try to use vlog here because it is
* likely to try to check the current time. */
ovs_abort(errno, "xclock_gettime() failed");
}
}
/* Makes threads wait on timewarp_seq and be waken up when time is warped.
* This function will be no-op unless timeval_dummy_register() is called. */
void
timewarp_wait(void)
{
if (timewarp_enabled) {
uint64_t *last_seq = last_seq_get();
*last_seq = seq_read(timewarp_seq);
seq_wait(timewarp_seq, *last_seq);
}
}
static long long int
timeval_diff_msec(const struct timeval *a, const struct timeval *b)
{
return timeval_to_msec(a) - timeval_to_msec(b);
}
static void
timespec_add(struct timespec *sum,
const struct timespec *a,
const struct timespec *b)
{
struct timespec tmp;
tmp.tv_sec = a->tv_sec + b->tv_sec;
tmp.tv_nsec = a->tv_nsec + b->tv_nsec;
if (tmp.tv_nsec >= 1000 * 1000 * 1000) {
tmp.tv_nsec -= 1000 * 1000 * 1000;
tmp.tv_sec++;
}
*sum = tmp;
}
static bool
is_warped(const struct clock *c)
{
bool warped;
ovs_mutex_lock(&c->mutex);
warped = monotonic_clock.warp.tv_sec || monotonic_clock.warp.tv_nsec;
ovs_mutex_unlock(&c->mutex);
return warped;
}
static void
log_poll_interval(long long int last_wakeup)
{
long long int interval = time_msec() - last_wakeup;
if (interval >= 1000 && !is_warped(&monotonic_clock)) {
const struct rusage *last_rusage = get_recent_rusage();
struct rusage rusage;
getrusage(RUSAGE_SELF, &rusage);
VLOG_WARN("Unreasonably long %lldms poll interval"
" (%lldms user, %lldms system)",
interval,
timeval_diff_msec(&rusage.ru_utime,
&last_rusage->ru_utime),
timeval_diff_msec(&rusage.ru_stime,
&last_rusage->ru_stime));
if (rusage.ru_minflt > last_rusage->ru_minflt
|| rusage.ru_majflt > last_rusage->ru_majflt) {
VLOG_WARN("faults: %ld minor, %ld major",
rusage.ru_minflt - last_rusage->ru_minflt,
rusage.ru_majflt - last_rusage->ru_majflt);
}
if (rusage.ru_inblock > last_rusage->ru_inblock
|| rusage.ru_oublock > last_rusage->ru_oublock) {
VLOG_WARN("disk: %ld reads, %ld writes",
rusage.ru_inblock - last_rusage->ru_inblock,
rusage.ru_oublock - last_rusage->ru_oublock);
}
if (rusage.ru_nvcsw > last_rusage->ru_nvcsw
|| rusage.ru_nivcsw > last_rusage->ru_nivcsw) {
VLOG_WARN("context switches: %ld voluntary, %ld involuntary",
rusage.ru_nvcsw - last_rusage->ru_nvcsw,
rusage.ru_nivcsw - last_rusage->ru_nivcsw);
}
coverage_log();
}
}
/* CPU usage tracking. */
struct cpu_usage {
long long int when; /* Time that this sample was taken. */
unsigned long long int cpu; /* Total user+system CPU usage when sampled. */
};
struct cpu_tracker {
struct cpu_usage older;
struct cpu_usage newer;
int cpu_usage;
struct rusage recent_rusage;
};
DEFINE_PER_THREAD_MALLOCED_DATA(struct cpu_tracker *, cpu_tracker_var);
static struct cpu_tracker *
get_cpu_tracker(void)
{
struct cpu_tracker *t = cpu_tracker_var_get();
if (!t) {
t = xzalloc(sizeof *t);
t->older.when = LLONG_MIN;
t->newer.when = LLONG_MIN;
cpu_tracker_var_set_unsafe(t);
}
return t;
}
static struct rusage *
get_recent_rusage(void)
{
return &get_cpu_tracker()->recent_rusage;
}
static int
getrusage_thread(struct rusage *rusage OVS_UNUSED)
{
#ifdef RUSAGE_THREAD
return getrusage(RUSAGE_THREAD, rusage);
#else
errno = EINVAL;
return -1;
#endif
}
static void
refresh_rusage(void)
{
struct cpu_tracker *t = get_cpu_tracker();
struct rusage *recent_rusage = &t->recent_rusage;
if (!getrusage_thread(recent_rusage)) {
long long int now = time_msec();
if (now >= t->newer.when + 3 * 1000) {
t->older = t->newer;
t->newer.when = now;
t->newer.cpu = (timeval_to_msec(&recent_rusage->ru_utime) +
timeval_to_msec(&recent_rusage->ru_stime));
if (t->older.when != LLONG_MIN && t->newer.cpu > t->older.cpu) {
unsigned int dividend = t->newer.cpu - t->older.cpu;
unsigned int divisor = (t->newer.when - t->older.when) / 100;
t->cpu_usage = divisor > 0 ? dividend / divisor : -1;
} else {
t->cpu_usage = -1;
}
}
}
}
/* Returns an estimate of this process's CPU usage, as a percentage, over the
* past few seconds of wall-clock time. Returns -1 if no estimate is available
* (which will happen if the process has not been running long enough to have
* an estimate, and can happen for other reasons as well). */
int
get_cpu_usage(void)
{
return get_cpu_tracker()->cpu_usage;
}
/* Unixctl interface. */
/* "time/stop" stops the monotonic time returned by e.g. time_msec() from
* advancing, except due to later calls to "time/warp". */
static void
timeval_stop_cb(struct unixctl_conn *conn,
int argc OVS_UNUSED, const char *argv[] OVS_UNUSED,
void *aux OVS_UNUSED)
{
ovs_mutex_lock(&monotonic_clock.mutex);
atomic_store(&monotonic_clock.slow_path, true);
monotonic_clock.stopped = true;
xclock_gettime(monotonic_clock.id, &monotonic_clock.cache);
ovs_mutex_unlock(&monotonic_clock.mutex);
unixctl_command_reply(conn, NULL);
}
/* "time/warp MSECS" advances the current monotonic time by the specified
* number of milliseconds. Unless "time/stop" has also been executed, the
* monotonic clock continues to tick forward at the normal rate afterward.
*
* Does not affect wall clock readings. */
static void
timeval_warp_cb(struct unixctl_conn *conn,
int argc OVS_UNUSED, const char *argv[], void *aux OVS_UNUSED)
{
struct timespec ts;
int msecs;
msecs = atoi(argv[1]);
if (msecs <= 0) {
unixctl_command_reply_error(conn, "invalid MSECS");
return;
}
ts.tv_sec = msecs / 1000;
ts.tv_nsec = (msecs % 1000) * 1000 * 1000;
ovs_mutex_lock(&monotonic_clock.mutex);
atomic_store(&monotonic_clock.slow_path, true);
timespec_add(&monotonic_clock.warp, &monotonic_clock.warp, &ts);
ovs_mutex_unlock(&monotonic_clock.mutex);
seq_change(timewarp_seq);
unixctl_command_reply(conn, "warped");
}
void
timeval_dummy_register(void)
{
timewarp_enabled = true;
unixctl_command_register("time/stop", "", 0, 0, timeval_stop_cb, NULL);
unixctl_command_register("time/warp", "MSECS", 1, 1,
timeval_warp_cb, NULL);
}
/* strftime() with an extension for high-resolution timestamps. Any '#'s in
* 'format' will be replaced by subseconds, e.g. use "%S.###" to obtain results
* like "01.123". */
size_t
strftime_msec(char *s, size_t max, const char *format,
const struct tm_msec *tm)
{
size_t n;
n = strftime(s, max, format, &tm->tm);
if (n) {
char decimals[4];
char *p;
sprintf(decimals, "%03d", tm->msec);
for (p = strchr(s, '#'); p; p = strchr(p, '#')) {
char *d = decimals;
while (*p == '#') {
*p++ = *d ? *d++ : '0';
}
}
}
return n;
}
struct tm_msec *
localtime_msec(long long int now, struct tm_msec *result)
{
time_t now_sec = now / 1000;
localtime_r(&now_sec, &result->tm);
result->msec = now % 1000;
return result;
}
struct tm_msec *
gmtime_msec(long long int now, struct tm_msec *result)
{
time_t now_sec = now / 1000;
gmtime_r(&now_sec, &result->tm);
result->msec = now % 1000;
return result;
}