2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-28 04:47:49 +00:00
ovs/lib/meta-flow.c
Jarno Rajahalme e8dba71979 meta-flow: Compact struct field_array.
struct field_array is included in each ofgroup, but the current
implementation is very sparse, using more than 20kb of data.

Also loop over 1-bits instead of each and every MF type to make
processing faster.

Signed-off-by: Jarno Rajahalme <jarno@ovn.org>
Acked-by: Ben Pfaff <blp@ovn.org>
2016-07-29 16:52:04 -07:00

2543 lines
69 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "openvswitch/meta-flow.h"
#include <errno.h>
#include <limits.h>
#include <netinet/icmp6.h>
#include <netinet/ip6.h>
#include "classifier.h"
#include "openvswitch/dynamic-string.h"
#include "nx-match.h"
#include "openvswitch/ofp-util.h"
#include "ovs-thread.h"
#include "packets.h"
#include "random.h"
#include "openvswitch/shash.h"
#include "socket-util.h"
#include "tun-metadata.h"
#include "unaligned.h"
#include "util.h"
#include "openvswitch/ofp-errors.h"
#include "openvswitch/vlog.h"
VLOG_DEFINE_THIS_MODULE(meta_flow);
#define FLOW_U32OFS(FIELD) \
offsetof(struct flow, FIELD) % 4 ? -1 : offsetof(struct flow, FIELD) / 4
#define MF_FIELD_SIZES(MEMBER) \
sizeof ((union mf_value *)0)->MEMBER, \
8 * sizeof ((union mf_value *)0)->MEMBER
extern const struct mf_field mf_fields[MFF_N_IDS]; /* Silence a warning. */
const struct mf_field mf_fields[MFF_N_IDS] = {
#include "meta-flow.inc"
};
/* Maps from an mf_field's 'name' or 'extra_name' to the mf_field. */
static struct shash mf_by_name;
/* Rate limit for parse errors. These always indicate a bug in an OpenFlow
* controller and so there's not much point in showing a lot of them. */
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
#define MF_VALUE_EXACT_8 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
#define MF_VALUE_EXACT_16 MF_VALUE_EXACT_8, MF_VALUE_EXACT_8
#define MF_VALUE_EXACT_32 MF_VALUE_EXACT_16, MF_VALUE_EXACT_16
#define MF_VALUE_EXACT_64 MF_VALUE_EXACT_32, MF_VALUE_EXACT_32
#define MF_VALUE_EXACT_128 MF_VALUE_EXACT_64, MF_VALUE_EXACT_64
#define MF_VALUE_EXACT_INITIALIZER { .tun_metadata = { MF_VALUE_EXACT_128 } }
const union mf_value exact_match_mask = MF_VALUE_EXACT_INITIALIZER;
static void nxm_init(void);
/* Returns the field with the given 'name', or a null pointer if no field has
* that name. */
const struct mf_field *
mf_from_name(const char *name)
{
nxm_init();
return shash_find_data(&mf_by_name, name);
}
static void
nxm_do_init(void)
{
int i;
shash_init(&mf_by_name);
for (i = 0; i < MFF_N_IDS; i++) {
const struct mf_field *mf = &mf_fields[i];
ovs_assert(mf->id == i); /* Fields must be in the enum order. */
shash_add_once(&mf_by_name, mf->name, mf);
if (mf->extra_name) {
shash_add_once(&mf_by_name, mf->extra_name, mf);
}
}
}
static void
nxm_init(void)
{
static pthread_once_t once = PTHREAD_ONCE_INIT;
pthread_once(&once, nxm_do_init);
}
/* Consider the two value/mask pairs 'a_value/a_mask' and 'b_value/b_mask' as
* restrictions on a field's value. Then, this function initializes
* 'dst_value/dst_mask' such that it combines the restrictions of both pairs.
* This is not always possible, i.e. if one pair insists on a value of 0 in
* some bit and the other pair insists on a value of 1 in that bit. This
* function returns false in a case where the combined restriction is
* impossible (in which case 'dst_value/dst_mask' is not fully initialized),
* true otherwise.
*
* (As usually true for value/mask pairs in OVS, any 1-bit in a value must have
* a corresponding 1-bit in its mask.) */
bool
mf_subvalue_intersect(const union mf_subvalue *a_value,
const union mf_subvalue *a_mask,
const union mf_subvalue *b_value,
const union mf_subvalue *b_mask,
union mf_subvalue *dst_value,
union mf_subvalue *dst_mask)
{
for (int i = 0; i < ARRAY_SIZE(a_value->be64); i++) {
ovs_be64 av = a_value->be64[i];
ovs_be64 am = a_mask->be64[i];
ovs_be64 bv = b_value->be64[i];
ovs_be64 bm = b_mask->be64[i];
ovs_be64 *dv = &dst_value->be64[i];
ovs_be64 *dm = &dst_mask->be64[i];
if ((av ^ bv) & (am & bm)) {
return false;
}
*dv = av | bv;
*dm = am | bm;
}
return true;
}
/* Returns the "number of bits" in 'v', e.g. 1 if only the lowest-order bit is
* set, 2 if the second-lowest-order bit is set, and so on. */
int
mf_subvalue_width(const union mf_subvalue *v)
{
return 1 + bitwise_rscan(v, sizeof *v, true, sizeof *v * 8 - 1, -1);
}
/* For positive 'n', shifts the bits in 'value' 'n' bits to the left, and for
* negative 'n', shifts the bits '-n' bits to the right. */
void
mf_subvalue_shift(union mf_subvalue *value, int n)
{
if (n) {
union mf_subvalue tmp;
memset(&tmp, 0, sizeof tmp);
if (n > 0 && n < 8 * sizeof tmp) {
bitwise_copy(value, sizeof *value, 0,
&tmp, sizeof tmp, n,
8 * sizeof tmp - n);
} else if (n < 0 && n > -8 * sizeof tmp) {
bitwise_copy(value, sizeof *value, -n,
&tmp, sizeof tmp, 0,
8 * sizeof tmp + n);
}
*value = tmp;
}
}
/* Appends a formatted representation of 'sv' to 's'. */
void
mf_subvalue_format(const union mf_subvalue *sv, struct ds *s)
{
ds_put_hex(s, sv, sizeof *sv);
}
/* Returns true if 'wc' wildcards all the bits in field 'mf', false if 'wc'
* specifies at least one bit in the field.
*
* The caller is responsible for ensuring that 'wc' corresponds to a flow that
* meets 'mf''s prerequisites. */
bool
mf_is_all_wild(const struct mf_field *mf, const struct flow_wildcards *wc)
{
switch (mf->id) {
case MFF_DP_HASH:
return !wc->masks.dp_hash;
case MFF_RECIRC_ID:
return !wc->masks.recirc_id;
case MFF_CONJ_ID:
return !wc->masks.conj_id;
case MFF_TUN_SRC:
return !wc->masks.tunnel.ip_src;
case MFF_TUN_DST:
return !wc->masks.tunnel.ip_dst;
case MFF_TUN_IPV6_SRC:
return ipv6_mask_is_any(&wc->masks.tunnel.ipv6_src);
case MFF_TUN_IPV6_DST:
return ipv6_mask_is_any(&wc->masks.tunnel.ipv6_dst);
case MFF_TUN_ID:
return !wc->masks.tunnel.tun_id;
case MFF_TUN_TOS:
return !wc->masks.tunnel.ip_tos;
case MFF_TUN_TTL:
return !wc->masks.tunnel.ip_ttl;
case MFF_TUN_FLAGS:
return !(wc->masks.tunnel.flags & FLOW_TNL_PUB_F_MASK);
case MFF_TUN_GBP_ID:
return !wc->masks.tunnel.gbp_id;
case MFF_TUN_GBP_FLAGS:
return !wc->masks.tunnel.gbp_flags;
CASE_MFF_TUN_METADATA:
return !ULLONG_GET(wc->masks.tunnel.metadata.present.map,
mf->id - MFF_TUN_METADATA0);
case MFF_METADATA:
return !wc->masks.metadata;
case MFF_IN_PORT:
case MFF_IN_PORT_OXM:
return !wc->masks.in_port.ofp_port;
case MFF_SKB_PRIORITY:
return !wc->masks.skb_priority;
case MFF_PKT_MARK:
return !wc->masks.pkt_mark;
case MFF_CT_STATE:
return !wc->masks.ct_state;
case MFF_CT_ZONE:
return !wc->masks.ct_zone;
case MFF_CT_MARK:
return !wc->masks.ct_mark;
case MFF_CT_LABEL:
return ovs_u128_is_zero(wc->masks.ct_label);
CASE_MFF_REGS:
return !wc->masks.regs[mf->id - MFF_REG0];
CASE_MFF_XREGS:
return !flow_get_xreg(&wc->masks, mf->id - MFF_XREG0);
CASE_MFF_XXREGS: {
ovs_u128 value = flow_get_xxreg(&wc->masks, mf->id - MFF_XXREG0);
return ovs_u128_is_zero(value);
}
case MFF_ACTSET_OUTPUT:
return !wc->masks.actset_output;
case MFF_ETH_SRC:
return eth_addr_is_zero(wc->masks.dl_src);
case MFF_ETH_DST:
return eth_addr_is_zero(wc->masks.dl_dst);
case MFF_ETH_TYPE:
return !wc->masks.dl_type;
case MFF_ARP_SHA:
case MFF_ND_SLL:
return eth_addr_is_zero(wc->masks.arp_sha);
case MFF_ARP_THA:
case MFF_ND_TLL:
return eth_addr_is_zero(wc->masks.arp_tha);
case MFF_VLAN_TCI:
return !wc->masks.vlan_tci;
case MFF_DL_VLAN:
return !(wc->masks.vlan_tci & htons(VLAN_VID_MASK));
case MFF_VLAN_VID:
return !(wc->masks.vlan_tci & htons(VLAN_VID_MASK | VLAN_CFI));
case MFF_DL_VLAN_PCP:
case MFF_VLAN_PCP:
return !(wc->masks.vlan_tci & htons(VLAN_PCP_MASK));
case MFF_MPLS_LABEL:
return !(wc->masks.mpls_lse[0] & htonl(MPLS_LABEL_MASK));
case MFF_MPLS_TC:
return !(wc->masks.mpls_lse[0] & htonl(MPLS_TC_MASK));
case MFF_MPLS_BOS:
return !(wc->masks.mpls_lse[0] & htonl(MPLS_BOS_MASK));
case MFF_MPLS_TTL:
return !(wc->masks.mpls_lse[0] & htonl(MPLS_TTL_MASK));
case MFF_IPV4_SRC:
return !wc->masks.nw_src;
case MFF_IPV4_DST:
return !wc->masks.nw_dst;
case MFF_IPV6_SRC:
return ipv6_mask_is_any(&wc->masks.ipv6_src);
case MFF_IPV6_DST:
return ipv6_mask_is_any(&wc->masks.ipv6_dst);
case MFF_IPV6_LABEL:
return !wc->masks.ipv6_label;
case MFF_IP_PROTO:
return !wc->masks.nw_proto;
case MFF_IP_DSCP:
case MFF_IP_DSCP_SHIFTED:
return !(wc->masks.nw_tos & IP_DSCP_MASK);
case MFF_IP_ECN:
return !(wc->masks.nw_tos & IP_ECN_MASK);
case MFF_IP_TTL:
return !wc->masks.nw_ttl;
case MFF_ND_TARGET:
return ipv6_mask_is_any(&wc->masks.nd_target);
case MFF_IP_FRAG:
return !(wc->masks.nw_frag & FLOW_NW_FRAG_MASK);
case MFF_ARP_OP:
return !wc->masks.nw_proto;
case MFF_ARP_SPA:
return !wc->masks.nw_src;
case MFF_ARP_TPA:
return !wc->masks.nw_dst;
case MFF_TCP_SRC:
case MFF_UDP_SRC:
case MFF_SCTP_SRC:
case MFF_ICMPV4_TYPE:
case MFF_ICMPV6_TYPE:
return !wc->masks.tp_src;
case MFF_TCP_DST:
case MFF_UDP_DST:
case MFF_SCTP_DST:
case MFF_ICMPV4_CODE:
case MFF_ICMPV6_CODE:
return !wc->masks.tp_dst;
case MFF_TCP_FLAGS:
return !wc->masks.tcp_flags;
case MFF_N_IDS:
default:
OVS_NOT_REACHED();
}
}
/* Initializes 'mask' with the wildcard bit pattern for field 'mf' within 'wc'.
* Each bit in 'mask' will be set to 1 if the bit is significant for matching
* purposes, or to 0 if it is wildcarded.
*
* The caller is responsible for ensuring that 'wc' corresponds to a flow that
* meets 'mf''s prerequisites. */
void
mf_get_mask(const struct mf_field *mf, const struct flow_wildcards *wc,
union mf_value *mask)
{
mf_get_value(mf, &wc->masks, mask);
}
/* Tests whether 'mask' is a valid wildcard bit pattern for 'mf'. Returns true
* if the mask is valid, false otherwise. */
bool
mf_is_mask_valid(const struct mf_field *mf, const union mf_value *mask)
{
switch (mf->maskable) {
case MFM_NONE:
return (is_all_zeros(mask, mf->n_bytes) ||
is_all_ones(mask, mf->n_bytes));
case MFM_FULLY:
return true;
}
OVS_NOT_REACHED();
}
/* Returns true if 'flow' meets the prerequisites for 'mf', false otherwise.
* Sets inspected bits in 'wc', if non-NULL. */
bool
mf_are_prereqs_ok(const struct mf_field *mf, const struct flow *flow,
struct flow_wildcards *wc)
{
switch (mf->prereqs) {
case MFP_NONE:
return true;
case MFP_ARP:
return (flow->dl_type == htons(ETH_TYPE_ARP) ||
flow->dl_type == htons(ETH_TYPE_RARP));
case MFP_IPV4:
return flow->dl_type == htons(ETH_TYPE_IP);
case MFP_IPV6:
return flow->dl_type == htons(ETH_TYPE_IPV6);
case MFP_VLAN_VID:
return is_vlan(flow, wc);
case MFP_MPLS:
return eth_type_mpls(flow->dl_type);
case MFP_IP_ANY:
return is_ip_any(flow);
case MFP_TCP:
return is_tcp(flow, wc) && !(flow->nw_frag & FLOW_NW_FRAG_LATER);
case MFP_UDP:
return is_udp(flow, wc) && !(flow->nw_frag & FLOW_NW_FRAG_LATER);
case MFP_SCTP:
return is_sctp(flow, wc) && !(flow->nw_frag & FLOW_NW_FRAG_LATER);
case MFP_ICMPV4:
return is_icmpv4(flow, wc);
case MFP_ICMPV6:
return is_icmpv6(flow, wc);
case MFP_ND:
return is_nd(flow, wc);
case MFP_ND_SOLICIT:
return is_nd(flow, wc) && flow->tp_src == htons(ND_NEIGHBOR_SOLICIT);
case MFP_ND_ADVERT:
return is_nd(flow, wc) && flow->tp_src == htons(ND_NEIGHBOR_ADVERT);
}
OVS_NOT_REACHED();
}
/* Returns true if 'value' may be a valid value *as part of a masked match*,
* false otherwise.
*
* A value is not rejected just because it is not valid for the field in
* question, but only if it doesn't make sense to test the bits in question at
* all. For example, the MFF_VLAN_TCI field will never have a nonzero value
* without the VLAN_CFI bit being set, but we can't reject those values because
* it is still legitimate to test just for those bits (see the documentation
* for NXM_OF_VLAN_TCI in nicira-ext.h). On the other hand, there is never a
* reason to set the low bit of MFF_IP_DSCP to 1, so we reject that. */
bool
mf_is_value_valid(const struct mf_field *mf, const union mf_value *value)
{
switch (mf->id) {
case MFF_DP_HASH:
case MFF_RECIRC_ID:
case MFF_CONJ_ID:
case MFF_TUN_ID:
case MFF_TUN_SRC:
case MFF_TUN_DST:
case MFF_TUN_IPV6_SRC:
case MFF_TUN_IPV6_DST:
case MFF_TUN_TOS:
case MFF_TUN_TTL:
case MFF_TUN_GBP_ID:
case MFF_TUN_GBP_FLAGS:
CASE_MFF_TUN_METADATA:
case MFF_METADATA:
case MFF_IN_PORT:
case MFF_SKB_PRIORITY:
case MFF_PKT_MARK:
case MFF_CT_ZONE:
case MFF_CT_MARK:
case MFF_CT_LABEL:
CASE_MFF_REGS:
CASE_MFF_XREGS:
CASE_MFF_XXREGS:
case MFF_ETH_SRC:
case MFF_ETH_DST:
case MFF_ETH_TYPE:
case MFF_VLAN_TCI:
case MFF_MPLS_TTL:
case MFF_IPV4_SRC:
case MFF_IPV4_DST:
case MFF_IPV6_SRC:
case MFF_IPV6_DST:
case MFF_IP_PROTO:
case MFF_IP_TTL:
case MFF_ARP_SPA:
case MFF_ARP_TPA:
case MFF_ARP_SHA:
case MFF_ARP_THA:
case MFF_TCP_SRC:
case MFF_TCP_DST:
case MFF_UDP_SRC:
case MFF_UDP_DST:
case MFF_SCTP_SRC:
case MFF_SCTP_DST:
case MFF_ICMPV4_TYPE:
case MFF_ICMPV4_CODE:
case MFF_ICMPV6_TYPE:
case MFF_ICMPV6_CODE:
case MFF_ND_TARGET:
case MFF_ND_SLL:
case MFF_ND_TLL:
return true;
case MFF_IN_PORT_OXM:
case MFF_ACTSET_OUTPUT: {
ofp_port_t port;
return !ofputil_port_from_ofp11(value->be32, &port);
}
case MFF_IP_DSCP:
return !(value->u8 & ~IP_DSCP_MASK);
case MFF_IP_DSCP_SHIFTED:
return !(value->u8 & (~IP_DSCP_MASK >> 2));
case MFF_IP_ECN:
return !(value->u8 & ~IP_ECN_MASK);
case MFF_IP_FRAG:
return !(value->u8 & ~FLOW_NW_FRAG_MASK);
case MFF_TCP_FLAGS:
return !(value->be16 & ~htons(0x0fff));
case MFF_ARP_OP:
return !(value->be16 & htons(0xff00));
case MFF_DL_VLAN:
return !(value->be16 & htons(VLAN_CFI | VLAN_PCP_MASK));
case MFF_VLAN_VID:
return !(value->be16 & htons(VLAN_PCP_MASK));
case MFF_DL_VLAN_PCP:
case MFF_VLAN_PCP:
return !(value->u8 & ~(VLAN_PCP_MASK >> VLAN_PCP_SHIFT));
case MFF_IPV6_LABEL:
return !(value->be32 & ~htonl(IPV6_LABEL_MASK));
case MFF_MPLS_LABEL:
return !(value->be32 & ~htonl(MPLS_LABEL_MASK >> MPLS_LABEL_SHIFT));
case MFF_MPLS_TC:
return !(value->u8 & ~(MPLS_TC_MASK >> MPLS_TC_SHIFT));
case MFF_MPLS_BOS:
return !(value->u8 & ~(MPLS_BOS_MASK >> MPLS_BOS_SHIFT));
case MFF_TUN_FLAGS:
return !(value->be16 & ~htons(FLOW_TNL_PUB_F_MASK));
case MFF_CT_STATE:
return !(value->be32 & ~htonl(CS_SUPPORTED_MASK));
case MFF_N_IDS:
default:
OVS_NOT_REACHED();
}
}
/* Copies the value of field 'mf' from 'flow' into 'value'. The caller is
* responsible for ensuring that 'flow' meets 'mf''s prerequisites. */
void
mf_get_value(const struct mf_field *mf, const struct flow *flow,
union mf_value *value)
{
switch (mf->id) {
case MFF_DP_HASH:
value->be32 = htonl(flow->dp_hash);
break;
case MFF_RECIRC_ID:
value->be32 = htonl(flow->recirc_id);
break;
case MFF_CONJ_ID:
value->be32 = htonl(flow->conj_id);
break;
case MFF_TUN_ID:
value->be64 = flow->tunnel.tun_id;
break;
case MFF_TUN_SRC:
value->be32 = flow->tunnel.ip_src;
break;
case MFF_TUN_DST:
value->be32 = flow->tunnel.ip_dst;
break;
case MFF_TUN_IPV6_SRC:
value->ipv6 = flow->tunnel.ipv6_src;
break;
case MFF_TUN_IPV6_DST:
value->ipv6 = flow->tunnel.ipv6_dst;
break;
case MFF_TUN_FLAGS:
value->be16 = htons(flow->tunnel.flags & FLOW_TNL_PUB_F_MASK);
break;
case MFF_TUN_GBP_ID:
value->be16 = flow->tunnel.gbp_id;
break;
case MFF_TUN_GBP_FLAGS:
value->u8 = flow->tunnel.gbp_flags;
break;
case MFF_TUN_TTL:
value->u8 = flow->tunnel.ip_ttl;
break;
case MFF_TUN_TOS:
value->u8 = flow->tunnel.ip_tos;
break;
CASE_MFF_TUN_METADATA:
tun_metadata_read(&flow->tunnel, mf, value);
break;
case MFF_METADATA:
value->be64 = flow->metadata;
break;
case MFF_IN_PORT:
value->be16 = htons(ofp_to_u16(flow->in_port.ofp_port));
break;
case MFF_IN_PORT_OXM:
value->be32 = ofputil_port_to_ofp11(flow->in_port.ofp_port);
break;
case MFF_ACTSET_OUTPUT:
value->be32 = ofputil_port_to_ofp11(flow->actset_output);
break;
case MFF_SKB_PRIORITY:
value->be32 = htonl(flow->skb_priority);
break;
case MFF_PKT_MARK:
value->be32 = htonl(flow->pkt_mark);
break;
case MFF_CT_STATE:
value->be32 = htonl(flow->ct_state);
break;
case MFF_CT_ZONE:
value->be16 = htons(flow->ct_zone);
break;
case MFF_CT_MARK:
value->be32 = htonl(flow->ct_mark);
break;
case MFF_CT_LABEL:
value->be128 = hton128(flow->ct_label);
break;
CASE_MFF_REGS:
value->be32 = htonl(flow->regs[mf->id - MFF_REG0]);
break;
CASE_MFF_XREGS:
value->be64 = htonll(flow_get_xreg(flow, mf->id - MFF_XREG0));
break;
CASE_MFF_XXREGS:
value->be128 = hton128(flow_get_xxreg(flow, mf->id - MFF_XXREG0));
break;
case MFF_ETH_SRC:
value->mac = flow->dl_src;
break;
case MFF_ETH_DST:
value->mac = flow->dl_dst;
break;
case MFF_ETH_TYPE:
value->be16 = flow->dl_type;
break;
case MFF_VLAN_TCI:
value->be16 = flow->vlan_tci;
break;
case MFF_DL_VLAN:
value->be16 = flow->vlan_tci & htons(VLAN_VID_MASK);
break;
case MFF_VLAN_VID:
value->be16 = flow->vlan_tci & htons(VLAN_VID_MASK | VLAN_CFI);
break;
case MFF_DL_VLAN_PCP:
case MFF_VLAN_PCP:
value->u8 = vlan_tci_to_pcp(flow->vlan_tci);
break;
case MFF_MPLS_LABEL:
value->be32 = htonl(mpls_lse_to_label(flow->mpls_lse[0]));
break;
case MFF_MPLS_TC:
value->u8 = mpls_lse_to_tc(flow->mpls_lse[0]);
break;
case MFF_MPLS_BOS:
value->u8 = mpls_lse_to_bos(flow->mpls_lse[0]);
break;
case MFF_MPLS_TTL:
value->u8 = mpls_lse_to_ttl(flow->mpls_lse[0]);
break;
case MFF_IPV4_SRC:
value->be32 = flow->nw_src;
break;
case MFF_IPV4_DST:
value->be32 = flow->nw_dst;
break;
case MFF_IPV6_SRC:
value->ipv6 = flow->ipv6_src;
break;
case MFF_IPV6_DST:
value->ipv6 = flow->ipv6_dst;
break;
case MFF_IPV6_LABEL:
value->be32 = flow->ipv6_label;
break;
case MFF_IP_PROTO:
value->u8 = flow->nw_proto;
break;
case MFF_IP_DSCP:
value->u8 = flow->nw_tos & IP_DSCP_MASK;
break;
case MFF_IP_DSCP_SHIFTED:
value->u8 = flow->nw_tos >> 2;
break;
case MFF_IP_ECN:
value->u8 = flow->nw_tos & IP_ECN_MASK;
break;
case MFF_IP_TTL:
value->u8 = flow->nw_ttl;
break;
case MFF_IP_FRAG:
value->u8 = flow->nw_frag;
break;
case MFF_ARP_OP:
value->be16 = htons(flow->nw_proto);
break;
case MFF_ARP_SPA:
value->be32 = flow->nw_src;
break;
case MFF_ARP_TPA:
value->be32 = flow->nw_dst;
break;
case MFF_ARP_SHA:
case MFF_ND_SLL:
value->mac = flow->arp_sha;
break;
case MFF_ARP_THA:
case MFF_ND_TLL:
value->mac = flow->arp_tha;
break;
case MFF_TCP_SRC:
case MFF_UDP_SRC:
case MFF_SCTP_SRC:
value->be16 = flow->tp_src;
break;
case MFF_TCP_DST:
case MFF_UDP_DST:
case MFF_SCTP_DST:
value->be16 = flow->tp_dst;
break;
case MFF_TCP_FLAGS:
value->be16 = flow->tcp_flags;
break;
case MFF_ICMPV4_TYPE:
case MFF_ICMPV6_TYPE:
value->u8 = ntohs(flow->tp_src);
break;
case MFF_ICMPV4_CODE:
case MFF_ICMPV6_CODE:
value->u8 = ntohs(flow->tp_dst);
break;
case MFF_ND_TARGET:
value->ipv6 = flow->nd_target;
break;
case MFF_N_IDS:
default:
OVS_NOT_REACHED();
}
}
/* Makes 'match' match field 'mf' exactly, with the value matched taken from
* 'value'. The caller is responsible for ensuring that 'match' meets 'mf''s
* prerequisites.
*
* If non-NULL, 'err_str' returns a malloc'ed string describing any errors
* with the request or NULL if there is no error. The caller is reponsible
* for freeing the string. */
void
mf_set_value(const struct mf_field *mf,
const union mf_value *value, struct match *match, char **err_str)
{
if (err_str) {
*err_str = NULL;
}
switch (mf->id) {
case MFF_DP_HASH:
match_set_dp_hash(match, ntohl(value->be32));
break;
case MFF_RECIRC_ID:
match_set_recirc_id(match, ntohl(value->be32));
break;
case MFF_CONJ_ID:
match_set_conj_id(match, ntohl(value->be32));
break;
case MFF_TUN_ID:
match_set_tun_id(match, value->be64);
break;
case MFF_TUN_SRC:
match_set_tun_src(match, value->be32);
break;
case MFF_TUN_DST:
match_set_tun_dst(match, value->be32);
break;
case MFF_TUN_IPV6_SRC:
match_set_tun_ipv6_src(match, &value->ipv6);
break;
case MFF_TUN_IPV6_DST:
match_set_tun_ipv6_dst(match, &value->ipv6);
break;
case MFF_TUN_FLAGS:
match_set_tun_flags(match, ntohs(value->be16));
break;
case MFF_TUN_GBP_ID:
match_set_tun_gbp_id(match, value->be16);
break;
case MFF_TUN_GBP_FLAGS:
match_set_tun_gbp_flags(match, value->u8);
break;
case MFF_TUN_TOS:
match_set_tun_tos(match, value->u8);
break;
case MFF_TUN_TTL:
match_set_tun_ttl(match, value->u8);
break;
CASE_MFF_TUN_METADATA:
tun_metadata_set_match(mf, value, NULL, match, err_str);
break;
case MFF_METADATA:
match_set_metadata(match, value->be64);
break;
case MFF_IN_PORT:
match_set_in_port(match, u16_to_ofp(ntohs(value->be16)));
break;
case MFF_IN_PORT_OXM: {
ofp_port_t port;
ofputil_port_from_ofp11(value->be32, &port);
match_set_in_port(match, port);
break;
}
case MFF_ACTSET_OUTPUT: {
ofp_port_t port;
ofputil_port_from_ofp11(value->be32, &port);
match_set_actset_output(match, port);
break;
}
case MFF_SKB_PRIORITY:
match_set_skb_priority(match, ntohl(value->be32));
break;
case MFF_PKT_MARK:
match_set_pkt_mark(match, ntohl(value->be32));
break;
case MFF_CT_STATE:
match_set_ct_state(match, ntohl(value->be32));
break;
case MFF_CT_ZONE:
match_set_ct_zone(match, ntohs(value->be16));
break;
case MFF_CT_MARK:
match_set_ct_mark(match, ntohl(value->be32));
break;
case MFF_CT_LABEL:
match_set_ct_label(match, ntoh128(value->be128));
break;
CASE_MFF_REGS:
match_set_reg(match, mf->id - MFF_REG0, ntohl(value->be32));
break;
CASE_MFF_XREGS:
match_set_xreg(match, mf->id - MFF_XREG0, ntohll(value->be64));
break;
CASE_MFF_XXREGS:
match_set_xxreg(match, mf->id - MFF_XXREG0, ntoh128(value->be128));
break;
case MFF_ETH_SRC:
match_set_dl_src(match, value->mac);
break;
case MFF_ETH_DST:
match_set_dl_dst(match, value->mac);
break;
case MFF_ETH_TYPE:
match_set_dl_type(match, value->be16);
break;
case MFF_VLAN_TCI:
match_set_dl_tci(match, value->be16);
break;
case MFF_DL_VLAN:
match_set_dl_vlan(match, value->be16);
break;
case MFF_VLAN_VID:
match_set_vlan_vid(match, value->be16);
break;
case MFF_DL_VLAN_PCP:
case MFF_VLAN_PCP:
match_set_dl_vlan_pcp(match, value->u8);
break;
case MFF_MPLS_LABEL:
match_set_mpls_label(match, 0, value->be32);
break;
case MFF_MPLS_TC:
match_set_mpls_tc(match, 0, value->u8);
break;
case MFF_MPLS_BOS:
match_set_mpls_bos(match, 0, value->u8);
break;
case MFF_MPLS_TTL:
match_set_mpls_ttl(match, 0, value->u8);
break;
case MFF_IPV4_SRC:
match_set_nw_src(match, value->be32);
break;
case MFF_IPV4_DST:
match_set_nw_dst(match, value->be32);
break;
case MFF_IPV6_SRC:
match_set_ipv6_src(match, &value->ipv6);
break;
case MFF_IPV6_DST:
match_set_ipv6_dst(match, &value->ipv6);
break;
case MFF_IPV6_LABEL:
match_set_ipv6_label(match, value->be32);
break;
case MFF_IP_PROTO:
match_set_nw_proto(match, value->u8);
break;
case MFF_IP_DSCP:
match_set_nw_dscp(match, value->u8);
break;
case MFF_IP_DSCP_SHIFTED:
match_set_nw_dscp(match, value->u8 << 2);
break;
case MFF_IP_ECN:
match_set_nw_ecn(match, value->u8);
break;
case MFF_IP_TTL:
match_set_nw_ttl(match, value->u8);
break;
case MFF_IP_FRAG:
match_set_nw_frag(match, value->u8);
break;
case MFF_ARP_OP:
match_set_nw_proto(match, ntohs(value->be16));
break;
case MFF_ARP_SPA:
match_set_nw_src(match, value->be32);
break;
case MFF_ARP_TPA:
match_set_nw_dst(match, value->be32);
break;
case MFF_ARP_SHA:
case MFF_ND_SLL:
match_set_arp_sha(match, value->mac);
break;
case MFF_ARP_THA:
case MFF_ND_TLL:
match_set_arp_tha(match, value->mac);
break;
case MFF_TCP_SRC:
case MFF_UDP_SRC:
case MFF_SCTP_SRC:
match_set_tp_src(match, value->be16);
break;
case MFF_TCP_DST:
case MFF_UDP_DST:
case MFF_SCTP_DST:
match_set_tp_dst(match, value->be16);
break;
case MFF_TCP_FLAGS:
match_set_tcp_flags(match, value->be16);
break;
case MFF_ICMPV4_TYPE:
case MFF_ICMPV6_TYPE:
match_set_icmp_type(match, value->u8);
break;
case MFF_ICMPV4_CODE:
case MFF_ICMPV6_CODE:
match_set_icmp_code(match, value->u8);
break;
case MFF_ND_TARGET:
match_set_nd_target(match, &value->ipv6);
break;
case MFF_N_IDS:
default:
OVS_NOT_REACHED();
}
}
/* Unwildcard the bits in 'mask' of the 'wc' member field described by 'mf'.
* The caller is responsible for ensuring that 'wc' meets 'mf''s
* prerequisites. */
void
mf_mask_field_masked(const struct mf_field *mf, const union mf_value *mask,
struct flow_wildcards *wc)
{
union mf_value temp_mask;
/* For MFF_DL_VLAN, we cannot send a all 1's to flow_set_dl_vlan() as that
* will be considered as OFP10_VLAN_NONE. So make sure the mask only has
* valid bits in this case. */
if (mf->id == MFF_DL_VLAN) {
temp_mask.be16 = htons(VLAN_VID_MASK) & mask->be16;
mask = &temp_mask;
}
union mf_value mask_value;
mf_get_value(mf, &wc->masks, &mask_value);
for (size_t i = 0; i < mf->n_bytes; i++) {
mask_value.b[i] |= mask->b[i];
}
mf_set_flow_value(mf, &mask_value, &wc->masks);
}
/* Unwildcard 'wc' member field described by 'mf'. The caller is
* responsible for ensuring that 'mask' meets 'mf''s prerequisites. */
void
mf_mask_field(const struct mf_field *mf, struct flow_wildcards *wc)
{
mf_mask_field_masked(mf, &exact_match_mask, wc);
}
static int
field_len(const struct mf_field *mf, const union mf_value *value_)
{
const uint8_t *value = &value_->u8;
int i;
if (!mf->variable_len) {
return mf->n_bytes;
}
if (!value) {
return 0;
}
for (i = 0; i < mf->n_bytes; i++) {
if (value[i] != 0) {
break;
}
}
return mf->n_bytes - i;
}
/* Returns the effective length of the field. For fixed length fields,
* this is just the defined length. For variable length fields, it is
* the minimum size encoding that retains the same meaning (i.e.
* discarding leading zeros).
*
* 'is_masked' returns (if non-NULL) whether the original contained
* a mask. Otherwise, a mask that is the same length as the value
* might be misinterpreted as an exact match. */
int
mf_field_len(const struct mf_field *mf, const union mf_value *value,
const union mf_value *mask, bool *is_masked_)
{
int len, mask_len;
bool is_masked = mask && !is_all_ones(mask, mf->n_bytes);
len = field_len(mf, value);
if (is_masked) {
mask_len = field_len(mf, mask);
len = MAX(len, mask_len);
}
if (is_masked_) {
*is_masked_ = is_masked;
}
return len;
}
/* Sets 'flow' member field described by 'mf' to 'value'. The caller is
* responsible for ensuring that 'flow' meets 'mf''s prerequisites.*/
void
mf_set_flow_value(const struct mf_field *mf,
const union mf_value *value, struct flow *flow)
{
switch (mf->id) {
case MFF_DP_HASH:
flow->dp_hash = ntohl(value->be32);
break;
case MFF_RECIRC_ID:
flow->recirc_id = ntohl(value->be32);
break;
case MFF_CONJ_ID:
flow->conj_id = ntohl(value->be32);
break;
case MFF_TUN_ID:
flow->tunnel.tun_id = value->be64;
break;
case MFF_TUN_SRC:
flow->tunnel.ip_src = value->be32;
break;
case MFF_TUN_DST:
flow->tunnel.ip_dst = value->be32;
break;
case MFF_TUN_IPV6_SRC:
flow->tunnel.ipv6_src = value->ipv6;
break;
case MFF_TUN_IPV6_DST:
flow->tunnel.ipv6_dst = value->ipv6;
break;
case MFF_TUN_FLAGS:
flow->tunnel.flags = (flow->tunnel.flags & ~FLOW_TNL_PUB_F_MASK) |
ntohs(value->be16);
break;
case MFF_TUN_GBP_ID:
flow->tunnel.gbp_id = value->be16;
break;
case MFF_TUN_GBP_FLAGS:
flow->tunnel.gbp_flags = value->u8;
break;
case MFF_TUN_TOS:
flow->tunnel.ip_tos = value->u8;
break;
case MFF_TUN_TTL:
flow->tunnel.ip_ttl = value->u8;
break;
CASE_MFF_TUN_METADATA:
tun_metadata_write(&flow->tunnel, mf, value);
break;
case MFF_METADATA:
flow->metadata = value->be64;
break;
case MFF_IN_PORT:
flow->in_port.ofp_port = u16_to_ofp(ntohs(value->be16));
break;
case MFF_IN_PORT_OXM:
ofputil_port_from_ofp11(value->be32, &flow->in_port.ofp_port);
break;
case MFF_ACTSET_OUTPUT:
ofputil_port_from_ofp11(value->be32, &flow->actset_output);
break;
case MFF_SKB_PRIORITY:
flow->skb_priority = ntohl(value->be32);
break;
case MFF_PKT_MARK:
flow->pkt_mark = ntohl(value->be32);
break;
case MFF_CT_STATE:
flow->ct_state = ntohl(value->be32);
break;
case MFF_CT_ZONE:
flow->ct_zone = ntohs(value->be16);
break;
case MFF_CT_MARK:
flow->ct_mark = ntohl(value->be32);
break;
case MFF_CT_LABEL:
flow->ct_label = ntoh128(value->be128);
break;
CASE_MFF_REGS:
flow->regs[mf->id - MFF_REG0] = ntohl(value->be32);
break;
CASE_MFF_XREGS:
flow_set_xreg(flow, mf->id - MFF_XREG0, ntohll(value->be64));
break;
CASE_MFF_XXREGS:
flow_set_xxreg(flow, mf->id - MFF_XXREG0, ntoh128(value->be128));
break;
case MFF_ETH_SRC:
flow->dl_src = value->mac;
break;
case MFF_ETH_DST:
flow->dl_dst = value->mac;
break;
case MFF_ETH_TYPE:
flow->dl_type = value->be16;
break;
case MFF_VLAN_TCI:
flow->vlan_tci = value->be16;
break;
case MFF_DL_VLAN:
flow_set_dl_vlan(flow, value->be16);
break;
case MFF_VLAN_VID:
flow_set_vlan_vid(flow, value->be16);
break;
case MFF_DL_VLAN_PCP:
case MFF_VLAN_PCP:
flow_set_vlan_pcp(flow, value->u8);
break;
case MFF_MPLS_LABEL:
flow_set_mpls_label(flow, 0, value->be32);
break;
case MFF_MPLS_TC:
flow_set_mpls_tc(flow, 0, value->u8);
break;
case MFF_MPLS_BOS:
flow_set_mpls_bos(flow, 0, value->u8);
break;
case MFF_MPLS_TTL:
flow_set_mpls_ttl(flow, 0, value->u8);
break;
case MFF_IPV4_SRC:
flow->nw_src = value->be32;
break;
case MFF_IPV4_DST:
flow->nw_dst = value->be32;
break;
case MFF_IPV6_SRC:
flow->ipv6_src = value->ipv6;
break;
case MFF_IPV6_DST:
flow->ipv6_dst = value->ipv6;
break;
case MFF_IPV6_LABEL:
flow->ipv6_label = value->be32 & htonl(IPV6_LABEL_MASK);
break;
case MFF_IP_PROTO:
flow->nw_proto = value->u8;
break;
case MFF_IP_DSCP:
flow->nw_tos &= ~IP_DSCP_MASK;
flow->nw_tos |= value->u8 & IP_DSCP_MASK;
break;
case MFF_IP_DSCP_SHIFTED:
flow->nw_tos &= ~IP_DSCP_MASK;
flow->nw_tos |= value->u8 << 2;
break;
case MFF_IP_ECN:
flow->nw_tos &= ~IP_ECN_MASK;
flow->nw_tos |= value->u8 & IP_ECN_MASK;
break;
case MFF_IP_TTL:
flow->nw_ttl = value->u8;
break;
case MFF_IP_FRAG:
flow->nw_frag = value->u8 & FLOW_NW_FRAG_MASK;
break;
case MFF_ARP_OP:
flow->nw_proto = ntohs(value->be16);
break;
case MFF_ARP_SPA:
flow->nw_src = value->be32;
break;
case MFF_ARP_TPA:
flow->nw_dst = value->be32;
break;
case MFF_ARP_SHA:
case MFF_ND_SLL:
flow->arp_sha = value->mac;
break;
case MFF_ARP_THA:
case MFF_ND_TLL:
flow->arp_tha = value->mac;
break;
case MFF_TCP_SRC:
case MFF_UDP_SRC:
case MFF_SCTP_SRC:
flow->tp_src = value->be16;
break;
case MFF_TCP_DST:
case MFF_UDP_DST:
case MFF_SCTP_DST:
flow->tp_dst = value->be16;
break;
case MFF_TCP_FLAGS:
flow->tcp_flags = value->be16;
break;
case MFF_ICMPV4_TYPE:
case MFF_ICMPV6_TYPE:
flow->tp_src = htons(value->u8);
break;
case MFF_ICMPV4_CODE:
case MFF_ICMPV6_CODE:
flow->tp_dst = htons(value->u8);
break;
case MFF_ND_TARGET:
flow->nd_target = value->ipv6;
break;
case MFF_N_IDS:
default:
OVS_NOT_REACHED();
}
}
/* Consider each of 'src', 'mask', and 'dst' as if they were arrays of 8*n
* bits. Then, for each 0 <= i < 8 * n such that mask[i] == 1, sets dst[i] =
* src[i]. */
static void
apply_mask(const uint8_t *src, const uint8_t *mask, uint8_t *dst, size_t n)
{
size_t i;
for (i = 0; i < n; i++) {
dst[i] = (src[i] & mask[i]) | (dst[i] & ~mask[i]);
}
}
/* Sets 'flow' member field described by 'field' to 'value', except that bits
* for which 'mask' has a 0-bit keep their existing values. The caller is
* responsible for ensuring that 'flow' meets 'field''s prerequisites.*/
void
mf_set_flow_value_masked(const struct mf_field *field,
const union mf_value *value,
const union mf_value *mask,
struct flow *flow)
{
union mf_value tmp;
mf_get_value(field, flow, &tmp);
apply_mask((const uint8_t *) value, (const uint8_t *) mask,
(uint8_t *) &tmp, field->n_bytes);
mf_set_flow_value(field, &tmp, flow);
}
bool
mf_is_tun_metadata(const struct mf_field *mf)
{
return mf->id >= MFF_TUN_METADATA0 &&
mf->id < MFF_TUN_METADATA0 + TUN_METADATA_NUM_OPTS;
}
/* Returns true if 'mf' has previously been set in 'flow', false if
* it contains a non-default value.
*
* The caller is responsible for ensuring that 'flow' meets 'mf''s
* prerequisites. */
bool
mf_is_set(const struct mf_field *mf, const struct flow *flow)
{
if (!mf_is_tun_metadata(mf)) {
union mf_value value;
mf_get_value(mf, flow, &value);
return !is_all_zeros(&value, mf->n_bytes);
} else {
return ULLONG_GET(flow->tunnel.metadata.present.map,
mf->id - MFF_TUN_METADATA0);
}
}
/* Makes 'match' wildcard field 'mf'.
*
* The caller is responsible for ensuring that 'match' meets 'mf''s
* prerequisites.
*
* If non-NULL, 'err_str' returns a malloc'ed string describing any errors
* with the request or NULL if there is no error. The caller is reponsible
* for freeing the string. */
void
mf_set_wild(const struct mf_field *mf, struct match *match, char **err_str)
{
if (err_str) {
*err_str = NULL;
}
switch (mf->id) {
case MFF_DP_HASH:
match->flow.dp_hash = 0;
match->wc.masks.dp_hash = 0;
break;
case MFF_RECIRC_ID:
match->flow.recirc_id = 0;
match->wc.masks.recirc_id = 0;
break;
case MFF_CONJ_ID:
match->flow.conj_id = 0;
match->wc.masks.conj_id = 0;
break;
case MFF_TUN_ID:
match_set_tun_id_masked(match, htonll(0), htonll(0));
break;
case MFF_TUN_SRC:
match_set_tun_src_masked(match, htonl(0), htonl(0));
break;
case MFF_TUN_DST:
match_set_tun_dst_masked(match, htonl(0), htonl(0));
break;
case MFF_TUN_IPV6_SRC:
memset(&match->wc.masks.tunnel.ipv6_src, 0,
sizeof match->wc.masks.tunnel.ipv6_src);
memset(&match->flow.tunnel.ipv6_src, 0,
sizeof match->flow.tunnel.ipv6_src);
break;
case MFF_TUN_IPV6_DST:
memset(&match->wc.masks.tunnel.ipv6_dst, 0,
sizeof match->wc.masks.tunnel.ipv6_dst);
memset(&match->flow.tunnel.ipv6_dst, 0,
sizeof match->flow.tunnel.ipv6_dst);
break;
case MFF_TUN_FLAGS:
match_set_tun_flags_masked(match, 0, 0);
break;
case MFF_TUN_GBP_ID:
match_set_tun_gbp_id_masked(match, 0, 0);
break;
case MFF_TUN_GBP_FLAGS:
match_set_tun_gbp_flags_masked(match, 0, 0);
break;
case MFF_TUN_TOS:
match_set_tun_tos_masked(match, 0, 0);
break;
case MFF_TUN_TTL:
match_set_tun_ttl_masked(match, 0, 0);
break;
CASE_MFF_TUN_METADATA:
tun_metadata_set_match(mf, NULL, NULL, match, err_str);
break;
case MFF_METADATA:
match_set_metadata_masked(match, htonll(0), htonll(0));
break;
case MFF_IN_PORT:
case MFF_IN_PORT_OXM:
match->flow.in_port.ofp_port = 0;
match->wc.masks.in_port.ofp_port = 0;
break;
case MFF_ACTSET_OUTPUT:
match->flow.actset_output = 0;
match->wc.masks.actset_output = 0;
break;
case MFF_SKB_PRIORITY:
match->flow.skb_priority = 0;
match->wc.masks.skb_priority = 0;
break;
case MFF_PKT_MARK:
match->flow.pkt_mark = 0;
match->wc.masks.pkt_mark = 0;
break;
case MFF_CT_STATE:
match->flow.ct_state = 0;
match->wc.masks.ct_state = 0;
break;
case MFF_CT_ZONE:
match->flow.ct_zone = 0;
match->wc.masks.ct_zone = 0;
break;
case MFF_CT_MARK:
match->flow.ct_mark = 0;
match->wc.masks.ct_mark = 0;
break;
case MFF_CT_LABEL:
memset(&match->flow.ct_label, 0, sizeof(match->flow.ct_label));
memset(&match->wc.masks.ct_label, 0, sizeof(match->wc.masks.ct_label));
break;
CASE_MFF_REGS:
match_set_reg_masked(match, mf->id - MFF_REG0, 0, 0);
break;
CASE_MFF_XREGS:
match_set_xreg_masked(match, mf->id - MFF_XREG0, 0, 0);
break;
CASE_MFF_XXREGS: {
match_set_xxreg_masked(match, mf->id - MFF_XXREG0, OVS_U128_ZERO,
OVS_U128_ZERO);
break;
}
case MFF_ETH_SRC:
match->flow.dl_src = eth_addr_zero;
match->wc.masks.dl_src = eth_addr_zero;
break;
case MFF_ETH_DST:
match->flow.dl_dst = eth_addr_zero;
match->wc.masks.dl_dst = eth_addr_zero;
break;
case MFF_ETH_TYPE:
match->flow.dl_type = htons(0);
match->wc.masks.dl_type = htons(0);
break;
case MFF_VLAN_TCI:
match_set_dl_tci_masked(match, htons(0), htons(0));
break;
case MFF_DL_VLAN:
case MFF_VLAN_VID:
match_set_any_vid(match);
break;
case MFF_DL_VLAN_PCP:
case MFF_VLAN_PCP:
match_set_any_pcp(match);
break;
case MFF_MPLS_LABEL:
match_set_any_mpls_label(match, 0);
break;
case MFF_MPLS_TC:
match_set_any_mpls_tc(match, 0);
break;
case MFF_MPLS_BOS:
match_set_any_mpls_bos(match, 0);
break;
case MFF_MPLS_TTL:
match_set_any_mpls_ttl(match, 0);
break;
case MFF_IPV4_SRC:
case MFF_ARP_SPA:
match_set_nw_src_masked(match, htonl(0), htonl(0));
break;
case MFF_IPV4_DST:
case MFF_ARP_TPA:
match_set_nw_dst_masked(match, htonl(0), htonl(0));
break;
case MFF_IPV6_SRC:
memset(&match->wc.masks.ipv6_src, 0, sizeof match->wc.masks.ipv6_src);
memset(&match->flow.ipv6_src, 0, sizeof match->flow.ipv6_src);
break;
case MFF_IPV6_DST:
memset(&match->wc.masks.ipv6_dst, 0, sizeof match->wc.masks.ipv6_dst);
memset(&match->flow.ipv6_dst, 0, sizeof match->flow.ipv6_dst);
break;
case MFF_IPV6_LABEL:
match->wc.masks.ipv6_label = htonl(0);
match->flow.ipv6_label = htonl(0);
break;
case MFF_IP_PROTO:
match->wc.masks.nw_proto = 0;
match->flow.nw_proto = 0;
break;
case MFF_IP_DSCP:
case MFF_IP_DSCP_SHIFTED:
match->wc.masks.nw_tos &= ~IP_DSCP_MASK;
match->flow.nw_tos &= ~IP_DSCP_MASK;
break;
case MFF_IP_ECN:
match->wc.masks.nw_tos &= ~IP_ECN_MASK;
match->flow.nw_tos &= ~IP_ECN_MASK;
break;
case MFF_IP_TTL:
match->wc.masks.nw_ttl = 0;
match->flow.nw_ttl = 0;
break;
case MFF_IP_FRAG:
match->wc.masks.nw_frag &= ~FLOW_NW_FRAG_MASK;
match->flow.nw_frag &= ~FLOW_NW_FRAG_MASK;
break;
case MFF_ARP_OP:
match->wc.masks.nw_proto = 0;
match->flow.nw_proto = 0;
break;
case MFF_ARP_SHA:
case MFF_ND_SLL:
match->flow.arp_sha = eth_addr_zero;
match->wc.masks.arp_sha = eth_addr_zero;
break;
case MFF_ARP_THA:
case MFF_ND_TLL:
match->flow.arp_tha = eth_addr_zero;
match->wc.masks.arp_tha = eth_addr_zero;
break;
case MFF_TCP_SRC:
case MFF_UDP_SRC:
case MFF_SCTP_SRC:
case MFF_ICMPV4_TYPE:
case MFF_ICMPV6_TYPE:
match->wc.masks.tp_src = htons(0);
match->flow.tp_src = htons(0);
break;
case MFF_TCP_DST:
case MFF_UDP_DST:
case MFF_SCTP_DST:
case MFF_ICMPV4_CODE:
case MFF_ICMPV6_CODE:
match->wc.masks.tp_dst = htons(0);
match->flow.tp_dst = htons(0);
break;
case MFF_TCP_FLAGS:
match->wc.masks.tcp_flags = htons(0);
match->flow.tcp_flags = htons(0);
break;
case MFF_ND_TARGET:
memset(&match->wc.masks.nd_target, 0,
sizeof match->wc.masks.nd_target);
memset(&match->flow.nd_target, 0, sizeof match->flow.nd_target);
break;
case MFF_N_IDS:
default:
OVS_NOT_REACHED();
}
}
/* Makes 'match' match field 'mf' with the specified 'value' and 'mask'.
* 'value' specifies a value to match and 'mask' specifies a wildcard pattern,
* with a 1-bit indicating that the corresponding value bit must match and a
* 0-bit indicating a don't-care.
*
* If 'mask' is NULL or points to all-1-bits, then this call is equivalent to
* mf_set_value(mf, value, match). If 'mask' points to all-0-bits, then this
* call is equivalent to mf_set_wild(mf, match).
*
* 'mask' must be a valid mask for 'mf' (see mf_is_mask_valid()). The caller
* is responsible for ensuring that 'match' meets 'mf''s prerequisites.
*
* If non-NULL, 'err_str' returns a malloc'ed string describing any errors
* with the request or NULL if there is no error. The caller is reponsible
* for freeing the string.
*
* Return a set of enum ofputil_protocol bits (as an uint32_t to avoid circular
* dependency on enum ofputil_protocol definition) indicating which OpenFlow
* protocol versions can support this functionality. */
uint32_t
mf_set(const struct mf_field *mf,
const union mf_value *value, const union mf_value *mask,
struct match *match, char **err_str)
{
if (!mask || is_all_ones(mask, mf->n_bytes)) {
mf_set_value(mf, value, match, err_str);
return mf->usable_protocols_exact;
} else if (is_all_zeros(mask, mf->n_bytes) && !mf_is_tun_metadata(mf)) {
/* Tunnel metadata matches on the existence of the field itself, so
* it still needs to be encoded even if the value is wildcarded. */
mf_set_wild(mf, match, err_str);
return OFPUTIL_P_ANY;
}
if (err_str) {
*err_str = NULL;
}
switch (mf->id) {
case MFF_CT_ZONE:
case MFF_RECIRC_ID:
case MFF_CONJ_ID:
case MFF_IN_PORT:
case MFF_IN_PORT_OXM:
case MFF_ACTSET_OUTPUT:
case MFF_SKB_PRIORITY:
case MFF_ETH_TYPE:
case MFF_DL_VLAN:
case MFF_DL_VLAN_PCP:
case MFF_VLAN_PCP:
case MFF_MPLS_LABEL:
case MFF_MPLS_TC:
case MFF_MPLS_BOS:
case MFF_MPLS_TTL:
case MFF_IP_PROTO:
case MFF_IP_TTL:
case MFF_IP_DSCP:
case MFF_IP_DSCP_SHIFTED:
case MFF_IP_ECN:
case MFF_ARP_OP:
case MFF_ICMPV4_TYPE:
case MFF_ICMPV4_CODE:
case MFF_ICMPV6_TYPE:
case MFF_ICMPV6_CODE:
return OFPUTIL_P_NONE;
case MFF_DP_HASH:
match_set_dp_hash_masked(match, ntohl(value->be32), ntohl(mask->be32));
break;
case MFF_TUN_ID:
match_set_tun_id_masked(match, value->be64, mask->be64);
break;
case MFF_TUN_SRC:
match_set_tun_src_masked(match, value->be32, mask->be32);
break;
case MFF_TUN_DST:
match_set_tun_dst_masked(match, value->be32, mask->be32);
break;
case MFF_TUN_IPV6_SRC:
match_set_tun_ipv6_src_masked(match, &value->ipv6, &mask->ipv6);
break;
case MFF_TUN_IPV6_DST:
match_set_tun_ipv6_dst_masked(match, &value->ipv6, &mask->ipv6);
break;
case MFF_TUN_FLAGS:
match_set_tun_flags_masked(match, ntohs(value->be16), ntohs(mask->be16));
break;
case MFF_TUN_GBP_ID:
match_set_tun_gbp_id_masked(match, value->be16, mask->be16);
break;
case MFF_TUN_GBP_FLAGS:
match_set_tun_gbp_flags_masked(match, value->u8, mask->u8);
break;
case MFF_TUN_TTL:
match_set_tun_ttl_masked(match, value->u8, mask->u8);
break;
case MFF_TUN_TOS:
match_set_tun_tos_masked(match, value->u8, mask->u8);
break;
CASE_MFF_TUN_METADATA:
tun_metadata_set_match(mf, value, mask, match, err_str);
break;
case MFF_METADATA:
match_set_metadata_masked(match, value->be64, mask->be64);
break;
CASE_MFF_REGS:
match_set_reg_masked(match, mf->id - MFF_REG0,
ntohl(value->be32), ntohl(mask->be32));
break;
CASE_MFF_XREGS:
match_set_xreg_masked(match, mf->id - MFF_XREG0,
ntohll(value->be64), ntohll(mask->be64));
break;
CASE_MFF_XXREGS: {
match_set_xxreg_masked(match, mf->id - MFF_XXREG0,
ntoh128(value->be128), ntoh128(mask->be128));
break;
}
case MFF_PKT_MARK:
match_set_pkt_mark_masked(match, ntohl(value->be32),
ntohl(mask->be32));
break;
case MFF_CT_STATE:
match_set_ct_state_masked(match, ntohl(value->be32), ntohl(mask->be32));
break;
case MFF_CT_MARK:
match_set_ct_mark_masked(match, ntohl(value->be32), ntohl(mask->be32));
break;
case MFF_CT_LABEL:
match_set_ct_label_masked(match, ntoh128(value->be128),
mask ? ntoh128(mask->be128) : OVS_U128_MAX);
break;
case MFF_ETH_DST:
match_set_dl_dst_masked(match, value->mac, mask->mac);
break;
case MFF_ETH_SRC:
match_set_dl_src_masked(match, value->mac, mask->mac);
break;
case MFF_ARP_SHA:
case MFF_ND_SLL:
match_set_arp_sha_masked(match, value->mac, mask->mac);
break;
case MFF_ARP_THA:
case MFF_ND_TLL:
match_set_arp_tha_masked(match, value->mac, mask->mac);
break;
case MFF_VLAN_TCI:
match_set_dl_tci_masked(match, value->be16, mask->be16);
break;
case MFF_VLAN_VID:
match_set_vlan_vid_masked(match, value->be16, mask->be16);
break;
case MFF_IPV4_SRC:
match_set_nw_src_masked(match, value->be32, mask->be32);
break;
case MFF_IPV4_DST:
match_set_nw_dst_masked(match, value->be32, mask->be32);
break;
case MFF_IPV6_SRC:
match_set_ipv6_src_masked(match, &value->ipv6, &mask->ipv6);
break;
case MFF_IPV6_DST:
match_set_ipv6_dst_masked(match, &value->ipv6, &mask->ipv6);
break;
case MFF_IPV6_LABEL:
if ((mask->be32 & htonl(IPV6_LABEL_MASK)) == htonl(IPV6_LABEL_MASK)) {
mf_set_value(mf, value, match, err_str);
} else {
match_set_ipv6_label_masked(match, value->be32, mask->be32);
}
break;
case MFF_ND_TARGET:
match_set_nd_target_masked(match, &value->ipv6, &mask->ipv6);
break;
case MFF_IP_FRAG:
match_set_nw_frag_masked(match, value->u8, mask->u8);
break;
case MFF_ARP_SPA:
match_set_nw_src_masked(match, value->be32, mask->be32);
break;
case MFF_ARP_TPA:
match_set_nw_dst_masked(match, value->be32, mask->be32);
break;
case MFF_TCP_SRC:
case MFF_UDP_SRC:
case MFF_SCTP_SRC:
match_set_tp_src_masked(match, value->be16, mask->be16);
break;
case MFF_TCP_DST:
case MFF_UDP_DST:
case MFF_SCTP_DST:
match_set_tp_dst_masked(match, value->be16, mask->be16);
break;
case MFF_TCP_FLAGS:
match_set_tcp_flags_masked(match, value->be16, mask->be16);
break;
case MFF_N_IDS:
default:
OVS_NOT_REACHED();
}
return ((mf->usable_protocols_bitwise == mf->usable_protocols_cidr
|| ip_is_cidr(mask->be32))
? mf->usable_protocols_cidr
: mf->usable_protocols_bitwise);
}
static enum ofperr
mf_check__(const struct mf_subfield *sf, const struct flow *flow,
const char *type)
{
if (!sf->field) {
VLOG_WARN_RL(&rl, "unknown %s field", type);
return OFPERR_OFPBAC_BAD_SET_TYPE;
} else if (!sf->n_bits) {
VLOG_WARN_RL(&rl, "zero bit %s field %s", type, sf->field->name);
return OFPERR_OFPBAC_BAD_SET_LEN;
} else if (sf->ofs >= sf->field->n_bits) {
VLOG_WARN_RL(&rl, "bit offset %d exceeds %d-bit width of %s field %s",
sf->ofs, sf->field->n_bits, type, sf->field->name);
return OFPERR_OFPBAC_BAD_SET_LEN;
} else if (sf->ofs + sf->n_bits > sf->field->n_bits) {
VLOG_WARN_RL(&rl, "bit offset %d and width %d exceeds %d-bit width "
"of %s field %s", sf->ofs, sf->n_bits,
sf->field->n_bits, type, sf->field->name);
return OFPERR_OFPBAC_BAD_SET_LEN;
} else if (flow && !mf_are_prereqs_ok(sf->field, flow, NULL)) {
VLOG_WARN_RL(&rl, "%s field %s lacks correct prerequisites",
type, sf->field->name);
return OFPERR_OFPBAC_MATCH_INCONSISTENT;
} else {
return 0;
}
}
/* Checks whether 'sf' is valid for reading a subfield out of 'flow'. Returns
* 0 if so, otherwise an OpenFlow error code (e.g. as returned by
* ofp_mkerr()). */
enum ofperr
mf_check_src(const struct mf_subfield *sf, const struct flow *flow)
{
return mf_check__(sf, flow, "source");
}
/* Checks whether 'sf' is valid for writing a subfield into 'flow'. Returns 0
* if so, otherwise an OpenFlow error code (e.g. as returned by
* ofp_mkerr()). */
enum ofperr
mf_check_dst(const struct mf_subfield *sf, const struct flow *flow)
{
int error = mf_check__(sf, flow, "destination");
if (!error && !sf->field->writable) {
VLOG_WARN_RL(&rl, "destination field %s is not writable",
sf->field->name);
return OFPERR_OFPBAC_BAD_SET_ARGUMENT;
}
return error;
}
/* Copies the value and wildcard bit pattern for 'mf' from 'match' into the
* 'value' and 'mask', respectively. */
void
mf_get(const struct mf_field *mf, const struct match *match,
union mf_value *value, union mf_value *mask)
{
mf_get_value(mf, &match->flow, value);
mf_get_mask(mf, &match->wc, mask);
}
static char *
mf_from_integer_string(const struct mf_field *mf, const char *s,
uint8_t *valuep, uint8_t *maskp)
{
char *tail;
const char *err_str = "";
int err;
err = parse_int_string(s, valuep, mf->n_bytes, &tail);
if (err || (*tail != '\0' && *tail != '/')) {
err_str = "value";
goto syntax_error;
}
if (*tail == '/') {
err = parse_int_string(tail + 1, maskp, mf->n_bytes, &tail);
if (err || *tail != '\0') {
err_str = "mask";
goto syntax_error;
}
} else {
memset(maskp, 0xff, mf->n_bytes);
}
return NULL;
syntax_error:
if (err == ERANGE) {
return xasprintf("%s: %s too large for %u-byte field %s",
s, err_str, mf->n_bytes, mf->name);
} else {
return xasprintf("%s: bad syntax for %s %s", s, mf->name, err_str);
}
}
static char *
mf_from_ethernet_string(const struct mf_field *mf, const char *s,
struct eth_addr *mac, struct eth_addr *mask)
{
int n;
ovs_assert(mf->n_bytes == ETH_ADDR_LEN);
n = -1;
if (ovs_scan(s, ETH_ADDR_SCAN_FMT"%n", ETH_ADDR_SCAN_ARGS(*mac), &n)
&& n == strlen(s)) {
*mask = eth_addr_exact;
return NULL;
}
n = -1;
if (ovs_scan(s, ETH_ADDR_SCAN_FMT"/"ETH_ADDR_SCAN_FMT"%n",
ETH_ADDR_SCAN_ARGS(*mac), ETH_ADDR_SCAN_ARGS(*mask), &n)
&& n == strlen(s)) {
return NULL;
}
return xasprintf("%s: invalid Ethernet address", s);
}
static char *
mf_from_ipv4_string(const struct mf_field *mf, const char *s,
ovs_be32 *ip, ovs_be32 *mask)
{
ovs_assert(mf->n_bytes == sizeof *ip);
return ip_parse_masked(s, ip, mask);
}
static char *
mf_from_ipv6_string(const struct mf_field *mf, const char *s,
struct in6_addr *ipv6, struct in6_addr *mask)
{
ovs_assert(mf->n_bytes == sizeof *ipv6);
return ipv6_parse_masked(s, ipv6, mask);
}
static char *
mf_from_ofp_port_string(const struct mf_field *mf, const char *s,
ovs_be16 *valuep, ovs_be16 *maskp)
{
ofp_port_t port;
ovs_assert(mf->n_bytes == sizeof(ovs_be16));
if (ofputil_port_from_string(s, &port)) {
*valuep = htons(ofp_to_u16(port));
*maskp = OVS_BE16_MAX;
return NULL;
}
return xasprintf("%s: port value out of range for %s", s, mf->name);
}
static char *
mf_from_ofp_port_string32(const struct mf_field *mf, const char *s,
ovs_be32 *valuep, ovs_be32 *maskp)
{
ofp_port_t port;
ovs_assert(mf->n_bytes == sizeof(ovs_be32));
if (ofputil_port_from_string(s, &port)) {
*valuep = ofputil_port_to_ofp11(port);
*maskp = OVS_BE32_MAX;
return NULL;
}
return xasprintf("%s: port value out of range for %s", s, mf->name);
}
struct frag_handling {
const char *name;
uint8_t mask;
uint8_t value;
};
static const struct frag_handling all_frags[] = {
#define A FLOW_NW_FRAG_ANY
#define L FLOW_NW_FRAG_LATER
/* name mask value */
{ "no", A|L, 0 },
{ "first", A|L, A },
{ "later", A|L, A|L },
{ "no", A, 0 },
{ "yes", A, A },
{ "not_later", L, 0 },
{ "later", L, L },
#undef A
#undef L
};
static char *
mf_from_frag_string(const char *s, uint8_t *valuep, uint8_t *maskp)
{
const struct frag_handling *h;
for (h = all_frags; h < &all_frags[ARRAY_SIZE(all_frags)]; h++) {
if (!strcasecmp(s, h->name)) {
/* We force the upper bits of the mask on to make mf_parse_value()
* happy (otherwise it will never think it's an exact match.) */
*maskp = h->mask | ~FLOW_NW_FRAG_MASK;
*valuep = h->value;
return NULL;
}
}
return xasprintf("%s: unknown fragment type (valid types are \"no\", "
"\"yes\", \"first\", \"later\", \"not_first\"", s);
}
static char *
parse_mf_flags(const char *s, const char *(*bit_to_string)(uint32_t),
const char *field_name, ovs_be16 *flagsp, ovs_be16 allowed,
ovs_be16 *maskp)
{
int err;
char *err_str;
uint32_t flags, mask;
err = parse_flags(s, bit_to_string, '\0', field_name, &err_str,
&flags, ntohs(allowed), maskp ? &mask : NULL);
if (err < 0) {
return err_str;
}
*flagsp = htons(flags);
if (maskp) {
*maskp = htons(mask);
}
return NULL;
}
static char *
mf_from_tcp_flags_string(const char *s, ovs_be16 *flagsp, ovs_be16 *maskp)
{
return parse_mf_flags(s, packet_tcp_flag_to_string, "TCP", flagsp,
TCP_FLAGS_BE16(OVS_BE16_MAX), maskp);
}
static char *
mf_from_tun_flags_string(const char *s, ovs_be16 *flagsp, ovs_be16 *maskp)
{
return parse_mf_flags(s, flow_tun_flag_to_string, "tunnel", flagsp,
htons(FLOW_TNL_PUB_F_MASK), maskp);
}
static char *
mf_from_ct_state_string(const char *s, ovs_be32 *flagsp, ovs_be32 *maskp)
{
int err;
char *err_str;
uint32_t flags, mask;
err = parse_flags(s, ct_state_to_string, '\0', "ct_state", &err_str,
&flags, CS_SUPPORTED_MASK, maskp ? &mask : NULL);
if (err < 0) {
return err_str;
}
*flagsp = htonl(flags);
if (maskp) {
*maskp = htonl(mask);
}
return NULL;
}
/* Parses 's', a string value for field 'mf', into 'value' and 'mask'. Returns
* NULL if successful, otherwise a malloc()'d string describing the error. */
char *
mf_parse(const struct mf_field *mf, const char *s,
union mf_value *value, union mf_value *mask)
{
char *error;
if (!strcmp(s, "*")) {
memset(value, 0, mf->n_bytes);
memset(mask, 0, mf->n_bytes);
return NULL;
}
switch (mf->string) {
case MFS_DECIMAL:
case MFS_HEXADECIMAL:
error = mf_from_integer_string(mf, s,
(uint8_t *) value, (uint8_t *) mask);
break;
case MFS_CT_STATE:
ovs_assert(mf->n_bytes == sizeof(ovs_be32));
error = mf_from_ct_state_string(s, &value->be32, &mask->be32);
break;
case MFS_ETHERNET:
error = mf_from_ethernet_string(mf, s, &value->mac, &mask->mac);
break;
case MFS_IPV4:
error = mf_from_ipv4_string(mf, s, &value->be32, &mask->be32);
break;
case MFS_IPV6:
error = mf_from_ipv6_string(mf, s, &value->ipv6, &mask->ipv6);
break;
case MFS_OFP_PORT:
error = mf_from_ofp_port_string(mf, s, &value->be16, &mask->be16);
break;
case MFS_OFP_PORT_OXM:
error = mf_from_ofp_port_string32(mf, s, &value->be32, &mask->be32);
break;
case MFS_FRAG:
error = mf_from_frag_string(s, &value->u8, &mask->u8);
break;
case MFS_TNL_FLAGS:
ovs_assert(mf->n_bytes == sizeof(ovs_be16));
error = mf_from_tun_flags_string(s, &value->be16, &mask->be16);
break;
case MFS_TCP_FLAGS:
ovs_assert(mf->n_bytes == sizeof(ovs_be16));
error = mf_from_tcp_flags_string(s, &value->be16, &mask->be16);
break;
default:
OVS_NOT_REACHED();
}
if (!error && !mf_is_mask_valid(mf, mask)) {
error = xasprintf("%s: invalid mask for field %s", s, mf->name);
}
return error;
}
/* Parses 's', a string value for field 'mf', into 'value'. Returns NULL if
* successful, otherwise a malloc()'d string describing the error. */
char *
mf_parse_value(const struct mf_field *mf, const char *s, union mf_value *value)
{
union mf_value mask;
char *error;
error = mf_parse(mf, s, value, &mask);
if (error) {
return error;
}
if (!is_all_ones((const uint8_t *) &mask, mf->n_bytes)) {
return xasprintf("%s: wildcards not allowed here", s);
}
return NULL;
}
static void
mf_format_integer_string(const struct mf_field *mf, const uint8_t *valuep,
const uint8_t *maskp, struct ds *s)
{
if (mf->string == MFS_HEXADECIMAL) {
ds_put_hex(s, valuep, mf->n_bytes);
} else {
unsigned long long int integer = 0;
int i;
ovs_assert(mf->n_bytes <= 8);
for (i = 0; i < mf->n_bytes; i++) {
integer = (integer << 8) | valuep[i];
}
ds_put_format(s, "%lld", integer);
}
if (maskp) {
/* I guess we could write the mask in decimal for MFS_DECIMAL but I'm
* not sure that that a bit-mask written in decimal is ever easier to
* understand than the same bit-mask written in hexadecimal. */
ds_put_char(s, '/');
ds_put_hex(s, maskp, mf->n_bytes);
}
}
static void
mf_format_frag_string(uint8_t value, uint8_t mask, struct ds *s)
{
const struct frag_handling *h;
mask &= FLOW_NW_FRAG_MASK;
value &= mask;
for (h = all_frags; h < &all_frags[ARRAY_SIZE(all_frags)]; h++) {
if (value == h->value && mask == h->mask) {
ds_put_cstr(s, h->name);
return;
}
}
ds_put_cstr(s, "<error>");
}
static void
mf_format_tnl_flags_string(ovs_be16 value, ovs_be16 mask, struct ds *s)
{
format_flags_masked(s, NULL, flow_tun_flag_to_string, ntohs(value),
ntohs(mask) & FLOW_TNL_PUB_F_MASK, FLOW_TNL_PUB_F_MASK);
}
static void
mf_format_tcp_flags_string(ovs_be16 value, ovs_be16 mask, struct ds *s)
{
format_flags_masked(s, NULL, packet_tcp_flag_to_string, ntohs(value),
TCP_FLAGS(mask), TCP_FLAGS(OVS_BE16_MAX));
}
static void
mf_format_ct_state_string(ovs_be32 value, ovs_be32 mask, struct ds *s)
{
format_flags_masked(s, NULL, ct_state_to_string, ntohl(value),
ntohl(mask), UINT16_MAX);
}
/* Appends to 's' a string representation of field 'mf' whose value is in
* 'value' and 'mask'. 'mask' may be NULL to indicate an exact match. */
void
mf_format(const struct mf_field *mf,
const union mf_value *value, const union mf_value *mask,
struct ds *s)
{
if (mask) {
if (is_all_zeros(mask, mf->n_bytes)) {
ds_put_cstr(s, "ANY");
return;
} else if (is_all_ones(mask, mf->n_bytes)) {
mask = NULL;
}
}
switch (mf->string) {
case MFS_OFP_PORT_OXM:
if (!mask) {
ofp_port_t port;
ofputil_port_from_ofp11(value->be32, &port);
ofputil_format_port(port, s);
break;
}
/* fall through */
case MFS_OFP_PORT:
if (!mask) {
ofputil_format_port(u16_to_ofp(ntohs(value->be16)), s);
break;
}
/* fall through */
case MFS_DECIMAL:
case MFS_HEXADECIMAL:
mf_format_integer_string(mf, (uint8_t *) value, (uint8_t *) mask, s);
break;
case MFS_CT_STATE:
mf_format_ct_state_string(value->be32,
mask ? mask->be32 : OVS_BE32_MAX, s);
break;
case MFS_ETHERNET:
eth_format_masked(value->mac, mask ? &mask->mac : NULL, s);
break;
case MFS_IPV4:
ip_format_masked(value->be32, mask ? mask->be32 : OVS_BE32_MAX, s);
break;
case MFS_IPV6:
ipv6_format_masked(&value->ipv6, mask ? &mask->ipv6 : NULL, s);
break;
case MFS_FRAG:
mf_format_frag_string(value->u8, mask ? mask->u8 : UINT8_MAX, s);
break;
case MFS_TNL_FLAGS:
mf_format_tnl_flags_string(value->be16,
mask ? mask->be16 : OVS_BE16_MAX, s);
break;
case MFS_TCP_FLAGS:
mf_format_tcp_flags_string(value->be16,
mask ? mask->be16 : OVS_BE16_MAX, s);
break;
default:
OVS_NOT_REACHED();
}
}
/* Makes subfield 'sf' within 'flow' exactly match the 'sf->n_bits'
* least-significant bits in 'x'.
*/
void
mf_write_subfield_flow(const struct mf_subfield *sf,
const union mf_subvalue *x, struct flow *flow)
{
const struct mf_field *field = sf->field;
union mf_value value;
mf_get_value(field, flow, &value);
bitwise_copy(x, sizeof *x, 0, &value, field->n_bytes,
sf->ofs, sf->n_bits);
mf_set_flow_value(field, &value, flow);
}
/* Makes subfield 'sf' within 'match' exactly match the 'sf->n_bits'
* least-significant bits in 'x'.
*/
void
mf_write_subfield(const struct mf_subfield *sf, const union mf_subvalue *x,
struct match *match)
{
const struct mf_field *field = sf->field;
union mf_value value, mask;
mf_get(field, match, &value, &mask);
bitwise_copy(x, sizeof *x, 0, &value, field->n_bytes, sf->ofs, sf->n_bits);
bitwise_one ( &mask, field->n_bytes, sf->ofs, sf->n_bits);
mf_set(field, &value, &mask, match, NULL);
}
/* 'v' and 'm' correspond to values of 'field'. This function copies them into
* 'match' in the correspond positions. */
void
mf_mask_subfield(const struct mf_field *field,
const union mf_subvalue *v,
const union mf_subvalue *m,
struct match *match)
{
union mf_value value, mask;
mf_get(field, match, &value, &mask);
bitwise_copy(v, sizeof *v, 0, &value, field->n_bytes, 0, field->n_bits);
bitwise_copy(m, sizeof *m, 0, &mask, field->n_bytes, 0, field->n_bits);
mf_set(field, &value, &mask, match, NULL);
}
/* Initializes 'x' to the value of 'sf' within 'flow'. 'sf' must be valid for
* reading 'flow', e.g. as checked by mf_check_src(). */
void
mf_read_subfield(const struct mf_subfield *sf, const struct flow *flow,
union mf_subvalue *x)
{
union mf_value value;
mf_get_value(sf->field, flow, &value);
memset(x, 0, sizeof *x);
bitwise_copy(&value, sf->field->n_bytes, sf->ofs,
x, sizeof *x, 0,
sf->n_bits);
}
/* Returns the value of 'sf' within 'flow'. 'sf' must be valid for reading
* 'flow', e.g. as checked by mf_check_src() and sf->n_bits must be 64 or
* less. */
uint64_t
mf_get_subfield(const struct mf_subfield *sf, const struct flow *flow)
{
union mf_value value;
mf_get_value(sf->field, flow, &value);
return bitwise_get(&value, sf->field->n_bytes, sf->ofs, sf->n_bits);
}
void
mf_format_subvalue(const union mf_subvalue *subvalue, struct ds *s)
{
ds_put_hex(s, subvalue->u8, sizeof subvalue->u8);
}
void
field_array_set(enum mf_field_id id, const union mf_value *value,
struct field_array *fa)
{
size_t i, offset = 0;
ovs_assert(id < MFF_N_IDS);
/* Find the spot for 'id'. */
BITMAP_FOR_EACH_1 (i, id, fa->used.bm) {
offset += mf_from_id(i)->n_bytes;
}
size_t value_size = mf_from_id(id)->n_bytes;
/* make room if necessary. */
if (!bitmap_is_set(fa->used.bm, id)) {
fa->values = xrealloc(fa->values, fa->values_size + value_size);
/* Move remainder forward, if any. */
if (offset < fa->values_size) {
memmove(fa->values + offset + value_size, fa->values + offset,
fa->values_size - offset);
}
fa->values_size += value_size;
}
bitmap_set1(fa->used.bm, id);
memcpy(fa->values + offset, value, value_size);
}