2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-29 05:18:13 +00:00
ovs/lib/packets.h
Pravin B Shelar 1bc3f0ed26 tunnel: Add IP ECN related functions.
Set and get functions for IP explicit congestion notification flag.
These function would be used by STT reassembly code.

Signed-off-by: Pravin B Shelar <pshelar@ovn.org>
Acked-by: Jesse Gross <jesse@kernel.org>
2016-05-18 19:39:18 -07:00

1076 lines
33 KiB
C

/*
* Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef PACKETS_H
#define PACKETS_H 1
#include <inttypes.h>
#include <sys/types.h>
#include <stdint.h>
#include <string.h>
#include "compiler.h"
#include "openvswitch/geneve.h"
#include "openvswitch/packets.h"
#include "openvswitch/types.h"
#include "odp-netlink.h"
#include "random.h"
#include "hash.h"
#include "tun-metadata.h"
#include "unaligned.h"
#include "util.h"
struct dp_packet;
struct ds;
/* Purely internal to OVS userspace. These flags should never be exposed to
* the outside world and so aren't included in the flags mask. */
/* Tunnel information is in userspace datapath format. */
#define FLOW_TNL_F_UDPIF (1 << 4)
static inline bool ipv6_addr_is_set(const struct in6_addr *addr);
static inline bool
flow_tnl_dst_is_set(const struct flow_tnl *tnl)
{
return tnl->ip_dst || ipv6_addr_is_set(&tnl->ipv6_dst);
}
struct in6_addr flow_tnl_dst(const struct flow_tnl *tnl);
struct in6_addr flow_tnl_src(const struct flow_tnl *tnl);
/* Returns an offset to 'src' covering all the meaningful fields in 'src'. */
static inline size_t
flow_tnl_size(const struct flow_tnl *src)
{
if (!flow_tnl_dst_is_set(src)) {
/* Covers ip_dst and ipv6_dst only. */
return offsetof(struct flow_tnl, ip_src);
}
if (src->flags & FLOW_TNL_F_UDPIF) {
/* Datapath format, cover all options we have. */
return offsetof(struct flow_tnl, metadata.opts)
+ src->metadata.present.len;
}
if (!src->metadata.present.map) {
/* No TLVs, opts is irrelevant. */
return offsetof(struct flow_tnl, metadata.opts);
}
/* Have decoded TLVs, opts is relevant. */
return sizeof *src;
}
/* Copy flow_tnl, but avoid copying unused portions of tun_metadata. Unused
* data in 'dst' is NOT cleared, so this must not be used in cases where the
* uninitialized portion may be hashed over. */
static inline void
flow_tnl_copy__(struct flow_tnl *dst, const struct flow_tnl *src)
{
memcpy(dst, src, flow_tnl_size(src));
}
static inline bool
flow_tnl_equal(const struct flow_tnl *a, const struct flow_tnl *b)
{
size_t a_size = flow_tnl_size(a);
return a_size == flow_tnl_size(b) && !memcmp(a, b, a_size);
}
/* Datapath packet metadata */
struct pkt_metadata {
uint32_t recirc_id; /* Recirculation id carried with the
recirculating packets. 0 for packets
received from the wire. */
uint32_t dp_hash; /* hash value computed by the recirculation
action. */
uint32_t skb_priority; /* Packet priority for QoS. */
uint32_t pkt_mark; /* Packet mark. */
uint16_t ct_state; /* Connection state. */
uint16_t ct_zone; /* Connection zone. */
uint32_t ct_mark; /* Connection mark. */
ovs_u128 ct_label; /* Connection label. */
union flow_in_port in_port; /* Input port. */
struct flow_tnl tunnel; /* Encapsulating tunnel parameters. Note that
* if 'ip_dst' == 0, the rest of the fields may
* be uninitialized. */
};
static inline void
pkt_metadata_init_tnl(struct pkt_metadata *md)
{
/* Zero up through the tunnel metadata options. The length and table
* are before this and as long as they are empty, the options won't
* be looked at. */
memset(md, 0, offsetof(struct pkt_metadata, tunnel.metadata.opts));
}
static inline void
pkt_metadata_init(struct pkt_metadata *md, odp_port_t port)
{
/* It can be expensive to zero out all of the tunnel metadata. However,
* we can just zero out ip_dst and the rest of the data will never be
* looked at. */
memset(md, 0, offsetof(struct pkt_metadata, in_port));
md->tunnel.ip_dst = 0;
md->tunnel.ipv6_dst = in6addr_any;
md->in_port.odp_port = port;
}
/* This function prefetches the cachelines touched by pkt_metadata_init()
* For performance reasons the two functions should be kept in sync. */
static inline void
pkt_metadata_prefetch_init(struct pkt_metadata *md)
{
ovs_prefetch_range(md, offsetof(struct pkt_metadata, tunnel.ip_src));
}
bool dpid_from_string(const char *s, uint64_t *dpidp);
#define ETH_ADDR_LEN 6
static const struct eth_addr eth_addr_broadcast OVS_UNUSED
= { { { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } } };
static const struct eth_addr eth_addr_exact OVS_UNUSED
= { { { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } } };
static const struct eth_addr eth_addr_zero OVS_UNUSED
= { { { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } } };
static const struct eth_addr eth_addr_stp OVS_UNUSED
= { { { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x00 } } };
static const struct eth_addr eth_addr_lacp OVS_UNUSED
= { { { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x02 } } };
static const struct eth_addr eth_addr_bfd OVS_UNUSED
= { { { 0x00, 0x23, 0x20, 0x00, 0x00, 0x01 } } };
static inline bool eth_addr_is_broadcast(const struct eth_addr a)
{
return (a.be16[0] & a.be16[1] & a.be16[2]) == htons(0xffff);
}
static inline bool eth_addr_is_multicast(const struct eth_addr a)
{
return a.ea[0] & 1;
}
static inline bool eth_addr_is_local(const struct eth_addr a)
{
/* Local if it is either a locally administered address or a Nicira random
* address. */
return a.ea[0] & 2
|| (a.be16[0] == htons(0x0023)
&& (a.be16[1] & htons(0xff80)) == htons(0x2080));
}
static inline bool eth_addr_is_zero(const struct eth_addr a)
{
return !(a.be16[0] | a.be16[1] | a.be16[2]);
}
static inline int eth_mask_is_exact(const struct eth_addr a)
{
return (a.be16[0] & a.be16[1] & a.be16[2]) == htons(0xffff);
}
static inline int eth_addr_compare_3way(const struct eth_addr a,
const struct eth_addr b)
{
return memcmp(&a, &b, sizeof a);
}
static inline bool eth_addr_equals(const struct eth_addr a,
const struct eth_addr b)
{
return !eth_addr_compare_3way(a, b);
}
static inline bool eth_addr_equal_except(const struct eth_addr a,
const struct eth_addr b,
const struct eth_addr mask)
{
return !(((a.be16[0] ^ b.be16[0]) & mask.be16[0])
|| ((a.be16[1] ^ b.be16[1]) & mask.be16[1])
|| ((a.be16[2] ^ b.be16[2]) & mask.be16[2]));
}
static inline uint64_t eth_addr_to_uint64(const struct eth_addr ea)
{
return (((uint64_t) ntohs(ea.be16[0]) << 32)
| ((uint64_t) ntohs(ea.be16[1]) << 16)
| ntohs(ea.be16[2]));
}
static inline uint64_t eth_addr_vlan_to_uint64(const struct eth_addr ea,
uint16_t vlan)
{
return (((uint64_t)vlan << 48) | eth_addr_to_uint64(ea));
}
static inline void eth_addr_from_uint64(uint64_t x, struct eth_addr *ea)
{
ea->be16[0] = htons(x >> 32);
ea->be16[1] = htons((x & 0xFFFF0000) >> 16);
ea->be16[2] = htons(x & 0xFFFF);
}
static inline struct eth_addr eth_addr_invert(const struct eth_addr src)
{
struct eth_addr dst;
for (int i = 0; i < ARRAY_SIZE(src.be16); i++) {
dst.be16[i] = ~src.be16[i];
}
return dst;
}
static inline void eth_addr_mark_random(struct eth_addr *ea)
{
ea->ea[0] &= ~1; /* Unicast. */
ea->ea[0] |= 2; /* Private. */
}
static inline void eth_addr_random(struct eth_addr *ea)
{
random_bytes((uint8_t *)ea, sizeof *ea);
eth_addr_mark_random(ea);
}
static inline void eth_addr_nicira_random(struct eth_addr *ea)
{
eth_addr_random(ea);
/* Set the OUI to the Nicira one. */
ea->ea[0] = 0x00;
ea->ea[1] = 0x23;
ea->ea[2] = 0x20;
/* Set the top bit to indicate random Nicira address. */
ea->ea[3] |= 0x80;
}
static inline uint32_t hash_mac(const struct eth_addr ea,
const uint16_t vlan, const uint32_t basis)
{
return hash_uint64_basis(eth_addr_vlan_to_uint64(ea, vlan), basis);
}
bool eth_addr_is_reserved(const struct eth_addr);
bool eth_addr_from_string(const char *, struct eth_addr *);
void compose_rarp(struct dp_packet *, const struct eth_addr);
void eth_push_vlan(struct dp_packet *, ovs_be16 tpid, ovs_be16 tci);
void eth_pop_vlan(struct dp_packet *);
const char *eth_from_hex(const char *hex, struct dp_packet **packetp);
void eth_format_masked(const struct eth_addr ea,
const struct eth_addr *mask, struct ds *s);
void set_mpls_lse(struct dp_packet *, ovs_be32 label);
void push_mpls(struct dp_packet *packet, ovs_be16 ethtype, ovs_be32 lse);
void pop_mpls(struct dp_packet *, ovs_be16 ethtype);
void set_mpls_lse_ttl(ovs_be32 *lse, uint8_t ttl);
void set_mpls_lse_tc(ovs_be32 *lse, uint8_t tc);
void set_mpls_lse_label(ovs_be32 *lse, ovs_be32 label);
void set_mpls_lse_bos(ovs_be32 *lse, uint8_t bos);
ovs_be32 set_mpls_lse_values(uint8_t ttl, uint8_t tc, uint8_t bos,
ovs_be32 label);
/* Example:
*
* struct eth_addr mac;
* [...]
* printf("The Ethernet address is "ETH_ADDR_FMT"\n", ETH_ADDR_ARGS(mac));
*
*/
#define ETH_ADDR_FMT \
"%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8":%02"PRIx8
#define ETH_ADDR_ARGS(EA) ETH_ADDR_BYTES_ARGS((EA).ea)
#define ETH_ADDR_BYTES_ARGS(EAB) \
(EAB)[0], (EAB)[1], (EAB)[2], (EAB)[3], (EAB)[4], (EAB)[5]
#define ETH_ADDR_STRLEN 17
/* Example:
*
* char *string = "1 00:11:22:33:44:55 2";
* struct eth_addr mac;
* int a, b;
*
* if (ovs_scan(string, "%d"ETH_ADDR_SCAN_FMT"%d",
* &a, ETH_ADDR_SCAN_ARGS(mac), &b)) {
* ...
* }
*/
#define ETH_ADDR_SCAN_FMT "%"SCNx8":%"SCNx8":%"SCNx8":%"SCNx8":%"SCNx8":%"SCNx8
#define ETH_ADDR_SCAN_ARGS(EA) \
&(EA).ea[0], &(EA).ea[1], &(EA).ea[2], &(EA).ea[3], &(EA).ea[4], &(EA).ea[5]
#define ETH_TYPE_IP 0x0800
#define ETH_TYPE_ARP 0x0806
#define ETH_TYPE_TEB 0x6558
#define ETH_TYPE_VLAN_8021Q 0x8100
#define ETH_TYPE_VLAN ETH_TYPE_VLAN_8021Q
#define ETH_TYPE_VLAN_8021AD 0x88a8
#define ETH_TYPE_IPV6 0x86dd
#define ETH_TYPE_LACP 0x8809
#define ETH_TYPE_RARP 0x8035
#define ETH_TYPE_MPLS 0x8847
#define ETH_TYPE_MPLS_MCAST 0x8848
static inline bool eth_type_mpls(ovs_be16 eth_type)
{
return eth_type == htons(ETH_TYPE_MPLS) ||
eth_type == htons(ETH_TYPE_MPLS_MCAST);
}
static inline bool eth_type_vlan(ovs_be16 eth_type)
{
return eth_type == htons(ETH_TYPE_VLAN_8021Q) ||
eth_type == htons(ETH_TYPE_VLAN_8021AD);
}
/* Minimum value for an Ethernet type. Values below this are IEEE 802.2 frame
* lengths. */
#define ETH_TYPE_MIN 0x600
#define ETH_HEADER_LEN 14
#define ETH_PAYLOAD_MIN 46
#define ETH_PAYLOAD_MAX 1500
#define ETH_TOTAL_MIN (ETH_HEADER_LEN + ETH_PAYLOAD_MIN)
#define ETH_TOTAL_MAX (ETH_HEADER_LEN + ETH_PAYLOAD_MAX)
#define ETH_VLAN_TOTAL_MAX (ETH_HEADER_LEN + VLAN_HEADER_LEN + ETH_PAYLOAD_MAX)
OVS_PACKED(
struct eth_header {
struct eth_addr eth_dst;
struct eth_addr eth_src;
ovs_be16 eth_type;
});
BUILD_ASSERT_DECL(ETH_HEADER_LEN == sizeof(struct eth_header));
#define LLC_DSAP_SNAP 0xaa
#define LLC_SSAP_SNAP 0xaa
#define LLC_CNTL_SNAP 3
#define LLC_HEADER_LEN 3
OVS_PACKED(
struct llc_header {
uint8_t llc_dsap;
uint8_t llc_ssap;
uint8_t llc_cntl;
});
BUILD_ASSERT_DECL(LLC_HEADER_LEN == sizeof(struct llc_header));
/* LLC field values used for STP frames. */
#define STP_LLC_SSAP 0x42
#define STP_LLC_DSAP 0x42
#define STP_LLC_CNTL 0x03
#define SNAP_ORG_ETHERNET "\0\0" /* The compiler adds a null byte, so
sizeof(SNAP_ORG_ETHERNET) == 3. */
#define SNAP_HEADER_LEN 5
OVS_PACKED(
struct snap_header {
uint8_t snap_org[3];
ovs_be16 snap_type;
});
BUILD_ASSERT_DECL(SNAP_HEADER_LEN == sizeof(struct snap_header));
#define LLC_SNAP_HEADER_LEN (LLC_HEADER_LEN + SNAP_HEADER_LEN)
OVS_PACKED(
struct llc_snap_header {
struct llc_header llc;
struct snap_header snap;
});
BUILD_ASSERT_DECL(LLC_SNAP_HEADER_LEN == sizeof(struct llc_snap_header));
#define VLAN_VID_MASK 0x0fff
#define VLAN_VID_SHIFT 0
#define VLAN_PCP_MASK 0xe000
#define VLAN_PCP_SHIFT 13
#define VLAN_CFI 0x1000
#define VLAN_CFI_SHIFT 12
/* Given the vlan_tci field from an 802.1Q header, in network byte order,
* returns the VLAN ID in host byte order. */
static inline uint16_t
vlan_tci_to_vid(ovs_be16 vlan_tci)
{
return (ntohs(vlan_tci) & VLAN_VID_MASK) >> VLAN_VID_SHIFT;
}
/* Given the vlan_tci field from an 802.1Q header, in network byte order,
* returns the priority code point (PCP) in host byte order. */
static inline int
vlan_tci_to_pcp(ovs_be16 vlan_tci)
{
return (ntohs(vlan_tci) & VLAN_PCP_MASK) >> VLAN_PCP_SHIFT;
}
/* Given the vlan_tci field from an 802.1Q header, in network byte order,
* returns the Canonical Format Indicator (CFI). */
static inline int
vlan_tci_to_cfi(ovs_be16 vlan_tci)
{
return (vlan_tci & htons(VLAN_CFI)) != 0;
}
#define VLAN_HEADER_LEN 4
struct vlan_header {
ovs_be16 vlan_tci; /* Lowest 12 bits are VLAN ID. */
ovs_be16 vlan_next_type;
};
BUILD_ASSERT_DECL(VLAN_HEADER_LEN == sizeof(struct vlan_header));
#define VLAN_ETH_HEADER_LEN (ETH_HEADER_LEN + VLAN_HEADER_LEN)
OVS_PACKED(
struct vlan_eth_header {
struct eth_addr veth_dst;
struct eth_addr veth_src;
ovs_be16 veth_type; /* Always htons(ETH_TYPE_VLAN). */
ovs_be16 veth_tci; /* Lowest 12 bits are VLAN ID. */
ovs_be16 veth_next_type;
});
BUILD_ASSERT_DECL(VLAN_ETH_HEADER_LEN == sizeof(struct vlan_eth_header));
/* MPLS related definitions */
#define MPLS_TTL_MASK 0x000000ff
#define MPLS_TTL_SHIFT 0
#define MPLS_BOS_MASK 0x00000100
#define MPLS_BOS_SHIFT 8
#define MPLS_TC_MASK 0x00000e00
#define MPLS_TC_SHIFT 9
#define MPLS_LABEL_MASK 0xfffff000
#define MPLS_LABEL_SHIFT 12
#define MPLS_HLEN 4
struct mpls_hdr {
ovs_16aligned_be32 mpls_lse;
};
BUILD_ASSERT_DECL(MPLS_HLEN == sizeof(struct mpls_hdr));
/* Given a mpls label stack entry in network byte order
* return mpls label in host byte order */
static inline uint32_t
mpls_lse_to_label(ovs_be32 mpls_lse)
{
return (ntohl(mpls_lse) & MPLS_LABEL_MASK) >> MPLS_LABEL_SHIFT;
}
/* Given a mpls label stack entry in network byte order
* return mpls tc */
static inline uint8_t
mpls_lse_to_tc(ovs_be32 mpls_lse)
{
return (ntohl(mpls_lse) & MPLS_TC_MASK) >> MPLS_TC_SHIFT;
}
/* Given a mpls label stack entry in network byte order
* return mpls ttl */
static inline uint8_t
mpls_lse_to_ttl(ovs_be32 mpls_lse)
{
return (ntohl(mpls_lse) & MPLS_TTL_MASK) >> MPLS_TTL_SHIFT;
}
/* Set TTL in mpls lse. */
static inline void
flow_set_mpls_lse_ttl(ovs_be32 *mpls_lse, uint8_t ttl)
{
*mpls_lse &= ~htonl(MPLS_TTL_MASK);
*mpls_lse |= htonl(ttl << MPLS_TTL_SHIFT);
}
/* Given a mpls label stack entry in network byte order
* return mpls BoS bit */
static inline uint8_t
mpls_lse_to_bos(ovs_be32 mpls_lse)
{
return (mpls_lse & htonl(MPLS_BOS_MASK)) != 0;
}
#define IP_FMT "%"PRIu32".%"PRIu32".%"PRIu32".%"PRIu32
#define IP_ARGS(ip) \
ntohl(ip) >> 24, \
(ntohl(ip) >> 16) & 0xff, \
(ntohl(ip) >> 8) & 0xff, \
ntohl(ip) & 0xff
/* Example:
*
* char *string = "1 33.44.55.66 2";
* ovs_be32 ip;
* int a, b;
*
* if (ovs_scan(string, "%d"IP_SCAN_FMT"%d", &a, IP_SCAN_ARGS(&ip), &b)) {
* ...
* }
*/
#define IP_SCAN_FMT "%"SCNu8".%"SCNu8".%"SCNu8".%"SCNu8
#define IP_SCAN_ARGS(ip) \
((void) (ovs_be32) *(ip), &((uint8_t *) ip)[0]), \
&((uint8_t *) ip)[1], \
&((uint8_t *) ip)[2], \
&((uint8_t *) ip)[3]
/* Returns true if 'netmask' is a CIDR netmask, that is, if it consists of N
* high-order 1-bits and 32-N low-order 0-bits. */
static inline bool
ip_is_cidr(ovs_be32 netmask)
{
uint32_t x = ~ntohl(netmask);
return !(x & (x + 1));
}
static inline bool
ip_is_multicast(ovs_be32 ip)
{
return (ip & htonl(0xf0000000)) == htonl(0xe0000000);
}
static inline bool
ip_is_local_multicast(ovs_be32 ip)
{
return (ip & htonl(0xffffff00)) == htonl(0xe0000000);
}
int ip_count_cidr_bits(ovs_be32 netmask);
void ip_format_masked(ovs_be32 ip, ovs_be32 mask, struct ds *);
bool ip_parse(const char *s, ovs_be32 *ip);
char *ip_parse_masked(const char *s, ovs_be32 *ip, ovs_be32 *mask)
OVS_WARN_UNUSED_RESULT;
char *ip_parse_cidr(const char *s, ovs_be32 *ip, unsigned int *plen)
OVS_WARN_UNUSED_RESULT;
char *ip_parse_masked_len(const char *s, int *n, ovs_be32 *ip, ovs_be32 *mask)
OVS_WARN_UNUSED_RESULT;
char *ip_parse_cidr_len(const char *s, int *n, ovs_be32 *ip,
unsigned int *plen)
OVS_WARN_UNUSED_RESULT;
#define IP_VER(ip_ihl_ver) ((ip_ihl_ver) >> 4)
#define IP_IHL(ip_ihl_ver) ((ip_ihl_ver) & 15)
#define IP_IHL_VER(ihl, ver) (((ver) << 4) | (ihl))
#ifndef IPPROTO_SCTP
#define IPPROTO_SCTP 132
#endif
/* TOS fields. */
#define IP_ECN_NOT_ECT 0x0
#define IP_ECN_ECT_1 0x01
#define IP_ECN_ECT_0 0x02
#define IP_ECN_CE 0x03
#define IP_ECN_MASK 0x03
#define IP_DSCP_MASK 0xfc
static inline int
IP_ECN_is_ce(uint8_t dsfield)
{
return (dsfield & IP_ECN_MASK) == IP_ECN_CE;
}
#define IP_VERSION 4
#define IP_DONT_FRAGMENT 0x4000 /* Don't fragment. */
#define IP_MORE_FRAGMENTS 0x2000 /* More fragments. */
#define IP_FRAG_OFF_MASK 0x1fff /* Fragment offset. */
#define IP_IS_FRAGMENT(ip_frag_off) \
((ip_frag_off) & htons(IP_MORE_FRAGMENTS | IP_FRAG_OFF_MASK))
#define IP_HEADER_LEN 20
struct ip_header {
uint8_t ip_ihl_ver;
uint8_t ip_tos;
ovs_be16 ip_tot_len;
ovs_be16 ip_id;
ovs_be16 ip_frag_off;
uint8_t ip_ttl;
uint8_t ip_proto;
ovs_be16 ip_csum;
ovs_16aligned_be32 ip_src;
ovs_16aligned_be32 ip_dst;
};
BUILD_ASSERT_DECL(IP_HEADER_LEN == sizeof(struct ip_header));
#define ICMP_HEADER_LEN 8
struct icmp_header {
uint8_t icmp_type;
uint8_t icmp_code;
ovs_be16 icmp_csum;
union {
struct {
ovs_be16 id;
ovs_be16 seq;
} echo;
struct {
ovs_be16 empty;
ovs_be16 mtu;
} frag;
ovs_16aligned_be32 gateway;
} icmp_fields;
};
BUILD_ASSERT_DECL(ICMP_HEADER_LEN == sizeof(struct icmp_header));
#define IGMP_HEADER_LEN 8
struct igmp_header {
uint8_t igmp_type;
uint8_t igmp_code;
ovs_be16 igmp_csum;
ovs_16aligned_be32 group;
};
BUILD_ASSERT_DECL(IGMP_HEADER_LEN == sizeof(struct igmp_header));
#define IGMPV3_HEADER_LEN 8
struct igmpv3_header {
uint8_t type;
uint8_t rsvr1;
ovs_be16 csum;
ovs_be16 rsvr2;
ovs_be16 ngrp;
};
BUILD_ASSERT_DECL(IGMPV3_HEADER_LEN == sizeof(struct igmpv3_header));
#define IGMPV3_RECORD_LEN 8
struct igmpv3_record {
uint8_t type;
uint8_t aux_len;
ovs_be16 nsrcs;
ovs_16aligned_be32 maddr;
};
BUILD_ASSERT_DECL(IGMPV3_RECORD_LEN == sizeof(struct igmpv3_record));
#define IGMP_HOST_MEMBERSHIP_QUERY 0x11 /* From RFC1112 */
#define IGMP_HOST_MEMBERSHIP_REPORT 0x12 /* Ditto */
#define IGMPV2_HOST_MEMBERSHIP_REPORT 0x16 /* V2 version of 0x12 */
#define IGMP_HOST_LEAVE_MESSAGE 0x17
#define IGMPV3_HOST_MEMBERSHIP_REPORT 0x22 /* V3 version of 0x12 */
/*
* IGMPv3 and MLDv2 use the same codes.
*/
#define IGMPV3_MODE_IS_INCLUDE 1
#define IGMPV3_MODE_IS_EXCLUDE 2
#define IGMPV3_CHANGE_TO_INCLUDE_MODE 3
#define IGMPV3_CHANGE_TO_EXCLUDE_MODE 4
#define IGMPV3_ALLOW_NEW_SOURCES 5
#define IGMPV3_BLOCK_OLD_SOURCES 6
#define SCTP_HEADER_LEN 12
struct sctp_header {
ovs_be16 sctp_src;
ovs_be16 sctp_dst;
ovs_16aligned_be32 sctp_vtag;
ovs_16aligned_be32 sctp_csum;
};
BUILD_ASSERT_DECL(SCTP_HEADER_LEN == sizeof(struct sctp_header));
#define UDP_HEADER_LEN 8
struct udp_header {
ovs_be16 udp_src;
ovs_be16 udp_dst;
ovs_be16 udp_len;
ovs_be16 udp_csum;
};
BUILD_ASSERT_DECL(UDP_HEADER_LEN == sizeof(struct udp_header));
#define TCP_FIN 0x001
#define TCP_SYN 0x002
#define TCP_RST 0x004
#define TCP_PSH 0x008
#define TCP_ACK 0x010
#define TCP_URG 0x020
#define TCP_ECE 0x040
#define TCP_CWR 0x080
#define TCP_NS 0x100
#define TCP_CTL(flags, offset) (htons((flags) | ((offset) << 12)))
#define TCP_FLAGS(tcp_ctl) (ntohs(tcp_ctl) & 0x0fff)
#define TCP_FLAGS_BE16(tcp_ctl) ((tcp_ctl) & htons(0x0fff))
#define TCP_OFFSET(tcp_ctl) (ntohs(tcp_ctl) >> 12)
#define TCP_HEADER_LEN 20
struct tcp_header {
ovs_be16 tcp_src;
ovs_be16 tcp_dst;
ovs_16aligned_be32 tcp_seq;
ovs_16aligned_be32 tcp_ack;
ovs_be16 tcp_ctl;
ovs_be16 tcp_winsz;
ovs_be16 tcp_csum;
ovs_be16 tcp_urg;
};
BUILD_ASSERT_DECL(TCP_HEADER_LEN == sizeof(struct tcp_header));
/* Connection states */
enum {
CS_NEW_BIT = 0,
CS_ESTABLISHED_BIT = 1,
CS_RELATED_BIT = 2,
CS_REPLY_DIR_BIT = 3,
CS_INVALID_BIT = 4,
CS_TRACKED_BIT = 5,
CS_SRC_NAT_BIT = 6,
CS_DST_NAT_BIT = 7,
};
enum {
CS_NEW = (1 << CS_NEW_BIT),
CS_ESTABLISHED = (1 << CS_ESTABLISHED_BIT),
CS_RELATED = (1 << CS_RELATED_BIT),
CS_REPLY_DIR = (1 << CS_REPLY_DIR_BIT),
CS_INVALID = (1 << CS_INVALID_BIT),
CS_TRACKED = (1 << CS_TRACKED_BIT),
CS_SRC_NAT = (1 << CS_SRC_NAT_BIT),
CS_DST_NAT = (1 << CS_DST_NAT_BIT),
};
/* Undefined connection state bits. */
#define CS_SUPPORTED_MASK (CS_NEW | CS_ESTABLISHED | CS_RELATED \
| CS_INVALID | CS_REPLY_DIR | CS_TRACKED \
| CS_SRC_NAT | CS_DST_NAT)
#define CS_UNSUPPORTED_MASK (~(uint32_t)CS_SUPPORTED_MASK)
#define ARP_HRD_ETHERNET 1
#define ARP_PRO_IP 0x0800
#define ARP_OP_REQUEST 1
#define ARP_OP_REPLY 2
#define ARP_OP_RARP 3
#define ARP_ETH_HEADER_LEN 28
struct arp_eth_header {
/* Generic members. */
ovs_be16 ar_hrd; /* Hardware type. */
ovs_be16 ar_pro; /* Protocol type. */
uint8_t ar_hln; /* Hardware address length. */
uint8_t ar_pln; /* Protocol address length. */
ovs_be16 ar_op; /* Opcode. */
/* Ethernet+IPv4 specific members. */
struct eth_addr ar_sha; /* Sender hardware address. */
ovs_16aligned_be32 ar_spa; /* Sender protocol address. */
struct eth_addr ar_tha; /* Target hardware address. */
ovs_16aligned_be32 ar_tpa; /* Target protocol address. */
};
BUILD_ASSERT_DECL(ARP_ETH_HEADER_LEN == sizeof(struct arp_eth_header));
#define IPV6_HEADER_LEN 40
/* Like struct in6_addr, but whereas that struct requires 32-bit alignment on
* most implementations, this one only requires 16-bit alignment. */
union ovs_16aligned_in6_addr {
ovs_be16 be16[8];
ovs_16aligned_be32 be32[4];
};
/* Like struct in6_hdr, but whereas that struct requires 32-bit alignment, this
* one only requires 16-bit alignment. */
struct ovs_16aligned_ip6_hdr {
union {
struct ovs_16aligned_ip6_hdrctl {
ovs_16aligned_be32 ip6_un1_flow;
ovs_be16 ip6_un1_plen;
uint8_t ip6_un1_nxt;
uint8_t ip6_un1_hlim;
} ip6_un1;
uint8_t ip6_un2_vfc;
} ip6_ctlun;
union ovs_16aligned_in6_addr ip6_src;
union ovs_16aligned_in6_addr ip6_dst;
};
/* Like struct in6_frag, but whereas that struct requires 32-bit alignment,
* this one only requires 16-bit alignment. */
struct ovs_16aligned_ip6_frag {
uint8_t ip6f_nxt;
uint8_t ip6f_reserved;
ovs_be16 ip6f_offlg;
ovs_16aligned_be32 ip6f_ident;
};
#define ICMP6_HEADER_LEN 4
struct icmp6_header {
uint8_t icmp6_type;
uint8_t icmp6_code;
ovs_be16 icmp6_cksum;
};
BUILD_ASSERT_DECL(ICMP6_HEADER_LEN == sizeof(struct icmp6_header));
uint32_t packet_csum_pseudoheader6(const struct ovs_16aligned_ip6_hdr *);
/* Neighbor Discovery option field.
* ND options are always a multiple of 8 bytes in size. */
#define ND_OPT_LEN 8
struct ovs_nd_opt {
uint8_t nd_opt_type; /* Values defined in icmp6.h */
uint8_t nd_opt_len; /* in units of 8 octets (the size of this struct) */
struct eth_addr nd_opt_mac; /* Ethernet address in the case of SLL or TLL options */
};
BUILD_ASSERT_DECL(ND_OPT_LEN == sizeof(struct ovs_nd_opt));
/* Like struct nd_msg (from ndisc.h), but whereas that struct requires 32-bit
* alignment, this one only requires 16-bit alignment. */
#define ND_MSG_LEN 24
struct ovs_nd_msg {
struct icmp6_header icmph;
ovs_16aligned_be32 rco_flags;
union ovs_16aligned_in6_addr target;
struct ovs_nd_opt options[0];
};
BUILD_ASSERT_DECL(ND_MSG_LEN == sizeof(struct ovs_nd_msg));
/*
* Use the same struct for MLD and MLD2, naming members as the defined fields in
* in the corresponding version of the protocol, though they are reserved in the
* other one.
*/
#define MLD_HEADER_LEN 8
struct mld_header {
uint8_t type;
uint8_t code;
ovs_be16 csum;
ovs_be16 mrd;
ovs_be16 ngrp;
};
BUILD_ASSERT_DECL(MLD_HEADER_LEN == sizeof(struct mld_header));
#define MLD2_RECORD_LEN 20
struct mld2_record {
uint8_t type;
uint8_t aux_len;
ovs_be16 nsrcs;
union ovs_16aligned_in6_addr maddr;
};
BUILD_ASSERT_DECL(MLD2_RECORD_LEN == sizeof(struct mld2_record));
#define MLD_QUERY 130
#define MLD_REPORT 131
#define MLD_DONE 132
#define MLD2_REPORT 143
/* The IPv6 flow label is in the lower 20 bits of the first 32-bit word. */
#define IPV6_LABEL_MASK 0x000fffff
/* Example:
*
* char *string = "1 ::1 2";
* char ipv6_s[IPV6_SCAN_LEN + 1];
* struct in6_addr ipv6;
*
* if (ovs_scan(string, "%d"IPV6_SCAN_FMT"%d", &a, ipv6_s, &b)
* && inet_pton(AF_INET6, ipv6_s, &ipv6) == 1) {
* ...
* }
*/
#define IPV6_SCAN_FMT "%46[0123456789abcdefABCDEF:.]"
#define IPV6_SCAN_LEN 46
extern const struct in6_addr in6addr_exact;
#define IN6ADDR_EXACT_INIT { { { 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, \
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff } } }
extern const struct in6_addr in6addr_all_hosts;
#define IN6ADDR_ALL_HOSTS_INIT { { { 0xff,0x02,0x00,0x00,0x00,0x00,0x00,0x00, \
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01 } } }
static inline bool ipv6_addr_equals(const struct in6_addr *a,
const struct in6_addr *b)
{
#ifdef IN6_ARE_ADDR_EQUAL
return IN6_ARE_ADDR_EQUAL(a, b);
#else
return !memcmp(a, b, sizeof(*a));
#endif
}
static inline bool ipv6_mask_is_any(const struct in6_addr *mask) {
return ipv6_addr_equals(mask, &in6addr_any);
}
static inline bool ipv6_mask_is_exact(const struct in6_addr *mask) {
return ipv6_addr_equals(mask, &in6addr_exact);
}
static inline bool ipv6_is_all_hosts(const struct in6_addr *addr) {
return ipv6_addr_equals(addr, &in6addr_all_hosts);
}
static inline bool ipv6_addr_is_set(const struct in6_addr *addr) {
return !ipv6_addr_equals(addr, &in6addr_any);
}
static inline bool ipv6_addr_is_multicast(const struct in6_addr *ip) {
return ip->s6_addr[0] == 0xff;
}
static inline struct in6_addr
in6_addr_mapped_ipv4(ovs_be32 ip4)
{
struct in6_addr ip6 = { .s6_addr = { [10] = 0xff, [11] = 0xff } };
memcpy(&ip6.s6_addr[12], &ip4, 4);
return ip6;
}
static inline void
in6_addr_set_mapped_ipv4(struct in6_addr *ip6, ovs_be32 ip4)
{
*ip6 = in6_addr_mapped_ipv4(ip4);
}
static inline ovs_be32
in6_addr_get_mapped_ipv4(const struct in6_addr *addr)
{
union ovs_16aligned_in6_addr *taddr = (void *) addr;
if (IN6_IS_ADDR_V4MAPPED(addr)) {
return get_16aligned_be32(&taddr->be32[3]);
} else {
return INADDR_ANY;
}
}
static inline void
in6_addr_solicited_node(struct in6_addr *addr, const struct in6_addr *ip6)
{
union ovs_16aligned_in6_addr *taddr = (void *) addr;
memset(taddr->be16, 0, sizeof(taddr->be16));
taddr->be16[0] = htons(0xff02);
taddr->be16[5] = htons(0x1);
taddr->be16[6] = htons(0xff00);
memcpy(&addr->s6_addr[13], &ip6->s6_addr[13], 3);
}
/*
* Generates ipv6 link local address from the given eth addr
* with prefix 'fe80::/64' and stores it in 'lla'
*/
static inline void
in6_generate_lla(struct eth_addr ea, struct in6_addr *lla)
{
union ovs_16aligned_in6_addr *taddr = (void *) lla;
memset(taddr->be16, 0, sizeof(taddr->be16));
taddr->be16[0] = htons(0xfe80);
taddr->be16[4] = htons(((ea.ea[0] ^ 0x02) << 8) | ea.ea[1]);
taddr->be16[5] = htons(ea.ea[2] << 8 | 0x00ff);
taddr->be16[6] = htons(0xfe << 8 | ea.ea[3]);
taddr->be16[7] = ea.be16[2];
}
static inline void
ipv6_multicast_to_ethernet(struct eth_addr *eth, const struct in6_addr *ip6)
{
eth->ea[0] = 0x33;
eth->ea[1] = 0x33;
eth->ea[2] = ip6->s6_addr[12];
eth->ea[3] = ip6->s6_addr[13];
eth->ea[4] = ip6->s6_addr[14];
eth->ea[5] = ip6->s6_addr[15];
}
static inline bool dl_type_is_ip_any(ovs_be16 dl_type)
{
return dl_type == htons(ETH_TYPE_IP)
|| dl_type == htons(ETH_TYPE_IPV6);
}
/* Tunnel header */
/* GRE protocol header */
struct gre_base_hdr {
ovs_be16 flags;
ovs_be16 protocol;
};
#define GRE_CSUM 0x8000
#define GRE_ROUTING 0x4000
#define GRE_KEY 0x2000
#define GRE_SEQ 0x1000
#define GRE_STRICT 0x0800
#define GRE_REC 0x0700
#define GRE_FLAGS 0x00F8
#define GRE_VERSION 0x0007
/* VXLAN protocol header */
struct vxlanhdr {
ovs_16aligned_be32 vx_flags;
ovs_16aligned_be32 vx_vni;
};
#define VXLAN_FLAGS 0x08000000 /* struct vxlanhdr.vx_flags required value. */
void ipv6_format_addr(const struct in6_addr *addr, struct ds *);
void ipv6_format_addr_bracket(const struct in6_addr *addr, struct ds *,
bool bracket);
void ipv6_format_mapped(const struct in6_addr *addr, struct ds *);
void ipv6_format_masked(const struct in6_addr *addr,
const struct in6_addr *mask, struct ds *);
const char * ipv6_string_mapped(char *addr_str, const struct in6_addr *addr);
struct in6_addr ipv6_addr_bitand(const struct in6_addr *src,
const struct in6_addr *mask);
struct in6_addr ipv6_create_mask(int mask);
int ipv6_count_cidr_bits(const struct in6_addr *netmask);
bool ipv6_is_cidr(const struct in6_addr *netmask);
bool ipv6_parse(const char *s, struct in6_addr *ip);
char *ipv6_parse_masked(const char *s, struct in6_addr *ipv6,
struct in6_addr *mask);
char *ipv6_parse_cidr(const char *s, struct in6_addr *ip, unsigned int *plen)
OVS_WARN_UNUSED_RESULT;
char *ipv6_parse_masked_len(const char *s, int *n, struct in6_addr *ipv6,
struct in6_addr *mask);
char *ipv6_parse_cidr_len(const char *s, int *n, struct in6_addr *ip,
unsigned int *plen)
OVS_WARN_UNUSED_RESULT;
void *eth_compose(struct dp_packet *, const struct eth_addr eth_dst,
const struct eth_addr eth_src, uint16_t eth_type,
size_t size);
void *snap_compose(struct dp_packet *, const struct eth_addr eth_dst,
const struct eth_addr eth_src,
unsigned int oui, uint16_t snap_type, size_t size);
void packet_set_ipv4(struct dp_packet *, ovs_be32 src, ovs_be32 dst, uint8_t tos,
uint8_t ttl);
void packet_set_ipv6(struct dp_packet *, const ovs_be32 src[4],
const ovs_be32 dst[4], uint8_t tc,
ovs_be32 fl, uint8_t hlmit);
void packet_set_tcp_port(struct dp_packet *, ovs_be16 src, ovs_be16 dst);
void packet_set_udp_port(struct dp_packet *, ovs_be16 src, ovs_be16 dst);
void packet_set_sctp_port(struct dp_packet *, ovs_be16 src, ovs_be16 dst);
void packet_set_icmp(struct dp_packet *, uint8_t type, uint8_t code);
void packet_set_nd(struct dp_packet *, const ovs_be32 target[4],
const struct eth_addr sll, const struct eth_addr tll);
void packet_format_tcp_flags(struct ds *, uint16_t);
const char *packet_tcp_flag_to_string(uint32_t flag);
void compose_arp__(struct dp_packet *);
void compose_arp(struct dp_packet *, uint16_t arp_op,
const struct eth_addr arp_sha,
const struct eth_addr arp_tha, bool broadcast,
ovs_be32 arp_spa, ovs_be32 arp_tpa);
void compose_nd(struct dp_packet *, const struct eth_addr eth_src,
struct in6_addr *, struct in6_addr *);
uint32_t packet_csum_pseudoheader(const struct ip_header *);
void IP_ECN_set_ce(struct dp_packet *pkt, bool is_ipv6);
#endif /* packets.h */