2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-29 05:18:13 +00:00
ovs/lib/conntrack.c
Darrell Ball 76d85771f0 conntrack: Fix L4 csum for V6 extension hdr pkts.
It is a day one issue that got copied to subsequent code.

Fixes: a489b16854b5 ("conntrack: New userspace connection tracker.")
Fixes: bd5e81a0e596 ("Userspace Datapath: Add ALG infra and FTP.")
CC: Daniele Di Proietto <diproiettod@ovn.org>
Signed-off-by: Darrell Ball <dlu998@gmail.com>
Signed-off-by: Ben Pfaff <blp@ovn.org>
2019-02-22 17:55:45 -08:00

3285 lines
110 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2015-2019 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include <ctype.h>
#include <errno.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/icmp6.h>
#include <string.h>
#include "bitmap.h"
#include "conntrack.h"
#include "conntrack-private.h"
#include "coverage.h"
#include "csum.h"
#include "ct-dpif.h"
#include "dp-packet.h"
#include "flow.h"
#include "ipf.h"
#include "netdev.h"
#include "odp-netlink.h"
#include "openvswitch/hmap.h"
#include "openvswitch/vlog.h"
#include "ovs-rcu.h"
#include "ovs-thread.h"
#include "openvswitch/poll-loop.h"
#include "random.h"
#include "timeval.h"
VLOG_DEFINE_THIS_MODULE(conntrack);
COVERAGE_DEFINE(conntrack_full);
COVERAGE_DEFINE(conntrack_long_cleanup);
struct conn_lookup_ctx {
struct conn_key key;
struct conn *conn;
uint32_t hash;
bool reply;
bool icmp_related;
};
enum ftp_ctl_pkt {
/* Control packets with address and/or port specifiers. */
CT_FTP_CTL_INTEREST,
/* Control packets without address and/or port specifiers. */
CT_FTP_CTL_OTHER,
CT_FTP_CTL_INVALID,
};
enum ct_alg_mode {
CT_FTP_MODE_ACTIVE,
CT_FTP_MODE_PASSIVE,
CT_TFTP_MODE,
};
enum ct_alg_ctl_type {
CT_ALG_CTL_NONE,
CT_ALG_CTL_FTP,
CT_ALG_CTL_TFTP,
/* SIP is not enabled through Openflow and presently only used as
* an example of an alg that allows a wildcard src ip. */
CT_ALG_CTL_SIP,
};
static bool conn_key_extract(struct conntrack *, struct dp_packet *,
ovs_be16 dl_type, struct conn_lookup_ctx *,
uint16_t zone);
static uint32_t conn_key_hash(const struct conn_key *, uint32_t basis);
static void conn_key_reverse(struct conn_key *);
static void conn_key_lookup(struct conntrack_bucket *ctb,
struct conn_lookup_ctx *ctx,
long long now);
static bool valid_new(struct dp_packet *pkt, struct conn_key *);
static struct conn *new_conn(struct conntrack_bucket *, struct dp_packet *pkt,
struct conn_key *, long long now);
static void delete_conn(struct conn *);
static enum ct_update_res conn_update(struct conn *,
struct conntrack_bucket *ctb,
struct dp_packet *, bool reply,
long long now);
static bool conn_expired(struct conn *, long long now);
static void set_mark(struct dp_packet *, struct conn *,
uint32_t val, uint32_t mask);
static void set_label(struct dp_packet *, struct conn *,
const struct ovs_key_ct_labels *val,
const struct ovs_key_ct_labels *mask);
static void *clean_thread_main(void *f_);
static struct nat_conn_key_node *
nat_conn_keys_lookup(struct hmap *nat_conn_keys,
const struct conn_key *key,
uint32_t basis);
static bool
nat_conn_keys_insert(struct hmap *nat_conn_keys,
const struct conn *nat_conn,
uint32_t hash_basis);
static void
nat_conn_keys_remove(struct hmap *nat_conn_keys,
const struct conn_key *key,
uint32_t basis);
static bool
nat_select_range_tuple(struct conntrack *ct, const struct conn *conn,
struct conn *nat_conn);
static uint8_t
reverse_icmp_type(uint8_t type);
static uint8_t
reverse_icmp6_type(uint8_t type);
static inline bool
extract_l3_ipv4(struct conn_key *key, const void *data, size_t size,
const char **new_data, bool validate_checksum);
static inline bool
extract_l3_ipv6(struct conn_key *key, const void *data, size_t size,
const char **new_data);
static struct alg_exp_node *
expectation_lookup(struct hmap *alg_expectations, const struct conn_key *key,
uint32_t basis, bool src_ip_wc);
static int
repl_ftp_v4_addr(struct dp_packet *pkt, ovs_be32 v4_addr_rep,
char *ftp_data_v4_start,
size_t addr_offset_from_ftp_data_start, size_t addr_size);
static enum ftp_ctl_pkt
process_ftp_ctl_v4(struct conntrack *ct,
struct dp_packet *pkt,
const struct conn *conn_for_expectation,
ovs_be32 *v4_addr_rep,
char **ftp_data_v4_start,
size_t *addr_offset_from_ftp_data_start,
size_t *addr_size);
static enum ftp_ctl_pkt
detect_ftp_ctl_type(const struct conn_lookup_ctx *ctx,
struct dp_packet *pkt);
static void
expectation_clean(struct conntrack *ct, const struct conn_key *master_key,
uint32_t basis);
static struct ct_l4_proto *l4_protos[] = {
[IPPROTO_TCP] = &ct_proto_tcp,
[IPPROTO_UDP] = &ct_proto_other,
[IPPROTO_ICMP] = &ct_proto_icmp4,
[IPPROTO_ICMPV6] = &ct_proto_icmp6,
};
static void
handle_ftp_ctl(struct conntrack *ct, const struct conn_lookup_ctx *ctx,
struct dp_packet *pkt,
const struct conn *conn_for_expectation,
long long now, enum ftp_ctl_pkt ftp_ctl, bool nat);
static void
handle_tftp_ctl(struct conntrack *ct,
const struct conn_lookup_ctx *ctx OVS_UNUSED,
struct dp_packet *pkt,
const struct conn *conn_for_expectation,
long long now OVS_UNUSED,
enum ftp_ctl_pkt ftp_ctl OVS_UNUSED, bool nat OVS_UNUSED);
typedef void (*alg_helper)(struct conntrack *ct,
const struct conn_lookup_ctx *ctx,
struct dp_packet *pkt,
const struct conn *conn_for_expectation,
long long now, enum ftp_ctl_pkt ftp_ctl,
bool nat);
static alg_helper alg_helpers[] = {
[CT_ALG_CTL_NONE] = NULL,
[CT_ALG_CTL_FTP] = handle_ftp_ctl,
[CT_ALG_CTL_TFTP] = handle_tftp_ctl,
};
long long ct_timeout_val[] = {
#define CT_TIMEOUT(NAME, VAL) [CT_TM_##NAME] = VAL,
CT_TIMEOUTS
#undef CT_TIMEOUT
};
/* The maximum TCP or UDP port number. */
#define CT_MAX_L4_PORT 65535
/* String buffer used for parsing FTP string messages.
* This is sized about twice what is needed to leave some
* margin of error. */
#define LARGEST_FTP_MSG_OF_INTEREST 128
/* FTP port string used in active mode. */
#define FTP_PORT_CMD "PORT"
/* FTP pasv string used in passive mode. */
#define FTP_PASV_REPLY_CODE "227"
/* Maximum decimal digits for port in FTP command.
* The port is represented as two 3 digit numbers with the
* high part a multiple of 256. */
#define MAX_FTP_PORT_DGTS 3
/* FTP extension EPRT string used for active mode. */
#define FTP_EPRT_CMD "EPRT"
/* FTP extension EPSV string used for passive mode. */
#define FTP_EPSV_REPLY "EXTENDED PASSIVE"
/* Maximum decimal digits for port in FTP extended command. */
#define MAX_EXT_FTP_PORT_DGTS 5
/* FTP extended command code for IPv6. */
#define FTP_AF_V6 '2'
/* Used to indicate a wildcard L4 source port number for ALGs.
* This is used for port numbers that we cannot predict in
* expectations. */
#define ALG_WC_SRC_PORT 0
/* If the total number of connections goes above this value, no new connections
* are accepted; this is for CT_CONN_TYPE_DEFAULT connections. */
#define DEFAULT_N_CONN_LIMIT 3000000
/* Does a member by member comparison of two conn_keys; this
* function must be kept in sync with struct conn_key; returns 0
* if the keys are equal or 1 if the keys are not equal. */
static int
conn_key_cmp(const struct conn_key *key1, const struct conn_key *key2)
{
if (!memcmp(&key1->src.addr, &key2->src.addr, sizeof key1->src.addr) &&
!memcmp(&key1->dst.addr, &key2->dst.addr, sizeof key1->dst.addr) &&
(key1->src.icmp_id == key2->src.icmp_id) &&
(key1->src.icmp_type == key2->src.icmp_type) &&
(key1->src.icmp_code == key2->src.icmp_code) &&
(key1->dst.icmp_id == key2->dst.icmp_id) &&
(key1->dst.icmp_type == key2->dst.icmp_type) &&
(key1->dst.icmp_code == key2->dst.icmp_code) &&
(key1->dl_type == key2->dl_type) &&
(key1->zone == key2->zone) &&
(key1->nw_proto == key2->nw_proto)) {
return 0;
}
return 1;
}
static void
ct_print_conn_info(const struct conn *c, const char *log_msg,
enum vlog_level vll, bool force, bool rl_on)
{
#define CT_VLOG(RL_ON, LEVEL, ...) \
do { \
if (RL_ON) { \
static struct vlog_rate_limit rl_ = VLOG_RATE_LIMIT_INIT(5, 5); \
vlog_rate_limit(&this_module, LEVEL, &rl_, __VA_ARGS__); \
} else { \
vlog(&this_module, LEVEL, __VA_ARGS__); \
} \
} while (0)
if (OVS_UNLIKELY(force || vlog_is_enabled(&this_module, vll))) {
if (c->key.dl_type == htons(ETH_TYPE_IP)) {
CT_VLOG(rl_on, vll, "%s: src ip "IP_FMT" dst ip "IP_FMT" rev src "
"ip "IP_FMT" rev dst ip "IP_FMT" src/dst ports "
"%"PRIu16"/%"PRIu16" rev src/dst ports "
"%"PRIu16"/%"PRIu16" zone/rev zone "
"%"PRIu16"/%"PRIu16" nw_proto/rev nw_proto "
"%"PRIu8"/%"PRIu8, log_msg,
IP_ARGS(c->key.src.addr.ipv4),
IP_ARGS(c->key.dst.addr.ipv4),
IP_ARGS(c->rev_key.src.addr.ipv4),
IP_ARGS(c->rev_key.dst.addr.ipv4),
ntohs(c->key.src.port), ntohs(c->key.dst.port),
ntohs(c->rev_key.src.port), ntohs(c->rev_key.dst.port),
c->key.zone, c->rev_key.zone, c->key.nw_proto,
c->rev_key.nw_proto);
} else {
char ip6_s[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, &c->key.src.addr.ipv6, ip6_s, sizeof ip6_s);
char ip6_d[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, &c->key.dst.addr.ipv6, ip6_d, sizeof ip6_d);
char ip6_rs[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, &c->rev_key.src.addr.ipv6, ip6_rs,
sizeof ip6_rs);
char ip6_rd[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, &c->rev_key.dst.addr.ipv6, ip6_rd,
sizeof ip6_rd);
CT_VLOG(rl_on, vll, "%s: src ip %s dst ip %s rev src ip %s"
" rev dst ip %s src/dst ports %"PRIu16"/%"PRIu16
" rev src/dst ports %"PRIu16"/%"PRIu16" zone/rev zone "
"%"PRIu16"/%"PRIu16" nw_proto/rev nw_proto "
"%"PRIu8"/%"PRIu8, log_msg, ip6_s, ip6_d, ip6_rs,
ip6_rd, ntohs(c->key.src.port), ntohs(c->key.dst.port),
ntohs(c->rev_key.src.port), ntohs(c->rev_key.dst.port),
c->key.zone, c->rev_key.zone, c->key.nw_proto,
c->rev_key.nw_proto);
}
}
}
/* Initializes the connection tracker 'ct'. The caller is responsible for
* calling 'conntrack_destroy()', when the instance is not needed anymore */
void
conntrack_init(struct conntrack *ct)
{
long long now = time_msec();
ct_rwlock_init(&ct->resources_lock);
ct_rwlock_wrlock(&ct->resources_lock);
hmap_init(&ct->nat_conn_keys);
hmap_init(&ct->alg_expectations);
hindex_init(&ct->alg_expectation_refs);
ovs_list_init(&ct->alg_exp_list);
ct_rwlock_unlock(&ct->resources_lock);
for (unsigned i = 0; i < CONNTRACK_BUCKETS; i++) {
struct conntrack_bucket *ctb = &ct->buckets[i];
ct_lock_init(&ctb->lock);
ct_lock_lock(&ctb->lock);
hmap_init(&ctb->connections);
for (unsigned j = 0; j < ARRAY_SIZE(ctb->exp_lists); j++) {
ovs_list_init(&ctb->exp_lists[j]);
}
ct_lock_unlock(&ctb->lock);
ovs_mutex_init(&ctb->cleanup_mutex);
ovs_mutex_lock(&ctb->cleanup_mutex);
ctb->next_cleanup = now + CT_TM_MIN;
ovs_mutex_unlock(&ctb->cleanup_mutex);
}
ct->hash_basis = random_uint32();
atomic_count_init(&ct->n_conn, 0);
atomic_init(&ct->n_conn_limit, DEFAULT_N_CONN_LIMIT);
latch_init(&ct->clean_thread_exit);
ct->clean_thread = ovs_thread_create("ct_clean", clean_thread_main, ct);
ct->ipf = ipf_init();
}
/* Destroys the connection tracker 'ct' and frees all the allocated memory. */
void
conntrack_destroy(struct conntrack *ct)
{
latch_set(&ct->clean_thread_exit);
pthread_join(ct->clean_thread, NULL);
latch_destroy(&ct->clean_thread_exit);
for (unsigned i = 0; i < CONNTRACK_BUCKETS; i++) {
struct conntrack_bucket *ctb = &ct->buckets[i];
struct conn *conn;
ovs_mutex_destroy(&ctb->cleanup_mutex);
ct_lock_lock(&ctb->lock);
HMAP_FOR_EACH_POP (conn, node, &ctb->connections) {
if (conn->conn_type == CT_CONN_TYPE_DEFAULT) {
atomic_count_dec(&ct->n_conn);
}
delete_conn(conn);
}
hmap_destroy(&ctb->connections);
ct_lock_unlock(&ctb->lock);
ct_lock_destroy(&ctb->lock);
}
ct_rwlock_wrlock(&ct->resources_lock);
struct nat_conn_key_node *nat_conn_key_node;
HMAP_FOR_EACH_POP (nat_conn_key_node, node, &ct->nat_conn_keys) {
free(nat_conn_key_node);
}
hmap_destroy(&ct->nat_conn_keys);
struct alg_exp_node *alg_exp_node;
HMAP_FOR_EACH_POP (alg_exp_node, node, &ct->alg_expectations) {
free(alg_exp_node);
}
ovs_list_poison(&ct->alg_exp_list);
hmap_destroy(&ct->alg_expectations);
hindex_destroy(&ct->alg_expectation_refs);
ct_rwlock_unlock(&ct->resources_lock);
ct_rwlock_destroy(&ct->resources_lock);
ipf_destroy(ct->ipf);
}
static unsigned hash_to_bucket(uint32_t hash)
{
/* Extracts the most significant bits in hash. The least significant bits
* are already used internally by the hmap implementation. */
BUILD_ASSERT(CONNTRACK_BUCKETS_SHIFT < 32 && CONNTRACK_BUCKETS_SHIFT >= 1);
return (hash >> (32 - CONNTRACK_BUCKETS_SHIFT)) % CONNTRACK_BUCKETS;
}
static void
write_ct_md(struct dp_packet *pkt, uint16_t zone, const struct conn *conn,
const struct conn_key *key, const struct alg_exp_node *alg_exp)
{
pkt->md.ct_state |= CS_TRACKED;
pkt->md.ct_zone = zone;
pkt->md.ct_mark = conn ? conn->mark : 0;
pkt->md.ct_label = conn ? conn->label : OVS_U128_ZERO;
/* Use the original direction tuple if we have it. */
if (conn) {
if (conn->alg_related) {
key = &conn->master_key;
} else {
key = &conn->key;
}
} else if (alg_exp) {
pkt->md.ct_mark = alg_exp->master_mark;
pkt->md.ct_label = alg_exp->master_label;
key = &alg_exp->master_key;
}
pkt->md.ct_orig_tuple_ipv6 = false;
if (key) {
if (key->dl_type == htons(ETH_TYPE_IP)) {
pkt->md.ct_orig_tuple.ipv4 = (struct ovs_key_ct_tuple_ipv4) {
key->src.addr.ipv4,
key->dst.addr.ipv4,
key->nw_proto != IPPROTO_ICMP
? key->src.port : htons(key->src.icmp_type),
key->nw_proto != IPPROTO_ICMP
? key->dst.port : htons(key->src.icmp_code),
key->nw_proto,
};
} else {
pkt->md.ct_orig_tuple_ipv6 = true;
pkt->md.ct_orig_tuple.ipv6 = (struct ovs_key_ct_tuple_ipv6) {
key->src.addr.ipv6,
key->dst.addr.ipv6,
key->nw_proto != IPPROTO_ICMPV6
? key->src.port : htons(key->src.icmp_type),
key->nw_proto != IPPROTO_ICMPV6
? key->dst.port : htons(key->src.icmp_code),
key->nw_proto,
};
}
} else {
memset(&pkt->md.ct_orig_tuple, 0, sizeof pkt->md.ct_orig_tuple);
}
}
static uint8_t
get_ip_proto(const struct dp_packet *pkt)
{
uint8_t ip_proto;
struct eth_header *l2 = dp_packet_eth(pkt);
if (l2->eth_type == htons(ETH_TYPE_IPV6)) {
struct ovs_16aligned_ip6_hdr *nh6 = dp_packet_l3(pkt);
ip_proto = nh6->ip6_ctlun.ip6_un1.ip6_un1_nxt;
} else {
struct ip_header *l3_hdr = dp_packet_l3(pkt);
ip_proto = l3_hdr->ip_proto;
}
return ip_proto;
}
static bool
is_ftp_ctl(const enum ct_alg_ctl_type ct_alg_ctl)
{
return ct_alg_ctl == CT_ALG_CTL_FTP;
}
static enum ct_alg_ctl_type
get_alg_ctl_type(const struct dp_packet *pkt, ovs_be16 tp_src, ovs_be16 tp_dst,
const char *helper)
{
/* CT_IPPORT_FTP/TFTP is used because IPPORT_FTP/TFTP in not defined
* in OSX, at least in in.h. Since these values will never change, remove
* the external dependency. */
enum { CT_IPPORT_FTP = 21 };
enum { CT_IPPORT_TFTP = 69 };
uint8_t ip_proto = get_ip_proto(pkt);
struct udp_header *uh = dp_packet_l4(pkt);
struct tcp_header *th = dp_packet_l4(pkt);
ovs_be16 ftp_src_port = htons(CT_IPPORT_FTP);
ovs_be16 ftp_dst_port = htons(CT_IPPORT_FTP);
ovs_be16 tftp_dst_port = htons(CT_IPPORT_TFTP);
if (OVS_UNLIKELY(tp_dst)) {
if (helper && !strncmp(helper, "ftp", strlen("ftp"))) {
ftp_dst_port = tp_dst;
} else if (helper && !strncmp(helper, "tftp", strlen("tftp"))) {
tftp_dst_port = tp_dst;
}
} else if (OVS_UNLIKELY(tp_src)) {
if (helper && !strncmp(helper, "ftp", strlen("ftp"))) {
ftp_src_port = tp_src;
}
}
if (ip_proto == IPPROTO_UDP && uh->udp_dst == tftp_dst_port) {
return CT_ALG_CTL_TFTP;
} else if (ip_proto == IPPROTO_TCP &&
(th->tcp_src == ftp_src_port || th->tcp_dst == ftp_dst_port)) {
return CT_ALG_CTL_FTP;
}
return CT_ALG_CTL_NONE;
}
static bool
alg_src_ip_wc(enum ct_alg_ctl_type alg_ctl_type)
{
if (alg_ctl_type == CT_ALG_CTL_SIP) {
return true;
}
return false;
}
static void
handle_alg_ctl(struct conntrack *ct, const struct conn_lookup_ctx *ctx,
struct dp_packet *pkt, enum ct_alg_ctl_type ct_alg_ctl,
const struct conn *conn, long long now, bool nat,
const struct conn *conn_for_expectation)
{
/* ALG control packet handling with expectation creation. */
if (OVS_UNLIKELY(alg_helpers[ct_alg_ctl] && conn && conn->alg)) {
alg_helpers[ct_alg_ctl](ct, ctx, pkt, conn_for_expectation, now,
CT_FTP_CTL_INTEREST, nat);
}
}
static void
pat_packet(struct dp_packet *pkt, const struct conn *conn)
{
if (conn->nat_info->nat_action & NAT_ACTION_SRC) {
if (conn->key.nw_proto == IPPROTO_TCP) {
struct tcp_header *th = dp_packet_l4(pkt);
packet_set_tcp_port(pkt, conn->rev_key.dst.port, th->tcp_dst);
} else if (conn->key.nw_proto == IPPROTO_UDP) {
struct udp_header *uh = dp_packet_l4(pkt);
packet_set_udp_port(pkt, conn->rev_key.dst.port, uh->udp_dst);
}
} else if (conn->nat_info->nat_action & NAT_ACTION_DST) {
if (conn->key.nw_proto == IPPROTO_TCP) {
struct tcp_header *th = dp_packet_l4(pkt);
packet_set_tcp_port(pkt, th->tcp_src, conn->rev_key.src.port);
} else if (conn->key.nw_proto == IPPROTO_UDP) {
struct udp_header *uh = dp_packet_l4(pkt);
packet_set_udp_port(pkt, uh->udp_src, conn->rev_key.src.port);
}
}
}
static void
nat_packet(struct dp_packet *pkt, const struct conn *conn, bool related)
{
if (conn->nat_info->nat_action & NAT_ACTION_SRC) {
pkt->md.ct_state |= CS_SRC_NAT;
if (conn->key.dl_type == htons(ETH_TYPE_IP)) {
struct ip_header *nh = dp_packet_l3(pkt);
packet_set_ipv4_addr(pkt, &nh->ip_src,
conn->rev_key.dst.addr.ipv4);
} else {
struct ovs_16aligned_ip6_hdr *nh6 = dp_packet_l3(pkt);
packet_set_ipv6_addr(pkt, conn->key.nw_proto,
nh6->ip6_src.be32,
&conn->rev_key.dst.addr.ipv6, true);
}
if (!related) {
pat_packet(pkt, conn);
}
} else if (conn->nat_info->nat_action & NAT_ACTION_DST) {
pkt->md.ct_state |= CS_DST_NAT;
if (conn->key.dl_type == htons(ETH_TYPE_IP)) {
struct ip_header *nh = dp_packet_l3(pkt);
packet_set_ipv4_addr(pkt, &nh->ip_dst,
conn->rev_key.src.addr.ipv4);
} else {
struct ovs_16aligned_ip6_hdr *nh6 = dp_packet_l3(pkt);
packet_set_ipv6_addr(pkt, conn->key.nw_proto,
nh6->ip6_dst.be32,
&conn->rev_key.src.addr.ipv6, true);
}
if (!related) {
pat_packet(pkt, conn);
}
}
}
static void
un_pat_packet(struct dp_packet *pkt, const struct conn *conn)
{
if (conn->nat_info->nat_action & NAT_ACTION_SRC) {
if (conn->key.nw_proto == IPPROTO_TCP) {
struct tcp_header *th = dp_packet_l4(pkt);
packet_set_tcp_port(pkt, th->tcp_src, conn->key.src.port);
} else if (conn->key.nw_proto == IPPROTO_UDP) {
struct udp_header *uh = dp_packet_l4(pkt);
packet_set_udp_port(pkt, uh->udp_src, conn->key.src.port);
}
} else if (conn->nat_info->nat_action & NAT_ACTION_DST) {
if (conn->key.nw_proto == IPPROTO_TCP) {
struct tcp_header *th = dp_packet_l4(pkt);
packet_set_tcp_port(pkt, conn->key.dst.port, th->tcp_dst);
} else if (conn->key.nw_proto == IPPROTO_UDP) {
struct udp_header *uh = dp_packet_l4(pkt);
packet_set_udp_port(pkt, conn->key.dst.port, uh->udp_dst);
}
}
}
static void
reverse_pat_packet(struct dp_packet *pkt, const struct conn *conn)
{
if (conn->nat_info->nat_action & NAT_ACTION_SRC) {
if (conn->key.nw_proto == IPPROTO_TCP) {
struct tcp_header *th_in = dp_packet_l4(pkt);
packet_set_tcp_port(pkt, conn->key.src.port,
th_in->tcp_dst);
} else if (conn->key.nw_proto == IPPROTO_UDP) {
struct udp_header *uh_in = dp_packet_l4(pkt);
packet_set_udp_port(pkt, conn->key.src.port,
uh_in->udp_dst);
}
} else if (conn->nat_info->nat_action & NAT_ACTION_DST) {
if (conn->key.nw_proto == IPPROTO_TCP) {
struct tcp_header *th_in = dp_packet_l4(pkt);
packet_set_tcp_port(pkt, th_in->tcp_src,
conn->key.dst.port);
} else if (conn->key.nw_proto == IPPROTO_UDP) {
struct udp_header *uh_in = dp_packet_l4(pkt);
packet_set_udp_port(pkt, uh_in->udp_src,
conn->key.dst.port);
}
}
}
static void
reverse_nat_packet(struct dp_packet *pkt, const struct conn *conn)
{
char *tail = dp_packet_tail(pkt);
char pad = dp_packet_l2_pad_size(pkt);
struct conn_key inner_key;
const char *inner_l4 = NULL;
uint16_t orig_l3_ofs = pkt->l3_ofs;
uint16_t orig_l4_ofs = pkt->l4_ofs;
if (conn->key.dl_type == htons(ETH_TYPE_IP)) {
struct ip_header *nh = dp_packet_l3(pkt);
struct icmp_header *icmp = dp_packet_l4(pkt);
struct ip_header *inner_l3 = (struct ip_header *) (icmp + 1);
extract_l3_ipv4(&inner_key, inner_l3, tail - ((char *)inner_l3) - pad,
&inner_l4, false);
pkt->l3_ofs += (char *) inner_l3 - (char *) nh;
pkt->l4_ofs += inner_l4 - (char *) icmp;
if (conn->nat_info->nat_action & NAT_ACTION_SRC) {
packet_set_ipv4_addr(pkt, &inner_l3->ip_src,
conn->key.src.addr.ipv4);
} else if (conn->nat_info->nat_action & NAT_ACTION_DST) {
packet_set_ipv4_addr(pkt, &inner_l3->ip_dst,
conn->key.dst.addr.ipv4);
}
reverse_pat_packet(pkt, conn);
icmp->icmp_csum = 0;
icmp->icmp_csum = csum(icmp, tail - (char *) icmp - pad);
} else {
struct ovs_16aligned_ip6_hdr *nh6 = dp_packet_l3(pkt);
struct icmp6_error_header *icmp6 = dp_packet_l4(pkt);
struct ovs_16aligned_ip6_hdr *inner_l3_6 =
(struct ovs_16aligned_ip6_hdr *) (icmp6 + 1);
extract_l3_ipv6(&inner_key, inner_l3_6,
tail - ((char *)inner_l3_6) - pad,
&inner_l4);
pkt->l3_ofs += (char *) inner_l3_6 - (char *) nh6;
pkt->l4_ofs += inner_l4 - (char *) icmp6;
if (conn->nat_info->nat_action & NAT_ACTION_SRC) {
packet_set_ipv6_addr(pkt, conn->key.nw_proto,
inner_l3_6->ip6_src.be32,
&conn->key.src.addr.ipv6, true);
} else if (conn->nat_info->nat_action & NAT_ACTION_DST) {
packet_set_ipv6_addr(pkt, conn->key.nw_proto,
inner_l3_6->ip6_dst.be32,
&conn->key.dst.addr.ipv6, true);
}
reverse_pat_packet(pkt, conn);
icmp6->icmp6_base.icmp6_cksum = 0;
icmp6->icmp6_base.icmp6_cksum = packet_csum_upperlayer6(nh6, icmp6,
IPPROTO_ICMPV6, tail - (char *) icmp6 - pad);
}
pkt->l3_ofs = orig_l3_ofs;
pkt->l4_ofs = orig_l4_ofs;
}
static void
un_nat_packet(struct dp_packet *pkt, const struct conn *conn,
bool related)
{
if (conn->nat_info->nat_action & NAT_ACTION_SRC) {
pkt->md.ct_state |= CS_DST_NAT;
if (conn->key.dl_type == htons(ETH_TYPE_IP)) {
struct ip_header *nh = dp_packet_l3(pkt);
packet_set_ipv4_addr(pkt, &nh->ip_dst,
conn->key.src.addr.ipv4);
} else {
struct ovs_16aligned_ip6_hdr *nh6 = dp_packet_l3(pkt);
packet_set_ipv6_addr(pkt, conn->key.nw_proto,
nh6->ip6_dst.be32,
&conn->key.src.addr.ipv6, true);
}
if (OVS_UNLIKELY(related)) {
reverse_nat_packet(pkt, conn);
} else {
un_pat_packet(pkt, conn);
}
} else if (conn->nat_info->nat_action & NAT_ACTION_DST) {
pkt->md.ct_state |= CS_SRC_NAT;
if (conn->key.dl_type == htons(ETH_TYPE_IP)) {
struct ip_header *nh = dp_packet_l3(pkt);
packet_set_ipv4_addr(pkt, &nh->ip_src,
conn->key.dst.addr.ipv4);
} else {
struct ovs_16aligned_ip6_hdr *nh6 = dp_packet_l3(pkt);
packet_set_ipv6_addr(pkt, conn->key.nw_proto,
nh6->ip6_src.be32,
&conn->key.dst.addr.ipv6, true);
}
if (OVS_UNLIKELY(related)) {
reverse_nat_packet(pkt, conn);
} else {
un_pat_packet(pkt, conn);
}
}
}
/* Typical usage of this helper is in non per-packet code;
* this is because the bucket lock needs to be held for lookup
* and a hash would have already been needed. Hence, this function
* is just intended for code clarity. */
static struct conn *
conn_lookup(struct conntrack *ct, const struct conn_key *key, long long now)
{
struct conn_lookup_ctx ctx;
ctx.conn = NULL;
memcpy(&ctx.key, key, sizeof ctx.key);
ctx.hash = conn_key_hash(key, ct->hash_basis);
unsigned bucket = hash_to_bucket(ctx.hash);
conn_key_lookup(&ct->buckets[bucket], &ctx, now);
return ctx.conn;
}
static void
conn_seq_skew_set(struct conntrack *ct, const struct conn_key *key,
long long now, int seq_skew, bool seq_skew_dir)
{
unsigned bucket = hash_to_bucket(conn_key_hash(key, ct->hash_basis));
ct_lock_lock(&ct->buckets[bucket].lock);
struct conn *conn = conn_lookup(ct, key, now);
if (conn && seq_skew) {
conn->seq_skew = seq_skew;
conn->seq_skew_dir = seq_skew_dir;
}
ct_lock_unlock(&ct->buckets[bucket].lock);
}
static void
nat_clean(struct conntrack *ct, struct conn *conn,
struct conntrack_bucket *ctb)
OVS_REQUIRES(ctb->lock)
{
ct_rwlock_wrlock(&ct->resources_lock);
nat_conn_keys_remove(&ct->nat_conn_keys, &conn->rev_key, ct->hash_basis);
ct_rwlock_unlock(&ct->resources_lock);
ct_lock_unlock(&ctb->lock);
unsigned bucket_rev_conn =
hash_to_bucket(conn_key_hash(&conn->rev_key, ct->hash_basis));
ct_lock_lock(&ct->buckets[bucket_rev_conn].lock);
ct_rwlock_wrlock(&ct->resources_lock);
long long now = time_msec();
struct conn *rev_conn = conn_lookup(ct, &conn->rev_key, now);
struct nat_conn_key_node *nat_conn_key_node =
nat_conn_keys_lookup(&ct->nat_conn_keys, &conn->rev_key,
ct->hash_basis);
/* In the unlikely event, rev conn was recreated, then skip
* rev_conn cleanup. */
if (rev_conn && (!nat_conn_key_node ||
conn_key_cmp(&nat_conn_key_node->value,
&rev_conn->rev_key))) {
hmap_remove(&ct->buckets[bucket_rev_conn].connections,
&rev_conn->node);
free(rev_conn);
}
delete_conn(conn);
ct_rwlock_unlock(&ct->resources_lock);
ct_lock_unlock(&ct->buckets[bucket_rev_conn].lock);
ct_lock_lock(&ctb->lock);
}
/* Must be called with 'CT_CONN_TYPE_DEFAULT' 'conn_type'. */
static void
conn_clean(struct conntrack *ct, struct conn *conn,
struct conntrack_bucket *ctb)
OVS_REQUIRES(ctb->lock)
{
ovs_assert(conn->conn_type == CT_CONN_TYPE_DEFAULT);
if (conn->alg) {
expectation_clean(ct, &conn->key, ct->hash_basis);
}
ovs_list_remove(&conn->exp_node);
hmap_remove(&ctb->connections, &conn->node);
atomic_count_dec(&ct->n_conn);
if (conn->nat_info) {
nat_clean(ct, conn, ctb);
} else {
delete_conn(conn);
}
}
static bool
ct_verify_helper(const char *helper, enum ct_alg_ctl_type ct_alg_ctl)
{
if (ct_alg_ctl == CT_ALG_CTL_NONE) {
return true;
} else if (helper) {
if ((ct_alg_ctl == CT_ALG_CTL_FTP) &&
!strncmp(helper, "ftp", strlen("ftp"))) {
return true;
} else if ((ct_alg_ctl == CT_ALG_CTL_TFTP) &&
!strncmp(helper, "tftp", strlen("tftp"))) {
return true;
} else {
return false;
}
} else {
return false;
}
}
/* This function is called with the bucket lock held. */
static struct conn *
conn_not_found(struct conntrack *ct, struct dp_packet *pkt,
struct conn_lookup_ctx *ctx, bool commit, long long now,
const struct nat_action_info_t *nat_action_info,
struct conn *conn_for_un_nat_copy,
const char *helper,
const struct alg_exp_node *alg_exp,
enum ct_alg_ctl_type ct_alg_ctl)
{
struct conn *nc = NULL;
if (!valid_new(pkt, &ctx->key)) {
pkt->md.ct_state = CS_INVALID;
return nc;
}
pkt->md.ct_state = CS_NEW;
if (alg_exp) {
pkt->md.ct_state |= CS_RELATED;
}
if (commit) {
unsigned int n_conn_limit;
atomic_read_relaxed(&ct->n_conn_limit, &n_conn_limit);
if (atomic_count_get(&ct->n_conn) >= n_conn_limit) {
COVERAGE_INC(conntrack_full);
return nc;
}
unsigned bucket = hash_to_bucket(ctx->hash);
nc = new_conn(&ct->buckets[bucket], pkt, &ctx->key, now);
ctx->conn = nc;
nc->rev_key = nc->key;
conn_key_reverse(&nc->rev_key);
if (ct_verify_helper(helper, ct_alg_ctl)) {
nc->alg = nullable_xstrdup(helper);
}
if (alg_exp) {
nc->alg_related = true;
nc->mark = alg_exp->master_mark;
nc->label = alg_exp->master_label;
nc->master_key = alg_exp->master_key;
}
if (nat_action_info) {
nc->nat_info = xmemdup(nat_action_info, sizeof *nc->nat_info);
if (alg_exp) {
if (alg_exp->nat_rpl_dst) {
nc->rev_key.dst.addr = alg_exp->alg_nat_repl_addr;
nc->nat_info->nat_action = NAT_ACTION_SRC;
} else {
nc->rev_key.src.addr = alg_exp->alg_nat_repl_addr;
nc->nat_info->nat_action = NAT_ACTION_DST;
}
memcpy(conn_for_un_nat_copy, nc, sizeof *conn_for_un_nat_copy);
ct_rwlock_wrlock(&ct->resources_lock);
bool new_insert = nat_conn_keys_insert(&ct->nat_conn_keys,
conn_for_un_nat_copy,
ct->hash_basis);
ct_rwlock_unlock(&ct->resources_lock);
if (!new_insert) {
char *log_msg = xasprintf("Pre-existing alg "
"nat_conn_key");
ct_print_conn_info(conn_for_un_nat_copy, log_msg, VLL_INFO,
true, false);
free(log_msg);
}
} else {
memcpy(conn_for_un_nat_copy, nc, sizeof *conn_for_un_nat_copy);
ct_rwlock_wrlock(&ct->resources_lock);
bool nat_res = nat_select_range_tuple(ct, nc,
conn_for_un_nat_copy);
if (!nat_res) {
goto nat_res_exhaustion;
}
/* Update nc with nat adjustments made to
* conn_for_un_nat_copy by nat_select_range_tuple(). */
*nc = *conn_for_un_nat_copy;
ct_rwlock_unlock(&ct->resources_lock);
}
conn_for_un_nat_copy->conn_type = CT_CONN_TYPE_UN_NAT;
conn_for_un_nat_copy->nat_info = NULL;
conn_for_un_nat_copy->alg = NULL;
nat_packet(pkt, nc, ctx->icmp_related);
}
hmap_insert(&ct->buckets[bucket].connections, &nc->node, ctx->hash);
atomic_count_inc(&ct->n_conn);
}
return nc;
/* This would be a user error or a DOS attack.
* A user error is prevented by allocating enough
* combinations of NAT addresses when combined with
* ephemeral ports. A DOS attack should be protected
* against with firewall rules or a separate firewall.
* Also using zone partitioning can limit DoS impact. */
nat_res_exhaustion:
ovs_list_remove(&nc->exp_node);
delete_conn(nc);
/* conn_for_un_nat_copy is a local variable in process_one; this
* memset() serves to document that conn_for_un_nat_copy is from
* this point on unused. */
memset(conn_for_un_nat_copy, 0, sizeof *conn_for_un_nat_copy);
ct_rwlock_unlock(&ct->resources_lock);
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 5);
VLOG_WARN_RL(&rl, "Unable to NAT due to tuple space exhaustion - "
"if DoS attack, use firewalling and/or zone partitioning.");
return NULL;
}
static bool
conn_update_state(struct conntrack *ct, struct dp_packet *pkt,
struct conn_lookup_ctx *ctx, struct conn **conn,
long long now, unsigned bucket)
OVS_REQUIRES(ct->buckets[bucket].lock)
{
bool create_new_conn = false;
if (ctx->icmp_related) {
pkt->md.ct_state |= CS_RELATED;
if (ctx->reply) {
pkt->md.ct_state |= CS_REPLY_DIR;
}
} else {
if ((*conn)->alg_related) {
pkt->md.ct_state |= CS_RELATED;
}
enum ct_update_res res = conn_update(*conn, &ct->buckets[bucket],
pkt, ctx->reply, now);
switch (res) {
case CT_UPDATE_VALID:
pkt->md.ct_state |= CS_ESTABLISHED;
pkt->md.ct_state &= ~CS_NEW;
if (ctx->reply) {
pkt->md.ct_state |= CS_REPLY_DIR;
}
break;
case CT_UPDATE_INVALID:
pkt->md.ct_state = CS_INVALID;
break;
case CT_UPDATE_NEW:
conn_clean(ct, *conn, &ct->buckets[bucket]);
create_new_conn = true;
break;
default:
OVS_NOT_REACHED();
}
}
return create_new_conn;
}
static void
create_un_nat_conn(struct conntrack *ct, struct conn *conn_for_un_nat_copy,
long long now, bool alg_un_nat)
{
struct conn *nc = xmemdup(conn_for_un_nat_copy, sizeof *nc);
nc->key = conn_for_un_nat_copy->rev_key;
nc->rev_key = conn_for_un_nat_copy->key;
uint32_t un_nat_hash = conn_key_hash(&nc->key, ct->hash_basis);
unsigned un_nat_conn_bucket = hash_to_bucket(un_nat_hash);
ct_lock_lock(&ct->buckets[un_nat_conn_bucket].lock);
struct conn *rev_conn = conn_lookup(ct, &nc->key, now);
if (alg_un_nat) {
if (!rev_conn) {
hmap_insert(&ct->buckets[un_nat_conn_bucket].connections,
&nc->node, un_nat_hash);
} else {
char *log_msg = xasprintf("Unusual condition for un_nat conn "
"create for alg: rev_conn %p", rev_conn);
ct_print_conn_info(nc, log_msg, VLL_INFO, true, false);
free(log_msg);
free(nc);
}
} else {
ct_rwlock_rdlock(&ct->resources_lock);
struct nat_conn_key_node *nat_conn_key_node =
nat_conn_keys_lookup(&ct->nat_conn_keys, &nc->key, ct->hash_basis);
if (nat_conn_key_node && !conn_key_cmp(&nat_conn_key_node->value,
&nc->rev_key) && !rev_conn) {
hmap_insert(&ct->buckets[un_nat_conn_bucket].connections,
&nc->node, un_nat_hash);
} else {
char *log_msg = xasprintf("Unusual condition for un_nat conn "
"create: nat_conn_key_node/rev_conn "
"%p/%p", nat_conn_key_node, rev_conn);
ct_print_conn_info(nc, log_msg, VLL_INFO, true, false);
free(log_msg);
free(nc);
}
ct_rwlock_unlock(&ct->resources_lock);
}
ct_lock_unlock(&ct->buckets[un_nat_conn_bucket].lock);
}
static void
handle_nat(struct dp_packet *pkt, struct conn *conn,
uint16_t zone, bool reply, bool related)
{
if (conn->nat_info &&
(!(pkt->md.ct_state & (CS_SRC_NAT | CS_DST_NAT)) ||
(pkt->md.ct_state & (CS_SRC_NAT | CS_DST_NAT) &&
zone != pkt->md.ct_zone))) {
if (pkt->md.ct_state & (CS_SRC_NAT | CS_DST_NAT)) {
pkt->md.ct_state &= ~(CS_SRC_NAT | CS_DST_NAT);
}
if (reply) {
un_nat_packet(pkt, conn, related);
} else {
nat_packet(pkt, conn, related);
}
}
}
static bool
check_orig_tuple(struct conntrack *ct, struct dp_packet *pkt,
struct conn_lookup_ctx *ctx_in, long long now,
unsigned *bucket, struct conn **conn,
const struct nat_action_info_t *nat_action_info)
OVS_REQUIRES(ct->buckets[*bucket].lock)
{
if ((ctx_in->key.dl_type == htons(ETH_TYPE_IP) &&
!pkt->md.ct_orig_tuple.ipv4.ipv4_proto) ||
(ctx_in->key.dl_type == htons(ETH_TYPE_IPV6) &&
!pkt->md.ct_orig_tuple.ipv6.ipv6_proto) ||
!(pkt->md.ct_state & (CS_SRC_NAT | CS_DST_NAT)) ||
nat_action_info) {
return false;
}
ct_lock_unlock(&ct->buckets[*bucket].lock);
struct conn_lookup_ctx ctx;
memset(&ctx, 0 , sizeof ctx);
ctx.conn = NULL;
if (ctx_in->key.dl_type == htons(ETH_TYPE_IP)) {
ctx.key.src.addr.ipv4 = pkt->md.ct_orig_tuple.ipv4.ipv4_src;
ctx.key.dst.addr.ipv4 = pkt->md.ct_orig_tuple.ipv4.ipv4_dst;
if (ctx_in->key.nw_proto == IPPROTO_ICMP) {
ctx.key.src.icmp_id = ctx_in->key.src.icmp_id;
ctx.key.dst.icmp_id = ctx_in->key.dst.icmp_id;
uint16_t src_port = ntohs(pkt->md.ct_orig_tuple.ipv4.src_port);
ctx.key.src.icmp_type = (uint8_t) src_port;
ctx.key.dst.icmp_type = reverse_icmp_type(ctx.key.src.icmp_type);
} else {
ctx.key.src.port = pkt->md.ct_orig_tuple.ipv4.src_port;
ctx.key.dst.port = pkt->md.ct_orig_tuple.ipv4.dst_port;
}
ctx.key.nw_proto = pkt->md.ct_orig_tuple.ipv4.ipv4_proto;
} else {
ctx.key.src.addr.ipv6 = pkt->md.ct_orig_tuple.ipv6.ipv6_src;
ctx.key.dst.addr.ipv6 = pkt->md.ct_orig_tuple.ipv6.ipv6_dst;
if (ctx_in->key.nw_proto == IPPROTO_ICMPV6) {
ctx.key.src.icmp_id = ctx_in->key.src.icmp_id;
ctx.key.dst.icmp_id = ctx_in->key.dst.icmp_id;
uint16_t src_port = ntohs(pkt->md.ct_orig_tuple.ipv6.src_port);
ctx.key.src.icmp_type = (uint8_t) src_port;
ctx.key.dst.icmp_type = reverse_icmp6_type(ctx.key.src.icmp_type);
} else {
ctx.key.src.port = pkt->md.ct_orig_tuple.ipv6.src_port;
ctx.key.dst.port = pkt->md.ct_orig_tuple.ipv6.dst_port;
}
ctx.key.nw_proto = pkt->md.ct_orig_tuple.ipv6.ipv6_proto;
}
ctx.key.dl_type = ctx_in->key.dl_type;
ctx.key.zone = pkt->md.ct_zone;
ctx.hash = conn_key_hash(&ctx.key, ct->hash_basis);
*bucket = hash_to_bucket(ctx.hash);
ct_lock_lock(&ct->buckets[*bucket].lock);
conn_key_lookup(&ct->buckets[*bucket], &ctx, now);
*conn = ctx.conn;
return *conn ? true : false;
}
static bool
is_un_nat_conn_valid(const struct conn *un_nat_conn)
{
return un_nat_conn->conn_type == CT_CONN_TYPE_UN_NAT;
}
static bool
conn_update_state_alg(struct conntrack *ct, struct dp_packet *pkt,
struct conn_lookup_ctx *ctx, struct conn *conn,
const struct nat_action_info_t *nat_action_info,
enum ct_alg_ctl_type ct_alg_ctl, long long now,
unsigned bucket, bool *create_new_conn)
OVS_REQUIRES(ct->buckets[bucket].lock)
{
if (is_ftp_ctl(ct_alg_ctl)) {
/* Keep sequence tracking in sync with the source of the
* sequence skew. */
if (ctx->reply != conn->seq_skew_dir) {
handle_ftp_ctl(ct, ctx, pkt, conn, now, CT_FTP_CTL_OTHER,
!!nat_action_info);
*create_new_conn = conn_update_state(ct, pkt, ctx, &conn, now,
bucket);
} else {
*create_new_conn = conn_update_state(ct, pkt, ctx, &conn, now,
bucket);
if (*create_new_conn == false) {
handle_ftp_ctl(ct, ctx, pkt, conn, now, CT_FTP_CTL_OTHER,
!!nat_action_info);
}
}
return true;
}
return false;
}
static void
process_one(struct conntrack *ct, struct dp_packet *pkt,
struct conn_lookup_ctx *ctx, uint16_t zone,
bool force, bool commit, long long now, const uint32_t *setmark,
const struct ovs_key_ct_labels *setlabel,
const struct nat_action_info_t *nat_action_info,
ovs_be16 tp_src, ovs_be16 tp_dst, const char *helper)
{
struct conn *conn;
unsigned bucket = hash_to_bucket(ctx->hash);
ct_lock_lock(&ct->buckets[bucket].lock);
conn_key_lookup(&ct->buckets[bucket], ctx, now);
conn = ctx->conn;
/* Delete found entry if in wrong direction. 'force' implies commit. */
if (conn && force && ctx->reply) {
conn_clean(ct, conn, &ct->buckets[bucket]);
conn = NULL;
}
if (OVS_LIKELY(conn)) {
if (conn->conn_type == CT_CONN_TYPE_UN_NAT) {
ctx->reply = true;
struct conn_lookup_ctx ctx2;
ctx2.conn = NULL;
ctx2.key = conn->rev_key;
ctx2.hash = conn_key_hash(&conn->rev_key, ct->hash_basis);
ct_lock_unlock(&ct->buckets[bucket].lock);
bucket = hash_to_bucket(ctx2.hash);
ct_lock_lock(&ct->buckets[bucket].lock);
conn_key_lookup(&ct->buckets[bucket], &ctx2, now);
if (ctx2.conn) {
conn = ctx2.conn;
} else {
/* It is a race condition where conn has timed out and removed
* between unlock of the rev_conn and lock of the forward conn;
* nothing to do. */
pkt->md.ct_state |= CS_TRACKED | CS_INVALID;
ct_lock_unlock(&ct->buckets[bucket].lock);
return;
}
}
}
bool create_new_conn = false;
struct conn conn_for_un_nat_copy;
conn_for_un_nat_copy.conn_type = CT_CONN_TYPE_DEFAULT;
enum ct_alg_ctl_type ct_alg_ctl = get_alg_ctl_type(pkt, tp_src, tp_dst,
helper);
if (OVS_LIKELY(conn)) {
if (OVS_LIKELY(!conn_update_state_alg(ct, pkt, ctx, conn,
nat_action_info,
ct_alg_ctl, now, bucket,
&create_new_conn))) {
create_new_conn = conn_update_state(ct, pkt, ctx, &conn, now,
bucket);
}
if (nat_action_info && !create_new_conn) {
handle_nat(pkt, conn, zone, ctx->reply, ctx->icmp_related);
}
} else if (check_orig_tuple(ct, pkt, ctx, now, &bucket, &conn,
nat_action_info)) {
create_new_conn = conn_update_state(ct, pkt, ctx, &conn, now, bucket);
} else {
if (ctx->icmp_related) {
/* An icmp related conn should always be found; no new
connection is created based on an icmp related packet. */
pkt->md.ct_state = CS_INVALID;
} else {
create_new_conn = true;
}
}
const struct alg_exp_node *alg_exp = NULL;
struct alg_exp_node alg_exp_entry;
if (OVS_UNLIKELY(create_new_conn)) {
ct_rwlock_rdlock(&ct->resources_lock);
alg_exp = expectation_lookup(&ct->alg_expectations, &ctx->key,
ct->hash_basis,
alg_src_ip_wc(ct_alg_ctl));
if (alg_exp) {
memcpy(&alg_exp_entry, alg_exp, sizeof alg_exp_entry);
alg_exp = &alg_exp_entry;
}
ct_rwlock_unlock(&ct->resources_lock);
conn = conn_not_found(ct, pkt, ctx, commit, now, nat_action_info,
&conn_for_un_nat_copy, helper, alg_exp,
ct_alg_ctl);
}
write_ct_md(pkt, zone, conn, &ctx->key, alg_exp);
if (conn && setmark) {
set_mark(pkt, conn, setmark[0], setmark[1]);
}
if (conn && setlabel) {
set_label(pkt, conn, &setlabel[0], &setlabel[1]);
}
struct conn conn_for_expectation;
if (OVS_UNLIKELY((ct_alg_ctl != CT_ALG_CTL_NONE) && conn)) {
conn_for_expectation = *conn;
}
ct_lock_unlock(&ct->buckets[bucket].lock);
if (is_un_nat_conn_valid(&conn_for_un_nat_copy)) {
create_un_nat_conn(ct, &conn_for_un_nat_copy, now, !!alg_exp);
}
handle_alg_ctl(ct, ctx, pkt, ct_alg_ctl, conn, now, !!nat_action_info,
&conn_for_expectation);
}
/* Sends the packets in '*pkt_batch' through the connection tracker 'ct'. All
* the packets must have the same 'dl_type' (IPv4 or IPv6) and should have
* the l3 and and l4 offset properly set. Performs fragment reassembly with
* the help of ipf_preprocess_conntrack().
*
* If 'commit' is true, the packets are allowed to create new entries in the
* connection tables. 'setmark', if not NULL, should point to a two
* elements array containing a value and a mask to set the connection mark.
* 'setlabel' behaves similarly for the connection label.*/
int
conntrack_execute(struct conntrack *ct, struct dp_packet_batch *pkt_batch,
ovs_be16 dl_type, bool force, bool commit, uint16_t zone,
const uint32_t *setmark,
const struct ovs_key_ct_labels *setlabel,
ovs_be16 tp_src, ovs_be16 tp_dst, const char *helper,
const struct nat_action_info_t *nat_action_info,
long long now)
{
ipf_preprocess_conntrack(ct->ipf, pkt_batch, now, dl_type, zone,
ct->hash_basis);
struct dp_packet *packet;
struct conn_lookup_ctx ctx;
DP_PACKET_BATCH_FOR_EACH (i, packet, pkt_batch) {
if (packet->md.ct_state == CS_INVALID
|| !conn_key_extract(ct, packet, dl_type, &ctx, zone)) {
packet->md.ct_state = CS_INVALID;
write_ct_md(packet, zone, NULL, NULL, NULL);
continue;
}
process_one(ct, packet, &ctx, zone, force, commit, now, setmark,
setlabel, nat_action_info, tp_src, tp_dst, helper);
}
ipf_postprocess_conntrack(ct->ipf, pkt_batch, now, dl_type);
return 0;
}
void
conntrack_clear(struct dp_packet *packet)
{
/* According to pkt_metadata_init(), ct_state == 0 is enough to make all of
* the conntrack fields invalid. */
packet->md.ct_state = 0;
}
static void
set_mark(struct dp_packet *pkt, struct conn *conn, uint32_t val, uint32_t mask)
{
if (conn->alg_related) {
pkt->md.ct_mark = conn->mark;
} else {
pkt->md.ct_mark = val | (pkt->md.ct_mark & ~(mask));
conn->mark = pkt->md.ct_mark;
}
}
static void
set_label(struct dp_packet *pkt, struct conn *conn,
const struct ovs_key_ct_labels *val,
const struct ovs_key_ct_labels *mask)
{
if (conn->alg_related) {
pkt->md.ct_label = conn->label;
} else {
ovs_u128 v, m;
memcpy(&v, val, sizeof v);
memcpy(&m, mask, sizeof m);
pkt->md.ct_label.u64.lo = v.u64.lo
| (pkt->md.ct_label.u64.lo & ~(m.u64.lo));
pkt->md.ct_label.u64.hi = v.u64.hi
| (pkt->md.ct_label.u64.hi & ~(m.u64.hi));
conn->label = pkt->md.ct_label;
}
}
/* Delete the expired connections from 'ctb', up to 'limit'. Returns the
* earliest expiration time among the remaining connections in 'ctb'. Returns
* LLONG_MAX if 'ctb' is empty. The return value might be smaller than 'now',
* if 'limit' is reached */
static long long
sweep_bucket(struct conntrack *ct, struct conntrack_bucket *ctb,
long long now, size_t limit)
OVS_REQUIRES(ctb->lock)
{
struct conn *conn, *next;
long long min_expiration = LLONG_MAX;
size_t count = 0;
for (unsigned i = 0; i < N_CT_TM; i++) {
LIST_FOR_EACH_SAFE (conn, next, exp_node, &ctb->exp_lists[i]) {
if (conn->conn_type == CT_CONN_TYPE_DEFAULT) {
if (!conn_expired(conn, now) || count >= limit) {
min_expiration = MIN(min_expiration, conn->expiration);
if (count >= limit) {
/* Do not check other lists. */
COVERAGE_INC(conntrack_long_cleanup);
return min_expiration;
}
break;
}
conn_clean(ct, conn, ctb);
count++;
}
}
}
return min_expiration;
}
/* Cleans up old connection entries from 'ct'. Returns the time when the
* next expiration might happen. The return value might be smaller than
* 'now', meaning that an internal limit has been reached, and some expired
* connections have not been deleted. */
static long long
conntrack_clean(struct conntrack *ct, long long now)
{
long long next_wakeup = now + CT_TM_MIN;
unsigned int n_conn_limit;
size_t clean_count = 0;
atomic_read_relaxed(&ct->n_conn_limit, &n_conn_limit);
for (unsigned i = 0; i < CONNTRACK_BUCKETS; i++) {
struct conntrack_bucket *ctb = &ct->buckets[i];
size_t prev_count;
long long min_exp;
ovs_mutex_lock(&ctb->cleanup_mutex);
if (ctb->next_cleanup > now) {
goto next_bucket;
}
ct_lock_lock(&ctb->lock);
prev_count = hmap_count(&ctb->connections);
/* If the connections are well distributed among buckets, we want to
* limit to 10% of the global limit equally split among buckets. If
* the bucket is busier than the others, we limit to 10% of its
* current size. */
min_exp = sweep_bucket(ct, ctb, now,
MAX(prev_count/10, n_conn_limit/(CONNTRACK_BUCKETS*10)));
clean_count += prev_count - hmap_count(&ctb->connections);
if (min_exp > now) {
/* We call hmap_shrink() only if sweep_bucket() managed to delete
* every expired connection. */
hmap_shrink(&ctb->connections);
}
ct_lock_unlock(&ctb->lock);
ctb->next_cleanup = MIN(min_exp, now + CT_TM_MIN);
next_bucket:
next_wakeup = MIN(next_wakeup, ctb->next_cleanup);
ovs_mutex_unlock(&ctb->cleanup_mutex);
}
VLOG_DBG("conntrack cleanup %"PRIuSIZE" entries in %lld msec",
clean_count, time_msec() - now);
return next_wakeup;
}
/* Cleanup:
*
* We must call conntrack_clean() periodically. conntrack_clean() return
* value gives an hint on when the next cleanup must be done (either because
* there is an actual connection that expires, or because a new connection
* might be created with the minimum timeout).
*
* The logic below has two goals:
*
* - We want to reduce the number of wakeups and batch connection cleanup
* when the load is not very high. CT_CLEAN_INTERVAL ensures that if we
* are coping with the current cleanup tasks, then we wait at least
* 5 seconds to do further cleanup.
*
* - We don't want to keep the buckets locked too long, as we might prevent
* traffic from flowing. CT_CLEAN_MIN_INTERVAL ensures that if cleanup is
* behind, there is at least some 200ms blocks of time when buckets will be
* left alone, so the datapath can operate unhindered.
*/
#define CT_CLEAN_INTERVAL 5000 /* 5 seconds */
#define CT_CLEAN_MIN_INTERVAL 200 /* 0.2 seconds */
static void *
clean_thread_main(void *f_)
{
struct conntrack *ct = f_;
while (!latch_is_set(&ct->clean_thread_exit)) {
long long next_wake;
long long now = time_msec();
next_wake = conntrack_clean(ct, now);
if (next_wake < now) {
poll_timer_wait_until(now + CT_CLEAN_MIN_INTERVAL);
} else {
poll_timer_wait_until(MAX(next_wake, now + CT_CLEAN_INTERVAL));
}
latch_wait(&ct->clean_thread_exit);
poll_block();
}
return NULL;
}
/* 'Data' is a pointer to the beginning of the L3 header and 'new_data' is
* used to store a pointer to the first byte after the L3 header. 'Size' is
* the size of the packet beyond the data pointer. */
static inline bool
extract_l3_ipv4(struct conn_key *key, const void *data, size_t size,
const char **new_data, bool validate_checksum)
{
if (OVS_UNLIKELY(size < IP_HEADER_LEN)) {
return false;
}
const struct ip_header *ip = data;
size_t ip_len = IP_IHL(ip->ip_ihl_ver) * 4;
if (OVS_UNLIKELY(ip_len < IP_HEADER_LEN)) {
return false;
}
if (OVS_UNLIKELY(size < ip_len)) {
return false;
}
if (IP_IS_FRAGMENT(ip->ip_frag_off)) {
return false;
}
if (validate_checksum && csum(data, ip_len) != 0) {
return false;
}
if (new_data) {
*new_data = (char *) data + ip_len;
}
key->src.addr.ipv4 = get_16aligned_be32(&ip->ip_src);
key->dst.addr.ipv4 = get_16aligned_be32(&ip->ip_dst);
key->nw_proto = ip->ip_proto;
return true;
}
/* 'Data' is a pointer to the beginning of the L3 header and 'new_data' is
* used to store a pointer to the first byte after the L3 header. 'Size' is
* the size of the packet beyond the data pointer. */
static inline bool
extract_l3_ipv6(struct conn_key *key, const void *data, size_t size,
const char **new_data)
{
const struct ovs_16aligned_ip6_hdr *ip6 = data;
if (OVS_UNLIKELY(size < sizeof *ip6)) {
return false;
}
data = ip6 + 1;
size -= sizeof *ip6;
uint8_t nw_proto = ip6->ip6_nxt;
uint8_t nw_frag = 0;
const struct ovs_16aligned_ip6_frag *frag_hdr;
if (!parse_ipv6_ext_hdrs(&data, &size, &nw_proto, &nw_frag, &frag_hdr)) {
return false;
}
if (nw_frag) {
return false;
}
if (new_data) {
*new_data = data;
}
memcpy(&key->src.addr.ipv6, &ip6->ip6_src, sizeof key->src.addr);
memcpy(&key->dst.addr.ipv6, &ip6->ip6_dst, sizeof key->dst.addr);
key->nw_proto = nw_proto;
return true;
}
static inline bool
checksum_valid(const struct conn_key *key, const void *data, size_t size,
const void *l3)
{
if (key->dl_type == htons(ETH_TYPE_IP)) {
uint32_t csum = packet_csum_pseudoheader(l3);
return csum_finish(csum_continue(csum, data, size)) == 0;
} else if (key->dl_type == htons(ETH_TYPE_IPV6)) {
return packet_csum_upperlayer6(l3, data, key->nw_proto, size) == 0;
} else {
return false;
}
}
static inline bool
check_l4_tcp(const struct conn_key *key, const void *data, size_t size,
const void *l3, bool validate_checksum)
{
const struct tcp_header *tcp = data;
if (size < sizeof *tcp) {
return false;
}
size_t tcp_len = TCP_OFFSET(tcp->tcp_ctl) * 4;
if (OVS_UNLIKELY(tcp_len < TCP_HEADER_LEN || tcp_len > size)) {
return false;
}
return validate_checksum ? checksum_valid(key, data, size, l3) : true;
}
static inline bool
check_l4_udp(const struct conn_key *key, const void *data, size_t size,
const void *l3, bool validate_checksum)
{
const struct udp_header *udp = data;
if (size < sizeof *udp) {
return false;
}
size_t udp_len = ntohs(udp->udp_len);
if (OVS_UNLIKELY(udp_len < UDP_HEADER_LEN || udp_len > size)) {
return false;
}
/* Validation must be skipped if checksum is 0 on IPv4 packets */
return (udp->udp_csum == 0 && key->dl_type == htons(ETH_TYPE_IP))
|| (validate_checksum ? checksum_valid(key, data, size, l3) : true);
}
static inline bool
check_l4_icmp(const void *data, size_t size, bool validate_checksum)
{
return validate_checksum ? csum(data, size) == 0 : true;
}
static inline bool
check_l4_icmp6(const struct conn_key *key, const void *data, size_t size,
const void *l3, bool validate_checksum)
{
return validate_checksum ? checksum_valid(key, data, size, l3) : true;
}
static inline bool
extract_l4_tcp(struct conn_key *key, const void *data, size_t size)
{
if (OVS_UNLIKELY(size < TCP_HEADER_LEN)) {
return false;
}
const struct tcp_header *tcp = data;
key->src.port = tcp->tcp_src;
key->dst.port = tcp->tcp_dst;
/* Port 0 is invalid */
return key->src.port && key->dst.port;
}
static inline bool
extract_l4_udp(struct conn_key *key, const void *data, size_t size)
{
if (OVS_UNLIKELY(size < UDP_HEADER_LEN)) {
return false;
}
const struct udp_header *udp = data;
key->src.port = udp->udp_src;
key->dst.port = udp->udp_dst;
/* Port 0 is invalid */
return key->src.port && key->dst.port;
}
static inline bool extract_l4(struct conn_key *key, const void *data,
size_t size, bool *related, const void *l3,
bool validate_checksum);
static uint8_t
reverse_icmp_type(uint8_t type)
{
switch (type) {
case ICMP4_ECHO_REQUEST:
return ICMP4_ECHO_REPLY;
case ICMP4_ECHO_REPLY:
return ICMP4_ECHO_REQUEST;
case ICMP4_TIMESTAMP:
return ICMP4_TIMESTAMPREPLY;
case ICMP4_TIMESTAMPREPLY:
return ICMP4_TIMESTAMP;
case ICMP4_INFOREQUEST:
return ICMP4_INFOREPLY;
case ICMP4_INFOREPLY:
return ICMP4_INFOREQUEST;
default:
OVS_NOT_REACHED();
}
}
/* If 'related' is not NULL and the function is processing an ICMP
* error packet, extract the l3 and l4 fields from the nested header
* instead and set *related to true. If 'related' is NULL we're
* already processing a nested header and no such recursion is
* possible */
static inline int
extract_l4_icmp(struct conn_key *key, const void *data, size_t size,
bool *related)
{
if (OVS_UNLIKELY(size < ICMP_HEADER_LEN)) {
return false;
}
const struct icmp_header *icmp = data;
switch (icmp->icmp_type) {
case ICMP4_ECHO_REQUEST:
case ICMP4_ECHO_REPLY:
case ICMP4_TIMESTAMP:
case ICMP4_TIMESTAMPREPLY:
case ICMP4_INFOREQUEST:
case ICMP4_INFOREPLY:
if (icmp->icmp_code != 0) {
return false;
}
/* Separate ICMP connection: identified using id */
key->src.icmp_id = key->dst.icmp_id = icmp->icmp_fields.echo.id;
key->src.icmp_type = icmp->icmp_type;
key->dst.icmp_type = reverse_icmp_type(icmp->icmp_type);
break;
case ICMP4_DST_UNREACH:
case ICMP4_TIME_EXCEEDED:
case ICMP4_PARAM_PROB:
case ICMP4_SOURCEQUENCH:
case ICMP4_REDIRECT: {
/* ICMP packet part of another connection. We should
* extract the key from embedded packet header */
struct conn_key inner_key;
const char *l3 = (const char *) (icmp + 1);
const char *tail = (const char *) data + size;
const char *l4;
if (!related) {
return false;
}
memset(&inner_key, 0, sizeof inner_key);
inner_key.dl_type = htons(ETH_TYPE_IP);
bool ok = extract_l3_ipv4(&inner_key, l3, tail - l3, &l4, false);
if (!ok) {
return false;
}
if (inner_key.src.addr.ipv4 != key->dst.addr.ipv4) {
return false;
}
key->src = inner_key.src;
key->dst = inner_key.dst;
key->nw_proto = inner_key.nw_proto;
ok = extract_l4(key, l4, tail - l4, NULL, l3, false);
if (ok) {
conn_key_reverse(key);
*related = true;
}
return ok;
}
default:
return false;
}
return true;
}
static uint8_t
reverse_icmp6_type(uint8_t type)
{
switch (type) {
case ICMP6_ECHO_REQUEST:
return ICMP6_ECHO_REPLY;
case ICMP6_ECHO_REPLY:
return ICMP6_ECHO_REQUEST;
default:
OVS_NOT_REACHED();
}
}
/* If 'related' is not NULL and the function is processing an ICMP
* error packet, extract the l3 and l4 fields from the nested header
* instead and set *related to true. If 'related' is NULL we're
* already processing a nested header and no such recursion is
* possible */
static inline bool
extract_l4_icmp6(struct conn_key *key, const void *data, size_t size,
bool *related)
{
const struct icmp6_header *icmp6 = data;
/* All the messages that we support need at least 4 bytes after
* the header */
if (size < sizeof *icmp6 + 4) {
return false;
}
switch (icmp6->icmp6_type) {
case ICMP6_ECHO_REQUEST:
case ICMP6_ECHO_REPLY:
if (icmp6->icmp6_code != 0) {
return false;
}
/* Separate ICMP connection: identified using id */
key->src.icmp_id = key->dst.icmp_id = *(ovs_be16 *) (icmp6 + 1);
key->src.icmp_type = icmp6->icmp6_type;
key->dst.icmp_type = reverse_icmp6_type(icmp6->icmp6_type);
break;
case ICMP6_DST_UNREACH:
case ICMP6_PACKET_TOO_BIG:
case ICMP6_TIME_EXCEEDED:
case ICMP6_PARAM_PROB: {
/* ICMP packet part of another connection. We should
* extract the key from embedded packet header */
struct conn_key inner_key;
const char *l3 = (const char *) icmp6 + 8;
const char *tail = (const char *) data + size;
const char *l4 = NULL;
if (!related) {
return false;
}
memset(&inner_key, 0, sizeof inner_key);
inner_key.dl_type = htons(ETH_TYPE_IPV6);
bool ok = extract_l3_ipv6(&inner_key, l3, tail - l3, &l4);
if (!ok) {
return false;
}
/* pf doesn't do this, but it seems a good idea */
if (!ipv6_addr_equals(&inner_key.src.addr.ipv6,
&key->dst.addr.ipv6)) {
return false;
}
key->src = inner_key.src;
key->dst = inner_key.dst;
key->nw_proto = inner_key.nw_proto;
ok = extract_l4(key, l4, tail - l4, NULL, l3, false);
if (ok) {
conn_key_reverse(key);
*related = true;
}
return ok;
}
default:
return false;
}
return true;
}
/* Extract l4 fields into 'key', which must already contain valid l3
* members.
*
* If 'related' is not NULL and an ICMP error packet is being
* processed, the function will extract the key from the packet nested
* in the ICMP payload and set '*related' to true.
*
* 'size' here is the layer 4 size, which can be a nested size if parsing
* an ICMP or ICMP6 header.
*
* If 'related' is NULL, it means that we're already parsing a header nested
* in an ICMP error. In this case, we skip checksum and length validation. */
static inline bool
extract_l4(struct conn_key *key, const void *data, size_t size, bool *related,
const void *l3, bool validate_checksum)
{
if (key->nw_proto == IPPROTO_TCP) {
return (!related || check_l4_tcp(key, data, size, l3,
validate_checksum)) && extract_l4_tcp(key, data, size);
} else if (key->nw_proto == IPPROTO_UDP) {
return (!related || check_l4_udp(key, data, size, l3,
validate_checksum)) && extract_l4_udp(key, data, size);
} else if (key->dl_type == htons(ETH_TYPE_IP)
&& key->nw_proto == IPPROTO_ICMP) {
return (!related || check_l4_icmp(data, size, validate_checksum))
&& extract_l4_icmp(key, data, size, related);
} else if (key->dl_type == htons(ETH_TYPE_IPV6)
&& key->nw_proto == IPPROTO_ICMPV6) {
return (!related || check_l4_icmp6(key, data, size, l3,
validate_checksum)) && extract_l4_icmp6(key, data, size,
related);
} else {
return false;
}
}
static bool
conn_key_extract(struct conntrack *ct, struct dp_packet *pkt, ovs_be16 dl_type,
struct conn_lookup_ctx *ctx, uint16_t zone)
{
const struct eth_header *l2 = dp_packet_eth(pkt);
const struct ip_header *l3 = dp_packet_l3(pkt);
const char *l4 = dp_packet_l4(pkt);
memset(ctx, 0, sizeof *ctx);
if (!l2 || !l3 || !l4) {
return false;
}
ctx->key.zone = zone;
/* XXX In this function we parse the packet (again, it has already
* gone through miniflow_extract()) for two reasons:
*
* 1) To extract the l3 addresses and l4 ports.
* We already have the l3 and l4 headers' pointers. Extracting
* the l3 addresses and the l4 ports is really cheap, since they
* can be found at fixed locations.
* 2) To extract the l4 type.
* Extracting the l4 types, for IPv6 can be quite expensive, because
* it's not at a fixed location.
*
* Here's a way to avoid (2) with the help of the datapath.
* The datapath doesn't keep the packet's extracted flow[1], so
* using that is not an option. We could use the packet's matching
* megaflow, but we have to make sure that the l4 type (nw_proto)
* is unwildcarded. This means either:
*
* a) dpif-netdev unwildcards the l4 type when a new flow is installed
* if the actions contains ct().
*
* b) ofproto-dpif-xlate unwildcards the l4 type when translating a ct()
* action. This is already done in different actions, but it's
* unnecessary for the kernel.
*
* ---
* [1] The reasons for this are that keeping the flow increases
* (slightly) the cache footprint and increases computation
* time as we move the packet around. Most importantly, the flow
* should be updated by the actions and this can be slow, as
* we use a sparse representation (miniflow).
*
*/
bool ok;
ctx->key.dl_type = dl_type;
if (ctx->key.dl_type == htons(ETH_TYPE_IP)) {
bool hwol_bad_l3_csum = dp_packet_ip_checksum_bad(pkt);
if (hwol_bad_l3_csum) {
ok = false;
} else {
bool hwol_good_l3_csum = dp_packet_ip_checksum_valid(pkt);
/* Validate the checksum only when hwol is not supported. */
ok = extract_l3_ipv4(&ctx->key, l3, dp_packet_l3_size(pkt), NULL,
!hwol_good_l3_csum);
}
} else if (ctx->key.dl_type == htons(ETH_TYPE_IPV6)) {
ok = extract_l3_ipv6(&ctx->key, l3, dp_packet_l3_size(pkt), NULL);
} else {
ok = false;
}
if (ok) {
bool hwol_bad_l4_csum = dp_packet_l4_checksum_bad(pkt);
if (!hwol_bad_l4_csum) {
bool hwol_good_l4_csum = dp_packet_l4_checksum_valid(pkt);
/* Validate the checksum only when hwol is not supported. */
if (extract_l4(&ctx->key, l4, dp_packet_l4_size(pkt),
&ctx->icmp_related, l3, !hwol_good_l4_csum)) {
ctx->hash = conn_key_hash(&ctx->key, ct->hash_basis);
return true;
}
}
}
return false;
}
static uint32_t
ct_addr_hash_add(uint32_t hash, const union ct_addr *addr)
{
BUILD_ASSERT_DECL(sizeof *addr % 4 == 0);
return hash_add_bytes32(hash, (const uint32_t *) addr, sizeof *addr);
}
static uint32_t
ct_endpoint_hash_add(uint32_t hash, const struct ct_endpoint *ep)
{
BUILD_ASSERT_DECL(sizeof *ep % 4 == 0);
return hash_add_bytes32(hash, (const uint32_t *) ep, sizeof *ep);
}
/* Symmetric */
static uint32_t
conn_key_hash(const struct conn_key *key, uint32_t basis)
{
uint32_t hsrc, hdst, hash;
hsrc = hdst = basis;
hsrc = ct_endpoint_hash_add(hsrc, &key->src);
hdst = ct_endpoint_hash_add(hdst, &key->dst);
/* Even if source and destination are swapped the hash will be the same. */
hash = hsrc ^ hdst;
/* Hash the rest of the key(L3 and L4 types and zone). */
return hash_words((uint32_t *) (&key->dst + 1),
(uint32_t *) (key + 1) - (uint32_t *) (&key->dst + 1),
hash);
}
static void
conn_key_reverse(struct conn_key *key)
{
struct ct_endpoint tmp = key->src;
key->src = key->dst;
key->dst = tmp;
}
static uint32_t
nat_ipv6_addrs_delta(struct in6_addr *ipv6_min, struct in6_addr *ipv6_max)
{
uint8_t *ipv6_min_hi = &ipv6_min->s6_addr[0];
uint8_t *ipv6_min_lo = &ipv6_min->s6_addr[0] + sizeof(uint64_t);
uint8_t *ipv6_max_hi = &ipv6_max->s6_addr[0];
uint8_t *ipv6_max_lo = &ipv6_max->s6_addr[0] + sizeof(uint64_t);
ovs_be64 addr6_64_min_hi;
ovs_be64 addr6_64_min_lo;
memcpy(&addr6_64_min_hi, ipv6_min_hi, sizeof addr6_64_min_hi);
memcpy(&addr6_64_min_lo, ipv6_min_lo, sizeof addr6_64_min_lo);
ovs_be64 addr6_64_max_hi;
ovs_be64 addr6_64_max_lo;
memcpy(&addr6_64_max_hi, ipv6_max_hi, sizeof addr6_64_max_hi);
memcpy(&addr6_64_max_lo, ipv6_max_lo, sizeof addr6_64_max_lo);
uint64_t diff;
if (addr6_64_min_hi == addr6_64_max_hi &&
ntohll(addr6_64_min_lo) <= ntohll(addr6_64_max_lo)) {
diff = ntohll(addr6_64_max_lo) - ntohll(addr6_64_min_lo);
} else if (ntohll(addr6_64_min_hi) + 1 == ntohll(addr6_64_max_hi) &&
ntohll(addr6_64_min_lo) > ntohll(addr6_64_max_lo)) {
diff = UINT64_MAX - (ntohll(addr6_64_min_lo) -
ntohll(addr6_64_max_lo) - 1);
} else {
/* Limit address delta supported to 32 bits or 4 billion approximately.
* Possibly, this should be visible to the user through a datapath
* support check, however the practical impact is probably nil. */
diff = 0xfffffffe;
}
if (diff > 0xfffffffe) {
diff = 0xfffffffe;
}
return diff;
}
/* This function must be used in tandem with nat_ipv6_addrs_delta(), which
* restricts the input parameters. */
static void
nat_ipv6_addr_increment(struct in6_addr *ipv6, uint32_t increment)
{
uint8_t *ipv6_hi = &ipv6->s6_addr[0];
uint8_t *ipv6_lo = &ipv6->s6_addr[0] + sizeof(ovs_be64);
ovs_be64 addr6_64_hi;
ovs_be64 addr6_64_lo;
memcpy(&addr6_64_hi, ipv6_hi, sizeof addr6_64_hi);
memcpy(&addr6_64_lo, ipv6_lo, sizeof addr6_64_lo);
if (UINT64_MAX - increment >= ntohll(addr6_64_lo)) {
addr6_64_lo = htonll(increment + ntohll(addr6_64_lo));
} else if (addr6_64_hi != OVS_BE64_MAX) {
addr6_64_hi = htonll(1 + ntohll(addr6_64_hi));
addr6_64_lo = htonll(increment - (UINT64_MAX -
ntohll(addr6_64_lo) + 1));
} else {
OVS_NOT_REACHED();
}
memcpy(ipv6_hi, &addr6_64_hi, sizeof addr6_64_hi);
memcpy(ipv6_lo, &addr6_64_lo, sizeof addr6_64_lo);
}
static uint32_t
nat_range_hash(const struct conn *conn, uint32_t basis)
{
uint32_t hash = basis;
hash = ct_addr_hash_add(hash, &conn->nat_info->min_addr);
hash = ct_addr_hash_add(hash, &conn->nat_info->max_addr);
hash = hash_add(hash,
(conn->nat_info->max_port << 16)
| conn->nat_info->min_port);
hash = ct_endpoint_hash_add(hash, &conn->key.src);
hash = ct_endpoint_hash_add(hash, &conn->key.dst);
hash = hash_add(hash, (OVS_FORCE uint32_t) conn->key.dl_type);
hash = hash_add(hash, conn->key.nw_proto);
hash = hash_add(hash, conn->key.zone);
/* The purpose of the second parameter is to distinguish hashes of data of
* different length; our data always has the same length so there is no
* value in counting. */
return hash_finish(hash, 0);
}
static bool
nat_select_range_tuple(struct conntrack *ct, const struct conn *conn,
struct conn *nat_conn)
{
enum { MIN_NAT_EPHEMERAL_PORT = 1024,
MAX_NAT_EPHEMERAL_PORT = 65535 };
uint16_t min_port;
uint16_t max_port;
uint16_t first_port;
uint32_t hash = nat_range_hash(conn, ct->hash_basis);
if ((conn->nat_info->nat_action & NAT_ACTION_SRC) &&
(!(conn->nat_info->nat_action & NAT_ACTION_SRC_PORT))) {
min_port = ntohs(conn->key.src.port);
max_port = ntohs(conn->key.src.port);
first_port = min_port;
} else if ((conn->nat_info->nat_action & NAT_ACTION_DST) &&
(!(conn->nat_info->nat_action & NAT_ACTION_DST_PORT))) {
min_port = ntohs(conn->key.dst.port);
max_port = ntohs(conn->key.dst.port);
first_port = min_port;
} else {
uint16_t deltap = conn->nat_info->max_port - conn->nat_info->min_port;
uint32_t port_index = hash % (deltap + 1);
first_port = conn->nat_info->min_port + port_index;
min_port = conn->nat_info->min_port;
max_port = conn->nat_info->max_port;
}
uint32_t deltaa = 0;
uint32_t address_index;
union ct_addr ct_addr;
memset(&ct_addr, 0, sizeof ct_addr);
union ct_addr max_ct_addr;
memset(&max_ct_addr, 0, sizeof max_ct_addr);
max_ct_addr = conn->nat_info->max_addr;
if (conn->key.dl_type == htons(ETH_TYPE_IP)) {
deltaa = ntohl(conn->nat_info->max_addr.ipv4) -
ntohl(conn->nat_info->min_addr.ipv4);
address_index = hash % (deltaa + 1);
ct_addr.ipv4 = htonl(
ntohl(conn->nat_info->min_addr.ipv4) + address_index);
} else {
deltaa = nat_ipv6_addrs_delta(&conn->nat_info->min_addr.ipv6,
&conn->nat_info->max_addr.ipv6);
/* deltaa must be within 32 bits for full hash coverage. A 64 or
* 128 bit hash is unnecessary and hence not used here. Most code
* is kept common with V4; nat_ipv6_addrs_delta() will do the
* enforcement via max_ct_addr. */
max_ct_addr = conn->nat_info->min_addr;
nat_ipv6_addr_increment(&max_ct_addr.ipv6, deltaa);
address_index = hash % (deltaa + 1);
ct_addr.ipv6 = conn->nat_info->min_addr.ipv6;
nat_ipv6_addr_increment(&ct_addr.ipv6, address_index);
}
uint16_t port = first_port;
bool all_ports_tried = false;
/* For DNAT, we don't use ephemeral ports. */
bool ephemeral_ports_tried = conn->nat_info->nat_action & NAT_ACTION_DST
? true : false;
union ct_addr first_addr = ct_addr;
while (true) {
if (conn->nat_info->nat_action & NAT_ACTION_SRC) {
nat_conn->rev_key.dst.addr = ct_addr;
} else {
nat_conn->rev_key.src.addr = ct_addr;
}
if ((conn->key.nw_proto == IPPROTO_ICMP) ||
(conn->key.nw_proto == IPPROTO_ICMPV6)) {
all_ports_tried = true;
} else if (conn->nat_info->nat_action & NAT_ACTION_SRC) {
nat_conn->rev_key.dst.port = htons(port);
} else {
nat_conn->rev_key.src.port = htons(port);
}
bool new_insert = nat_conn_keys_insert(&ct->nat_conn_keys, nat_conn,
ct->hash_basis);
if (new_insert) {
return true;
} else if (!all_ports_tried) {
if (min_port == max_port) {
all_ports_tried = true;
} else if (port == max_port) {
port = min_port;
} else {
port++;
}
if (port == first_port) {
all_ports_tried = true;
}
} else {
if (memcmp(&ct_addr, &max_ct_addr, sizeof ct_addr)) {
if (conn->key.dl_type == htons(ETH_TYPE_IP)) {
ct_addr.ipv4 = htonl(ntohl(ct_addr.ipv4) + 1);
} else {
nat_ipv6_addr_increment(&ct_addr.ipv6, 1);
}
} else {
ct_addr = conn->nat_info->min_addr;
}
if (!memcmp(&ct_addr, &first_addr, sizeof ct_addr)) {
if (!ephemeral_ports_tried) {
ephemeral_ports_tried = true;
ct_addr = conn->nat_info->min_addr;
first_addr = ct_addr;
min_port = MIN_NAT_EPHEMERAL_PORT;
max_port = MAX_NAT_EPHEMERAL_PORT;
} else {
break;
}
}
first_port = min_port;
port = first_port;
all_ports_tried = false;
}
}
return false;
}
/* This function must be called with the ct->resources lock taken. */
static struct nat_conn_key_node *
nat_conn_keys_lookup(struct hmap *nat_conn_keys,
const struct conn_key *key,
uint32_t basis)
{
struct nat_conn_key_node *nat_conn_key_node;
HMAP_FOR_EACH_WITH_HASH (nat_conn_key_node, node,
conn_key_hash(key, basis), nat_conn_keys) {
if (!conn_key_cmp(&nat_conn_key_node->key, key)) {
return nat_conn_key_node;
}
}
return NULL;
}
/* This function must be called with the ct->resources lock taken. */
static bool
nat_conn_keys_insert(struct hmap *nat_conn_keys, const struct conn *nat_conn,
uint32_t basis)
{
struct nat_conn_key_node *nat_conn_key_node =
nat_conn_keys_lookup(nat_conn_keys, &nat_conn->rev_key, basis);
if (!nat_conn_key_node) {
struct nat_conn_key_node *nat_conn_key = xzalloc(sizeof *nat_conn_key);
nat_conn_key->key = nat_conn->rev_key;
nat_conn_key->value = nat_conn->key;
hmap_insert(nat_conn_keys, &nat_conn_key->node,
conn_key_hash(&nat_conn_key->key, basis));
return true;
}
return false;
}
/* This function must be called with the ct->resources write lock taken. */
static void
nat_conn_keys_remove(struct hmap *nat_conn_keys,
const struct conn_key *key,
uint32_t basis)
{
struct nat_conn_key_node *nat_conn_key_node;
HMAP_FOR_EACH_WITH_HASH (nat_conn_key_node, node,
conn_key_hash(key, basis), nat_conn_keys) {
if (!conn_key_cmp(&nat_conn_key_node->key, key)) {
hmap_remove(nat_conn_keys, &nat_conn_key_node->node);
free(nat_conn_key_node);
return;
}
}
}
static void
conn_key_lookup(struct conntrack_bucket *ctb, struct conn_lookup_ctx *ctx,
long long now)
OVS_REQUIRES(ctb->lock)
{
uint32_t hash = ctx->hash;
struct conn *conn;
ctx->conn = NULL;
HMAP_FOR_EACH_WITH_HASH (conn, node, hash, &ctb->connections) {
if (!conn_key_cmp(&conn->key, &ctx->key)
&& !conn_expired(conn, now)) {
ctx->conn = conn;
ctx->reply = false;
break;
}
if (!conn_key_cmp(&conn->rev_key, &ctx->key)
&& !conn_expired(conn, now)) {
ctx->conn = conn;
ctx->reply = true;
break;
}
}
}
static enum ct_update_res
conn_update(struct conn *conn, struct conntrack_bucket *ctb,
struct dp_packet *pkt, bool reply, long long now)
{
return l4_protos[conn->key.nw_proto]->conn_update(conn, ctb, pkt,
reply, now);
}
static bool
conn_expired(struct conn *conn, long long now)
{
if (conn->conn_type == CT_CONN_TYPE_DEFAULT) {
return now >= conn->expiration;
}
return false;
}
static bool
valid_new(struct dp_packet *pkt, struct conn_key *key)
{
return l4_protos[key->nw_proto]->valid_new(pkt);
}
static struct conn *
new_conn(struct conntrack_bucket *ctb, struct dp_packet *pkt,
struct conn_key *key, long long now)
{
struct conn *newconn = l4_protos[key->nw_proto]->new_conn(ctb, pkt, now);
if (newconn) {
newconn->key = *key;
}
return newconn;
}
static void
delete_conn(struct conn *conn)
{
free(conn->nat_info);
free(conn->alg);
free(conn);
}
/* Convert a conntrack address 'a' into an IP address 'b' based on 'dl_type'.
*
* Note that 'dl_type' should be either "ETH_TYPE_IP" or "ETH_TYPE_IPv6"
* in network-byte order. */
static void
ct_endpoint_to_ct_dpif_inet_addr(const union ct_addr *a,
union ct_dpif_inet_addr *b,
ovs_be16 dl_type)
{
if (dl_type == htons(ETH_TYPE_IP)) {
b->ip = a->ipv4;
} else if (dl_type == htons(ETH_TYPE_IPV6)){
b->in6 = a->ipv6;
}
}
/* Convert an IP address 'a' into a conntrack address 'b' based on 'dl_type'.
*
* Note that 'dl_type' should be either "ETH_TYPE_IP" or "ETH_TYPE_IPv6"
* in network-byte order. */
static void
ct_dpif_inet_addr_to_ct_endpoint(const union ct_dpif_inet_addr *a,
union ct_addr *b, ovs_be16 dl_type)
{
if (dl_type == htons(ETH_TYPE_IP)) {
b->ipv4 = a->ip;
} else if (dl_type == htons(ETH_TYPE_IPV6)){
b->ipv6 = a->in6;
}
}
static void
conn_key_to_tuple(const struct conn_key *key, struct ct_dpif_tuple *tuple)
{
if (key->dl_type == htons(ETH_TYPE_IP)) {
tuple->l3_type = AF_INET;
} else if (key->dl_type == htons(ETH_TYPE_IPV6)) {
tuple->l3_type = AF_INET6;
}
tuple->ip_proto = key->nw_proto;
ct_endpoint_to_ct_dpif_inet_addr(&key->src.addr, &tuple->src,
key->dl_type);
ct_endpoint_to_ct_dpif_inet_addr(&key->dst.addr, &tuple->dst,
key->dl_type);
if (key->nw_proto == IPPROTO_ICMP || key->nw_proto == IPPROTO_ICMPV6) {
tuple->icmp_id = key->src.icmp_id;
tuple->icmp_type = key->src.icmp_type;
tuple->icmp_code = key->src.icmp_code;
} else {
tuple->src_port = key->src.port;
tuple->dst_port = key->dst.port;
}
}
static void
tuple_to_conn_key(const struct ct_dpif_tuple *tuple, uint16_t zone,
struct conn_key *key)
{
if (tuple->l3_type == AF_INET) {
key->dl_type = htons(ETH_TYPE_IP);
} else if (tuple->l3_type == AF_INET6) {
key->dl_type = htons(ETH_TYPE_IPV6);
}
key->nw_proto = tuple->ip_proto;
ct_dpif_inet_addr_to_ct_endpoint(&tuple->src, &key->src.addr,
key->dl_type);
ct_dpif_inet_addr_to_ct_endpoint(&tuple->dst, &key->dst.addr,
key->dl_type);
if (tuple->ip_proto == IPPROTO_ICMP || tuple->ip_proto == IPPROTO_ICMPV6) {
key->src.icmp_id = tuple->icmp_id;
key->src.icmp_type = tuple->icmp_type;
key->src.icmp_code = tuple->icmp_code;
key->dst.icmp_id = tuple->icmp_id;
key->dst.icmp_type = reverse_icmp_type(tuple->icmp_type);
key->dst.icmp_code = tuple->icmp_code;
} else {
key->src.port = tuple->src_port;
key->dst.port = tuple->dst_port;
}
key->zone = zone;
}
static void
conn_to_ct_dpif_entry(const struct conn *conn, struct ct_dpif_entry *entry,
long long now, int bkt)
{
memset(entry, 0, sizeof *entry);
conn_key_to_tuple(&conn->key, &entry->tuple_orig);
conn_key_to_tuple(&conn->rev_key, &entry->tuple_reply);
entry->zone = conn->key.zone;
entry->mark = conn->mark;
memcpy(&entry->labels, &conn->label, sizeof entry->labels);
/* Not implemented yet */
entry->timestamp.start = 0;
entry->timestamp.stop = 0;
long long expiration = conn->expiration - now;
entry->timeout = (expiration > 0) ? expiration / 1000 : 0;
struct ct_l4_proto *class = l4_protos[conn->key.nw_proto];
if (class->conn_get_protoinfo) {
class->conn_get_protoinfo(conn, &entry->protoinfo);
}
entry->bkt = bkt;
if (conn->alg) {
/* Caller is responsible for freeing. */
entry->helper.name = xstrdup(conn->alg);
}
}
struct ipf *
conntrack_ipf_ctx(struct conntrack *ct)
{
return ct->ipf;
}
int
conntrack_dump_start(struct conntrack *ct, struct conntrack_dump *dump,
const uint16_t *pzone, int *ptot_bkts)
{
memset(dump, 0, sizeof(*dump));
if (pzone) {
dump->zone = *pzone;
dump->filter_zone = true;
}
dump->ct = ct;
*ptot_bkts = CONNTRACK_BUCKETS;
return 0;
}
int
conntrack_dump_next(struct conntrack_dump *dump, struct ct_dpif_entry *entry)
{
struct conntrack *ct = dump->ct;
long long now = time_msec();
while (dump->bucket < CONNTRACK_BUCKETS) {
struct hmap_node *node;
ct_lock_lock(&ct->buckets[dump->bucket].lock);
for (;;) {
struct conn *conn;
node = hmap_at_position(&ct->buckets[dump->bucket].connections,
&dump->bucket_pos);
if (!node) {
break;
}
INIT_CONTAINER(conn, node, node);
if ((!dump->filter_zone || conn->key.zone == dump->zone) &&
(conn->conn_type != CT_CONN_TYPE_UN_NAT)) {
conn_to_ct_dpif_entry(conn, entry, now, dump->bucket);
break;
}
/* Else continue, until we find an entry in the appropriate zone
* or the bucket has been scanned completely. */
}
ct_lock_unlock(&ct->buckets[dump->bucket].lock);
if (!node) {
memset(&dump->bucket_pos, 0, sizeof dump->bucket_pos);
dump->bucket++;
} else {
return 0;
}
}
return EOF;
}
int
conntrack_dump_done(struct conntrack_dump *dump OVS_UNUSED)
{
return 0;
}
int
conntrack_flush(struct conntrack *ct, const uint16_t *zone)
{
for (unsigned i = 0; i < CONNTRACK_BUCKETS; i++) {
struct conn *conn, *next;
ct_lock_lock(&ct->buckets[i].lock);
HMAP_FOR_EACH_SAFE (conn, next, node, &ct->buckets[i].connections) {
if ((!zone || *zone == conn->key.zone) &&
(conn->conn_type == CT_CONN_TYPE_DEFAULT)) {
conn_clean(ct, conn, &ct->buckets[i]);
}
}
ct_lock_unlock(&ct->buckets[i].lock);
}
return 0;
}
int
conntrack_flush_tuple(struct conntrack *ct, const struct ct_dpif_tuple *tuple,
uint16_t zone)
{
struct conn_lookup_ctx ctx;
int error = 0;
memset(&ctx, 0, sizeof(ctx));
tuple_to_conn_key(tuple, zone, &ctx.key);
ctx.hash = conn_key_hash(&ctx.key, ct->hash_basis);
unsigned bucket = hash_to_bucket(ctx.hash);
ct_lock_lock(&ct->buckets[bucket].lock);
conn_key_lookup(&ct->buckets[bucket], &ctx, time_msec());
if (ctx.conn && ctx.conn->conn_type == CT_CONN_TYPE_DEFAULT) {
conn_clean(ct, ctx.conn, &ct->buckets[bucket]);
} else {
VLOG_WARN("Must flush tuple using the original pre-NATed tuple");
error = ENOENT;
}
ct_lock_unlock(&ct->buckets[bucket].lock);
return error;
}
int
conntrack_set_maxconns(struct conntrack *ct, uint32_t maxconns)
{
atomic_store_relaxed(&ct->n_conn_limit, maxconns);
return 0;
}
int
conntrack_get_maxconns(struct conntrack *ct, uint32_t *maxconns)
{
atomic_read_relaxed(&ct->n_conn_limit, maxconns);
return 0;
}
int
conntrack_get_nconns(struct conntrack *ct, uint32_t *nconns)
{
*nconns = atomic_count_get(&ct->n_conn);
return 0;
}
/* This function must be called with the ct->resources read lock taken. */
static struct alg_exp_node *
expectation_lookup(struct hmap *alg_expectations, const struct conn_key *key,
uint32_t basis, bool src_ip_wc)
{
struct conn_key check_key;
memcpy(&check_key, key, sizeof check_key);
check_key.src.port = ALG_WC_SRC_PORT;
if (src_ip_wc) {
memset(&check_key.src.addr, 0, sizeof check_key.src.addr);
}
struct alg_exp_node *alg_exp_node;
HMAP_FOR_EACH_WITH_HASH (alg_exp_node, node,
conn_key_hash(&check_key, basis),
alg_expectations) {
if (!conn_key_cmp(&alg_exp_node->key, &check_key)) {
return alg_exp_node;
}
}
return NULL;
}
/* This function must be called with the ct->resources write lock taken. */
static void
expectation_remove(struct hmap *alg_expectations,
const struct conn_key *key, uint32_t basis)
{
struct alg_exp_node *alg_exp_node;
HMAP_FOR_EACH_WITH_HASH (alg_exp_node, node, conn_key_hash(key, basis),
alg_expectations) {
if (!conn_key_cmp(&alg_exp_node->key, key)) {
hmap_remove(alg_expectations, &alg_exp_node->node);
break;
}
}
}
/* This function must be called with the ct->resources read lock taken. */
static struct alg_exp_node *
expectation_ref_lookup_unique(const struct hindex *alg_expectation_refs,
const struct conn_key *master_key,
const struct conn_key *alg_exp_key,
uint32_t basis)
{
struct alg_exp_node *alg_exp_node;
HINDEX_FOR_EACH_WITH_HASH (alg_exp_node, node_ref,
conn_key_hash(master_key, basis),
alg_expectation_refs) {
if (!conn_key_cmp(&alg_exp_node->master_key, master_key) &&
!conn_key_cmp(&alg_exp_node->key, alg_exp_key)) {
return alg_exp_node;
}
}
return NULL;
}
/* This function must be called with the ct->resources write lock taken. */
static void
expectation_ref_create(struct hindex *alg_expectation_refs,
struct alg_exp_node *alg_exp_node,
uint32_t basis)
{
if (!expectation_ref_lookup_unique(alg_expectation_refs,
&alg_exp_node->master_key,
&alg_exp_node->key, basis)) {
hindex_insert(alg_expectation_refs, &alg_exp_node->node_ref,
conn_key_hash(&alg_exp_node->master_key, basis));
}
}
static void
expectation_clean(struct conntrack *ct, const struct conn_key *master_key,
uint32_t basis)
{
ct_rwlock_wrlock(&ct->resources_lock);
struct alg_exp_node *node, *next;
HINDEX_FOR_EACH_WITH_HASH_SAFE (node, next, node_ref,
conn_key_hash(master_key, basis),
&ct->alg_expectation_refs) {
if (!conn_key_cmp(&node->master_key, master_key)) {
expectation_remove(&ct->alg_expectations, &node->key, basis);
hindex_remove(&ct->alg_expectation_refs, &node->node_ref);
free(node);
}
}
ct_rwlock_unlock(&ct->resources_lock);
}
static void
expectation_create(struct conntrack *ct, ovs_be16 dst_port,
const struct conn *master_conn, bool reply, bool src_ip_wc,
bool skip_nat)
{
union ct_addr src_addr;
union ct_addr dst_addr;
union ct_addr alg_nat_repl_addr;
struct alg_exp_node *alg_exp_node = xzalloc(sizeof *alg_exp_node);
if (reply) {
src_addr = master_conn->key.src.addr;
dst_addr = master_conn->key.dst.addr;
alg_exp_node->nat_rpl_dst = true;
if (skip_nat) {
alg_nat_repl_addr = dst_addr;
} else if (master_conn->nat_info &&
master_conn->nat_info->nat_action & NAT_ACTION_DST) {
alg_nat_repl_addr = master_conn->rev_key.src.addr;
alg_exp_node->nat_rpl_dst = false;
} else {
alg_nat_repl_addr = master_conn->rev_key.dst.addr;
}
} else {
src_addr = master_conn->rev_key.src.addr;
dst_addr = master_conn->rev_key.dst.addr;
alg_exp_node->nat_rpl_dst = false;
if (skip_nat) {
alg_nat_repl_addr = src_addr;
} else if (master_conn->nat_info &&
master_conn->nat_info->nat_action & NAT_ACTION_DST) {
alg_nat_repl_addr = master_conn->key.dst.addr;
alg_exp_node->nat_rpl_dst = true;
} else {
alg_nat_repl_addr = master_conn->key.src.addr;
}
}
if (src_ip_wc) {
memset(&src_addr, 0, sizeof src_addr);
}
alg_exp_node->key.dl_type = master_conn->key.dl_type;
alg_exp_node->key.nw_proto = master_conn->key.nw_proto;
alg_exp_node->key.zone = master_conn->key.zone;
alg_exp_node->key.src.addr = src_addr;
alg_exp_node->key.dst.addr = dst_addr;
alg_exp_node->key.src.port = ALG_WC_SRC_PORT;
alg_exp_node->key.dst.port = dst_port;
alg_exp_node->master_mark = master_conn->mark;
alg_exp_node->master_label = master_conn->label;
alg_exp_node->master_key = master_conn->key;
/* Take the write lock here because it is almost 100%
* likely that the lookup will fail and
* expectation_create() will be called below. */
ct_rwlock_wrlock(&ct->resources_lock);
struct alg_exp_node *alg_exp = expectation_lookup(
&ct->alg_expectations, &alg_exp_node->key, ct->hash_basis, src_ip_wc);
if (alg_exp) {
free(alg_exp_node);
ct_rwlock_unlock(&ct->resources_lock);
return;
}
alg_exp_node->alg_nat_repl_addr = alg_nat_repl_addr;
hmap_insert(&ct->alg_expectations, &alg_exp_node->node,
conn_key_hash(&alg_exp_node->key, ct->hash_basis));
expectation_ref_create(&ct->alg_expectation_refs, alg_exp_node,
ct->hash_basis);
ct_rwlock_unlock(&ct->resources_lock);
}
static void
replace_substring(char *substr, uint8_t substr_size,
uint8_t total_size, char *rep_str,
uint8_t rep_str_size)
{
memmove(substr + rep_str_size, substr + substr_size,
total_size - substr_size);
memcpy(substr, rep_str, rep_str_size);
}
static void
repl_bytes(char *str, char c1, char c2)
{
while (*str) {
if (*str == c1) {
*str = c2;
}
str++;
}
}
static void
modify_packet(struct dp_packet *pkt, char *pkt_str, size_t size,
char *repl_str, size_t repl_size,
uint32_t orig_used_size)
{
replace_substring(pkt_str, size,
(const char *) dp_packet_tail(pkt) - pkt_str,
repl_str, repl_size);
dp_packet_set_size(pkt, orig_used_size + (int) repl_size - (int) size);
}
/* Replace IPV4 address in FTP message with NATed address. */
static int
repl_ftp_v4_addr(struct dp_packet *pkt, ovs_be32 v4_addr_rep,
char *ftp_data_start,
size_t addr_offset_from_ftp_data_start,
size_t addr_size OVS_UNUSED)
{
enum { MAX_FTP_V4_NAT_DELTA = 8 };
/* Do conservative check for pathological MTU usage. */
uint32_t orig_used_size = dp_packet_size(pkt);
if (orig_used_size + MAX_FTP_V4_NAT_DELTA >
dp_packet_get_allocated(pkt)) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 5);
VLOG_WARN_RL(&rl, "Unsupported effective MTU %u used with FTP V4",
dp_packet_get_allocated(pkt));
return 0;
}
char v4_addr_str[INET_ADDRSTRLEN] = {0};
ovs_assert(inet_ntop(AF_INET, &v4_addr_rep, v4_addr_str,
sizeof v4_addr_str));
repl_bytes(v4_addr_str, '.', ',');
modify_packet(pkt, ftp_data_start + addr_offset_from_ftp_data_start,
addr_size, v4_addr_str, strlen(v4_addr_str),
orig_used_size);
return (int) strlen(v4_addr_str) - (int) addr_size;
}
static char *
skip_non_digits(char *str)
{
while (!isdigit(*str) && *str != 0) {
str++;
}
return str;
}
static char *
terminate_number_str(char *str, uint8_t max_digits)
{
uint8_t digits_found = 0;
while (isdigit(*str) && digits_found <= max_digits) {
str++;
digits_found++;
}
*str = 0;
return str;
}
static void
get_ftp_ctl_msg(struct dp_packet *pkt, char *ftp_msg)
{
struct tcp_header *th = dp_packet_l4(pkt);
char *tcp_hdr = (char *) th;
uint32_t tcp_payload_len = tcp_payload_length(pkt);
size_t tcp_payload_of_interest = MIN(tcp_payload_len,
LARGEST_FTP_MSG_OF_INTEREST);
size_t tcp_hdr_len = TCP_OFFSET(th->tcp_ctl) * 4;
ovs_strlcpy(ftp_msg, tcp_hdr + tcp_hdr_len,
tcp_payload_of_interest);
}
static enum ftp_ctl_pkt
detect_ftp_ctl_type(const struct conn_lookup_ctx *ctx,
struct dp_packet *pkt)
{
char ftp_msg[LARGEST_FTP_MSG_OF_INTEREST + 1] = {0};
get_ftp_ctl_msg(pkt, ftp_msg);
if (ctx->key.dl_type == htons(ETH_TYPE_IPV6)) {
if (strncasecmp(ftp_msg, FTP_EPRT_CMD, strlen(FTP_EPRT_CMD)) &&
!strcasestr(ftp_msg, FTP_EPSV_REPLY)) {
return CT_FTP_CTL_OTHER;
}
} else {
if (strncasecmp(ftp_msg, FTP_PORT_CMD, strlen(FTP_PORT_CMD)) &&
strncasecmp(ftp_msg, FTP_PASV_REPLY_CODE,
strlen(FTP_PASV_REPLY_CODE))) {
return CT_FTP_CTL_OTHER;
}
}
return CT_FTP_CTL_INTEREST;
}
static enum ftp_ctl_pkt
process_ftp_ctl_v4(struct conntrack *ct,
struct dp_packet *pkt,
const struct conn *conn_for_expectation,
ovs_be32 *v4_addr_rep,
char **ftp_data_v4_start,
size_t *addr_offset_from_ftp_data_start,
size_t *addr_size)
{
struct tcp_header *th = dp_packet_l4(pkt);
size_t tcp_hdr_len = TCP_OFFSET(th->tcp_ctl) * 4;
char *tcp_hdr = (char *) th;
*ftp_data_v4_start = tcp_hdr + tcp_hdr_len;
char ftp_msg[LARGEST_FTP_MSG_OF_INTEREST + 1] = {0};
get_ftp_ctl_msg(pkt, ftp_msg);
char *ftp = ftp_msg;
enum ct_alg_mode mode;
if (!strncasecmp(ftp, FTP_PORT_CMD, strlen(FTP_PORT_CMD))) {
ftp = ftp_msg + strlen(FTP_PORT_CMD);
mode = CT_FTP_MODE_ACTIVE;
} else {
ftp = ftp_msg + strlen(FTP_PASV_REPLY_CODE);
mode = CT_FTP_MODE_PASSIVE;
}
/* Find first space. */
ftp = strchr(ftp, ' ');
if (!ftp) {
return CT_FTP_CTL_INVALID;
}
/* Find the first digit, after space. */
ftp = skip_non_digits(ftp);
if (*ftp == 0) {
return CT_FTP_CTL_INVALID;
}
char *ip_addr_start = ftp;
*addr_offset_from_ftp_data_start = ip_addr_start - ftp_msg;
uint8_t comma_count = 0;
while (comma_count < 4 && *ftp) {
if (*ftp == ',') {
comma_count++;
if (comma_count == 4) {
*ftp = 0;
} else {
*ftp = '.';
}
}
ftp++;
}
if (comma_count != 4) {
return CT_FTP_CTL_INVALID;
}
struct in_addr ip_addr;
int rc2 = inet_pton(AF_INET, ip_addr_start, &ip_addr);
if (rc2 != 1) {
return CT_FTP_CTL_INVALID;
}
*addr_size = ftp - ip_addr_start - 1;
char *save_ftp = ftp;
ftp = terminate_number_str(ftp, MAX_FTP_PORT_DGTS);
if (!ftp) {
return CT_FTP_CTL_INVALID;
}
int value;
if (!str_to_int(save_ftp, 10, &value)) {
return CT_FTP_CTL_INVALID;
}
/* This is derived from the L4 port maximum is 65535. */
if (value > 255) {
return CT_FTP_CTL_INVALID;
}
uint16_t port_hs = value;
port_hs <<= 8;
/* Skip over comma. */
ftp++;
save_ftp = ftp;
bool digit_found = false;
while (isdigit(*ftp)) {
ftp++;
digit_found = true;
}
if (!digit_found) {
return CT_FTP_CTL_INVALID;
}
*ftp = 0;
if (!str_to_int(save_ftp, 10, &value)) {
return CT_FTP_CTL_INVALID;
}
if (value > 255) {
return CT_FTP_CTL_INVALID;
}
port_hs |= value;
ovs_be16 port = htons(port_hs);
ovs_be32 conn_ipv4_addr;
switch (mode) {
case CT_FTP_MODE_ACTIVE:
*v4_addr_rep = conn_for_expectation->rev_key.dst.addr.ipv4;
conn_ipv4_addr = conn_for_expectation->key.src.addr.ipv4;
break;
case CT_FTP_MODE_PASSIVE:
*v4_addr_rep = conn_for_expectation->key.dst.addr.ipv4;
conn_ipv4_addr = conn_for_expectation->rev_key.src.addr.ipv4;
break;
case CT_TFTP_MODE:
default:
OVS_NOT_REACHED();
}
ovs_be32 ftp_ipv4_addr;
ftp_ipv4_addr = ip_addr.s_addr;
/* Although most servers will block this exploit, there may be some
* less well managed. */
if (ftp_ipv4_addr != conn_ipv4_addr && ftp_ipv4_addr != *v4_addr_rep) {
return CT_FTP_CTL_INVALID;
}
expectation_create(ct, port, conn_for_expectation,
!!(pkt->md.ct_state & CS_REPLY_DIR), false, false);
return CT_FTP_CTL_INTEREST;
}
static char *
skip_ipv6_digits(char *str)
{
while (isxdigit(*str) || *str == ':' || *str == '.') {
str++;
}
return str;
}
static enum ftp_ctl_pkt
process_ftp_ctl_v6(struct conntrack *ct,
struct dp_packet *pkt,
const struct conn *conn_for_expectation,
union ct_addr *v6_addr_rep, char **ftp_data_start,
size_t *addr_offset_from_ftp_data_start,
size_t *addr_size, enum ct_alg_mode *mode)
{
struct tcp_header *th = dp_packet_l4(pkt);
size_t tcp_hdr_len = TCP_OFFSET(th->tcp_ctl) * 4;
char *tcp_hdr = (char *) th;
char ftp_msg[LARGEST_FTP_MSG_OF_INTEREST + 1] = {0};
get_ftp_ctl_msg(pkt, ftp_msg);
*ftp_data_start = tcp_hdr + tcp_hdr_len;
char *ftp = ftp_msg;
struct in6_addr ip6_addr;
if (!strncasecmp(ftp, FTP_EPRT_CMD, strlen(FTP_EPRT_CMD))) {
ftp = ftp_msg + strlen(FTP_EPRT_CMD);
ftp = skip_non_digits(ftp);
if (*ftp != FTP_AF_V6 || isdigit(ftp[1])) {
return CT_FTP_CTL_INVALID;
}
/* Jump over delimiter. */
ftp += 2;
memset(&ip6_addr, 0, sizeof ip6_addr);
char *ip_addr_start = ftp;
*addr_offset_from_ftp_data_start = ip_addr_start - ftp_msg;
ftp = skip_ipv6_digits(ftp);
*ftp = 0;
*addr_size = ftp - ip_addr_start;
int rc2 = inet_pton(AF_INET6, ip_addr_start, &ip6_addr);
if (rc2 != 1) {
return CT_FTP_CTL_INVALID;
}
ftp++;
*mode = CT_FTP_MODE_ACTIVE;
} else {
ftp = ftp_msg + strcspn(ftp_msg, "(");
ftp = skip_non_digits(ftp);
if (!isdigit(*ftp)) {
return CT_FTP_CTL_INVALID;
}
/* Not used for passive mode. */
*addr_offset_from_ftp_data_start = 0;
*addr_size = 0;
*mode = CT_FTP_MODE_PASSIVE;
}
char *save_ftp = ftp;
ftp = terminate_number_str(ftp, MAX_EXT_FTP_PORT_DGTS);
if (!ftp) {
return CT_FTP_CTL_INVALID;
}
int value;
if (!str_to_int(save_ftp, 10, &value)) {
return CT_FTP_CTL_INVALID;
}
if (value > CT_MAX_L4_PORT) {
return CT_FTP_CTL_INVALID;
}
uint16_t port_hs = value;
ovs_be16 port = htons(port_hs);
switch (*mode) {
case CT_FTP_MODE_ACTIVE:
*v6_addr_rep = conn_for_expectation->rev_key.dst.addr;
/* Although most servers will block this exploit, there may be some
* less well managed. */
if (memcmp(&ip6_addr, &v6_addr_rep->ipv6, sizeof ip6_addr) &&
memcmp(&ip6_addr, &conn_for_expectation->key.src.addr.ipv6,
sizeof ip6_addr)) {
return CT_FTP_CTL_INVALID;
}
break;
case CT_FTP_MODE_PASSIVE:
*v6_addr_rep = conn_for_expectation->key.dst.addr;
break;
case CT_TFTP_MODE:
default:
OVS_NOT_REACHED();
}
expectation_create(ct, port, conn_for_expectation,
!!(pkt->md.ct_state & CS_REPLY_DIR), false, false);
return CT_FTP_CTL_INTEREST;
}
static int
repl_ftp_v6_addr(struct dp_packet *pkt, union ct_addr v6_addr_rep,
char *ftp_data_start,
size_t addr_offset_from_ftp_data_start,
size_t addr_size, enum ct_alg_mode mode)
{
/* This is slightly bigger than really possible. */
enum { MAX_FTP_V6_NAT_DELTA = 45 };
if (mode == CT_FTP_MODE_PASSIVE) {
return 0;
}
/* Do conservative check for pathological MTU usage. */
uint32_t orig_used_size = dp_packet_size(pkt);
if (orig_used_size + MAX_FTP_V6_NAT_DELTA >
dp_packet_get_allocated(pkt)) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 5);
VLOG_WARN_RL(&rl, "Unsupported effective MTU %u used with FTP V6",
dp_packet_get_allocated(pkt));
return 0;
}
char v6_addr_str[INET6_ADDRSTRLEN] = {0};
ovs_assert(inet_ntop(AF_INET6, &v6_addr_rep.ipv6, v6_addr_str,
sizeof v6_addr_str));
modify_packet(pkt, ftp_data_start + addr_offset_from_ftp_data_start,
addr_size, v6_addr_str, strlen(v6_addr_str),
orig_used_size);
return (int) strlen(v6_addr_str) - (int) addr_size;
}
/* Increment/decrement a TCP sequence number. */
static void
adj_seqnum(ovs_16aligned_be32 *val, int32_t inc)
{
put_16aligned_be32(val, htonl(ntohl(get_16aligned_be32(val)) + inc));
}
static void
handle_ftp_ctl(struct conntrack *ct, const struct conn_lookup_ctx *ctx,
struct dp_packet *pkt, const struct conn *ec, long long now,
enum ftp_ctl_pkt ftp_ctl, bool nat)
{
struct ip_header *l3_hdr = dp_packet_l3(pkt);
ovs_be32 v4_addr_rep = 0;
union ct_addr v6_addr_rep;
size_t addr_offset_from_ftp_data_start = 0;
size_t addr_size = 0;
char *ftp_data_start;
enum ct_alg_mode mode = CT_FTP_MODE_ACTIVE;
if (detect_ftp_ctl_type(ctx, pkt) != ftp_ctl) {
return;
}
struct ovs_16aligned_ip6_hdr *nh6 = dp_packet_l3(pkt);
int64_t seq_skew = 0;
if (ftp_ctl == CT_FTP_CTL_INTEREST) {
enum ftp_ctl_pkt rc;
if (ctx->key.dl_type == htons(ETH_TYPE_IPV6)) {
rc = process_ftp_ctl_v6(ct, pkt, ec,
&v6_addr_rep, &ftp_data_start,
&addr_offset_from_ftp_data_start,
&addr_size, &mode);
} else {
rc = process_ftp_ctl_v4(ct, pkt, ec,
&v4_addr_rep, &ftp_data_start,
&addr_offset_from_ftp_data_start,
&addr_size);
}
if (rc == CT_FTP_CTL_INVALID) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 5);
VLOG_WARN_RL(&rl, "Invalid FTP control packet format");
pkt->md.ct_state |= CS_TRACKED | CS_INVALID;
return;
} else if (rc == CT_FTP_CTL_INTEREST) {
uint16_t ip_len;
if (ctx->key.dl_type == htons(ETH_TYPE_IPV6)) {
if (nat) {
seq_skew = repl_ftp_v6_addr(pkt, v6_addr_rep,
ftp_data_start,
addr_offset_from_ftp_data_start,
addr_size, mode);
}
if (seq_skew) {
ip_len = ntohs(nh6->ip6_ctlun.ip6_un1.ip6_un1_plen) +
seq_skew;
nh6->ip6_ctlun.ip6_un1.ip6_un1_plen = htons(ip_len);
}
} else {
if (nat) {
seq_skew = repl_ftp_v4_addr(pkt, v4_addr_rep,
ftp_data_start,
addr_offset_from_ftp_data_start,
addr_size);
}
if (seq_skew) {
ip_len = ntohs(l3_hdr->ip_tot_len) + seq_skew;
l3_hdr->ip_csum = recalc_csum16(l3_hdr->ip_csum,
l3_hdr->ip_tot_len, htons(ip_len));
l3_hdr->ip_tot_len = htons(ip_len);
}
}
} else {
OVS_NOT_REACHED();
}
}
struct tcp_header *th = dp_packet_l4(pkt);
if (nat && ec->seq_skew != 0) {
ctx->reply != ec->seq_skew_dir ?
adj_seqnum(&th->tcp_ack, -ec->seq_skew) :
adj_seqnum(&th->tcp_seq, ec->seq_skew);
}
th->tcp_csum = 0;
if (ctx->key.dl_type == htons(ETH_TYPE_IPV6)) {
th->tcp_csum = packet_csum_upperlayer6(nh6, th, ctx->key.nw_proto,
dp_packet_l4_size(pkt));
} else {
uint32_t tcp_csum = packet_csum_pseudoheader(l3_hdr);
th->tcp_csum = csum_finish(
csum_continue(tcp_csum, th, dp_packet_l4_size(pkt)));
}
if (seq_skew) {
conn_seq_skew_set(ct, &ec->key, now, seq_skew + ec->seq_skew,
ctx->reply);
}
}
static void
handle_tftp_ctl(struct conntrack *ct,
const struct conn_lookup_ctx *ctx OVS_UNUSED,
struct dp_packet *pkt,
const struct conn *conn_for_expectation,
long long now OVS_UNUSED,
enum ftp_ctl_pkt ftp_ctl OVS_UNUSED, bool nat OVS_UNUSED)
{
expectation_create(ct, conn_for_expectation->key.src.port,
conn_for_expectation,
!!(pkt->md.ct_state & CS_REPLY_DIR), false, false);
}