2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/lib/timeval.c
Ben Pfaff cb22974d77 Replace most uses of assert by ovs_assert.
This is a straight search-and-replace, except that I also removed #include
<assert.h> from each file where there were no assert calls left.

Signed-off-by: Ben Pfaff <blp@nicira.com>
Acked-by: Ethan Jackson <ethan@nicira.com>
2013-01-16 16:03:37 -08:00

746 lines
20 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2008, 2009, 2010, 2011, 2012 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "timeval.h"
#include <errno.h>
#if HAVE_EXECINFO_H
#include <execinfo.h>
#endif
#include <poll.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <unistd.h>
#include "coverage.h"
#include "dummy.h"
#include "dynamic-string.h"
#include "fatal-signal.h"
#include "hash.h"
#include "hmap.h"
#include "signals.h"
#include "unixctl.h"
#include "util.h"
#include "vlog.h"
VLOG_DEFINE_THIS_MODULE(timeval);
/* The clock to use for measuring time intervals. This is CLOCK_MONOTONIC by
* preference, but on systems that don't have a monotonic clock we fall back
* to CLOCK_REALTIME. */
static clockid_t monotonic_clock;
/* Has a timer tick occurred? Only relevant if CACHE_TIME is true.
*
* We initialize these to true to force time_init() to get called on the first
* call to time_msec() or another function that queries the current time. */
static volatile sig_atomic_t wall_tick = true;
static volatile sig_atomic_t monotonic_tick = true;
/* The current time, as of the last refresh. */
static struct timespec wall_time;
static struct timespec monotonic_time;
/* The monotonic time at which the time module was initialized. */
static long long int boot_time;
/* features for use by unit tests. */
static struct timespec warp_offset; /* Offset added to monotonic_time. */
static bool time_stopped; /* Disables real-time updates, if true. */
/* Time in milliseconds at which to die with SIGALRM (if not LLONG_MAX). */
static long long int deadline = LLONG_MAX;
struct trace {
void *backtrace[32]; /* Populated by backtrace(). */
size_t n_frames; /* Number of frames in 'backtrace'. */
/* format_backtraces() helper data. */
struct hmap_node node;
size_t count;
};
#define MAX_TRACES 50
static struct trace traces[MAX_TRACES];
static size_t trace_head = 0;
static void set_up_timer(void);
static void set_up_signal(int flags);
static void sigalrm_handler(int);
static void refresh_wall_if_ticked(void);
static void refresh_monotonic_if_ticked(void);
static void block_sigalrm(sigset_t *);
static void unblock_sigalrm(const sigset_t *);
static void log_poll_interval(long long int last_wakeup);
static struct rusage *get_recent_rusage(void);
static void refresh_rusage(void);
static void timespec_add(struct timespec *sum,
const struct timespec *a, const struct timespec *b);
static unixctl_cb_func backtrace_cb;
#ifndef HAVE_EXECINFO_H
#define HAVE_EXECINFO_H 0
static int
backtrace(void **buffer OVS_UNUSED, int size OVS_UNUSED)
{
NOT_REACHED();
}
static char **
backtrace_symbols(void *const *buffer OVS_UNUSED, int size OVS_UNUSED)
{
NOT_REACHED();
}
#endif
/* Initializes the timetracking module, if not already initialized. */
static void
time_init(void)
{
static bool inited;
if (inited) {
return;
}
inited = true;
/* The implementation of backtrace() in glibc does some one time
* initialization which is not signal safe. This can cause deadlocks if
* run from the signal handler. As a workaround, force the initialization
* to happen here. */
if (HAVE_EXECINFO_H) {
void *bt[1];
backtrace(bt, ARRAY_SIZE(bt));
}
memset(traces, 0, sizeof traces);
if (HAVE_EXECINFO_H && CACHE_TIME) {
unixctl_command_register("backtrace", "", 0, 0, backtrace_cb, NULL);
}
coverage_init();
if (!clock_gettime(CLOCK_MONOTONIC, &monotonic_time)) {
monotonic_clock = CLOCK_MONOTONIC;
} else {
monotonic_clock = CLOCK_REALTIME;
VLOG_DBG("monotonic timer not available");
}
set_up_signal(SA_RESTART);
set_up_timer();
boot_time = time_msec();
}
static void
set_up_signal(int flags)
{
struct sigaction sa;
memset(&sa, 0, sizeof sa);
sa.sa_handler = sigalrm_handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = flags;
xsigaction(SIGALRM, &sa, NULL);
}
/* Remove SA_RESTART from the flags for SIGALRM, so that any system call that
* is interrupted by the periodic timer interrupt will return EINTR instead of
* continuing after the signal handler returns.
*
* time_disable_restart() and time_enable_restart() may be usefully wrapped
* around function calls that might otherwise block forever unless interrupted
* by a signal, e.g.:
*
* time_disable_restart();
* fcntl(fd, F_SETLKW, &lock);
* time_enable_restart();
*/
void
time_disable_restart(void)
{
time_init();
set_up_signal(0);
}
/* Add SA_RESTART to the flags for SIGALRM, so that any system call that
* is interrupted by the periodic timer interrupt will continue after the
* signal handler returns instead of returning EINTR. */
void
time_enable_restart(void)
{
time_init();
set_up_signal(SA_RESTART);
}
static void
set_up_timer(void)
{
static timer_t timer_id; /* "static" to avoid apparent memory leak. */
struct itimerspec itimer;
if (!CACHE_TIME) {
return;
}
if (timer_create(monotonic_clock, NULL, &timer_id)) {
VLOG_FATAL("timer_create failed (%s)", strerror(errno));
}
itimer.it_interval.tv_sec = 0;
itimer.it_interval.tv_nsec = TIME_UPDATE_INTERVAL * 1000 * 1000;
itimer.it_value = itimer.it_interval;
if (timer_settime(timer_id, 0, &itimer, NULL)) {
VLOG_FATAL("timer_settime failed (%s)", strerror(errno));
}
}
/* Set up the interval timer, to ensure that time advances even without calling
* time_refresh().
*
* A child created with fork() does not inherit the parent's interval timer, so
* this function needs to be called from the child after fork(). */
void
time_postfork(void)
{
time_init();
set_up_timer();
}
static void
refresh_wall(void)
{
time_init();
clock_gettime(CLOCK_REALTIME, &wall_time);
wall_tick = false;
}
static void
refresh_monotonic(void)
{
time_init();
if (!time_stopped) {
if (monotonic_clock == CLOCK_MONOTONIC) {
clock_gettime(monotonic_clock, &monotonic_time);
} else {
refresh_wall_if_ticked();
monotonic_time = wall_time;
}
timespec_add(&monotonic_time, &monotonic_time, &warp_offset);
monotonic_tick = false;
}
}
/* Forces a refresh of the current time from the kernel. It is not usually
* necessary to call this function, since the time will be refreshed
* automatically at least every TIME_UPDATE_INTERVAL milliseconds. If
* CACHE_TIME is false, we will always refresh the current time so this
* function has no effect. */
void
time_refresh(void)
{
wall_tick = monotonic_tick = true;
}
/* Returns a monotonic timer, in seconds. */
time_t
time_now(void)
{
refresh_monotonic_if_ticked();
return monotonic_time.tv_sec;
}
/* Returns the current time, in seconds. */
time_t
time_wall(void)
{
refresh_wall_if_ticked();
return wall_time.tv_sec;
}
/* Returns a monotonic timer, in ms (within TIME_UPDATE_INTERVAL ms). */
long long int
time_msec(void)
{
refresh_monotonic_if_ticked();
return timespec_to_msec(&monotonic_time);
}
/* Returns the current time, in ms (within TIME_UPDATE_INTERVAL ms). */
long long int
time_wall_msec(void)
{
refresh_wall_if_ticked();
return timespec_to_msec(&wall_time);
}
/* Stores a monotonic timer, accurate within TIME_UPDATE_INTERVAL ms, into
* '*ts'. */
void
time_timespec(struct timespec *ts)
{
refresh_monotonic_if_ticked();
*ts = monotonic_time;
}
/* Stores the current time, accurate within TIME_UPDATE_INTERVAL ms, into
* '*ts'. */
void
time_wall_timespec(struct timespec *ts)
{
refresh_wall_if_ticked();
*ts = wall_time;
}
/* Configures the program to die with SIGALRM 'secs' seconds from now, if
* 'secs' is nonzero, or disables the feature if 'secs' is zero. */
void
time_alarm(unsigned int secs)
{
long long int now;
long long int msecs;
sigset_t oldsigs;
time_init();
time_refresh();
now = time_msec();
msecs = secs * 1000;
block_sigalrm(&oldsigs);
deadline = now < LLONG_MAX - msecs ? now + msecs : LLONG_MAX;
unblock_sigalrm(&oldsigs);
}
/* Like poll(), except:
*
* - The timeout is specified as an absolute time, as defined by
* time_msec(), instead of a duration.
*
* - On error, returns a negative error code (instead of setting errno).
*
* - If interrupted by a signal, retries automatically until the original
* timeout is reached. (Because of this property, this function will
* never return -EINTR.)
*
* - As a side effect, refreshes the current time (like time_refresh()).
*
* Stores the number of milliseconds elapsed during poll in '*elapsed'. */
int
time_poll(struct pollfd *pollfds, int n_pollfds, long long int timeout_when,
int *elapsed)
{
static long long int last_wakeup = 0;
long long int start;
sigset_t oldsigs;
bool blocked;
int retval;
time_refresh();
if (last_wakeup) {
log_poll_interval(last_wakeup);
}
coverage_clear();
start = time_msec();
blocked = false;
timeout_when = MIN(timeout_when, deadline);
for (;;) {
long long int now = time_msec();
int time_left;
if (now >= timeout_when) {
time_left = 0;
} else if ((unsigned long long int) timeout_when - now > INT_MAX) {
time_left = INT_MAX;
} else {
time_left = timeout_when - now;
}
retval = poll(pollfds, n_pollfds, time_left);
if (retval < 0) {
retval = -errno;
}
time_refresh();
if (deadline <= time_msec()) {
fatal_signal_handler(SIGALRM);
if (retval < 0) {
retval = 0;
}
break;
}
if (retval != -EINTR) {
break;
}
if (!blocked && CACHE_TIME) {
block_sigalrm(&oldsigs);
blocked = true;
}
}
if (blocked) {
unblock_sigalrm(&oldsigs);
}
last_wakeup = time_msec();
refresh_rusage();
*elapsed = last_wakeup - start;
return retval;
}
static void
sigalrm_handler(int sig_nr OVS_UNUSED)
{
wall_tick = true;
monotonic_tick = true;
if (HAVE_EXECINFO_H && CACHE_TIME) {
struct trace *trace = &traces[trace_head];
trace->n_frames = backtrace(trace->backtrace,
ARRAY_SIZE(trace->backtrace));
trace_head = (trace_head + 1) % MAX_TRACES;
}
}
static void
refresh_wall_if_ticked(void)
{
if (!CACHE_TIME || wall_tick) {
refresh_wall();
}
}
static void
refresh_monotonic_if_ticked(void)
{
if (!CACHE_TIME || monotonic_tick) {
refresh_monotonic();
}
}
static void
block_sigalrm(sigset_t *oldsigs)
{
sigset_t sigalrm;
sigemptyset(&sigalrm);
sigaddset(&sigalrm, SIGALRM);
xsigprocmask(SIG_BLOCK, &sigalrm, oldsigs);
}
static void
unblock_sigalrm(const sigset_t *oldsigs)
{
xsigprocmask(SIG_SETMASK, oldsigs, NULL);
}
long long int
timespec_to_msec(const struct timespec *ts)
{
return (long long int) ts->tv_sec * 1000 + ts->tv_nsec / (1000 * 1000);
}
long long int
timeval_to_msec(const struct timeval *tv)
{
return (long long int) tv->tv_sec * 1000 + tv->tv_usec / 1000;
}
/* Returns the monotonic time at which the "time" module was initialized, in
* milliseconds(). */
long long int
time_boot_msec(void)
{
time_init();
return boot_time;
}
void
xgettimeofday(struct timeval *tv)
{
if (gettimeofday(tv, NULL) == -1) {
VLOG_FATAL("gettimeofday failed (%s)", strerror(errno));
}
}
static long long int
timeval_diff_msec(const struct timeval *a, const struct timeval *b)
{
return timeval_to_msec(a) - timeval_to_msec(b);
}
static void
timespec_add(struct timespec *sum,
const struct timespec *a,
const struct timespec *b)
{
struct timespec tmp;
tmp.tv_sec = a->tv_sec + b->tv_sec;
tmp.tv_nsec = a->tv_nsec + b->tv_nsec;
if (tmp.tv_nsec >= 1000 * 1000 * 1000) {
tmp.tv_nsec -= 1000 * 1000 * 1000;
tmp.tv_sec++;
}
*sum = tmp;
}
static void
log_poll_interval(long long int last_wakeup)
{
long long int interval = time_msec() - last_wakeup;
if (interval >= 1000) {
const struct rusage *last_rusage = get_recent_rusage();
struct rusage rusage;
getrusage(RUSAGE_SELF, &rusage);
VLOG_WARN("Unreasonably long %lldms poll interval"
" (%lldms user, %lldms system)",
interval,
timeval_diff_msec(&rusage.ru_utime,
&last_rusage->ru_utime),
timeval_diff_msec(&rusage.ru_stime,
&last_rusage->ru_stime));
if (rusage.ru_minflt > last_rusage->ru_minflt
|| rusage.ru_majflt > last_rusage->ru_majflt) {
VLOG_WARN("faults: %ld minor, %ld major",
rusage.ru_minflt - last_rusage->ru_minflt,
rusage.ru_majflt - last_rusage->ru_majflt);
}
if (rusage.ru_inblock > last_rusage->ru_inblock
|| rusage.ru_oublock > last_rusage->ru_oublock) {
VLOG_WARN("disk: %ld reads, %ld writes",
rusage.ru_inblock - last_rusage->ru_inblock,
rusage.ru_oublock - last_rusage->ru_oublock);
}
if (rusage.ru_nvcsw > last_rusage->ru_nvcsw
|| rusage.ru_nivcsw > last_rusage->ru_nivcsw) {
VLOG_WARN("context switches: %ld voluntary, %ld involuntary",
rusage.ru_nvcsw - last_rusage->ru_nvcsw,
rusage.ru_nivcsw - last_rusage->ru_nivcsw);
}
coverage_log();
}
}
/* CPU usage tracking. */
struct cpu_usage {
long long int when; /* Time that this sample was taken. */
unsigned long long int cpu; /* Total user+system CPU usage when sampled. */
};
static struct rusage recent_rusage;
static struct cpu_usage older = { LLONG_MIN, 0 };
static struct cpu_usage newer = { LLONG_MIN, 0 };
static int cpu_usage = -1;
static struct rusage *
get_recent_rusage(void)
{
return &recent_rusage;
}
static void
refresh_rusage(void)
{
long long int now;
now = time_msec();
getrusage(RUSAGE_SELF, &recent_rusage);
if (now >= newer.when + 3 * 1000) {
older = newer;
newer.when = now;
newer.cpu = (timeval_to_msec(&recent_rusage.ru_utime) +
timeval_to_msec(&recent_rusage.ru_stime));
if (older.when != LLONG_MIN && newer.cpu > older.cpu) {
unsigned int dividend = newer.cpu - older.cpu;
unsigned int divisor = (newer.when - older.when) / 100;
cpu_usage = divisor > 0 ? dividend / divisor : -1;
} else {
cpu_usage = -1;
}
}
}
/* Returns an estimate of this process's CPU usage, as a percentage, over the
* past few seconds of wall-clock time. Returns -1 if no estimate is available
* (which will happen if the process has not been running long enough to have
* an estimate, and can happen for other reasons as well). */
int
get_cpu_usage(void)
{
return cpu_usage;
}
static uint32_t
hash_trace(struct trace *trace)
{
return hash_bytes(trace->backtrace,
trace->n_frames * sizeof *trace->backtrace, 0);
}
static struct trace *
trace_map_lookup(struct hmap *trace_map, struct trace *key)
{
struct trace *value;
HMAP_FOR_EACH_WITH_HASH (value, node, hash_trace(key), trace_map) {
if (key->n_frames == value->n_frames
&& !memcmp(key->backtrace, value->backtrace,
key->n_frames * sizeof *key->backtrace)) {
return value;
}
}
return NULL;
}
/* Appends a string to 'ds' representing backtraces recorded at regular
* intervals in the recent past. This information can be used to get a sense
* of what the process has been spending the majority of time doing. Will
* ommit any backtraces which have not occurred at least 'min_count' times. */
void
format_backtraces(struct ds *ds, size_t min_count)
{
time_init();
if (HAVE_EXECINFO_H && CACHE_TIME) {
struct hmap trace_map = HMAP_INITIALIZER(&trace_map);
struct trace *trace, *next;
sigset_t oldsigs;
size_t i;
block_sigalrm(&oldsigs);
for (i = 0; i < MAX_TRACES; i++) {
struct trace *trace = &traces[i];
struct trace *map_trace;
if (!trace->n_frames) {
continue;
}
map_trace = trace_map_lookup(&trace_map, trace);
if (map_trace) {
map_trace->count++;
} else {
hmap_insert(&trace_map, &trace->node, hash_trace(trace));
trace->count = 1;
}
}
HMAP_FOR_EACH_SAFE (trace, next, node, &trace_map) {
char **frame_strs;
size_t j;
hmap_remove(&trace_map, &trace->node);
if (trace->count < min_count) {
continue;
}
frame_strs = backtrace_symbols(trace->backtrace, trace->n_frames);
ds_put_format(ds, "Count %zu\n", trace->count);
for (j = 0; j < trace->n_frames; j++) {
ds_put_format(ds, "%s\n", frame_strs[j]);
}
ds_put_cstr(ds, "\n");
free(frame_strs);
}
hmap_destroy(&trace_map);
ds_chomp(ds, '\n');
unblock_sigalrm(&oldsigs);
}
}
/* Unixctl interface. */
/* "time/stop" stops the monotonic time returned by e.g. time_msec() from
* advancing, except due to later calls to "time/warp". */
static void
timeval_stop_cb(struct unixctl_conn *conn,
int argc OVS_UNUSED, const char *argv[] OVS_UNUSED,
void *aux OVS_UNUSED)
{
time_stopped = true;
unixctl_command_reply(conn, NULL);
}
/* "time/warp MSECS" advances the current monotonic time by the specified
* number of milliseconds. Unless "time/stop" has also been executed, the
* monotonic clock continues to tick forward at the normal rate afterward.
*
* Does not affect wall clock readings. */
static void
timeval_warp_cb(struct unixctl_conn *conn,
int argc OVS_UNUSED, const char *argv[], void *aux OVS_UNUSED)
{
struct timespec ts;
int msecs;
msecs = atoi(argv[1]);
if (msecs <= 0) {
unixctl_command_reply_error(conn, "invalid MSECS");
return;
}
ts.tv_sec = msecs / 1000;
ts.tv_nsec = (msecs % 1000) * 1000 * 1000;
timespec_add(&warp_offset, &warp_offset, &ts);
timespec_add(&monotonic_time, &monotonic_time, &ts);
unixctl_command_reply(conn, "warped");
}
static void
backtrace_cb(struct unixctl_conn *conn,
int argc OVS_UNUSED, const char *argv[] OVS_UNUSED,
void *aux OVS_UNUSED)
{
struct ds ds = DS_EMPTY_INITIALIZER;
ovs_assert(HAVE_EXECINFO_H && CACHE_TIME);
format_backtraces(&ds, 0);
unixctl_command_reply(conn, ds_cstr(&ds));
ds_destroy(&ds);
}
void
timeval_dummy_register(void)
{
unixctl_command_register("time/stop", "", 0, 0, timeval_stop_cb, NULL);
unixctl_command_register("time/warp", "MSECS", 1, 1,
timeval_warp_cb, NULL);
}