2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 01:51:26 +00:00
ovs/ofproto/ofproto-dpif.c
Eelco Chaudron ba675897e4 ofproto-dpif: Fix spelling in comments and the support field macro.
Acked-by: Simon Horman <horms@ovn.org>
Acked-by: Aaron Conole <aconole@redhat.com>
Signed-off-by: Eelco Chaudron <echaudro@redhat.com>
Signed-off-by: Aaron Conole <aconole@redhat.com>
2025-03-28 10:42:39 -04:00

7387 lines
233 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include <errno.h>
#include "bfd.h"
#include "bond.h"
#include "bundle.h"
#include "byte-order.h"
#include "connectivity.h"
#include "connmgr.h"
#include "coverage.h"
#include "cfm.h"
#include "ct-dpif.h"
#include "fail-open.h"
#include "guarded-list.h"
#include "hmapx.h"
#include "openvswitch/json.h"
#include "lacp.h"
#include "learn.h"
#include "mac-learning.h"
#include "math.h"
#include "mcast-snooping.h"
#include "multipath.h"
#include "netdev-vport.h"
#include "netdev.h"
#include "netlink.h"
#include "nx-match.h"
#include "odp-util.h"
#include "odp-execute.h"
#include "ofproto/ofproto-dpif.h"
#include "ofproto/ofproto-provider.h"
#include "ofproto-dpif-ipfix.h"
#include "ofproto-dpif-mirror.h"
#include "ofproto-dpif-monitor.h"
#include "ofproto-dpif-rid.h"
#include "ofproto-dpif-sflow.h"
#include "ofproto-dpif-trace.h"
#include "ofproto-dpif-upcall.h"
#include "ofproto-dpif-lsample.h"
#include "ofproto-dpif-xlate.h"
#include "ofproto-dpif-xlate-cache.h"
#include "openvswitch/ofp-actions.h"
#include "openvswitch/dynamic-string.h"
#include "openvswitch/meta-flow.h"
#include "openvswitch/ofp-print.h"
#include "openvswitch/ofpbuf.h"
#include "openvswitch/uuid.h"
#include "openvswitch/vlog.h"
#include "ovs-lldp.h"
#include "ovs-rcu.h"
#include "ovs-router.h"
#include "openvswitch/poll-loop.h"
#include "seq.h"
#include "simap.h"
#include "smap.h"
#include "timer.h"
#include "tunnel.h"
#include "unaligned.h"
#include "unixctl.h"
#include "util.h"
#include "uuid.h"
#include "vlan-bitmap.h"
VLOG_DEFINE_THIS_MODULE(ofproto_dpif);
COVERAGE_DEFINE(ofproto_dpif_expired);
COVERAGE_DEFINE(packet_in_overflow);
struct flow_miss;
static void rule_get_stats(struct rule *, struct pkt_stats *stats,
long long int *used);
static struct rule_dpif *rule_dpif_cast(const struct rule *);
static void rule_expire(struct rule_dpif *, long long now);
struct ofbundle {
struct hmap_node hmap_node; /* In struct ofproto's "bundles" hmap. */
struct ofproto_dpif *ofproto; /* Owning ofproto. */
void *aux; /* Key supplied by ofproto's client. */
char *name; /* Identifier for log messages. */
/* Configuration. */
struct ovs_list ports; /* Contains "struct ofport_dpif"s. */
enum port_vlan_mode vlan_mode; /* VLAN mode */
uint16_t qinq_ethtype;
int vlan; /* -1=trunk port, else a 12-bit VLAN ID. */
unsigned long *trunks; /* Bitmap of trunked VLANs, if 'vlan' == -1.
* NULL if all VLANs are trunked. */
unsigned long *cvlans;
struct lacp *lacp; /* LACP if LACP is enabled, otherwise NULL. */
struct bond *bond; /* Nonnull if more than one port. */
enum port_priority_tags_mode use_priority_tags;
/* Use 802.1p tag for frames in VLAN 0? */
bool protected; /* Protected port mode */
/* Status. */
bool floodable; /* True if no port has OFPUTIL_PC_NO_FLOOD set. */
};
static void bundle_remove(struct ofport *);
static void bundle_update(struct ofbundle *);
static void bundle_destroy(struct ofbundle *);
static void bundle_del_port(struct ofport_dpif *);
static void bundle_run(struct ofbundle *);
static void bundle_wait(struct ofbundle *);
static void bundle_flush_macs(struct ofbundle *, bool);
static void bundle_move(struct ofbundle *, struct ofbundle *);
static void stp_run(struct ofproto_dpif *ofproto);
static void stp_wait(struct ofproto_dpif *ofproto);
static int set_stp_port(struct ofport *,
const struct ofproto_port_stp_settings *);
static void rstp_run(struct ofproto_dpif *ofproto);
static void set_rstp_port(struct ofport *,
const struct ofproto_port_rstp_settings *);
struct ofport_dpif {
struct hmap_node odp_port_node; /* In dpif_backer's "odp_to_ofport_map". */
struct ofport up;
odp_port_t odp_port;
struct ofbundle *bundle; /* Bundle that contains this port, if any. */
struct ovs_list bundle_node;/* In struct ofbundle's "ports" list. */
struct cfm *cfm; /* Connectivity Fault Management, if any. */
struct bfd *bfd; /* BFD, if any. */
struct lldp *lldp; /* lldp, if any. */
bool is_tunnel; /* This port is a tunnel. */
long long int carrier_seq; /* Carrier status changes. */
struct ofport_dpif *peer; /* Peer if patch port. */
/* Spanning tree. */
struct stp_port *stp_port; /* Spanning Tree Protocol, if any. */
enum stp_state stp_state; /* Always STP_DISABLED if STP not in use. */
long long int stp_state_entered;
/* Rapid Spanning Tree. */
struct rstp_port *rstp_port; /* Rapid Spanning Tree Protocol, if any. */
enum rstp_state rstp_state; /* Always RSTP_DISABLED if RSTP not in use. */
/* Queue to DSCP mapping. */
struct ofproto_port_queue *qdscp;
size_t n_qdscp;
};
struct ct_timeout_policy {
int ref_count; /* The number of ct zones that use this
* timeout policy. */
uint32_t tp_id; /* Timeout policy id in the datapath. */
struct simap tp; /* A map from timeout policy attribute to
* timeout value. */
struct hmap_node node; /* Element in struct dpif_backer's "ct_tps"
* cmap. */
struct ovs_list list_node; /* Element in struct dpif_backer's
* "ct_tp_kill_list" list. */
};
/* Periodically try to purge deleted timeout policies from the datapath. Retry
* may be necessary if the kernel datapath has a non-zero datapath flow
* reference count for the timeout policy. */
#define TIMEOUT_POLICY_CLEANUP_INTERVAL (20000) /* 20 seconds. */
static long long int timeout_policy_cleanup_timer = LLONG_MIN;
struct ct_zone {
uint16_t zone_id;
struct ct_timeout_policy *ct_tp;
struct cmap_node node; /* Element in struct dpif_backer's
* "ct_zones" cmap. */
};
static odp_port_t ofp_port_to_odp_port(const struct ofproto_dpif *,
ofp_port_t);
static ofp_port_t odp_port_to_ofp_port(const struct ofproto_dpif *,
odp_port_t);
static struct ofport_dpif *
ofport_dpif_cast(const struct ofport *ofport)
{
return ofport ? CONTAINER_OF(ofport, struct ofport_dpif, up) : NULL;
}
static void port_run(struct ofport_dpif *);
static int set_bfd(struct ofport *, const struct smap *);
static int set_cfm(struct ofport *, const struct cfm_settings *);
static int set_lldp(struct ofport *ofport_, const struct smap *cfg);
static void ofport_update_peer(struct ofport_dpif *);
COVERAGE_DEFINE(rev_reconfigure);
COVERAGE_DEFINE(rev_stp);
COVERAGE_DEFINE(rev_rstp);
COVERAGE_DEFINE(rev_bond);
COVERAGE_DEFINE(rev_port_toggled);
COVERAGE_DEFINE(rev_flow_table);
COVERAGE_DEFINE(rev_mac_learning);
COVERAGE_DEFINE(rev_mcast_snooping);
/* All existing ofproto_backer instances, indexed by ofproto->up.type. */
struct shash all_dpif_backers = SHASH_INITIALIZER(&all_dpif_backers);
/* All existing ofproto_dpif instances, indexed by ->up.name. */
static struct hmap all_ofproto_dpifs_by_name =
HMAP_INITIALIZER(&all_ofproto_dpifs_by_name);
static bool ofproto_use_tnl_push_pop = true;
static void ofproto_unixctl_init(void);
static void ct_zone_config_init(struct dpif_backer *backer);
static void ct_zone_config_uninit(struct dpif_backer *backer);
static void ct_zone_timeout_policy_sweep(struct dpif_backer *backer);
static void ct_zone_limits_commit(struct dpif_backer *backer);
static bool recheck_support_explicit_drop_action(struct dpif_backer *backer);
static inline struct ofproto_dpif *
ofproto_dpif_cast(const struct ofproto *ofproto)
{
ovs_assert(ofproto->ofproto_class == &ofproto_dpif_class);
return CONTAINER_OF(ofproto, struct ofproto_dpif, up);
}
/* Global variables. */
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
/* Initial mappings of port to bridge mappings. */
static struct shash init_ofp_ports = SHASH_INITIALIZER(&init_ofp_ports);
/* Initialize 'ofm' for a learn action. If the rule already existed, reference
* to that rule is taken, otherwise a new rule is created. 'ofm' keeps the
* rule reference in both cases. */
enum ofperr
ofproto_dpif_flow_mod_init_for_learn(struct ofproto_dpif *ofproto,
const struct ofputil_flow_mod *fm,
struct ofproto_flow_mod *ofm)
{
/* This will not take the global 'ofproto_mutex'. */
return ofproto_flow_mod_init_for_learn(&ofproto->up, fm, ofm);
}
/* Appends 'am' to the queue of asynchronous messages to be sent to the
* controller. Takes ownership of 'am' and any data it points to. */
void
ofproto_dpif_send_async_msg(struct ofproto_dpif *ofproto,
struct ofproto_async_msg *am)
{
if (!guarded_list_push_back(&ofproto->ams, &am->list_node, 1024)) {
COVERAGE_INC(packet_in_overflow);
ofproto_async_msg_free(am);
}
/* Wakes up main thread for packet-in I/O. */
seq_change(ofproto->ams_seq);
}
/* Factory functions. */
static void
init(const struct shash *iface_hints)
{
struct shash_node *node;
/* Make a local copy, since we don't own 'iface_hints' elements. */
SHASH_FOR_EACH(node, iface_hints) {
const struct iface_hint *orig_hint = node->data;
struct iface_hint *new_hint = xmalloc(sizeof *new_hint);
new_hint->br_name = xstrdup(orig_hint->br_name);
new_hint->br_type = xstrdup(orig_hint->br_type);
new_hint->ofp_port = orig_hint->ofp_port;
shash_add(&init_ofp_ports, node->name, new_hint);
}
ofproto_unixctl_init();
ofproto_dpif_trace_init();
udpif_init();
}
static void
enumerate_types(struct sset *types)
{
dp_enumerate_types(types);
}
static int
enumerate_names(const char *type, struct sset *names)
{
struct ofproto_dpif *ofproto;
sset_clear(names);
HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_by_name_node,
&all_ofproto_dpifs_by_name) {
if (strcmp(type, ofproto->up.type)) {
continue;
}
sset_add(names, ofproto->up.name);
}
return 0;
}
static int
del(const char *type, const char *name)
{
struct dpif *dpif;
int error;
error = dpif_open(name, type, &dpif);
if (!error) {
error = dpif_delete(dpif);
dpif_close(dpif);
}
return error;
}
static const char *
port_open_type(const char *datapath_type, const char *port_type)
{
return dpif_port_open_type(datapath_type, port_type);
}
/* Type functions. */
static void process_dpif_port_changes(struct dpif_backer *);
static void process_dpif_all_ports_changed(struct dpif_backer *);
static void process_dpif_port_change(struct dpif_backer *,
const char *devname);
static void process_dpif_port_error(struct dpif_backer *, int error);
static struct ofproto_dpif *
lookup_ofproto_dpif_by_port_name(const char *name)
{
struct ofproto_dpif *ofproto;
HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_by_name_node,
&all_ofproto_dpifs_by_name) {
if (sset_contains(&ofproto->ports, name)) {
return ofproto;
}
}
return NULL;
}
static int
type_run(const char *type)
{
struct dpif_backer *backer;
backer = shash_find_data(&all_dpif_backers, type);
if (!backer) {
/* This is not necessarily a problem, since backers are only
* created on demand. */
return 0;
}
if (dpif_run(backer->dpif)) {
backer->need_revalidate = REV_RECONFIGURE;
}
udpif_run(backer->udpif);
/* If vswitchd started with other_config:flow_restore_wait set as "true",
* and the configuration has now changed to "false", enable receiving
* packets from the datapath. */
if (!backer->recv_set_enable && !ofproto_get_flow_restore_wait()) {
int error;
backer->recv_set_enable = true;
error = dpif_recv_set(backer->dpif, backer->recv_set_enable);
if (error) {
VLOG_ERR("Failed to enable receiving packets in dpif.");
return error;
}
dpif_flow_flush(backer->dpif);
backer->need_revalidate = REV_RECONFIGURE;
}
if (backer->recv_set_enable) {
udpif_set_threads(backer->udpif, n_handlers, n_revalidators);
}
if (recheck_support_explicit_drop_action(backer)) {
backer->need_revalidate = REV_RECONFIGURE;
}
if (backer->need_revalidate) {
struct ofproto_dpif *ofproto;
struct simap_node *node;
struct simap tmp_backers;
/* Handle tunnel garbage collection. */
simap_init(&tmp_backers);
simap_swap(&backer->tnl_backers, &tmp_backers);
HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_by_name_node,
&all_ofproto_dpifs_by_name) {
struct ofport_dpif *iter;
if (backer != ofproto->backer) {
continue;
}
HMAP_FOR_EACH (iter, up.hmap_node, &ofproto->up.ports) {
char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
const char *dp_port;
odp_port_t old_odp_port;
if (!iter->is_tunnel) {
continue;
}
dp_port = netdev_vport_get_dpif_port(iter->up.netdev,
namebuf, sizeof namebuf);
old_odp_port = iter->odp_port;
node = simap_find(&tmp_backers, dp_port);
if (node) {
simap_put(&backer->tnl_backers, dp_port, node->data);
simap_delete(&tmp_backers, node);
node = simap_find(&backer->tnl_backers, dp_port);
} else {
node = simap_find(&backer->tnl_backers, dp_port);
if (!node) {
odp_port_t odp_port = ODPP_NONE;
if (!dpif_port_add(backer->dpif, iter->up.netdev,
&odp_port)) {
simap_put(&backer->tnl_backers, dp_port,
odp_to_u32(odp_port));
node = simap_find(&backer->tnl_backers, dp_port);
}
}
}
iter->odp_port = node ? u32_to_odp(node->data) : ODPP_NONE;
if (tnl_port_reconfigure(iter, iter->up.netdev,
iter->odp_port, old_odp_port,
ovs_native_tunneling_is_on(ofproto), dp_port)) {
backer->need_revalidate = REV_RECONFIGURE;
}
}
}
SIMAP_FOR_EACH (node, &tmp_backers) {
dpif_port_del(backer->dpif, u32_to_odp(node->data), false);
}
simap_destroy(&tmp_backers);
switch (backer->need_revalidate) {
case REV_RECONFIGURE: COVERAGE_INC(rev_reconfigure); break;
case REV_STP: COVERAGE_INC(rev_stp); break;
case REV_RSTP: COVERAGE_INC(rev_rstp); break;
case REV_BOND: COVERAGE_INC(rev_bond); break;
case REV_PORT_TOGGLED: COVERAGE_INC(rev_port_toggled); break;
case REV_FLOW_TABLE: COVERAGE_INC(rev_flow_table); break;
case REV_MAC_LEARNING: COVERAGE_INC(rev_mac_learning); break;
case REV_MCAST_SNOOPING: COVERAGE_INC(rev_mcast_snooping); break;
}
backer->need_revalidate = 0;
xlate_txn_start();
HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_by_name_node,
&all_ofproto_dpifs_by_name) {
struct ofport_dpif *ofport;
struct ofbundle *bundle;
if (ofproto->backer != backer) {
continue;
}
xlate_ofproto_set(ofproto, ofproto->up.name,
ofproto->backer->dpif, ofproto->ml,
ofproto->stp, ofproto->rstp, ofproto->ms,
ofproto->mbridge, ofproto->sflow, ofproto->ipfix,
ofproto->lsample, ofproto->netflow,
ofproto->up.forward_bpdu,
connmgr_has_in_band(ofproto->up.connmgr),
&ofproto->backer->rt_support);
HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
xlate_bundle_set(ofproto, bundle, bundle->name,
bundle->vlan_mode, bundle->qinq_ethtype,
bundle->vlan, bundle->trunks, bundle->cvlans,
bundle->use_priority_tags,
bundle->bond, bundle->lacp,
bundle->floodable, bundle->protected);
}
HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
int stp_port = ofport->stp_port
? stp_port_no(ofport->stp_port)
: -1;
xlate_ofport_set(ofproto, ofport->bundle, ofport,
ofport->up.ofp_port, ofport->odp_port,
ofport->up.netdev, ofport->cfm, ofport->bfd,
ofport->lldp, ofport->peer, stp_port,
ofport->rstp_port, ofport->qdscp,
ofport->n_qdscp, ofport->up.pp.config,
ofport->up.pp.state, ofport->is_tunnel,
ofport->up.may_enable);
}
}
xlate_txn_commit();
udpif_revalidate(backer->udpif);
}
process_dpif_port_changes(backer);
ct_zone_timeout_policy_sweep(backer);
ct_zone_limits_commit(backer);
return 0;
}
/* Check for and handle port changes in 'backer''s dpif. */
static void
process_dpif_port_changes(struct dpif_backer *backer)
{
for (;;) {
char *devname;
int error;
error = dpif_port_poll(backer->dpif, &devname);
switch (error) {
case EAGAIN:
return;
case ENOBUFS:
process_dpif_all_ports_changed(backer);
break;
case 0:
process_dpif_port_change(backer, devname);
free(devname);
break;
default:
process_dpif_port_error(backer, error);
break;
}
}
}
static void
process_dpif_all_ports_changed(struct dpif_backer *backer)
{
struct ofproto_dpif *ofproto;
struct dpif_port dpif_port;
struct dpif_port_dump dump;
struct sset devnames;
const char *devname;
sset_init(&devnames);
HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_by_name_node,
&all_ofproto_dpifs_by_name) {
if (ofproto->backer == backer) {
struct ofport *ofport;
HMAP_FOR_EACH (ofport, hmap_node, &ofproto->up.ports) {
sset_add(&devnames, netdev_get_name(ofport->netdev));
}
}
}
DPIF_PORT_FOR_EACH (&dpif_port, &dump, backer->dpif) {
sset_add(&devnames, dpif_port.name);
}
SSET_FOR_EACH (devname, &devnames) {
process_dpif_port_change(backer, devname);
}
sset_destroy(&devnames);
}
static void
process_dpif_port_change(struct dpif_backer *backer, const char *devname)
{
struct ofproto_dpif *ofproto;
struct dpif_port port;
/* Don't report on the datapath's device. */
if (!strcmp(devname, dpif_base_name(backer->dpif))) {
return;
}
HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_by_name_node,
&all_ofproto_dpifs_by_name) {
if (simap_contains(&ofproto->backer->tnl_backers, devname)) {
return;
}
}
ofproto = lookup_ofproto_dpif_by_port_name(devname);
if (dpif_port_query_by_name(backer->dpif, devname, &port)) {
/* The port was removed. If we know the datapath,
* report it through poll_set(). If we don't, it may be
* notifying us of a removal we initiated, so ignore it.
* If there's a pending ENOBUFS, let it stand, since
* everything will be reevaluated. */
if (ofproto && ofproto->port_poll_errno != ENOBUFS) {
sset_add(&ofproto->port_poll_set, devname);
ofproto->port_poll_errno = 0;
}
} else if (!ofproto) {
/* The port was added, but we don't know with which
* ofproto we should associate it. Delete it. */
dpif_port_del(backer->dpif, port.port_no, false);
} else {
struct ofport_dpif *ofport;
ofport = ofport_dpif_cast(shash_find_data(
&ofproto->up.port_by_name, devname));
if (ofport
&& ofport->odp_port != port.port_no
&& !odp_port_to_ofport(backer, port.port_no))
{
/* 'ofport''s datapath port number has changed from
* 'ofport->odp_port' to 'port.port_no'. Update our internal data
* structures to match. */
ovs_rwlock_wrlock(&backer->odp_to_ofport_lock);
hmap_remove(&backer->odp_to_ofport_map, &ofport->odp_port_node);
ofport->odp_port = port.port_no;
hmap_insert(&backer->odp_to_ofport_map, &ofport->odp_port_node,
hash_odp_port(port.port_no));
ovs_rwlock_unlock(&backer->odp_to_ofport_lock);
backer->need_revalidate = REV_RECONFIGURE;
}
}
dpif_port_destroy(&port);
}
/* Propagate 'error' to all ofprotos based on 'backer'. */
static void
process_dpif_port_error(struct dpif_backer *backer, int error)
{
struct ofproto_dpif *ofproto;
HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_by_name_node,
&all_ofproto_dpifs_by_name) {
if (ofproto->backer == backer) {
sset_clear(&ofproto->port_poll_set);
ofproto->port_poll_errno = error;
}
}
}
static void
type_wait(const char *type)
{
struct dpif_backer *backer;
backer = shash_find_data(&all_dpif_backers, type);
if (!backer) {
/* This is not necessarily a problem, since backers are only
* created on demand. */
return;
}
dpif_wait(backer->dpif);
}
/* Basic life-cycle. */
static int add_internal_flows(struct ofproto_dpif *);
static struct ofproto *
alloc(void)
{
struct ofproto_dpif *ofproto = xzalloc(sizeof *ofproto);
return &ofproto->up;
}
static void
dealloc(struct ofproto *ofproto_)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
free(ofproto);
}
static void
close_dpif_backer(struct dpif_backer *backer, bool del)
{
struct simap_node *node;
ovs_assert(backer->refcount > 0);
if (--backer->refcount) {
return;
}
udpif_destroy(backer->udpif);
if (del) {
SIMAP_FOR_EACH (node, &backer->tnl_backers) {
dpif_port_del(backer->dpif, u32_to_odp(node->data), false);
}
}
simap_destroy(&backer->tnl_backers);
ovs_rwlock_destroy(&backer->odp_to_ofport_lock);
hmap_destroy(&backer->odp_to_ofport_map);
shash_find_and_delete(&all_dpif_backers, backer->type);
free(backer->type);
free(backer->dp_version_string);
if (del) {
dpif_delete(backer->dpif);
}
dpif_close(backer->dpif);
id_pool_destroy(backer->meter_ids);
ct_zone_config_uninit(backer);
free(backer);
}
static void check_support(struct dpif_backer *backer);
static void copy_support(struct dpif_backer_support *dst,
struct dpif_backer_support *src);
static int
open_dpif_backer(const char *type, struct dpif_backer **backerp)
{
struct dpif_backer *backer;
struct dpif_port_dump port_dump;
struct dpif_port port;
struct shash_node *node;
struct sset names;
char *backer_name;
const char *name;
int error;
backer = shash_find_data(&all_dpif_backers, type);
if (backer) {
backer->refcount++;
*backerp = backer;
return 0;
}
backer_name = xasprintf("ovs-%s", type);
/* Remove any existing datapaths, since we assume we're the only
* userspace controlling the datapath. */
sset_init(&names);
dp_enumerate_names(type, &names);
SSET_FOR_EACH(name, &names) {
struct dpif *old_dpif;
/* Don't remove our backer if it exists. */
if (!strcmp(name, backer_name)) {
continue;
}
if (dpif_open(name, type, &old_dpif)) {
VLOG_WARN("couldn't open old datapath %s to remove it", name);
} else {
dpif_delete(old_dpif);
dpif_close(old_dpif);
}
}
sset_destroy(&names);
backer = xmalloc(sizeof *backer);
error = dpif_create_and_open(backer_name, type, &backer->dpif);
free(backer_name);
if (error) {
VLOG_ERR("failed to open datapath of type %s: %s", type,
ovs_strerror(error));
free(backer);
return error;
}
backer->udpif = udpif_create(backer, backer->dpif);
backer->type = xstrdup(type);
backer->refcount = 1;
hmap_init(&backer->odp_to_ofport_map);
ovs_rwlock_init(&backer->odp_to_ofport_lock);
backer->need_revalidate = 0;
simap_init(&backer->tnl_backers);
backer->recv_set_enable = !ofproto_get_flow_restore_wait();
*backerp = backer;
if (backer->recv_set_enable) {
dpif_flow_flush(backer->dpif);
}
/* Loop through the ports already on the datapath and find ones that are
* not on the initial OpenFlow ports list. These are stale ports, that we
* do not need anymore, or tunnel backing interfaces, that do not generally
* match the name of OpenFlow tunnel ports, or both. Add all of them to
* the list of tunnel backers. type_run() will garbage collect those that
* are not active tunnel backing interfaces during revalidation. */
dpif_port_dump_start(&port_dump, backer->dpif);
while (dpif_port_dump_next(&port_dump, &port)) {
node = shash_find(&init_ofp_ports, port.name);
if (!node && strcmp(port.name, dpif_base_name(backer->dpif))) {
simap_put(&backer->tnl_backers, port.name,
odp_to_u32(port.port_no));
backer->need_revalidate = REV_RECONFIGURE;
}
}
dpif_port_dump_done(&port_dump);
shash_add(&all_dpif_backers, type, backer);
check_support(backer);
atomic_count_init(&backer->tnl_count, 0);
error = dpif_recv_set(backer->dpif, backer->recv_set_enable);
if (error) {
VLOG_ERR("failed to listen on datapath of type %s: %s",
type, ovs_strerror(error));
close_dpif_backer(backer, false);
return error;
}
if (backer->recv_set_enable) {
udpif_set_threads(backer->udpif, n_handlers, n_revalidators);
}
backer->dp_version_string = dpif_get_dp_version(backer->dpif);
/* Manage Datapath meter IDs if supported. */
struct ofputil_meter_features features;
dpif_meter_get_features(backer->dpif, &features);
if (features.max_meters) {
backer->meter_ids = id_pool_create(0, features.max_meters);
} else {
backer->meter_ids = NULL;
}
ct_zone_config_init(backer);
/* Make a pristine snapshot of 'support' into 'boottime_support'.
* 'boottime_support' can be checked to prevent 'support' to be changed
* beyond the datapath capabilities. In case 'support' is changed by
* the user, 'boottime_support' can be used to restore it. */
copy_support(&backer->bt_support, &backer->rt_support);
return error;
}
bool
ovs_native_tunneling_is_on(struct ofproto_dpif *ofproto)
{
return ofproto_use_tnl_push_pop
&& ofproto->backer->rt_support.tnl_push_pop
&& atomic_count_get(&ofproto->backer->tnl_count);
}
bool
ovs_explicit_drop_action_supported(struct ofproto_dpif *ofproto)
{
bool value;
atomic_read_relaxed(&ofproto->backer->rt_support.explicit_drop_action,
&value);
return value;
}
bool
ovs_lb_output_action_supported(struct ofproto_dpif *ofproto)
{
return ofproto->backer->rt_support.lb_output_action;
}
bool
ovs_psample_supported(struct ofproto_dpif *ofproto)
{
return ofproto->backer->rt_support.psample;
}
/* Tests whether 'backer''s datapath supports recirculation. Only newer
* datapaths support OVS_KEY_ATTR_RECIRC_ID in keys. We need to disable some
* features on older datapaths that don't support this feature.
*
* Returns false if 'backer' definitely does not support recirculation, true if
* it seems to support recirculation or if at least the error we get is
* ambiguous. */
static bool
check_recirc(struct dpif_backer *backer)
{
struct flow flow;
struct odputil_keybuf keybuf;
struct ofpbuf key;
bool enable_recirc;
struct odp_flow_key_parms odp_parms = {
.flow = &flow,
.support = {
.recirc = true,
},
};
memset(&flow, 0, sizeof flow);
flow.recirc_id = 1;
flow.dp_hash = 1;
ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
odp_flow_key_from_flow(&odp_parms, &key);
enable_recirc = dpif_probe_feature(backer->dpif, "recirculation", &key,
NULL, NULL);
if (enable_recirc) {
VLOG_INFO("%s: Datapath supports recirculation",
dpif_name(backer->dpif));
} else {
VLOG_INFO("%s: Datapath does not support recirculation",
dpif_name(backer->dpif));
}
return enable_recirc;
}
/* Tests whether 'dpif' supports unique flow ids. We can skip serializing
* some flow attributes for datapaths that support this feature.
*
* Returns true if 'dpif' supports UFID for flow operations.
* Returns false if 'dpif' does not support UFID. */
static bool
check_ufid(struct dpif_backer *backer)
{
struct flow flow;
struct odputil_keybuf keybuf;
struct ofpbuf key;
ovs_u128 ufid;
bool enable_ufid;
struct odp_flow_key_parms odp_parms = {
.flow = &flow,
};
memset(&flow, 0, sizeof flow);
flow.dl_type = htons(0x1234);
ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
odp_flow_key_from_flow(&odp_parms, &key);
odp_flow_key_hash(key.data, key.size, &ufid);
enable_ufid = dpif_probe_feature(backer->dpif, "UFID", &key, NULL, &ufid);
if (enable_ufid) {
VLOG_INFO("%s: Datapath supports unique flow ids",
dpif_name(backer->dpif));
} else {
VLOG_INFO("%s: Datapath does not support unique flow ids",
dpif_name(backer->dpif));
}
return enable_ufid;
}
/* Tests number of 802.1q VLAN headers supported by 'backer''s datapath.
*
* Returns the number of elements in a struct flow's vlan
* if the datapath supports at least that many VLAN headers. */
static size_t
check_max_vlan_headers(struct dpif_backer *backer)
{
struct flow flow;
struct odp_flow_key_parms odp_parms = {
.flow = &flow,
.probe = true,
};
int n;
memset(&flow, 0, sizeof flow);
flow.dl_type = htons(ETH_TYPE_IP);
for (n = 0; n < FLOW_MAX_VLAN_HEADERS; n++) {
struct odputil_keybuf keybuf;
struct ofpbuf key;
flow_push_vlan_uninit(&flow, NULL);
flow.vlans[0].tpid = htons(ETH_TYPE_VLAN);
flow.vlans[0].tci = htons(1) | htons(VLAN_CFI);
ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
odp_flow_key_from_flow(&odp_parms, &key);
if (!dpif_probe_feature(backer->dpif, "VLAN", &key, NULL, NULL)) {
break;
}
}
VLOG_INFO("%s: VLAN header stack length probed as %d",
dpif_name(backer->dpif), n);
return n;
}
/* Tests the MPLS label stack depth supported by 'backer''s datapath.
*
* Returns the number of elements in a struct flow's mpls_lse field
* if the datapath supports at least that many entries in an
* MPLS label stack.
* Otherwise returns the number of MPLS push actions supported by
* the datapath. */
static size_t
check_max_mpls_depth(struct dpif_backer *backer)
{
struct flow flow;
int n;
for (n = 0; n < FLOW_MAX_MPLS_LABELS; n++) {
struct odputil_keybuf keybuf;
struct ofpbuf key;
struct odp_flow_key_parms odp_parms = {
.flow = &flow,
};
memset(&flow, 0, sizeof flow);
flow.dl_type = htons(ETH_TYPE_MPLS);
flow_set_mpls_bos(&flow, n, 1);
ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
odp_flow_key_from_flow(&odp_parms, &key);
if (!dpif_probe_feature(backer->dpif, "MPLS", &key, NULL, NULL)) {
break;
}
}
VLOG_INFO("%s: MPLS label stack length probed as %d",
dpif_name(backer->dpif), n);
return n;
}
static void
add_sample_actions(struct ofpbuf *actions, int nesting)
{
if (nesting == 0) {
nl_msg_put_odp_port(actions, OVS_ACTION_ATTR_OUTPUT, u32_to_odp(1));
return;
}
size_t start, actions_start;
start = nl_msg_start_nested(actions, OVS_ACTION_ATTR_SAMPLE);
actions_start = nl_msg_start_nested(actions, OVS_SAMPLE_ATTR_ACTIONS);
add_sample_actions(actions, nesting - 1);
nl_msg_end_nested(actions, actions_start);
nl_msg_put_u32(actions, OVS_SAMPLE_ATTR_PROBABILITY, UINT32_MAX);
nl_msg_end_nested(actions, start);
}
/* Tests the nested sample actions levels supported by 'backer''s datapath.
*
* Returns the number of nested sample actions accepted by the datapath. */
static size_t
check_max_sample_nesting(struct dpif_backer *backer)
{
struct odputil_keybuf keybuf;
struct ofpbuf key;
struct flow flow;
int n;
struct odp_flow_key_parms odp_parms = {
.flow = &flow,
};
memset(&flow, 0, sizeof flow);
ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
odp_flow_key_from_flow(&odp_parms, &key);
/* OVS datapath has always supported at least 3 nested levels. */
for (n = 3; n < FLOW_MAX_SAMPLE_NESTING; n++) {
struct ofpbuf actions;
bool ok;
ofpbuf_init(&actions, 300);
add_sample_actions(&actions, n);
ok = dpif_probe_feature(backer->dpif, "Sample action nesting", &key,
&actions, NULL);
ofpbuf_uninit(&actions);
if (!ok) {
break;
}
}
VLOG_INFO("%s: Max sample nesting level probed as %d",
dpif_name(backer->dpif), n);
return n;
}
/* Tests whether 'backer''s datapath supports masked data in
* OVS_ACTION_ATTR_SET actions. We need to disable some features on older
* datapaths that don't support this feature. */
static bool
check_masked_set_action(struct dpif_backer *backer)
{
struct eth_header *eth;
struct ofpbuf actions;
struct dp_packet packet;
struct flow flow;
int error;
struct ovs_key_ethernet key, mask;
/* Compose a set action that will cause an EINVAL error on older
* datapaths that don't support masked set actions.
* Avoid using a full mask, as it could be translated to a non-masked
* set action instead. */
ofpbuf_init(&actions, 64);
memset(&key, 0x53, sizeof key);
memset(&mask, 0x7f, sizeof mask);
commit_masked_set_action(&actions, OVS_KEY_ATTR_ETHERNET, &key, &mask,
sizeof key);
/* Compose a dummy ethernet packet. */
dp_packet_init(&packet, ETH_HEADER_LEN);
eth = dp_packet_put_zeros(&packet, ETH_HEADER_LEN);
eth->eth_type = htons(0x1234);
flow_extract(&packet, &flow);
/* Execute the actions. On older datapaths this fails with EINVAL, on
* newer datapaths it succeeds. */
struct dpif_execute execute = {
.actions = actions.data,
.actions_len = actions.size,
.packet = &packet,
.flow = &flow,
.probe = true,
};
error = dpif_execute(backer->dpif, &execute);
dp_packet_uninit(&packet);
ofpbuf_uninit(&actions);
if (error) {
/* Masked set action is not supported. */
VLOG_INFO("%s: datapath does not support masked set action feature.",
dpif_name(backer->dpif));
}
return !error;
}
/* Tests whether 'backer''s datapath supports truncation of a packet in
* OVS_ACTION_ATTR_TRUNC. We need to disable some features on older
* datapaths that don't support this feature. */
static bool
check_trunc_action(struct dpif_backer *backer)
{
struct eth_header *eth;
struct ofpbuf actions;
struct dp_packet packet;
struct ovs_action_trunc *trunc;
struct flow flow;
int error;
/* Compose an action with output(port:1,
* max_len:OVS_ACTION_OUTPUT_MIN + 1).
* This translates to one truncate action and one output action. */
ofpbuf_init(&actions, 64);
trunc = nl_msg_put_unspec_uninit(&actions,
OVS_ACTION_ATTR_TRUNC, sizeof *trunc);
trunc->max_len = ETH_HEADER_LEN + 1;
nl_msg_put_odp_port(&actions, OVS_ACTION_ATTR_OUTPUT, u32_to_odp(1));
/* Compose a dummy Ethernet packet. */
dp_packet_init(&packet, ETH_HEADER_LEN);
eth = dp_packet_put_zeros(&packet, ETH_HEADER_LEN);
eth->eth_type = htons(0x1234);
flow_extract(&packet, &flow);
/* Execute the actions. On older datapaths this fails with EINVAL, on
* newer datapaths it succeeds. */
struct dpif_execute execute = {
.actions = actions.data,
.actions_len = actions.size,
.packet = &packet,
.flow = &flow,
.probe = true,
};
error = dpif_execute(backer->dpif, &execute);
dp_packet_uninit(&packet);
ofpbuf_uninit(&actions);
if (error) {
VLOG_INFO("%s: Datapath does not support truncate action",
dpif_name(backer->dpif));
} else {
VLOG_INFO("%s: Datapath supports truncate action",
dpif_name(backer->dpif));
}
return !error;
}
/* Tests whether 'backer''s datapath supports the clone action
* OVS_ACTION_ATTR_CLONE. */
static bool
check_clone(struct dpif_backer *backer)
{
struct eth_header *eth;
struct flow flow;
struct dp_packet packet;
struct ofpbuf actions;
size_t clone_start;
int error;
/* Compose clone with an empty action list.
* and check if datapath can decode the message. */
ofpbuf_init(&actions, 64);
clone_start = nl_msg_start_nested(&actions, OVS_ACTION_ATTR_CLONE);
nl_msg_end_nested(&actions, clone_start);
/* Compose a dummy Ethernet packet. */
dp_packet_init(&packet, ETH_HEADER_LEN);
eth = dp_packet_put_zeros(&packet, ETH_HEADER_LEN);
eth->eth_type = htons(0x1234);
flow_extract(&packet, &flow);
/* Execute the actions. On older datapaths this fails with EINVAL, on
* newer datapaths it succeeds. */
struct dpif_execute execute = {
.actions = actions.data,
.actions_len = actions.size,
.packet = &packet,
.flow = &flow,
.probe = true,
};
error = dpif_execute(backer->dpif, &execute);
dp_packet_uninit(&packet);
ofpbuf_uninit(&actions);
if (error) {
VLOG_INFO("%s: Datapath does not support clone action",
dpif_name(backer->dpif));
} else {
VLOG_INFO("%s: Datapath supports clone action",
dpif_name(backer->dpif));
}
return !error;
}
/* Tests whether 'backer''s datapath supports the OVS_CT_ATTR_EVENTMASK
* attribute in OVS_ACTION_ATTR_CT. */
static bool
check_ct_eventmask(struct dpif_backer *backer)
{
struct dp_packet packet;
struct ofpbuf actions;
struct flow flow = {
.dl_type = CONSTANT_HTONS(ETH_TYPE_IP),
.nw_proto = IPPROTO_UDP,
.nw_ttl = 64,
/* Use the broadcast address on the loopback address range 127/8 to
* avoid hitting any real conntrack entries. We leave the UDP ports to
* zeroes for the same purpose. */
.nw_src = CONSTANT_HTONL(0x7fffffff),
.nw_dst = CONSTANT_HTONL(0x7fffffff),
};
size_t ct_start;
int error;
/* Compose CT action with eventmask attribute and check if datapath can
* decode the message. */
ofpbuf_init(&actions, 64);
ct_start = nl_msg_start_nested(&actions, OVS_ACTION_ATTR_CT);
/* Eventmask has no effect without the commit flag, but currently the
* datapath will accept an eventmask even without commit. This is useful
* as we do not want to persist the probe connection in the conntrack
* table. */
nl_msg_put_u32(&actions, OVS_CT_ATTR_EVENTMASK, ~0);
nl_msg_end_nested(&actions, ct_start);
/* Compose a dummy UDP packet. */
dp_packet_init(&packet, 0);
flow_compose(&packet, &flow, NULL, 64, false);
/* Execute the actions. On older datapaths this fails with EINVAL, on
* newer datapaths it succeeds. */
struct dpif_execute execute = {
.actions = actions.data,
.actions_len = actions.size,
.packet = &packet,
.flow = &flow,
.probe = true,
};
error = dpif_execute(backer->dpif, &execute);
dp_packet_uninit(&packet);
ofpbuf_uninit(&actions);
if (error) {
VLOG_INFO("%s: Datapath does not support eventmask in conntrack action",
dpif_name(backer->dpif));
} else {
VLOG_INFO("%s: Datapath supports eventmask in conntrack action",
dpif_name(backer->dpif));
}
return !error;
}
/* Tests whether 'backer''s datapath supports the OVS_ACTION_ATTR_CT_CLEAR
* action. */
static bool
check_ct_clear(struct dpif_backer *backer)
{
struct odputil_keybuf keybuf;
uint8_t actbuf[NL_A_FLAG_SIZE];
struct ofpbuf actions;
struct ofpbuf key;
struct flow flow;
bool supported;
struct odp_flow_key_parms odp_parms = {
.flow = &flow,
.probe = true,
};
memset(&flow, 0, sizeof flow);
ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
odp_flow_key_from_flow(&odp_parms, &key);
ofpbuf_use_stack(&actions, &actbuf, sizeof actbuf);
nl_msg_put_flag(&actions, OVS_ACTION_ATTR_CT_CLEAR);
supported = dpif_probe_feature(backer->dpif, "ct_clear", &key,
&actions, NULL);
VLOG_INFO("%s: Datapath %s ct_clear action",
dpif_name(backer->dpif), (supported) ? "supports"
: "does not support");
return supported;
}
/* Tests whether 'backer''s datapath supports the OVS_CT_ATTR_TIMEOUT
* attribute in OVS_ACTION_ATTR_CT. */
static bool
check_ct_timeout_policy(struct dpif_backer *backer)
{
struct dp_packet packet;
struct ofpbuf actions;
struct flow flow = {
.dl_type = CONSTANT_HTONS(ETH_TYPE_IP),
.nw_proto = IPPROTO_UDP,
.nw_ttl = 64,
/* Use the broadcast address on the loopback address range 127/8 to
* avoid hitting any real conntrack entries. We leave the UDP ports to
* zeroes for the same purpose. */
.nw_src = CONSTANT_HTONL(0x7fffffff),
.nw_dst = CONSTANT_HTONL(0x7fffffff),
};
size_t ct_start;
int error;
/* Compose CT action with timeout policy attribute and check if datapath
* can decode the message. */
ofpbuf_init(&actions, 64);
ct_start = nl_msg_start_nested(&actions, OVS_ACTION_ATTR_CT);
/* Timeout policy has no effect without the commit flag, but currently the
* datapath will accept a timeout policy even without commit. This is
* useful as we do not want to persist the probe connection in the
* conntrack table. */
nl_msg_put_string(&actions, OVS_CT_ATTR_TIMEOUT, "ovs_test_tp");
nl_msg_end_nested(&actions, ct_start);
/* Compose a dummy UDP packet. */
dp_packet_init(&packet, 0);
flow_compose(&packet, &flow, NULL, 64, false);
/* Execute the actions. On older datapaths this fails with EINVAL, on
* newer datapaths it succeeds. */
struct dpif_execute execute = {
.actions = actions.data,
.actions_len = actions.size,
.packet = &packet,
.flow = &flow,
.probe = true,
};
error = dpif_execute(backer->dpif, &execute);
dp_packet_uninit(&packet);
ofpbuf_uninit(&actions);
if (error) {
VLOG_INFO("%s: Datapath does not support timeout policy in conntrack "
"action", dpif_name(backer->dpif));
} else {
VLOG_INFO("%s: Datapath supports timeout policy in conntrack action",
dpif_name(backer->dpif));
}
return !error;
}
/* Tests whether backer's datapath supports the OVS_ACTION_ATTR_DROP action. */
static bool
check_drop_action(struct dpif_backer *backer)
{
struct odputil_keybuf keybuf;
uint8_t actbuf[NL_A_U32_SIZE];
struct ofpbuf actions;
struct ofpbuf key;
bool supported;
struct flow flow = {
.dl_type = CONSTANT_HTONS(0x1234), /* bogus */
};
struct odp_flow_key_parms odp_parms = {
.flow = &flow,
.probe = true,
};
ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
odp_flow_key_from_flow(&odp_parms, &key);
ofpbuf_use_stack(&actions, &actbuf, sizeof actbuf);
nl_msg_put_u32(&actions, OVS_ACTION_ATTR_DROP, XLATE_OK);
supported = dpif_may_support_explicit_drop_action(backer->dpif) &&
dpif_probe_feature(backer->dpif, "drop", &key, &actions, NULL);
VLOG_INFO("%s: Datapath %s explicit drop action",
dpif_name(backer->dpif),
(supported) ? "supports" : "does not support");
return supported;
}
/* Tests whether 'backer''s datapath supports the all-zero SNAT case. */
static bool
dpif_supports_ct_zero_snat(struct dpif_backer *backer)
{
enum ct_features features;
bool supported = false;
if (!ct_dpif_get_features(backer->dpif, &features)) {
if (features & CONNTRACK_F_ZERO_SNAT) {
supported = true;
}
}
VLOG_INFO("%s: Datapath %s ct_zero_snat",
dpif_name(backer->dpif), (supported) ? "supports"
: "does not support");
return supported;
}
/* Tests whether 'backer''s datapath supports the
* OVS_ACTION_ATTR_CHECK_PKT_LEN action. */
static bool
check_check_pkt_len(struct dpif_backer *backer)
{
struct odputil_keybuf keybuf;
struct ofpbuf actions;
struct ofpbuf key;
struct flow flow;
bool supported;
struct odp_flow_key_parms odp_parms = {
.flow = &flow,
.probe = true,
};
memset(&flow, 0, sizeof flow);
ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
odp_flow_key_from_flow(&odp_parms, &key);
ofpbuf_init(&actions, 64);
size_t cpl_start;
cpl_start = nl_msg_start_nested(&actions, OVS_ACTION_ATTR_CHECK_PKT_LEN);
nl_msg_put_u16(&actions, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, 100);
/* Putting these actions without any data is good enough to check
* if check_pkt_len is supported or not. */
nl_msg_put_flag(&actions, OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
nl_msg_put_flag(&actions, OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
nl_msg_end_nested(&actions, cpl_start);
supported = dpif_probe_feature(backer->dpif, "check_pkt_len", &key,
&actions, NULL);
ofpbuf_uninit(&actions);
VLOG_INFO("%s: Datapath %s check_pkt_len action",
dpif_name(backer->dpif), supported ? "supports"
: "does not support");
return supported;
}
/* Probe the highest dp_hash algorithm supported by the datapath. */
static size_t
check_max_dp_hash_alg(struct dpif_backer *backer)
{
struct odputil_keybuf keybuf;
struct ofpbuf key;
struct flow flow;
struct ovs_action_hash *hash;
int max_alg = 0;
struct odp_flow_key_parms odp_parms = {
.flow = &flow,
.probe = true,
};
memset(&flow, 0, sizeof flow);
ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
odp_flow_key_from_flow(&odp_parms, &key);
/* All datapaths support algorithm 0 (OVS_HASH_ALG_L4). */
for (int alg = 1; alg < __OVS_HASH_MAX; alg++) {
struct ofpbuf actions;
bool ok;
ofpbuf_init(&actions, 300);
hash = nl_msg_put_unspec_uninit(&actions,
OVS_ACTION_ATTR_HASH, sizeof *hash);
hash->hash_basis = 0;
hash->hash_alg = alg;
ok = dpif_probe_feature(backer->dpif, "Max dp_hash algorithm", &key,
&actions, NULL);
ofpbuf_uninit(&actions);
if (ok) {
max_alg = alg;
} else {
break;
}
}
VLOG_INFO("%s: Max dp_hash algorithm probed to be %d",
dpif_name(backer->dpif), max_alg);
return max_alg;
}
/* Tests whether 'backer''s datapath supports IPv6 ND extensions.
* Only userspace datapath support OVS_KEY_ATTR_ND_EXTENSIONS in keys.
*
* Returns false if 'backer' definitely does not support matching and
* setting reserved and options type, true if it seems to support. */
static bool
check_nd_extensions(struct dpif_backer *backer)
{
struct eth_header *eth;
struct ofpbuf actions;
struct dp_packet packet;
struct flow flow;
int error;
struct ovs_key_nd_extensions key, mask;
ofpbuf_init(&actions, 64);
memset(&key, 0x53, sizeof key);
memset(&mask, 0x7f, sizeof mask);
commit_masked_set_action(&actions, OVS_KEY_ATTR_ND_EXTENSIONS, &key, &mask,
sizeof key);
/* Compose a dummy ethernet packet. */
dp_packet_init(&packet, ETH_HEADER_LEN);
eth = dp_packet_put_zeros(&packet, ETH_HEADER_LEN);
eth->eth_type = htons(0x1234);
flow_extract(&packet, &flow);
/* Execute the actions. On datapaths without support fails with EINVAL. */
struct dpif_execute execute = {
.actions = actions.data,
.actions_len = actions.size,
.packet = &packet,
.flow = &flow,
.probe = true,
};
error = dpif_execute(backer->dpif, &execute);
dp_packet_uninit(&packet);
ofpbuf_uninit(&actions);
VLOG_INFO("%s: Datapath %s IPv6 ND Extensions", dpif_name(backer->dpif),
error ? "does not support" : "supports");
return !error;
}
/* Tests whether 'backer''s datapath supports the OVS_ACTION_ATTR_ADD_MPLS
* action. */
static bool
check_add_mpls(struct dpif_backer *backer)
{
struct odputil_keybuf keybuf;
struct ofpbuf actions;
struct ofpbuf key;
struct flow flow;
bool supported;
struct odp_flow_key_parms odp_parms = {
.flow = &flow,
.probe = true,
};
memset(&flow, 0, sizeof flow);
ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
odp_flow_key_from_flow(&odp_parms, &key);
ofpbuf_init(&actions, 64);
struct ovs_action_add_mpls *mpls;
mpls = nl_msg_put_unspec_zero(&actions,
OVS_ACTION_ATTR_ADD_MPLS,
sizeof *mpls);
mpls->mpls_ethertype = htons(ETH_TYPE_MPLS);
supported = dpif_probe_feature(backer->dpif, "add_mpls", &key,
&actions, NULL);
ofpbuf_uninit(&actions);
VLOG_INFO("%s: Datapath %s add_mpls action",
dpif_name(backer->dpif),
supported ? "supports" : "does not support");
return supported;
}
/* Tests whether 'backer''s datapath supports the OVS_ACTION_ATTR_PSAMPLE
* action. */
static bool
check_psample(struct dpif_backer *backer)
{
uint8_t cookie[OVS_PSAMPLE_COOKIE_MAX_SIZE];
struct odputil_keybuf keybuf;
struct ofpbuf actions;
struct ofpbuf key;
bool supported;
/* Intentionally bogus dl_type. */
struct flow flow = {
.dl_type = CONSTANT_HTONS(0x1234),
};
struct odp_flow_key_parms odp_parms = {
.flow = &flow,
.probe = true,
};
ofpbuf_use_stack(&key, &keybuf, sizeof keybuf);
odp_flow_key_from_flow(&odp_parms, &key);
ofpbuf_init(&actions, 32);
/* Generate a random max-size cookie. */
random_bytes(cookie, sizeof cookie);
odp_put_psample_action(&actions, 10, cookie, sizeof cookie);
supported = dpif_may_support_psample(backer->dpif) &&
dpif_probe_feature(backer->dpif, "psample", &key, &actions, NULL);
ofpbuf_uninit(&actions);
VLOG_INFO("%s: Datapath %s psample action", dpif_name(backer->dpif),
supported ? "supports" : "does not support");
return supported;
}
#define CHECK_FEATURE__(NAME, SUPPORT, FIELD, VALUE, ETHTYPE) \
static bool \
check_##NAME(struct dpif_backer *backer) \
{ \
struct flow flow; \
struct odputil_keybuf keybuf; \
struct ofpbuf key; \
bool enable; \
struct odp_flow_key_parms odp_parms = { \
.flow = &flow, \
.support = { \
.SUPPORT = true, \
}, \
}; \
\
memset(&flow, 0, sizeof flow); \
flow.FIELD = VALUE; \
flow.dl_type = htons(ETHTYPE); \
\
ofpbuf_use_stack(&key, &keybuf, sizeof keybuf); \
odp_flow_key_from_flow(&odp_parms, &key); \
enable = dpif_probe_feature(backer->dpif, #NAME, &key, NULL, NULL); \
\
if (enable) { \
VLOG_INFO("%s: Datapath supports "#NAME, dpif_name(backer->dpif)); \
} else { \
VLOG_INFO("%s: Datapath does not support "#NAME, \
dpif_name(backer->dpif)); \
} \
\
return enable; \
}
#define CHECK_FEATURE(FIELD) CHECK_FEATURE__(FIELD, FIELD, FIELD, 1, \
ETH_TYPE_IP)
CHECK_FEATURE(ct_state)
CHECK_FEATURE(ct_zone)
CHECK_FEATURE(ct_mark)
CHECK_FEATURE__(ct_label, ct_label, ct_label.u64.lo, 1, ETH_TYPE_IP)
CHECK_FEATURE__(ct_state_nat, ct_state, ct_state, \
CS_TRACKED|CS_SRC_NAT, ETH_TYPE_IP)
CHECK_FEATURE__(ct_orig_tuple, ct_orig_tuple, ct_nw_proto, 1, ETH_TYPE_IP)
CHECK_FEATURE__(ct_orig_tuple6, ct_orig_tuple6, ct_nw_proto, 1, ETH_TYPE_IPV6)
#undef CHECK_FEATURE
#undef CHECK_FEATURE__
static void
copy_support(struct dpif_backer_support *dst, struct dpif_backer_support *src)
{
#define DPIF_SUPPORT_FIELD(TYPE, NAME, TITLE) \
if (!strcmp(#TYPE, "atomic_bool")) { \
bool value; \
atomic_read_relaxed((atomic_bool *) &src->NAME, &value); \
atomic_store_relaxed((atomic_bool *) &dst->NAME, value); \
} else { \
dst->NAME = src->NAME; \
}
DPIF_SUPPORT_FIELDS
#undef DPIF_SUPPORT_FIELD
dst->odp = src->odp;
}
static void
check_support(struct dpif_backer *backer)
{
/* Actions. */
backer->rt_support.odp.recirc = check_recirc(backer);
backer->rt_support.odp.max_vlan_headers = check_max_vlan_headers(backer);
backer->rt_support.odp.max_mpls_depth = check_max_mpls_depth(backer);
backer->rt_support.masked_set_action = check_masked_set_action(backer);
backer->rt_support.trunc = check_trunc_action(backer);
backer->rt_support.ufid = check_ufid(backer);
backer->rt_support.tnl_push_pop = dpif_supports_tnl_push_pop(backer->dpif);
backer->rt_support.clone = check_clone(backer);
backer->rt_support.sample_nesting = check_max_sample_nesting(backer);
backer->rt_support.ct_eventmask = check_ct_eventmask(backer);
backer->rt_support.ct_clear = check_ct_clear(backer);
backer->rt_support.max_hash_alg = check_max_dp_hash_alg(backer);
backer->rt_support.check_pkt_len = check_check_pkt_len(backer);
backer->rt_support.ct_timeout = check_ct_timeout_policy(backer);
atomic_store_relaxed(&backer->rt_support.explicit_drop_action,
check_drop_action(backer));
backer->rt_support.lb_output_action =
dpif_supports_lb_output_action(backer->dpif);
backer->rt_support.ct_zero_snat = dpif_supports_ct_zero_snat(backer);
backer->rt_support.add_mpls = check_add_mpls(backer);
backer->rt_support.psample = check_psample(backer);
/* Flow fields. */
backer->rt_support.odp.ct_state = check_ct_state(backer);
backer->rt_support.odp.ct_zone = check_ct_zone(backer);
backer->rt_support.odp.ct_mark = check_ct_mark(backer);
backer->rt_support.odp.ct_label = check_ct_label(backer);
backer->rt_support.odp.ct_state_nat = check_ct_state_nat(backer);
backer->rt_support.odp.ct_orig_tuple = check_ct_orig_tuple(backer);
backer->rt_support.odp.ct_orig_tuple6 = check_ct_orig_tuple6(backer);
backer->rt_support.odp.nd_ext = check_nd_extensions(backer);
}
/* TC does not support offloading the explicit drop action. As such we need to
* re-probe the datapath if hw-offload has been modified.
* Note: We don't support true --> false transition as that requires a restart.
* See netdev_set_flow_api_enabled(). */
static bool
recheck_support_explicit_drop_action(struct dpif_backer *backer)
{
bool explicit_drop_action;
atomic_read_relaxed(&backer->rt_support.explicit_drop_action,
&explicit_drop_action);
if (explicit_drop_action
&& !dpif_may_support_explicit_drop_action(backer->dpif)) {
ovs_assert(!check_drop_action(backer));
atomic_store_relaxed(&backer->rt_support.explicit_drop_action, false);
return true;
}
return false;
}
static int
construct(struct ofproto *ofproto_)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
struct shash_node *node;
int error;
/* Tunnel module can get used right after the udpif threads are running. */
ofproto_tunnel_init();
error = open_dpif_backer(ofproto->up.type, &ofproto->backer);
if (error) {
return error;
}
uuid_generate(&ofproto->uuid);
atomic_init(&ofproto->tables_version, OVS_VERSION_MIN);
ofproto->netflow = NULL;
ofproto->sflow = NULL;
ofproto->ipfix = NULL;
ofproto->stp = NULL;
ofproto->rstp = NULL;
ofproto->dump_seq = 0;
hmap_init(&ofproto->bundles);
ofproto->ml = mac_learning_create(MAC_ENTRY_DEFAULT_IDLE_TIME);
ofproto->ms = NULL;
ofproto->mbridge = mbridge_create();
ofproto->has_bonded_bundles = false;
ofproto->lacp_enabled = false;
ovs_mutex_init_adaptive(&ofproto->stats_mutex);
guarded_list_init(&ofproto->ams);
sset_init(&ofproto->ports);
sset_init(&ofproto->ghost_ports);
sset_init(&ofproto->port_poll_set);
ofproto->port_poll_errno = 0;
ofproto->change_seq = 0;
ofproto->ams_seq = seq_create();
ofproto->ams_seqno = seq_read(ofproto->ams_seq);
ofproto->explicit_sampled_drops = false;
SHASH_FOR_EACH_SAFE (node, &init_ofp_ports) {
struct iface_hint *iface_hint = node->data;
if (!strcmp(iface_hint->br_name, ofproto->up.name)) {
/* Check if the datapath already has this port. */
if (dpif_port_exists(ofproto->backer->dpif, node->name)) {
sset_add(&ofproto->ports, node->name);
}
free(iface_hint->br_name);
free(iface_hint->br_type);
free(iface_hint);
shash_delete(&init_ofp_ports, node);
}
}
hmap_insert(&all_ofproto_dpifs_by_name,
&ofproto->all_ofproto_dpifs_by_name_node,
hash_string(ofproto->up.name, 0));
memset(&ofproto->stats, 0, sizeof ofproto->stats);
ofproto_init_tables(ofproto_, N_TABLES);
error = add_internal_flows(ofproto);
ofproto->up.tables[TBL_INTERNAL].flags = OFTABLE_HIDDEN | OFTABLE_READONLY;
return error;
}
static int
add_internal_miss_flow(struct ofproto_dpif *ofproto, int id,
const struct ofpbuf *ofpacts, struct rule_dpif **rulep)
{
struct match match;
int error;
struct rule *rule;
match_init_catchall(&match);
match_set_reg(&match, 0, id);
error = ofproto_dpif_add_internal_flow(ofproto, &match, 0, 0, ofpacts,
&rule);
*rulep = error ? NULL : rule_dpif_cast(rule);
return error;
}
static int
add_internal_flows(struct ofproto_dpif *ofproto)
{
struct ofpact_controller *controller;
uint64_t ofpacts_stub[128 / 8];
struct ofpbuf ofpacts;
struct rule *unused_rulep OVS_UNUSED;
struct match match;
int error;
int id;
ofpbuf_use_stack(&ofpacts, ofpacts_stub, sizeof ofpacts_stub);
id = 1;
controller = ofpact_put_CONTROLLER(&ofpacts);
controller->max_len = UINT16_MAX;
controller->controller_id = 0;
controller->reason = OFPR_IMPLICIT_MISS;
controller->meter_id = NX_CTLR_NO_METER;
ofpact_finish_CONTROLLER(&ofpacts, &controller);
error = add_internal_miss_flow(ofproto, id++, &ofpacts,
&ofproto->miss_rule);
if (error) {
return error;
}
ofpbuf_clear(&ofpacts);
error = add_internal_miss_flow(ofproto, id++, &ofpacts,
&ofproto->no_packet_in_rule);
if (error) {
return error;
}
error = add_internal_miss_flow(ofproto, id++, &ofpacts,
&ofproto->drop_frags_rule);
if (error) {
return error;
}
/* Drop any run away non-recirc rule lookups. Recirc_id has to be
* zero when reaching this rule.
*
* (priority=2), recirc_id=0, actions=drop
*/
ofpbuf_clear(&ofpacts);
match_init_catchall(&match);
match_set_recirc_id(&match, 0);
error = ofproto_dpif_add_internal_flow(ofproto, &match, 2, 0, &ofpacts,
&unused_rulep);
return error;
}
static void
destruct(struct ofproto *ofproto_, bool del)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
struct ofproto_async_msg *am;
struct rule_dpif *rule;
struct oftable *table;
struct ovs_list ams;
ofproto->backer->need_revalidate = REV_RECONFIGURE;
xlate_txn_start();
xlate_remove_ofproto(ofproto);
xlate_txn_commit();
hmap_remove(&all_ofproto_dpifs_by_name,
&ofproto->all_ofproto_dpifs_by_name_node);
OFPROTO_FOR_EACH_TABLE (table, &ofproto->up) {
CLS_FOR_EACH (rule, up.cr, &table->cls) {
ofproto_rule_delete(&ofproto->up, &rule->up);
}
}
ofproto_group_delete_all(&ofproto->up);
guarded_list_pop_all(&ofproto->ams, &ams);
LIST_FOR_EACH_POP (am, list_node, &ams) {
ofproto_async_msg_free(am);
}
guarded_list_destroy(&ofproto->ams);
recirc_free_ofproto(ofproto, ofproto->up.name);
mbridge_unref(ofproto->mbridge);
netflow_unref(ofproto->netflow);
dpif_sflow_unref(ofproto->sflow);
dpif_ipfix_unref(ofproto->ipfix);
dpif_lsample_unref(ofproto->lsample);
hmap_destroy(&ofproto->bundles);
mac_learning_unref(ofproto->ml);
mcast_snooping_unref(ofproto->ms);
stp_unref(ofproto->stp);
rstp_unref(ofproto->rstp);
sset_destroy(&ofproto->ports);
sset_destroy(&ofproto->ghost_ports);
sset_destroy(&ofproto->port_poll_set);
ovs_mutex_destroy(&ofproto->stats_mutex);
seq_destroy(ofproto->ams_seq);
/* Wait for all the meter destroy work to finish. */
ovsrcu_barrier();
close_dpif_backer(ofproto->backer, del);
}
static int
run(struct ofproto *ofproto_)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
uint64_t new_seq, new_dump_seq;
bool is_connected;
if (mbridge_need_revalidate(ofproto->mbridge)) {
ofproto->backer->need_revalidate = REV_RECONFIGURE;
ovs_rwlock_wrlock(&ofproto->ml->rwlock);
mac_learning_flush(ofproto->ml);
ovs_rwlock_unlock(&ofproto->ml->rwlock);
mcast_snooping_mdb_flush(ofproto->ms);
}
/* Always updates the ofproto->ams_seqno to avoid frequent wakeup during
* flow restore. Even though nothing is processed during flow restore,
* all queued 'ams' will be handled immediately when flow restore
* completes. */
ofproto->ams_seqno = seq_read(ofproto->ams_seq);
/* Do not perform any periodic activity required by 'ofproto' while
* waiting for flow restore to complete. */
if (!ofproto_get_flow_restore_wait()) {
struct ofproto_async_msg *am;
struct ovs_list ams;
guarded_list_pop_all(&ofproto->ams, &ams);
LIST_FOR_EACH_POP (am, list_node, &ams) {
connmgr_send_async_msg(ofproto->up.connmgr, am);
ofproto_async_msg_free(am);
}
}
if (ofproto->netflow) {
netflow_run(ofproto->netflow);
}
if (ofproto->sflow) {
dpif_sflow_run(ofproto->sflow);
}
if (ofproto->ipfix) {
dpif_ipfix_run(ofproto->ipfix);
}
new_seq = seq_read(connectivity_seq_get());
if (ofproto->change_seq != new_seq) {
struct ofport_dpif *ofport;
HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
port_run(ofport);
}
ofproto->change_seq = new_seq;
}
if (ofproto->lacp_enabled || ofproto->has_bonded_bundles) {
struct ofbundle *bundle;
HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
bundle_run(bundle);
}
}
stp_run(ofproto);
rstp_run(ofproto);
ovs_rwlock_wrlock(&ofproto->ml->rwlock);
if (mac_learning_run(ofproto->ml)) {
ofproto->backer->need_revalidate = REV_MAC_LEARNING;
}
ovs_rwlock_unlock(&ofproto->ml->rwlock);
if (mcast_snooping_run(ofproto->ms)) {
ofproto->backer->need_revalidate = REV_MCAST_SNOOPING;
}
/* Check if controller connection is toggled. */
is_connected = ofproto_is_alive(&ofproto->up);
if (ofproto->is_controller_connected != is_connected) {
ofproto->is_controller_connected = is_connected;
/* Trigger revalidation as fast failover group monitoring
* controller port may need to check liveness again. */
ofproto->backer->need_revalidate = REV_RECONFIGURE;
}
new_dump_seq = seq_read(udpif_dump_seq(ofproto->backer->udpif));
if (ofproto->dump_seq != new_dump_seq) {
struct rule *rule;
long long now = time_msec();
/* We know stats are relatively fresh, so now is a good time to do some
* periodic work. */
ofproto->dump_seq = new_dump_seq;
/* Expire OpenFlow flows whose idle_timeout or hard_timeout
* has passed. */
ovs_mutex_lock(&ofproto_mutex);
LIST_FOR_EACH_SAFE (rule, expirable,
&ofproto->up.expirable) {
rule_expire(rule_dpif_cast(rule), now);
}
ovs_mutex_unlock(&ofproto_mutex);
/* All outstanding data in existing flows has been accounted, so it's a
* good time to do bond rebalancing. */
if (ofproto->has_bonded_bundles) {
struct ofbundle *bundle;
HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
if (bundle->bond) {
bond_rebalance(bundle->bond);
}
}
}
}
if (ofproto->explicit_sampled_drops != ofproto_explicit_sampled_drops) {
ofproto->explicit_sampled_drops = ofproto_explicit_sampled_drops;
ofproto->backer->need_revalidate = REV_RECONFIGURE;
}
return 0;
}
static void
ofproto_dpif_wait(struct ofproto *ofproto_)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
if (ofproto_get_flow_restore_wait()) {
return;
}
if (ofproto->sflow) {
dpif_sflow_wait(ofproto->sflow);
}
if (ofproto->ipfix) {
dpif_ipfix_wait(ofproto->ipfix);
}
if (ofproto->lacp_enabled || ofproto->has_bonded_bundles) {
struct ofbundle *bundle;
HMAP_FOR_EACH (bundle, hmap_node, &ofproto->bundles) {
bundle_wait(bundle);
}
}
if (ofproto->netflow) {
netflow_wait(ofproto->netflow);
}
ovs_rwlock_rdlock(&ofproto->ml->rwlock);
mac_learning_wait(ofproto->ml);
ovs_rwlock_unlock(&ofproto->ml->rwlock);
mcast_snooping_wait(ofproto->ms);
stp_wait(ofproto);
if (ofproto->backer->need_revalidate) {
poll_immediate_wake();
}
seq_wait(udpif_dump_seq(ofproto->backer->udpif), ofproto->dump_seq);
seq_wait(ofproto->ams_seq, ofproto->ams_seqno);
}
static void
type_get_memory_usage(const char *type, struct simap *usage)
{
struct dpif_backer *backer;
backer = shash_find_data(&all_dpif_backers, type);
if (backer) {
udpif_get_memory_usage(backer->udpif, usage);
}
}
static void
flush(struct ofproto *ofproto_)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
struct dpif_backer *backer = ofproto->backer;
if (backer) {
udpif_flush(backer->udpif);
}
}
static void
query_tables(struct ofproto *ofproto,
struct ofputil_table_features *features OVS_UNUSED,
struct ofputil_table_stats *stats)
{
if (stats) {
int i;
for (i = 0; i < ofproto->n_tables; i++) {
unsigned long missed, matched;
atomic_read_relaxed(&ofproto->tables[i].n_matched, &matched);
atomic_read_relaxed(&ofproto->tables[i].n_missed, &missed);
stats[i].matched_count = matched;
stats[i].lookup_count = matched + missed;
}
}
}
static void
set_tables_version(struct ofproto *ofproto_, ovs_version_t version)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
/* Use memory_order_release to signify that any prior memory accesses can
* not be reordered to happen after this atomic store. This makes sure the
* new version is properly set up when the readers can read this 'version'
* value. */
atomic_store_explicit(&ofproto->tables_version, version,
memory_order_release);
/* 'need_revalidate' can be reordered to happen before the atomic_store
* above, but it does not matter as this variable is not accessed by other
* threads. */
ofproto->backer->need_revalidate = REV_FLOW_TABLE;
}
static struct ofport *
port_alloc(void)
{
struct ofport_dpif *port = xzalloc(sizeof *port);
return &port->up;
}
static void
port_dealloc(struct ofport *port_)
{
struct ofport_dpif *port = ofport_dpif_cast(port_);
free(port);
}
static int
port_construct(struct ofport *port_)
{
struct ofport_dpif *port = ofport_dpif_cast(port_);
struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
const struct netdev *netdev = port->up.netdev;
char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
const char *dp_port_name;
struct dpif_port dpif_port;
int error;
ofproto->backer->need_revalidate = REV_RECONFIGURE;
port->bundle = NULL;
port->cfm = NULL;
port->bfd = NULL;
port->lldp = NULL;
port->stp_port = NULL;
port->stp_state = STP_DISABLED;
port->rstp_port = NULL;
port->rstp_state = RSTP_DISABLED;
port->is_tunnel = false;
port->peer = NULL;
port->qdscp = NULL;
port->n_qdscp = 0;
port->carrier_seq = netdev_get_carrier_resets(netdev);
if (netdev_vport_is_patch(netdev)) {
/* By bailing out here, we don't submit the port to the sFlow module
* to be considered for counter polling export. This is correct
* because the patch port represents an interface that sFlow considers
* to be "internal" to the switch as a whole, and therefore not a
* candidate for counter polling. */
port->odp_port = ODPP_NONE;
ofport_update_peer(port);
return 0;
}
dp_port_name = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
error = dpif_port_query_by_name(ofproto->backer->dpif, dp_port_name,
&dpif_port);
if (error) {
return error;
}
port->odp_port = dpif_port.port_no;
if (netdev_get_tunnel_config(netdev)) {
atomic_count_inc(&ofproto->backer->tnl_count);
error = tnl_port_add(port, port->up.netdev, port->odp_port,
ovs_native_tunneling_is_on(ofproto), dp_port_name);
if (error) {
atomic_count_dec(&ofproto->backer->tnl_count);
dpif_port_destroy(&dpif_port);
return error;
}
port->is_tunnel = true;
} else {
/* Sanity-check that a mapping doesn't already exist. This
* shouldn't happen for non-tunnel ports. */
if (odp_port_to_ofp_port(ofproto, port->odp_port) != OFPP_NONE) {
VLOG_ERR("port %s already has an OpenFlow port number",
dpif_port.name);
dpif_port_destroy(&dpif_port);
return EBUSY;
}
ovs_rwlock_wrlock(&ofproto->backer->odp_to_ofport_lock);
hmap_insert(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node,
hash_odp_port(port->odp_port));
ovs_rwlock_unlock(&ofproto->backer->odp_to_ofport_lock);
}
dpif_port_destroy(&dpif_port);
if (ofproto->sflow) {
dpif_sflow_add_port(ofproto->sflow, port_, port->odp_port);
}
if (ofproto->ipfix) {
dpif_ipfix_add_port(ofproto->ipfix, port_, port->odp_port);
}
return 0;
}
static void
port_destruct(struct ofport *port_, bool del)
{
struct ofport_dpif *port = ofport_dpif_cast(port_);
struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
const char *devname = netdev_get_name(port->up.netdev);
const char *netdev_type = netdev_get_type(port->up.netdev);
struct dpif_port dpif_port;
ofproto->backer->need_revalidate = REV_RECONFIGURE;
xlate_txn_start();
xlate_ofport_remove(port);
xlate_txn_commit();
if (!del && strcmp(netdev_type,
ofproto_port_open_type(port->up.ofproto, "internal"))) {
/* Check if datapath requires removal of attached ports. Avoid
* removal of 'internal' ports to preserve user ip/route settings. */
del = dpif_cleanup_required(ofproto->backer->dpif);
}
/* Don't try to delete ports that are not part of the datapath. */
if (del && port->odp_port == ODPP_NONE) {
del = false;
}
if (del && !dpif_port_query_by_number(ofproto->backer->dpif,
port->odp_port, &dpif_port, false)) {
/* The underlying device is still there, so delete it. This
* happens when the ofproto is being destroyed, since the caller
* assumes that removal of attached ports will happen as part of
* destruction. */
if (!port->is_tunnel) {
dpif_port_del(ofproto->backer->dpif, port->odp_port, false);
}
dpif_port_destroy(&dpif_port);
} else if (del) {
/* The underlying device is already deleted (e.g. tunctl -d).
* Calling dpif_port_remove to do local cleanup for the netdev */
if (!port->is_tunnel) {
dpif_port_del(ofproto->backer->dpif, port->odp_port, true);
}
}
if (port->peer) {
port->peer->peer = NULL;
port->peer = NULL;
}
if (port->odp_port != ODPP_NONE && !port->is_tunnel) {
ovs_rwlock_wrlock(&ofproto->backer->odp_to_ofport_lock);
hmap_remove(&ofproto->backer->odp_to_ofport_map, &port->odp_port_node);
ovs_rwlock_unlock(&ofproto->backer->odp_to_ofport_lock);
}
if (port->is_tunnel) {
atomic_count_dec(&ofproto->backer->tnl_count);
}
tnl_port_del(port, port->odp_port);
sset_find_and_delete(&ofproto->ports, devname);
sset_find_and_delete(&ofproto->ghost_ports, devname);
bundle_remove(port_);
set_cfm(port_, NULL);
set_bfd(port_, NULL);
set_lldp(port_, NULL);
if (port->stp_port) {
stp_port_disable(port->stp_port);
}
set_rstp_port(port_, NULL);
if (ofproto->sflow) {
dpif_sflow_del_port(ofproto->sflow, port->odp_port);
}
if (ofproto->ipfix) {
dpif_ipfix_del_port(ofproto->ipfix, port->odp_port);
}
free(port->qdscp);
}
static void
port_modified(struct ofport *port_)
{
struct ofport_dpif *port = ofport_dpif_cast(port_);
char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
const char *dp_port_name;
struct netdev *netdev = port->up.netdev;
if (port->bundle && port->bundle->bond) {
bond_member_set_netdev(port->bundle->bond, port, netdev);
}
if (port->cfm) {
cfm_set_netdev(port->cfm, netdev);
}
if (port->bfd) {
bfd_set_netdev(port->bfd, netdev);
}
ofproto_dpif_monitor_port_update(port, port->bfd, port->cfm,
port->lldp, &port->up.pp.hw_addr);
dp_port_name = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
if (port->is_tunnel) {
struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
if (tnl_port_reconfigure(port, netdev, port->odp_port, port->odp_port,
ovs_native_tunneling_is_on(ofproto),
dp_port_name)) {
ofproto->backer->need_revalidate = REV_RECONFIGURE;
}
}
ofport_update_peer(port);
}
static void
port_reconfigured(struct ofport *port_, enum ofputil_port_config old_config)
{
struct ofport_dpif *port = ofport_dpif_cast(port_);
struct ofproto_dpif *ofproto = ofproto_dpif_cast(port->up.ofproto);
enum ofputil_port_config changed = old_config ^ port->up.pp.config;
if (changed & (OFPUTIL_PC_NO_RECV | OFPUTIL_PC_NO_RECV_STP |
OFPUTIL_PC_NO_FWD | OFPUTIL_PC_NO_FLOOD |
OFPUTIL_PC_NO_PACKET_IN)) {
ofproto->backer->need_revalidate = REV_RECONFIGURE;
if (changed & OFPUTIL_PC_NO_FLOOD && port->bundle) {
bundle_update(port->bundle);
}
}
port_run(port);
}
static int
set_sflow(struct ofproto *ofproto_,
const struct ofproto_sflow_options *sflow_options)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
struct dpif_sflow *ds = ofproto->sflow;
if (sflow_options) {
uint32_t old_probability = ds ? dpif_sflow_get_probability(ds) : 0;
if (!ds) {
struct ofport_dpif *ofport;
ds = ofproto->sflow = dpif_sflow_create();
HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
dpif_sflow_add_port(ds, &ofport->up, ofport->odp_port);
}
}
dpif_sflow_set_options(ds, sflow_options);
if (dpif_sflow_get_probability(ds) != old_probability) {
ofproto->backer->need_revalidate = REV_RECONFIGURE;
}
} else {
if (ds) {
dpif_sflow_unref(ds);
ofproto->backer->need_revalidate = REV_RECONFIGURE;
ofproto->sflow = NULL;
}
}
return 0;
}
static int
set_ipfix(
struct ofproto *ofproto_,
const struct ofproto_ipfix_bridge_exporter_options *bridge_exporter_options,
const struct ofproto_ipfix_flow_exporter_options *flow_exporters_options,
size_t n_flow_exporters_options)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
struct dpif_ipfix *di = ofproto->ipfix;
bool has_options = bridge_exporter_options || flow_exporters_options;
bool new_di = false;
bool options_changed = false;
if (has_options && !di) {
di = ofproto->ipfix = dpif_ipfix_create();
new_di = true;
}
if (di) {
/* Call set_options in any case to cleanly flush the flow
* caches in the last exporters that are to be destroyed. */
options_changed = dpif_ipfix_set_options(
di, bridge_exporter_options, flow_exporters_options,
n_flow_exporters_options);
/* Add ports only when a new ipfix created */
if (new_di == true) {
struct ofport_dpif *ofport;
HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
dpif_ipfix_add_port(di, &ofport->up, ofport->odp_port);
}
}
if (!has_options) {
dpif_ipfix_unref(di);
ofproto->ipfix = NULL;
}
if (new_di || options_changed) {
ofproto->backer->need_revalidate = REV_RECONFIGURE;
}
}
return 0;
}
static int
get_ipfix_stats(const struct ofproto *ofproto_,
bool bridge_ipfix,
struct ovs_list *replies)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
struct dpif_ipfix *di = ofproto->ipfix;
if (!di) {
return OFPERR_NXST_NOT_CONFIGURED;
}
return dpif_ipfix_get_stats(di, bridge_ipfix, replies);
}
static int
set_local_sample(struct ofproto *ofproto_,
const struct ofproto_lsample_options *options,
size_t n_opts)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
struct dpif_lsample *lsample = ofproto->lsample;
bool changed = false;
if (!ofproto->backer->rt_support.psample) {
return EOPNOTSUPP;
}
if (n_opts && !lsample) {
lsample = ofproto->lsample = dpif_lsample_create();
changed = true;
}
if (lsample) {
if (!n_opts) {
dpif_lsample_unref(lsample);
lsample = ofproto->lsample = NULL;
changed = true;
} else if (dpif_lsample_set_options(lsample, options, n_opts)) {
changed = true;
}
}
if (changed) {
ofproto->backer->need_revalidate = REV_RECONFIGURE;
}
return 0;
}
static int
set_cfm(struct ofport *ofport_, const struct cfm_settings *s)
{
struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
struct cfm *old = ofport->cfm;
int error = 0;
if (s) {
if (!ofport->cfm) {
ofport->cfm = cfm_create(ofport->up.netdev);
}
if (cfm_configure(ofport->cfm, s)) {
error = 0;
goto out;
}
error = EINVAL;
}
cfm_unref(ofport->cfm);
ofport->cfm = NULL;
out:
if (ofport->cfm != old) {
ofproto->backer->need_revalidate = REV_RECONFIGURE;
}
ofproto_dpif_monitor_port_update(ofport, ofport->bfd, ofport->cfm,
ofport->lldp, &ofport->up.pp.hw_addr);
return error;
}
static bool
cfm_status_changed(struct ofport *ofport_)
{
struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
return ofport->cfm ? cfm_check_status_change(ofport->cfm) : true;
}
static int
get_cfm_status(const struct ofport *ofport_,
struct cfm_status *status)
{
struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
int ret = 0;
if (ofport->cfm) {
cfm_get_status(ofport->cfm, status);
} else {
ret = ENOENT;
}
return ret;
}
static int
set_bfd(struct ofport *ofport_, const struct smap *cfg)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport_->ofproto);
struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
struct bfd *old;
old = ofport->bfd;
ofport->bfd = bfd_configure(old, netdev_get_name(ofport->up.netdev),
cfg, ofport->up.netdev);
if (ofport->bfd != old) {
ofproto->backer->need_revalidate = REV_RECONFIGURE;
}
ofproto_dpif_monitor_port_update(ofport, ofport->bfd, ofport->cfm,
ofport->lldp, &ofport->up.pp.hw_addr);
return 0;
}
static bool
bfd_status_changed(struct ofport *ofport_)
{
struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
return ofport->bfd ? bfd_check_status_change(ofport->bfd) : true;
}
static int
get_bfd_status(struct ofport *ofport_, struct smap *smap)
{
struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
int ret = 0;
if (ofport->bfd) {
bfd_get_status(ofport->bfd, smap);
} else {
ret = ENOENT;
}
return ret;
}
static int
set_lldp(struct ofport *ofport_,
const struct smap *cfg)
{
struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
bool old_enable = lldp_is_enabled(ofport->lldp);
int error = 0;
if (cfg && !smap_is_empty(cfg)) {
if (!ofport->lldp) {
ofport->lldp = lldp_create(ofport->up.netdev, ofport_->mtu, cfg);
}
if (!lldp_configure(ofport->lldp, cfg)) {
lldp_unref(ofport->lldp);
ofport->lldp = NULL;
error = EINVAL;
}
} else if (ofport->lldp) {
lldp_unref(ofport->lldp);
ofport->lldp = NULL;
}
if (lldp_is_enabled(ofport->lldp) != old_enable) {
ofproto->backer->need_revalidate = REV_RECONFIGURE;
}
ofproto_dpif_monitor_port_update(ofport,
ofport->bfd,
ofport->cfm,
ofport->lldp,
&ofport->up.pp.hw_addr);
return error;
}
static bool
get_lldp_status(const struct ofport *ofport_,
struct lldp_status *status OVS_UNUSED)
{
struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
return ofport->lldp ? true : false;
}
static int
set_aa(struct ofproto *ofproto OVS_UNUSED,
const struct aa_settings *s)
{
return aa_configure(s);
}
static int
aa_mapping_set(struct ofproto *ofproto_ OVS_UNUSED, void *aux,
const struct aa_mapping_settings *s)
{
return aa_mapping_register(aux, s);
}
static int
aa_mapping_unset(struct ofproto *ofproto OVS_UNUSED, void *aux)
{
return aa_mapping_unregister(aux);
}
static int
aa_vlan_get_queued(struct ofproto *ofproto OVS_UNUSED, struct ovs_list *list)
{
return aa_get_vlan_queued(list);
}
static unsigned int
aa_vlan_get_queue_size(struct ofproto *ofproto OVS_UNUSED)
{
return aa_get_vlan_queue_size();
}
/* Spanning Tree. */
/* Called while rstp_mutex is held. */
static void
rstp_send_bpdu_cb(struct dp_packet *pkt, void *ofport_, void *ofproto_)
{
struct ofproto_dpif *ofproto = ofproto_;
struct ofport_dpif *ofport = ofport_;
struct eth_header *eth = dp_packet_eth(pkt);
netdev_get_etheraddr(ofport->up.netdev, &eth->eth_src);
if (eth_addr_is_zero(eth->eth_src)) {
VLOG_WARN_RL(&rl, "%s port %d: cannot send RSTP BPDU on a port which "
"does not have a configured source MAC address.",
ofproto->up.name, ofp_to_u16(ofport->up.ofp_port));
} else {
ofproto_dpif_send_packet(ofport, false, pkt);
}
dp_packet_delete(pkt);
}
static void
send_bpdu_cb(struct dp_packet *pkt, int port_num, void *ofproto_)
{
struct ofproto_dpif *ofproto = ofproto_;
struct stp_port *sp = stp_get_port(ofproto->stp, port_num);
struct ofport_dpif *ofport;
ofport = stp_port_get_aux(sp);
if (!ofport) {
VLOG_WARN_RL(&rl, "%s: cannot send BPDU on unknown port %d",
ofproto->up.name, port_num);
} else {
struct eth_header *eth = dp_packet_eth(pkt);
netdev_get_etheraddr(ofport->up.netdev, &eth->eth_src);
if (eth_addr_is_zero(eth->eth_src)) {
VLOG_WARN_RL(&rl, "%s: cannot send BPDU on port %d "
"with unknown MAC", ofproto->up.name, port_num);
} else {
ofproto_dpif_send_packet(ofport, false, pkt);
}
}
dp_packet_delete(pkt);
}
/* Configure RSTP on 'ofproto_' using the settings defined in 's'. */
static void
set_rstp(struct ofproto *ofproto_, const struct ofproto_rstp_settings *s)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
/* Only revalidate flows if the configuration changed. */
if (!s != !ofproto->rstp) {
ofproto->backer->need_revalidate = REV_RECONFIGURE;
}
if (s) {
if (!ofproto->rstp) {
ofproto->rstp = rstp_create(ofproto_->name, s->address,
rstp_send_bpdu_cb, ofproto);
ofproto->rstp_last_tick = time_msec();
}
rstp_set_bridge_address(ofproto->rstp, s->address);
rstp_set_bridge_priority(ofproto->rstp, s->priority);
rstp_set_bridge_ageing_time(ofproto->rstp, s->ageing_time);
rstp_set_bridge_force_protocol_version(ofproto->rstp,
s->force_protocol_version);
rstp_set_bridge_max_age(ofproto->rstp, s->bridge_max_age);
rstp_set_bridge_forward_delay(ofproto->rstp, s->bridge_forward_delay);
rstp_set_bridge_transmit_hold_count(ofproto->rstp,
s->transmit_hold_count);
} else {
struct ofport *ofport;
HMAP_FOR_EACH (ofport, hmap_node, &ofproto->up.ports) {
set_rstp_port(ofport, NULL);
}
rstp_unref(ofproto->rstp);
ofproto->rstp = NULL;
}
}
static void
get_rstp_status(struct ofproto *ofproto_, struct ofproto_rstp_status *s)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
if (ofproto->rstp) {
s->enabled = true;
s->root_id = rstp_get_root_id(ofproto->rstp);
s->bridge_id = rstp_get_bridge_id(ofproto->rstp);
s->designated_id = rstp_get_designated_id(ofproto->rstp);
s->root_path_cost = rstp_get_root_path_cost(ofproto->rstp);
s->designated_port_id = rstp_get_designated_port_id(ofproto->rstp);
s->bridge_port_id = rstp_get_bridge_port_id(ofproto->rstp);
} else {
s->enabled = false;
}
}
static void
update_rstp_port_state(struct ofport_dpif *ofport)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
enum rstp_state state;
/* Figure out new state. */
state = ofport->rstp_port ? rstp_port_get_state(ofport->rstp_port)
: RSTP_DISABLED;
/* Update state. */
if (ofport->rstp_state != state) {
enum ofputil_port_state of_state;
bool fwd_change;
VLOG_DBG("port %s: RSTP state changed from %s to %s",
netdev_get_name(ofport->up.netdev),
rstp_state_name(ofport->rstp_state),
rstp_state_name(state));
if (rstp_learn_in_state(ofport->rstp_state)
!= rstp_learn_in_state(state)) {
/* XXX: Learning action flows should also be flushed. */
if (ofport->bundle) {
if (!rstp_shift_root_learned_address(ofproto->rstp)
|| rstp_get_old_root_aux(ofproto->rstp) != ofport) {
bundle_flush_macs(ofport->bundle, false);
}
}
}
fwd_change = rstp_forward_in_state(ofport->rstp_state)
!= rstp_forward_in_state(state);
ofproto->backer->need_revalidate = REV_RSTP;
ofport->rstp_state = state;
if (fwd_change && ofport->bundle) {
bundle_update(ofport->bundle);
}
/* Update the RSTP state bits in the OpenFlow port description. */
of_state = ofport->up.pp.state & ~OFPUTIL_PS_STP_MASK;
of_state |= (state == RSTP_LEARNING ? OFPUTIL_PS_STP_LEARN
: state == RSTP_FORWARDING ? OFPUTIL_PS_STP_FORWARD
: state == RSTP_DISCARDING ? OFPUTIL_PS_STP_LISTEN
: 0);
ofproto_port_set_state(&ofport->up, of_state);
}
}
static void
rstp_run(struct ofproto_dpif *ofproto)
{
if (ofproto->rstp) {
long long int now = time_msec();
long long int elapsed = now - ofproto->rstp_last_tick;
struct rstp_port *rp;
struct ofport_dpif *ofport;
/* Every second, decrease the values of the timers. */
if (elapsed >= 1000) {
rstp_tick_timers(ofproto->rstp);
ofproto->rstp_last_tick = now;
}
rp = NULL;
while ((ofport = rstp_get_next_changed_port_aux(ofproto->rstp, &rp))) {
update_rstp_port_state(ofport);
}
rp = NULL;
ofport = NULL;
/* FIXME: This check should be done on-event (i.e., when setting
* p->fdb_flush) and not periodically.
*/
while ((ofport = rstp_check_and_reset_fdb_flush(ofproto->rstp, &rp))) {
if (!rstp_shift_root_learned_address(ofproto->rstp)
|| rstp_get_old_root_aux(ofproto->rstp) != ofport) {
bundle_flush_macs(ofport->bundle, false);
}
}
if (rstp_shift_root_learned_address(ofproto->rstp)) {
struct ofport_dpif *old_root_aux =
(struct ofport_dpif *)rstp_get_old_root_aux(ofproto->rstp);
struct ofport_dpif *new_root_aux =
(struct ofport_dpif *)rstp_get_new_root_aux(ofproto->rstp);
if (old_root_aux != NULL && new_root_aux != NULL) {
bundle_move(old_root_aux->bundle, new_root_aux->bundle);
rstp_reset_root_changed(ofproto->rstp);
}
}
}
}
/* Configures STP on 'ofproto_' using the settings defined in 's'. */
static int
set_stp(struct ofproto *ofproto_, const struct ofproto_stp_settings *s)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
/* Only revalidate flows if the configuration changed. */
if (!s != !ofproto->stp) {
ofproto->backer->need_revalidate = REV_RECONFIGURE;
}
if (s) {
if (!ofproto->stp) {
ofproto->stp = stp_create(ofproto_->name, s->system_id,
send_bpdu_cb, ofproto);
ofproto->stp_last_tick = time_msec();
}
stp_set_bridge_id(ofproto->stp, s->system_id);
stp_set_bridge_priority(ofproto->stp, s->priority);
stp_set_hello_time(ofproto->stp, s->hello_time);
stp_set_max_age(ofproto->stp, s->max_age);
stp_set_forward_delay(ofproto->stp, s->fwd_delay);
} else {
struct ofport *ofport;
HMAP_FOR_EACH (ofport, hmap_node, &ofproto->up.ports) {
set_stp_port(ofport, NULL);
}
stp_unref(ofproto->stp);
ofproto->stp = NULL;
}
return 0;
}
static int
get_stp_status(struct ofproto *ofproto_, struct ofproto_stp_status *s)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
if (ofproto->stp) {
s->enabled = true;
s->bridge_id = stp_get_bridge_id(ofproto->stp);
s->designated_root = stp_get_designated_root(ofproto->stp);
s->root_path_cost = stp_get_root_path_cost(ofproto->stp);
} else {
s->enabled = false;
}
return 0;
}
static void
update_stp_port_state(struct ofport_dpif *ofport)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
enum stp_state state;
/* Figure out new state. */
state = ofport->stp_port ? stp_port_get_state(ofport->stp_port)
: STP_DISABLED;
/* Update state. */
if (ofport->stp_state != state) {
enum ofputil_port_state of_state;
bool fwd_change;
VLOG_DBG("port %s: STP state changed from %s to %s",
netdev_get_name(ofport->up.netdev),
stp_state_name(ofport->stp_state),
stp_state_name(state));
if (stp_learn_in_state(ofport->stp_state)
!= stp_learn_in_state(state)) {
/* xxx Learning action flows should also be flushed. */
ovs_rwlock_wrlock(&ofproto->ml->rwlock);
mac_learning_flush(ofproto->ml);
ovs_rwlock_unlock(&ofproto->ml->rwlock);
mcast_snooping_mdb_flush(ofproto->ms);
}
fwd_change = stp_forward_in_state(ofport->stp_state)
!= stp_forward_in_state(state);
ofproto->backer->need_revalidate = REV_STP;
ofport->stp_state = state;
ofport->stp_state_entered = time_msec();
if (fwd_change && ofport->bundle) {
bundle_update(ofport->bundle);
}
/* Update the STP state bits in the OpenFlow port description. */
of_state = ofport->up.pp.state & ~OFPUTIL_PS_STP_MASK;
of_state |= (state == STP_LISTENING ? OFPUTIL_PS_STP_LISTEN
: state == STP_LEARNING ? OFPUTIL_PS_STP_LEARN
: state == STP_FORWARDING ? OFPUTIL_PS_STP_FORWARD
: state == STP_BLOCKING ? OFPUTIL_PS_STP_BLOCK
: 0);
ofproto_port_set_state(&ofport->up, of_state);
}
}
static void
stp_check_and_update_link_state(struct ofproto_dpif *ofproto)
{
struct ofport_dpif *ofport;
HMAP_FOR_EACH (ofport, up.hmap_node, &ofproto->up.ports) {
bool up = netdev_get_carrier(ofport->up.netdev);
if (ofport->stp_port &&
up != (stp_port_get_state(ofport->stp_port) != STP_DISABLED)) {
VLOG_DBG("bridge %s, port %s is %s, %s it.",
ofproto->up.name, netdev_get_name(ofport->up.netdev),
up ? "up" : "down",
up ? "enabling" : "disabling");
if (up) {
stp_port_enable(ofport->stp_port);
stp_port_set_aux(ofport->stp_port, ofport);
} else {
stp_port_disable(ofport->stp_port);
}
update_stp_port_state(ofport);
}
}
}
/* Configures STP on 'ofport_' using the settings defined in 's'. The
* caller is responsible for assigning STP port numbers and ensuring
* there are no duplicates. */
static int
set_stp_port(struct ofport *ofport_,
const struct ofproto_port_stp_settings *s)
{
struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
struct stp_port *sp = ofport->stp_port;
if (!s || !s->enable) {
if (sp) {
ofport->stp_port = NULL;
stp_port_disable(sp);
update_stp_port_state(ofport);
}
return 0;
} else if (sp && stp_port_no(sp) != s->port_num
&& ofport == stp_port_get_aux(sp)) {
/* The port-id changed, so disable the old one if it's not
* already in use by another port. */
stp_port_disable(sp);
}
sp = ofport->stp_port = stp_get_port(ofproto->stp, s->port_num);
/* Set name before enabling the port so that debugging messages can print
* the name. */
stp_port_set_name(sp, netdev_get_name(ofport->up.netdev));
if (netdev_get_carrier(ofport_->netdev)) {
stp_port_enable(sp);
} else {
stp_port_disable(sp);
}
stp_port_set_aux(sp, ofport);
stp_port_set_priority(sp, s->priority);
stp_port_set_path_cost(sp, s->path_cost);
update_stp_port_state(ofport);
return 0;
}
static int
get_stp_port_status(struct ofport *ofport_,
struct ofproto_port_stp_status *s)
{
struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
struct stp_port *sp = ofport->stp_port;
if (!ofproto->stp || !sp) {
s->enabled = false;
return 0;
}
s->enabled = true;
stp_port_get_status(sp, &s->port_id, &s->state, &s->role);
s->sec_in_state = (time_msec() - ofport->stp_state_entered) / 1000;
return 0;
}
static int
get_stp_port_stats(struct ofport *ofport_,
struct ofproto_port_stp_stats *s)
{
struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
struct stp_port *sp = ofport->stp_port;
if (!ofproto->stp || !sp) {
s->enabled = false;
return 0;
}
s->enabled = true;
stp_port_get_counts(sp, &s->tx_count, &s->rx_count, &s->error_count);
return 0;
}
static void
stp_run(struct ofproto_dpif *ofproto)
{
if (ofproto->stp) {
long long int now = time_msec();
long long int elapsed = now - ofproto->stp_last_tick;
struct stp_port *sp;
if (elapsed > 0) {
stp_tick(ofproto->stp, MIN(INT_MAX, elapsed));
ofproto->stp_last_tick = now;
}
stp_check_and_update_link_state(ofproto);
while (stp_get_changed_port(ofproto->stp, &sp)) {
struct ofport_dpif *ofport = stp_port_get_aux(sp);
if (ofport) {
update_stp_port_state(ofport);
}
}
if (stp_check_and_reset_fdb_flush(ofproto->stp)) {
ovs_rwlock_wrlock(&ofproto->ml->rwlock);
mac_learning_flush(ofproto->ml);
ovs_rwlock_unlock(&ofproto->ml->rwlock);
mcast_snooping_mdb_flush(ofproto->ms);
}
}
}
static void
stp_wait(struct ofproto_dpif *ofproto)
{
if (ofproto->stp) {
poll_timer_wait(1000);
}
}
/* Configures RSTP on 'ofport_' using the settings defined in 's'. The
* caller is responsible for assigning RSTP port numbers and ensuring
* there are no duplicates. */
static void
set_rstp_port(struct ofport *ofport_,
const struct ofproto_port_rstp_settings *s)
{
struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
struct rstp_port *rp = ofport->rstp_port;
if (!s || !s->enable) {
if (rp) {
rstp_port_set_aux(rp, NULL);
rstp_port_set_state(rp, RSTP_DISABLED);
rstp_port_set_mac_operational(rp, false);
ofport->rstp_port = NULL;
rstp_port_unref(rp);
update_rstp_port_state(ofport);
}
return;
}
/* Check if need to add a new port. */
if (!rp) {
rp = ofport->rstp_port = rstp_add_port(ofproto->rstp);
}
rstp_port_set(rp, s->port_num, s->priority, s->path_cost,
s->admin_edge_port, s->auto_edge,
s->admin_p2p_mac_state, s->admin_port_state, s->mcheck,
ofport, netdev_get_name(ofport->up.netdev));
update_rstp_port_state(ofport);
/* Synchronize operational status. */
rstp_port_set_mac_operational(rp, ofport->up.may_enable);
}
static void
get_rstp_port_status(struct ofport *ofport_,
struct ofproto_port_rstp_status *s)
{
struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
struct rstp_port *rp = ofport->rstp_port;
if (!ofproto->rstp || !rp) {
s->enabled = false;
return;
}
s->enabled = true;
rstp_port_get_status(rp, &s->port_id, &s->state, &s->role,
&s->designated_bridge_id, &s->designated_port_id,
&s->designated_path_cost, &s->tx_count,
&s->rx_count, &s->error_count, &s->uptime);
}
static int
set_queues(struct ofport *ofport_, const struct ofproto_port_queue *qdscp,
size_t n_qdscp)
{
struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
if (ofport->n_qdscp != n_qdscp
|| (n_qdscp && memcmp(ofport->qdscp, qdscp,
n_qdscp * sizeof *qdscp))) {
ofproto->backer->need_revalidate = REV_RECONFIGURE;
free(ofport->qdscp);
ofport->qdscp = n_qdscp
? xmemdup(qdscp, n_qdscp * sizeof *qdscp)
: NULL;
ofport->n_qdscp = n_qdscp;
}
return 0;
}
/* Bundles. */
/* Expires all MAC learning entries associated with 'bundle' and forces its
* ofproto to revalidate every flow.
*
* Normally MAC learning entries are removed only from the ofproto associated
* with 'bundle', but if 'all_ofprotos' is true, then the MAC learning entries
* are removed from every ofproto. When patch ports and SLB bonds are in use
* and a VM migration happens and the gratuitous ARPs are somehow lost, this
* avoids a MAC_ENTRY_IDLE_TIME delay before the migrated VM can communicate
* with the host from which it migrated. */
static void
bundle_flush_macs(struct ofbundle *bundle, bool all_ofprotos)
{
struct ofproto_dpif *ofproto = bundle->ofproto;
struct mac_learning *ml = ofproto->ml;
struct mac_entry *mac;
ofproto->backer->need_revalidate = REV_RECONFIGURE;
ovs_rwlock_wrlock(&ml->rwlock);
LIST_FOR_EACH_SAFE (mac, lru_node, &ml->lrus) {
if (mac_entry_get_port(ml, mac) == bundle) {
if (all_ofprotos) {
struct ofproto_dpif *o;
HMAP_FOR_EACH (o, all_ofproto_dpifs_by_name_node,
&all_ofproto_dpifs_by_name) {
if (o != ofproto) {
struct mac_entry *e;
ovs_rwlock_wrlock(&o->ml->rwlock);
e = mac_learning_lookup(o->ml, mac->mac, mac->vlan);
if (e) {
mac_learning_expire(o->ml, e);
}
ovs_rwlock_unlock(&o->ml->rwlock);
}
}
}
mac_learning_expire(ml, mac);
}
}
ovs_rwlock_unlock(&ml->rwlock);
}
static void
bundle_move(struct ofbundle *old, struct ofbundle *new)
{
struct ofproto_dpif *ofproto = old->ofproto;
struct mac_learning *ml = ofproto->ml;
struct mac_entry *mac;
ovs_assert(new->ofproto == old->ofproto);
ofproto->backer->need_revalidate = REV_RECONFIGURE;
ovs_rwlock_wrlock(&ml->rwlock);
LIST_FOR_EACH_SAFE (mac, lru_node, &ml->lrus) {
if (mac_entry_get_port(ml, mac) == old) {
mac_entry_set_port(ml, mac, new);
}
}
ovs_rwlock_unlock(&ml->rwlock);
}
static struct ofbundle *
bundle_lookup(const struct ofproto_dpif *ofproto, void *aux)
{
struct ofbundle *bundle;
HMAP_FOR_EACH_IN_BUCKET (bundle, hmap_node, hash_pointer(aux, 0),
&ofproto->bundles) {
if (bundle->aux == aux) {
return bundle;
}
}
return NULL;
}
static void
bundle_update(struct ofbundle *bundle)
{
struct ofport_dpif *port;
bundle->floodable = true;
LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
|| netdev_get_pt_mode(port->up.netdev) == NETDEV_PT_LEGACY_L3
|| (bundle->ofproto->stp && !stp_forward_in_state(port->stp_state))
|| (bundle->ofproto->rstp && !rstp_forward_in_state(port->rstp_state))) {
bundle->floodable = false;
break;
}
}
}
static void
bundle_del_port(struct ofport_dpif *port)
{
struct ofbundle *bundle = port->bundle;
bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
ovs_list_remove(&port->bundle_node);
port->bundle = NULL;
if (bundle->lacp) {
lacp_member_unregister(bundle->lacp, port);
}
if (bundle->bond) {
bond_member_unregister(bundle->bond, port);
}
bundle_update(bundle);
}
static bool
bundle_add_port(struct ofbundle *bundle, ofp_port_t ofp_port,
struct lacp_member_settings *lacp)
{
struct ofport_dpif *port;
port = ofp_port_to_ofport(bundle->ofproto, ofp_port);
if (!port) {
return false;
}
if (port->bundle != bundle) {
bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
if (port->bundle) {
bundle_remove(&port->up);
}
port->bundle = bundle;
ovs_list_push_back(&bundle->ports, &port->bundle_node);
if (port->up.pp.config & OFPUTIL_PC_NO_FLOOD
|| netdev_get_pt_mode(port->up.netdev) == NETDEV_PT_LEGACY_L3
|| (bundle->ofproto->stp && !stp_forward_in_state(port->stp_state))
|| (bundle->ofproto->rstp && !rstp_forward_in_state(port->rstp_state))) {
bundle->floodable = false;
}
}
if (lacp) {
bundle->ofproto->backer->need_revalidate = REV_RECONFIGURE;
lacp_member_register(bundle->lacp, port, lacp);
}
return true;
}
static void
bundle_destroy(struct ofbundle *bundle)
{
struct ofproto_dpif *ofproto;
struct ofport_dpif *port;
if (!bundle) {
return;
}
ofproto = bundle->ofproto;
mbridge_unregister_bundle(ofproto->mbridge, bundle);
xlate_txn_start();
xlate_bundle_remove(bundle);
xlate_txn_commit();
LIST_FOR_EACH_SAFE (port, bundle_node, &bundle->ports) {
bundle_del_port(port);
}
bundle_flush_macs(bundle, true);
mcast_snooping_flush_bundle(ofproto->ms, bundle);
hmap_remove(&ofproto->bundles, &bundle->hmap_node);
free(bundle->name);
free(bundle->trunks);
free(bundle->cvlans);
lacp_unref(bundle->lacp);
bond_unref(bundle->bond);
free(bundle);
}
static int
bundle_set(struct ofproto *ofproto_, void *aux,
const struct ofproto_bundle_settings *s)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
bool need_flush = false;
struct ofport_dpif *port;
struct ofbundle *bundle;
unsigned long *trunks = NULL;
unsigned long *cvlans = NULL;
int vlan;
size_t i;
bool ok;
bundle = bundle_lookup(ofproto, aux);
if (!s) {
bundle_destroy(bundle);
return 0;
}
ovs_assert(s->n_members == 1 || s->bond != NULL);
ovs_assert((s->lacp != NULL) == (s->lacp_members != NULL));
if (!bundle) {
bundle = xmalloc(sizeof *bundle);
bundle->ofproto = ofproto;
hmap_insert(&ofproto->bundles, &bundle->hmap_node,
hash_pointer(aux, 0));
bundle->aux = aux;
bundle->name = NULL;
ovs_list_init(&bundle->ports);
bundle->vlan_mode = PORT_VLAN_TRUNK;
bundle->qinq_ethtype = ETH_TYPE_VLAN_8021AD;
bundle->vlan = -1;
bundle->trunks = NULL;
bundle->cvlans = NULL;
bundle->use_priority_tags = s->use_priority_tags;
bundle->lacp = NULL;
bundle->bond = NULL;
bundle->floodable = true;
bundle->protected = false;
mbridge_register_bundle(ofproto->mbridge, bundle);
}
if (!bundle->name || strcmp(s->name, bundle->name)) {
free(bundle->name);
bundle->name = xstrdup(s->name);
}
/* LACP. */
if (s->lacp) {
ofproto->lacp_enabled = true;
if (!bundle->lacp) {
ofproto->backer->need_revalidate = REV_RECONFIGURE;
bundle->lacp = lacp_create();
}
lacp_configure(bundle->lacp, s->lacp);
} else {
lacp_unref(bundle->lacp);
bundle->lacp = NULL;
}
/* Update set of ports. */
ok = true;
for (i = 0; i < s->n_members; i++) {
if (!bundle_add_port(bundle, s->members[i],
s->lacp ? &s->lacp_members[i] : NULL)) {
ok = false;
}
}
if (!ok || ovs_list_size(&bundle->ports) != s->n_members) {
LIST_FOR_EACH_SAFE (port, bundle_node, &bundle->ports) {
for (i = 0; i < s->n_members; i++) {
if (s->members[i] == port->up.ofp_port) {
goto found;
}
}
bundle_del_port(port);
found: ;
}
}
ovs_assert(ovs_list_size(&bundle->ports) <= s->n_members);
if (ovs_list_is_empty(&bundle->ports)) {
bundle_destroy(bundle);
return EINVAL;
}
/* Set VLAN tagging mode */
if (s->vlan_mode != bundle->vlan_mode
|| s->use_priority_tags != bundle->use_priority_tags) {
bundle->vlan_mode = s->vlan_mode;
bundle->use_priority_tags = s->use_priority_tags;
need_flush = true;
}
if (s->qinq_ethtype != bundle->qinq_ethtype) {
bundle->qinq_ethtype = s->qinq_ethtype;
need_flush = true;
}
/* Set VLAN tag. */
vlan = (s->vlan_mode == PORT_VLAN_TRUNK ? -1
: s->vlan >= 0 && s->vlan <= 4095 ? s->vlan
: 0);
if (vlan != bundle->vlan) {
bundle->vlan = vlan;
need_flush = true;
}
/* Get trunked VLANs. */
switch (s->vlan_mode) {
case PORT_VLAN_ACCESS:
trunks = NULL;
break;
case PORT_VLAN_TRUNK:
trunks = CONST_CAST(unsigned long *, s->trunks);
break;
case PORT_VLAN_NATIVE_UNTAGGED:
case PORT_VLAN_NATIVE_TAGGED:
if (vlan != 0 && (!s->trunks
|| !bitmap_is_set(s->trunks, vlan)
|| bitmap_is_set(s->trunks, 0))) {
/* Force trunking the native VLAN and prohibit trunking VLAN 0. */
if (s->trunks) {
trunks = bitmap_clone(s->trunks, 4096);
} else {
trunks = bitmap_allocate1(4096);
}
bitmap_set1(trunks, vlan);
bitmap_set0(trunks, 0);
} else {
trunks = CONST_CAST(unsigned long *, s->trunks);
}
break;
case PORT_VLAN_DOT1Q_TUNNEL:
cvlans = CONST_CAST(unsigned long *, s->cvlans);
break;
default:
OVS_NOT_REACHED();
}
if (!vlan_bitmap_equal(trunks, bundle->trunks)) {
free(bundle->trunks);
if (trunks == s->trunks) {
bundle->trunks = vlan_bitmap_clone(trunks);
} else {
bundle->trunks = trunks;
trunks = NULL;
}
need_flush = true;
}
if (trunks != s->trunks) {
free(trunks);
}
if (!vlan_bitmap_equal(cvlans, bundle->cvlans)) {
free(bundle->cvlans);
if (cvlans == s->cvlans) {
bundle->cvlans = vlan_bitmap_clone(cvlans);
} else {
bundle->cvlans = cvlans;
cvlans = NULL;
}
need_flush = true;
}
if (cvlans != s->cvlans) {
free(cvlans);
}
/* Bonding. */
if (!ovs_list_is_short(&bundle->ports)) {
bundle->ofproto->has_bonded_bundles = true;
if (bundle->bond) {
if (bond_reconfigure(bundle->bond, s->bond)) {
ofproto->backer->need_revalidate = REV_RECONFIGURE;
}
} else {
bundle->bond = bond_create(s->bond, ofproto);
ofproto->backer->need_revalidate = REV_RECONFIGURE;
}
LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
bond_member_register(bundle->bond, port,
port->up.ofp_port, port->up.netdev);
}
} else {
bond_unref(bundle->bond);
bundle->bond = NULL;
}
/* Set protected port mode. */
if (s->protected != bundle->protected) {
bundle->protected = s->protected;
need_flush = true;
}
/* If we changed something that would affect MAC learning, un-learn
* everything on this port and force flow revalidation. */
if (need_flush) {
bundle_flush_macs(bundle, false);
mcast_snooping_flush_bundle(ofproto->ms, bundle);
}
return 0;
}
static void
bundle_remove(struct ofport *port_)
{
struct ofport_dpif *port = ofport_dpif_cast(port_);
struct ofbundle *bundle = port->bundle;
if (bundle) {
bundle_del_port(port);
if (ovs_list_is_empty(&bundle->ports)) {
bundle_destroy(bundle);
} else if (ovs_list_is_short(&bundle->ports)) {
bond_unref(bundle->bond);
bundle->bond = NULL;
}
}
}
int
ofproto_dpif_add_lb_output_buckets(struct ofproto_dpif *ofproto,
uint32_t bond_id,
const ofp_port_t *slave_map)
{
odp_port_t odp_map[BOND_BUCKETS];
for (int bucket = 0; bucket < BOND_BUCKETS; bucket++) {
/* Convert ofp_port to odp_port. */
odp_map[bucket] = ofp_port_to_odp_port(ofproto, slave_map[bucket]);
}
return dpif_bond_add(ofproto->backer->dpif, bond_id, odp_map);
}
int
ofproto_dpif_delete_lb_output_buckets(struct ofproto_dpif *ofproto,
uint32_t bond_id)
{
return dpif_bond_del(ofproto->backer->dpif, bond_id);
}
static void
send_pdu_cb(void *port_, const void *pdu, size_t pdu_size)
{
struct ofport_dpif *port = port_;
struct eth_addr ea;
int error;
error = netdev_get_etheraddr(port->up.netdev, &ea);
if (!error) {
struct dp_packet packet;
void *packet_pdu;
dp_packet_init(&packet, 0);
packet_pdu = eth_compose(&packet, eth_addr_lacp, ea, ETH_TYPE_LACP,
pdu_size);
memcpy(packet_pdu, pdu, pdu_size);
error = ofproto_dpif_send_packet(port, false, &packet);
if (error) {
VLOG_WARN_RL(&rl, "port %s: cannot transmit LACP PDU (%s).",
port->bundle->name, ovs_strerror(error));
}
dp_packet_uninit(&packet);
} else {
static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(1, 10);
VLOG_ERR_RL(&rll, "port %s: cannot obtain Ethernet address of iface "
"%s (%s)", port->bundle->name,
netdev_get_name(port->up.netdev), ovs_strerror(error));
}
}
static void
bundle_send_learning_packets(struct ofbundle *bundle)
{
struct ofproto_dpif *ofproto = bundle->ofproto;
int error, n_packets, n_errors;
struct mac_entry *e;
struct pkt_list {
struct ovs_list list_node;
struct ofport_dpif *port;
struct dp_packet *pkt;
} *pkt_node;
struct ovs_list packets;
ovs_list_init(&packets);
ovs_rwlock_rdlock(&ofproto->ml->rwlock);
LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
if (mac_entry_get_port(ofproto->ml, e) != bundle) {
pkt_node = xmalloc(sizeof *pkt_node);
pkt_node->pkt = bond_compose_learning_packet(bundle->bond,
e->mac, e->vlan,
(void **)&pkt_node->port);
ovs_list_push_back(&packets, &pkt_node->list_node);
}
}
ovs_rwlock_unlock(&ofproto->ml->rwlock);
error = n_packets = n_errors = 0;
LIST_FOR_EACH_POP (pkt_node, list_node, &packets) {
int ret;
ret = ofproto_dpif_send_packet(pkt_node->port, false, pkt_node->pkt);
dp_packet_delete(pkt_node->pkt);
free(pkt_node);
if (ret) {
error = ret;
n_errors++;
}
n_packets++;
}
if (n_errors) {
static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(1, 5);
VLOG_WARN_RL(&rll, "bond %s: %d errors sending %d gratuitous learning "
"packets, last error was: %s",
bundle->name, n_errors, n_packets, ovs_strerror(error));
} else {
VLOG_DBG("bond %s: sent %d gratuitous learning packets",
bundle->name, n_packets);
}
}
static void
bundle_run(struct ofbundle *bundle)
{
if (bundle->lacp) {
lacp_run(bundle->lacp, send_pdu_cb);
}
if (bundle->bond) {
struct ofport_dpif *port;
LIST_FOR_EACH (port, bundle_node, &bundle->ports) {
bond_member_set_may_enable(bundle->bond, port, port->up.may_enable);
}
if (bond_run(bundle->bond, lacp_status(bundle->lacp))) {
bundle->ofproto->backer->need_revalidate = REV_BOND;
}
if (bond_should_send_learning_packets(bundle->bond)) {
bundle_send_learning_packets(bundle);
}
}
}
static void
bundle_wait(struct ofbundle *bundle)
{
if (bundle->lacp) {
lacp_wait(bundle->lacp);
}
if (bundle->bond) {
bond_wait(bundle->bond);
}
}
/* Mirrors. */
static int
mirror_set__(struct ofproto *ofproto_, void *aux,
const struct ofproto_mirror_settings *s)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
struct mirror_bundles mb;
int error;
size_t i;
if (!s) {
mirror_destroy(ofproto->mbridge, aux);
return 0;
}
mb.srcs = xmalloc(s->n_srcs * sizeof *mb.srcs);
mb.dsts = xmalloc(s->n_dsts * sizeof *mb.dsts);
for (i = 0; i < s->n_srcs; i++) {
mb.srcs[i] = bundle_lookup(ofproto, s->srcs[i]);
}
for (i = 0; i < s->n_dsts; i++) {
mb.dsts[i] = bundle_lookup(ofproto, s->dsts[i]);
}
mb.n_srcs = s->n_srcs;
mb.n_dsts = s->n_dsts;
mb.out_bundle = bundle_lookup(ofproto, s->out_bundle);
error = mirror_set(ofproto->mbridge, ofproto_, aux, s, &mb);
if (!error) {
ofproto->backer->need_revalidate = REV_RECONFIGURE;
} else if (error == ECANCELED) {
/* The user requested a change that is identical to the current state,
* the reconfiguration is canceled, but don't log an error message
* about that. */
error = 0;
}
free(mb.srcs);
free(mb.dsts);
return error;
}
static int
mirror_get_stats__(struct ofproto *ofproto, void *aux,
uint64_t *packets, uint64_t *bytes)
{
return mirror_get_stats(ofproto_dpif_cast(ofproto)->mbridge, aux, packets,
bytes);
}
static int
set_flood_vlans(struct ofproto *ofproto_, unsigned long *flood_vlans)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
ovs_rwlock_wrlock(&ofproto->ml->rwlock);
if (mac_learning_set_flood_vlans(ofproto->ml, flood_vlans)) {
mac_learning_flush(ofproto->ml);
}
ovs_rwlock_unlock(&ofproto->ml->rwlock);
return 0;
}
static bool
is_mirror_output_bundle(const struct ofproto *ofproto_, void *aux)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
struct ofbundle *bundle = bundle_lookup(ofproto, aux);
return bundle && mirror_bundle_out(ofproto->mbridge, bundle) != 0;
}
static void
forward_bpdu_changed(struct ofproto *ofproto_)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
ofproto->backer->need_revalidate = REV_RECONFIGURE;
}
static void
set_mac_table_config(struct ofproto *ofproto_, unsigned int idle_time,
size_t max_entries)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
ovs_rwlock_wrlock(&ofproto->ml->rwlock);
mac_learning_set_idle_time(ofproto->ml, idle_time);
mac_learning_set_max_entries(ofproto->ml, max_entries);
ovs_rwlock_unlock(&ofproto->ml->rwlock);
}
/* Configures multicast snooping on 'ofport' using the settings
* defined in 's'. */
static int
set_mcast_snooping(struct ofproto *ofproto_,
const struct ofproto_mcast_snooping_settings *s)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
/* Only revalidate flows if the configuration changed. */
if (!s != !ofproto->ms) {
ofproto->backer->need_revalidate = REV_RECONFIGURE;
}
if (s) {
if (!ofproto->ms) {
ofproto->ms = mcast_snooping_create();
}
ovs_rwlock_wrlock(&ofproto->ms->rwlock);
mcast_snooping_set_idle_time(ofproto->ms, s->idle_time);
mcast_snooping_set_max_entries(ofproto->ms, s->max_entries);
if (mcast_snooping_set_flood_unreg(ofproto->ms, s->flood_unreg)) {
ofproto->backer->need_revalidate = REV_RECONFIGURE;
}
ovs_rwlock_unlock(&ofproto->ms->rwlock);
} else {
mcast_snooping_unref(ofproto->ms);
ofproto->ms = NULL;
}
return 0;
}
/* Configures multicast snooping port's flood settings on 'ofproto'. */
static int
set_mcast_snooping_port(struct ofproto *ofproto_, void *aux,
const struct ofproto_mcast_snooping_port_settings *s)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
struct ofbundle *bundle = bundle_lookup(ofproto, aux);
if (ofproto->ms && s) {
ovs_rwlock_wrlock(&ofproto->ms->rwlock);
mcast_snooping_set_port_flood(ofproto->ms, bundle, s->flood);
mcast_snooping_set_port_flood_reports(ofproto->ms, bundle,
s->flood_reports);
ovs_rwlock_unlock(&ofproto->ms->rwlock);
}
return 0;
}
/* Ports. */
struct ofport_dpif *
ofp_port_to_ofport(const struct ofproto_dpif *ofproto, ofp_port_t ofp_port)
{
struct ofport *ofport = ofproto_get_port(&ofproto->up, ofp_port);
return ofport ? ofport_dpif_cast(ofport) : NULL;
}
static void
ofproto_port_from_dpif_port(struct ofproto_dpif *ofproto,
struct ofproto_port *ofproto_port,
struct dpif_port *dpif_port)
{
ofproto_port->name = dpif_port->name;
ofproto_port->type = dpif_port->type;
ofproto_port->ofp_port = odp_port_to_ofp_port(ofproto, dpif_port->port_no);
}
static void
ofport_update_peer(struct ofport_dpif *ofport)
{
const struct ofproto_dpif *ofproto;
struct dpif_backer *backer;
char *peer_name;
if (!netdev_vport_is_patch(ofport->up.netdev)) {
return;
}
backer = ofproto_dpif_cast(ofport->up.ofproto)->backer;
backer->need_revalidate = REV_RECONFIGURE;
if (ofport->peer) {
ofport->peer->peer = NULL;
ofport->peer = NULL;
}
peer_name = netdev_vport_patch_peer(ofport->up.netdev);
if (!peer_name) {
return;
}
HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_by_name_node,
&all_ofproto_dpifs_by_name) {
struct ofport *peer_ofport;
struct ofport_dpif *peer;
char *peer_peer;
if (ofproto->backer != backer) {
continue;
}
peer_ofport = shash_find_data(&ofproto->up.port_by_name, peer_name);
if (!peer_ofport) {
continue;
}
peer = ofport_dpif_cast(peer_ofport);
peer_peer = netdev_vport_patch_peer(peer->up.netdev);
if (peer_peer && !strcmp(netdev_get_name(ofport->up.netdev),
peer_peer)) {
ofport->peer = peer;
ofport->peer->peer = ofport;
}
free(peer_peer);
break;
}
free(peer_name);
}
static bool
may_enable_port(struct ofport_dpif *ofport)
{
/* If CFM or BFD is enabled, then at least one of them must report that the
* port is up. */
if ((ofport->bfd || ofport->cfm)
&& !(ofport->cfm
&& !cfm_get_fault(ofport->cfm)
&& cfm_get_opup(ofport->cfm) != 0)
&& !(ofport->bfd
&& bfd_forwarding(ofport->bfd))) {
return false;
}
/* If LACP is enabled, it must report that the link is enabled. */
if (ofport->bundle
&& !lacp_member_may_enable(ofport->bundle->lacp, ofport)) {
return false;
}
return true;
}
static void
port_run(struct ofport_dpif *ofport)
{
long long int carrier_seq = netdev_get_carrier_resets(ofport->up.netdev);
bool carrier_changed = carrier_seq != ofport->carrier_seq;
bool enable = netdev_get_carrier(ofport->up.netdev);
ofport->carrier_seq = carrier_seq;
if (carrier_changed && ofport->bundle) {
lacp_member_carrier_changed(ofport->bundle->lacp, ofport, enable);
}
if (enable) {
enable = may_enable_port(ofport);
}
if (ofport->up.may_enable != enable) {
ofproto_port_set_enable(&ofport->up, enable);
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
ofproto->backer->need_revalidate = REV_PORT_TOGGLED;
if (ofport->rstp_port) {
rstp_port_set_mac_operational(ofport->rstp_port, enable);
}
}
}
static int
port_query_by_name(const struct ofproto *ofproto_, const char *devname,
struct ofproto_port *ofproto_port)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
struct dpif_port dpif_port;
int error;
if (sset_contains(&ofproto->ghost_ports, devname)) {
/* We may be called before ofproto->up.port_by_name is populated with
* the appropriate ofport. For this reason, we must get the name and
* type from the netdev layer directly.
* However, when a port deleted, the corresponding netdev is also
* removed from netdev_shash. netdev_get_type_from_name returns NULL
* in such case and we should try to get type from ofport->netdev. */
const char *type = netdev_get_type_from_name(devname);
const struct ofport *ofport =
shash_find_data(&ofproto->up.port_by_name, devname);
if (!type && ofport && ofport->netdev) {
type = netdev_get_type(ofport->netdev);
}
if (type) {
ofproto_port->ofp_port = ofport ? ofport->ofp_port : OFPP_NONE;
ofproto_port->name = xstrdup(devname);
ofproto_port->type = xstrdup(type);
return 0;
}
return ENODEV;
}
if (!sset_contains(&ofproto->ports, devname)) {
return ENODEV;
}
error = dpif_port_query_by_name(ofproto->backer->dpif,
devname, &dpif_port);
if (!error) {
ofproto_port_from_dpif_port(ofproto, ofproto_port, &dpif_port);
}
return error;
}
static int
port_add(struct ofproto *ofproto_, struct netdev *netdev)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
const char *devname = netdev_get_name(netdev);
char namebuf[NETDEV_VPORT_NAME_BUFSIZE];
const char *dp_port_name;
if (netdev_vport_is_patch(netdev)) {
sset_add(&ofproto->ghost_ports, netdev_get_name(netdev));
return 0;
}
dp_port_name = netdev_vport_get_dpif_port(netdev, namebuf, sizeof namebuf);
if (!dpif_port_exists(ofproto->backer->dpif, dp_port_name)) {
odp_port_t port_no = ODPP_NONE;
int error;
error = dpif_port_add(ofproto->backer->dpif, netdev, &port_no);
if (error) {
return error;
}
if (netdev_get_tunnel_config(netdev)) {
simap_put(&ofproto->backer->tnl_backers,
dp_port_name, odp_to_u32(port_no));
}
} else {
struct dpif *dpif = ofproto->backer->dpif;
const char *dpif_type_str = dpif_normalize_type(dpif_type(dpif));
netdev_set_dpif_type(netdev, dpif_type_str);
}
if (netdev_get_tunnel_config(netdev)) {
sset_add(&ofproto->ghost_ports, devname);
} else {
sset_add(&ofproto->ports, devname);
}
return 0;
}
static int
port_del(struct ofproto *ofproto_, ofp_port_t ofp_port)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
struct ofport_dpif *ofport = ofp_port_to_ofport(ofproto, ofp_port);
int error = 0;
if (!ofport) {
return 0;
}
sset_find_and_delete(&ofproto->ghost_ports,
netdev_get_name(ofport->up.netdev));
ofproto->backer->need_revalidate = REV_RECONFIGURE;
if (!ofport->is_tunnel && !netdev_vport_is_patch(ofport->up.netdev)) {
error = dpif_port_del(ofproto->backer->dpif, ofport->odp_port, false);
if (!error) {
/* The caller is going to close ofport->up.netdev. If this is a
* bonded port, then the bond is using that netdev, so remove it
* from the bond. The client will need to reconfigure everything
* after deleting ports, so then the member will get re-added. */
bundle_remove(&ofport->up);
}
}
return error;
}
static int
port_set_config(const struct ofport *ofport_, const struct smap *cfg)
{
struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
if (sset_contains(&ofproto->ghost_ports,
netdev_get_name(ofport->up.netdev))) {
return 0;
}
return dpif_port_set_config(ofproto->backer->dpif, ofport->odp_port, cfg);
}
static int
port_get_stats(const struct ofport *ofport_, struct netdev_stats *stats)
{
struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
int error;
error = netdev_get_stats(ofport->up.netdev, stats);
if (!error && ofport_->ofp_port == OFPP_LOCAL) {
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
ovs_mutex_lock(&ofproto->stats_mutex);
/* ofproto->stats.tx_packets represents packets that we created
* internally and sent to some port (e.g. packets sent with
* ofproto_dpif_send_packet()). Account for them as if they had
* come from OFPP_LOCAL and got forwarded. */
if (stats->rx_packets != UINT64_MAX) {
stats->rx_packets += ofproto->stats.tx_packets;
}
if (stats->rx_bytes != UINT64_MAX) {
stats->rx_bytes += ofproto->stats.tx_bytes;
}
/* ofproto->stats.rx_packets represents packets that were received on
* some port and we processed internally and dropped (e.g. STP).
* Account for them as if they had been forwarded to OFPP_LOCAL. */
if (stats->tx_packets != UINT64_MAX) {
stats->tx_packets += ofproto->stats.rx_packets;
}
if (stats->tx_bytes != UINT64_MAX) {
stats->tx_bytes += ofproto->stats.rx_bytes;
}
ovs_mutex_unlock(&ofproto->stats_mutex);
}
return error;
}
static int
vport_get_status(const struct ofport *ofport_, char **errp)
{
struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
char *peer_name;
if (!netdev_vport_is_patch(ofport->up.netdev) || ofport->peer) {
return 0;
}
peer_name = netdev_vport_patch_peer(ofport->up.netdev);
if (!peer_name) {
return 0;
}
*errp = xasprintf("No usable peer '%s' exists in '%s' datapath.",
peer_name, ofport->up.ofproto->type);
free(peer_name);
return EINVAL;
}
static int
port_get_lacp_stats(const struct ofport *ofport_,
struct lacp_member_stats *stats)
{
struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
if (ofport->bundle && ofport->bundle->lacp) {
if (lacp_get_member_stats(ofport->bundle->lacp, ofport, stats)) {
return 0;
}
}
return -1;
}
struct port_dump_state {
struct sset_position pos;
bool ghost;
struct ofproto_port port;
bool has_port;
};
static int
port_dump_start(const struct ofproto *ofproto_ OVS_UNUSED, void **statep)
{
*statep = xzalloc(sizeof(struct port_dump_state));
return 0;
}
static int
port_dump_next(const struct ofproto *ofproto_, void *state_,
struct ofproto_port *port)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
struct port_dump_state *state = state_;
const struct sset *sset;
struct sset_node *node;
if (state->has_port) {
ofproto_port_destroy(&state->port);
state->has_port = false;
}
sset = state->ghost ? &ofproto->ghost_ports : &ofproto->ports;
while ((node = sset_at_position(sset, &state->pos))) {
int error;
error = port_query_by_name(ofproto_, node->name, &state->port);
if (!error) {
*port = state->port;
state->has_port = true;
return 0;
} else if (error != ENODEV) {
return error;
}
}
if (!state->ghost) {
state->ghost = true;
memset(&state->pos, 0, sizeof state->pos);
return port_dump_next(ofproto_, state_, port);
}
return EOF;
}
static int
port_dump_done(const struct ofproto *ofproto_ OVS_UNUSED, void *state_)
{
struct port_dump_state *state = state_;
if (state->has_port) {
ofproto_port_destroy(&state->port);
}
free(state);
return 0;
}
static int
port_poll(const struct ofproto *ofproto_, char **devnamep)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
if (ofproto->port_poll_errno) {
int error = ofproto->port_poll_errno;
ofproto->port_poll_errno = 0;
return error;
}
if (sset_is_empty(&ofproto->port_poll_set)) {
return EAGAIN;
}
*devnamep = sset_pop(&ofproto->port_poll_set);
return 0;
}
static void
port_poll_wait(const struct ofproto *ofproto_)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
dpif_port_poll_wait(ofproto->backer->dpif);
}
static int
port_is_lacp_current(const struct ofport *ofport_)
{
const struct ofport_dpif *ofport = ofport_dpif_cast(ofport_);
return (ofport->bundle && ofport->bundle->lacp
? lacp_member_is_current(ofport->bundle->lacp, ofport)
: -1);
}
/* If 'rule' is an OpenFlow rule, that has expired according to OpenFlow rules,
* then delete it entirely. */
static void
rule_expire(struct rule_dpif *rule, long long now)
OVS_REQUIRES(ofproto_mutex)
{
uint16_t hard_timeout, idle_timeout;
int reason = -1;
hard_timeout = rule->up.hard_timeout;
idle_timeout = rule->up.idle_timeout;
/* Has 'rule' expired? */
if (hard_timeout) {
long long int modified;
ovs_mutex_lock(&rule->up.mutex);
modified = rule->up.modified;
ovs_mutex_unlock(&rule->up.mutex);
if (now > modified + hard_timeout * 1000) {
reason = OFPRR_HARD_TIMEOUT;
}
}
if (reason < 0 && idle_timeout) {
long long int used;
ovs_mutex_lock(&rule->stats_mutex);
used = rule->stats.used;
ovs_mutex_unlock(&rule->stats_mutex);
if (now > used + idle_timeout * 1000) {
reason = OFPRR_IDLE_TIMEOUT;
}
}
if (reason >= 0) {
COVERAGE_INC(ofproto_dpif_expired);
ofproto_rule_expire(&rule->up, reason);
}
}
static void
ofproto_dpif_set_packet_odp_port(const struct ofproto_dpif *ofproto,
ofp_port_t in_port, struct dp_packet *packet)
{
if (in_port == OFPP_NONE) {
in_port = OFPP_LOCAL;
}
packet->md.in_port.odp_port = ofp_port_to_odp_port(ofproto, in_port);
}
int
ofproto_dpif_execute_actions__(struct ofproto_dpif *ofproto,
ovs_version_t version, const struct flow *flow,
struct rule_dpif *rule,
const struct ofpact *ofpacts, size_t ofpacts_len,
int depth, int resubmits,
struct dp_packet *packet)
{
struct dpif_flow_stats stats;
struct xlate_out xout;
struct xlate_in xin;
int error;
ovs_assert((rule != NULL) != (ofpacts != NULL));
dpif_flow_stats_extract(flow, packet, time_msec(), &stats);
if (rule) {
rule_dpif_credit_stats(rule, &stats, false);
}
uint64_t odp_actions_stub[1024 / 8];
struct ofpbuf odp_actions = OFPBUF_STUB_INITIALIZER(odp_actions_stub);
xlate_in_init(&xin, ofproto, version, flow, flow->in_port.ofp_port, rule,
stats.tcp_flags, packet, NULL, &odp_actions);
xin.ofpacts = ofpacts;
xin.ofpacts_len = ofpacts_len;
xin.resubmit_stats = &stats;
xin.depth = depth;
xin.resubmits = resubmits;
if (xlate_actions(&xin, &xout) != XLATE_OK) {
error = EINVAL;
goto out;
}
pkt_metadata_from_flow(&packet->md, flow);
struct dpif_execute execute = {
.actions = odp_actions.data,
.actions_len = odp_actions.size,
.packet = packet,
.flow = flow,
.needs_help = (xout.slow & SLOW_ACTION) != 0,
};
/* Fix up in_port. */
ofproto_dpif_set_packet_odp_port(ofproto, flow->in_port.ofp_port, packet);
error = dpif_execute(ofproto->backer->dpif, &execute);
out:
xlate_out_uninit(&xout);
ofpbuf_uninit(&odp_actions);
return error;
}
/* Executes, within 'ofproto', the actions in 'rule' or 'ofpacts' on 'packet'.
* 'flow' must reflect the data in 'packet'. */
int
ofproto_dpif_execute_actions(struct ofproto_dpif *ofproto,
ovs_version_t version, const struct flow *flow,
struct rule_dpif *rule,
const struct ofpact *ofpacts, size_t ofpacts_len,
struct dp_packet *packet)
{
return ofproto_dpif_execute_actions__(ofproto, version, flow, rule,
ofpacts, ofpacts_len, 0, 0, packet);
}
static void
rule_dpif_credit_stats__(struct rule_dpif *rule,
const struct dpif_flow_stats *stats,
bool credit_counts, bool offloaded)
OVS_REQUIRES(rule->stats_mutex)
{
if (credit_counts) {
if (offloaded) {
rule->stats.n_offload_packets += stats->n_packets;
rule->stats.n_offload_bytes += stats->n_bytes;
}
rule->stats.n_packets += stats->n_packets;
rule->stats.n_bytes += stats->n_bytes;
}
rule->stats.used = MAX(rule->stats.used, stats->used);
}
void
rule_dpif_credit_stats(struct rule_dpif *rule,
const struct dpif_flow_stats *stats, bool offloaded)
{
ovs_mutex_lock(&rule->stats_mutex);
if (OVS_UNLIKELY(rule->new_rule)) {
ovs_mutex_lock(&rule->new_rule->stats_mutex);
rule_dpif_credit_stats__(rule->new_rule, stats, rule->forward_counts,
offloaded);
ovs_mutex_unlock(&rule->new_rule->stats_mutex);
} else {
rule_dpif_credit_stats__(rule, stats, true, offloaded);
}
ovs_mutex_unlock(&rule->stats_mutex);
}
/* Sets 'rule''s recirculation id. */
static void
rule_dpif_set_recirc_id(struct rule_dpif *rule, uint32_t id)
OVS_REQUIRES(rule->up.mutex)
{
ovs_assert(!rule->recirc_id || rule->recirc_id == id);
if (rule->recirc_id == id) {
/* Release the new reference to the same id. */
recirc_free_id(id);
} else {
rule->recirc_id = id;
}
}
/* Sets 'rule''s recirculation id. */
void
rule_set_recirc_id(struct rule *rule_, uint32_t id)
{
struct rule_dpif *rule = rule_dpif_cast(rule_);
ovs_mutex_lock(&rule->up.mutex);
rule_dpif_set_recirc_id(rule, id);
ovs_mutex_unlock(&rule->up.mutex);
}
ovs_version_t
ofproto_dpif_get_tables_version(struct ofproto_dpif *ofproto)
{
ovs_version_t version;
/* Use memory_order_acquire to signify that any following memory accesses
* can not be reordered to happen before this atomic read. This makes sure
* all following reads relate to this or a newer version, but never to an
* older version. */
atomic_read_explicit(&ofproto->tables_version, &version,
memory_order_acquire);
return version;
}
/* The returned rule (if any) is valid at least until the next RCU quiescent
* period. If the rule needs to stay around longer, the caller should take
* a reference.
*
* 'flow' is non-const to allow for temporary modifications during the lookup.
* Any changes are restored before returning.
*
* 'conj_flows' is an optional parameter. If it is non-null, the matching
* conjunctive flows are inserted. */
static struct rule_dpif *
rule_dpif_lookup_in_table(struct ofproto_dpif *ofproto, ovs_version_t version,
uint8_t table_id, struct flow *flow,
struct flow_wildcards *wc,
struct hmapx *conj_flows)
{
struct classifier *cls = &ofproto->up.tables[table_id].cls;
return rule_dpif_cast(rule_from_cls_rule(classifier_lookup(cls, version,
flow, wc,
conj_flows)));
}
void
ofproto_dpif_credit_table_stats(struct ofproto_dpif *ofproto, uint8_t table_id,
uint64_t n_matches, uint64_t n_misses)
{
struct oftable *tbl = &ofproto->up.tables[table_id];
unsigned long orig;
if (n_matches) {
atomic_add_relaxed(&tbl->n_matched, n_matches, &orig);
}
if (n_misses) {
atomic_add_relaxed(&tbl->n_missed, n_misses, &orig);
}
}
/* Look up 'flow' in 'ofproto''s classifier version 'version', starting from
* table '*table_id'. Returns the rule that was found, which may be one of the
* special rules according to packet miss handling. If 'may_packet_in' is
* false, returning of the miss_rule (which issues packet ins for the
* controller) is avoided. Updates 'wc', if nonnull, to reflect the fields
* that were used during the lookup.
*
* If 'honor_table_miss' is true, the first lookup occurs in '*table_id', but
* if none is found then the table miss configuration for that table is
* honored, which can result in additional lookups in other OpenFlow tables.
* In this case the function updates '*table_id' to reflect the final OpenFlow
* table that was searched.
*
* If 'honor_table_miss' is false, then only one table lookup occurs, in
* '*table_id'.
*
* The rule is returned in '*rule', which is valid at least until the next
* RCU quiescent period. If the '*rule' needs to stay around longer, the
* caller must take a reference.
*
* 'in_port' allows the lookup to take place as if the in port had the value
* 'in_port'. This is needed for resubmit action support.
*
* 'flow' is non-const to allow for temporary modifications during the lookup.
* Any changes are restored before returning.
*
* 'conj_flows' is an optional parameter. If it is non-null, the matching
* conjunctive flows are inserted. */
struct rule_dpif *
rule_dpif_lookup_from_table(struct ofproto_dpif *ofproto,
ovs_version_t version, struct flow *flow,
struct flow_wildcards *wc,
const struct dpif_flow_stats *stats,
uint8_t *table_id, ofp_port_t in_port,
bool may_packet_in, bool honor_table_miss,
struct xlate_cache *xcache,
struct hmapx *conj_flows)
{
ovs_be16 old_tp_src = flow->tp_src, old_tp_dst = flow->tp_dst;
ofp_port_t old_in_port = flow->in_port.ofp_port;
enum ofputil_table_miss miss_config;
struct rule_dpif *rule;
uint8_t next_id;
/* We always unwildcard nw_frag (for IP), so they
* need not be unwildcarded here. */
if (flow->nw_frag & FLOW_NW_FRAG_ANY
&& ofproto->up.frag_handling != OFPUTIL_FRAG_NX_MATCH) {
if (ofproto->up.frag_handling == OFPUTIL_FRAG_NORMAL) {
/* We must pretend that transport ports are unavailable. */
flow->tp_src = htons(0);
flow->tp_dst = htons(0);
} else {
/* Must be OFPUTIL_FRAG_DROP (we don't have OFPUTIL_FRAG_REASM).
* Use the drop_frags_rule (which cannot disappear). */
rule = ofproto->drop_frags_rule;
if (stats) {
struct oftable *tbl = &ofproto->up.tables[*table_id];
unsigned long orig;
atomic_add_relaxed(&tbl->n_matched, stats->n_packets, &orig);
}
if (xcache) {
if (ofproto_try_ref(&ofproto->up)) {
struct xc_entry *entry;
entry = xlate_cache_add_entry(xcache, XC_TABLE);
entry->table.ofproto = ofproto;
entry->table.id = *table_id;
entry->table.match = true;
}
}
return rule;
}
}
/* Look up a flow with 'in_port' as the input port. Then restore the
* original input port (otherwise OFPP_NORMAL and OFPP_IN_PORT will
* have surprising behavior). */
flow->in_port.ofp_port = in_port;
/* Our current implementation depends on n_tables == N_TABLES, and
* TBL_INTERNAL being the last table. */
BUILD_ASSERT_DECL(N_TABLES == TBL_INTERNAL + 1);
miss_config = OFPUTIL_TABLE_MISS_CONTINUE;
for (next_id = *table_id;
next_id < ofproto->up.n_tables;
next_id++, next_id += (next_id == TBL_INTERNAL))
{
*table_id = next_id;
rule = rule_dpif_lookup_in_table(ofproto, version, next_id, flow, wc,
conj_flows);
if (stats) {
struct oftable *tbl = &ofproto->up.tables[next_id];
unsigned long orig;
atomic_add_relaxed(rule ? &tbl->n_matched : &tbl->n_missed,
stats->n_packets, &orig);
}
if (xcache) {
if (ofproto_try_ref(&ofproto->up)) {
struct xc_entry *entry;
entry = xlate_cache_add_entry(xcache, XC_TABLE);
entry->table.ofproto = ofproto;
entry->table.id = next_id;
entry->table.match = (rule != NULL);
}
}
if (rule) {
goto out; /* Match. */
}
if (honor_table_miss) {
miss_config = ofproto_table_get_miss_config(&ofproto->up,
*table_id);
if (miss_config == OFPUTIL_TABLE_MISS_CONTINUE) {
continue;
}
}
break;
}
/* Miss. */
rule = ofproto->no_packet_in_rule;
if (may_packet_in) {
if (miss_config == OFPUTIL_TABLE_MISS_CONTINUE
|| miss_config == OFPUTIL_TABLE_MISS_CONTROLLER) {
struct ofport_dpif *port;
port = ofp_port_to_ofport(ofproto, old_in_port);
if (!port) {
VLOG_WARN_RL(&rl, "packet-in on unknown OpenFlow port %"PRIu32,
old_in_port);
} else if (!(port->up.pp.config & OFPUTIL_PC_NO_PACKET_IN)) {
rule = ofproto->miss_rule;
}
} else if (miss_config == OFPUTIL_TABLE_MISS_DEFAULT &&
connmgr_wants_packet_in_on_miss(ofproto->up.connmgr)) {
rule = ofproto->miss_rule;
}
}
out:
/* Restore port numbers, as they may have been modified above. */
flow->tp_src = old_tp_src;
flow->tp_dst = old_tp_dst;
/* Restore the old in port. */
flow->in_port.ofp_port = old_in_port;
return rule;
}
static struct rule_dpif *rule_dpif_cast(const struct rule *rule)
{
return rule ? CONTAINER_OF(rule, struct rule_dpif, up) : NULL;
}
static struct rule *
rule_alloc(void)
{
struct rule_dpif *rule = xzalloc(sizeof *rule);
return &rule->up;
}
static void
rule_dealloc(struct rule *rule_)
{
struct rule_dpif *rule = rule_dpif_cast(rule_);
free(rule);
}
static enum ofperr
check_mask(struct ofproto_dpif *ofproto, const struct miniflow *flow)
{
const struct odp_support *support;
uint16_t ct_state, ct_zone;
ovs_u128 ct_label;
uint32_t ct_mark;
support = &ofproto->backer->rt_support.odp;
ct_state = MINIFLOW_GET_U8(flow, ct_state);
if (ct_state & CS_UNSUPPORTED_MASK) {
return OFPERR_OFPBMC_BAD_MASK;
}
/* Do not bother dissecting the flow further if the datapath supports all
* the features we know of. */
if (support->ct_state && support->ct_zone && support->ct_mark
&& support->ct_label && support->ct_state_nat
&& support->ct_orig_tuple && support->ct_orig_tuple6) {
return 0;
}
ct_zone = MINIFLOW_GET_U16(flow, ct_zone);
ct_mark = MINIFLOW_GET_U32(flow, ct_mark);
ct_label = MINIFLOW_GET_U128(flow, ct_label);
if ((ct_state && !support->ct_state)
|| ((ct_state & (CS_SRC_NAT | CS_DST_NAT)) && !support->ct_state_nat)
|| (ct_zone && !support->ct_zone)
|| (ct_mark && !support->ct_mark)
|| (!ovs_u128_is_zero(ct_label) && !support->ct_label)) {
return OFPERR_NXBMC_CT_DATAPATH_SUPPORT;
}
if (!support->ct_orig_tuple && !support->ct_orig_tuple6
&& (MINIFLOW_GET_U8(flow, ct_nw_proto)
|| MINIFLOW_GET_U16(flow, ct_tp_src)
|| MINIFLOW_GET_U16(flow, ct_tp_dst))) {
return OFPERR_NXBMC_CT_DATAPATH_SUPPORT;
}
if (!support->ct_orig_tuple
&& (MINIFLOW_GET_U32(flow, ct_nw_src)
|| MINIFLOW_GET_U32(flow, ct_nw_dst))) {
return OFPERR_NXBMC_CT_DATAPATH_SUPPORT;
}
if (!support->ct_orig_tuple6
&& (!ovs_u128_is_zero(MINIFLOW_GET_U128(flow, ct_ipv6_src))
|| !ovs_u128_is_zero(MINIFLOW_GET_U128(flow, ct_ipv6_dst)))) {
return OFPERR_NXBMC_CT_DATAPATH_SUPPORT;
}
return 0;
}
static void
report_unsupported_act(const char *action, const char *detail)
{
static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(1, 5);
VLOG_WARN_RL(&rll, "Rejecting %s action because datapath does not support"
"%s%s (your kernel module may be out of date)",
action, detail ? " " : "", detail ? detail : "");
}
static enum ofperr
check_actions(const struct ofproto_dpif *ofproto,
const struct rule_actions *const actions)
{
const struct ofpact *ofpact;
const struct odp_support *support = &ofproto->backer->rt_support.odp;
OFPACT_FOR_EACH (ofpact, actions->ofpacts, actions->ofpacts_len) {
if (ofpact->type == OFPACT_CT) {
const struct ofpact_conntrack *ct;
const struct ofpact *a;
ct = CONTAINER_OF(ofpact, struct ofpact_conntrack, ofpact);
if (!support->ct_state) {
report_unsupported_act("ct", "ct action");
return OFPERR_NXBAC_CT_DATAPATH_SUPPORT;
}
if ((ct->zone_imm || ct->zone_src.field) && !support->ct_zone) {
report_unsupported_act("ct", "ct zones");
return OFPERR_NXBAC_CT_DATAPATH_SUPPORT;
}
/* So far the force commit feature is implemented together with the
* original direction tuple feature by all datapaths, so we use the
* support flag for the 'ct_orig_tuple' to indicate support for the
* force commit feature as well. */
if ((ct->flags & NX_CT_F_FORCE) && !support->ct_orig_tuple) {
report_unsupported_act("ct", "force commit");
return OFPERR_NXBAC_CT_DATAPATH_SUPPORT;
}
OFPACT_FOR_EACH(a, ct->actions, ofpact_ct_get_action_len(ct)) {
const struct mf_field *dst = ofpact_get_mf_dst(a);
if (a->type == OFPACT_NAT && !support->ct_state_nat) {
/* The backer doesn't seem to support the NAT bits in
* 'ct_state': assume that it doesn't support the NAT
* action. */
report_unsupported_act("ct", "nat");
return OFPERR_NXBAC_CT_DATAPATH_SUPPORT;
}
if (dst && ((dst->id == MFF_CT_MARK && !support->ct_mark) ||
(dst->id == MFF_CT_LABEL && !support->ct_label))) {
report_unsupported_act("ct", "setting mark and/or label");
return OFPERR_NXBAC_CT_DATAPATH_SUPPORT;
}
}
} else if (ofpact->type == OFPACT_RESUBMIT) {
struct ofpact_resubmit *resubmit = ofpact_get_RESUBMIT(ofpact);
if (resubmit->with_ct_orig && !support->ct_orig_tuple) {
report_unsupported_act("resubmit",
"ct original direction tuple");
return OFPERR_NXBAC_CT_DATAPATH_SUPPORT;
}
} else if (!support->nd_ext && ofpact->type == OFPACT_SET_FIELD) {
const struct mf_field *dst = ofpact_get_mf_dst(ofpact);
if (dst->id == MFF_ND_RESERVED || dst->id == MFF_ND_OPTIONS_TYPE) {
report_unsupported_act("set field",
"setting IPv6 ND Extensions fields");
return OFPERR_OFPBAC_BAD_SET_ARGUMENT;
}
}
}
return 0;
}
static enum ofperr
rule_check(struct rule *rule)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(rule->ofproto);
enum ofperr err;
err = check_mask(ofproto, &rule->cr.match.mask->masks);
if (err) {
return err;
}
return check_actions(ofproto, rule->actions);
}
static enum ofperr
rule_construct(struct rule *rule_)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct rule_dpif *rule = rule_dpif_cast(rule_);
int error;
error = rule_check(rule_);
if (error) {
return error;
}
ovs_mutex_init_adaptive(&rule->stats_mutex);
rule->stats.n_packets = 0;
rule->stats.n_bytes = 0;
rule->stats.used = rule->up.modified;
rule->recirc_id = 0;
rule->new_rule = NULL;
rule->forward_counts = false;
return 0;
}
static enum ofperr
rule_insert(struct rule *rule_, struct rule *old_rule_, bool forward_counts)
OVS_REQUIRES(ofproto_mutex)
{
struct rule_dpif *rule = rule_dpif_cast(rule_);
if (old_rule_) {
struct rule_dpif *old_rule = rule_dpif_cast(old_rule_);
ovs_assert(!old_rule->new_rule);
/* Take a reference to the new rule, and refer all stats updates from
* the old rule to the new rule. */
ofproto_rule_ref(&rule->up);
ovs_mutex_lock(&old_rule->stats_mutex);
ovs_mutex_lock(&rule->stats_mutex);
old_rule->new_rule = rule; /* Forward future stats. */
old_rule->forward_counts = forward_counts;
if (forward_counts) {
rule->stats = old_rule->stats; /* Transfer stats to the new
* rule. */
} else {
/* Used timestamp must be forwarded whenever a rule is modified. */
rule->stats.used = old_rule->stats.used;
}
ovs_mutex_unlock(&rule->stats_mutex);
ovs_mutex_unlock(&old_rule->stats_mutex);
}
return 0;
}
static void
rule_destruct(struct rule *rule_)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct rule_dpif *rule = rule_dpif_cast(rule_);
ovs_mutex_destroy(&rule->stats_mutex);
/* Release reference to the new rule, if any. */
if (rule->new_rule) {
ofproto_rule_unref(&rule->new_rule->up);
}
if (rule->recirc_id) {
recirc_free_id(rule->recirc_id);
}
}
static void
rule_get_stats(struct rule *rule_, struct pkt_stats *stats,
long long int *used)
{
struct rule_dpif *rule = rule_dpif_cast(rule_);
ovs_mutex_lock(&rule->stats_mutex);
if (OVS_UNLIKELY(rule->new_rule)) {
rule_get_stats(&rule->new_rule->up, stats, used);
} else {
stats->n_packets = rule->stats.n_packets;
stats->n_bytes = rule->stats.n_bytes;
stats->n_offload_packets = rule->stats.n_offload_packets;
stats->n_offload_bytes = rule->stats.n_offload_bytes;
*used = rule->stats.used;
}
ovs_mutex_unlock(&rule->stats_mutex);
}
struct ofproto_dpif_packet_out {
struct xlate_cache xcache;
struct ofpbuf odp_actions;
struct recirc_refs rr;
bool needs_help;
};
static struct ofproto_dpif_packet_out *
ofproto_dpif_packet_out_new(void)
{
struct ofproto_dpif_packet_out *aux = xmalloc(sizeof *aux);
xlate_cache_init(&aux->xcache);
ofpbuf_init(&aux->odp_actions, 64);
aux->rr = RECIRC_REFS_EMPTY_INITIALIZER;
aux->needs_help = false;
return aux;
}
static void
ofproto_dpif_packet_out_delete(struct ofproto_dpif_packet_out *aux)
{
if (aux) {
xlate_cache_uninit(&aux->xcache);
ofpbuf_uninit(&aux->odp_actions);
recirc_refs_unref(&aux->rr);
free(aux);
}
}
static enum ofperr
packet_xlate(struct ofproto *ofproto_, struct ofproto_packet_out *opo)
OVS_REQUIRES(ofproto_mutex)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
struct xlate_out xout;
struct xlate_in xin;
enum ofperr error = 0;
struct ofproto_dpif_packet_out *aux = ofproto_dpif_packet_out_new();
xlate_in_init(&xin, ofproto, opo->version, opo->flow,
opo->flow->in_port.ofp_port, NULL, 0, opo->packet, NULL,
&aux->odp_actions);
xin.ofpacts = opo->ofpacts;
xin.ofpacts_len = opo->ofpacts_len;
/* No learning or stats, but collect side effects to xcache. */
xin.allow_side_effects = false;
xin.resubmit_stats = NULL;
xin.xcache = &aux->xcache;
xin.in_packet_out = true;
if (xlate_actions(&xin, &xout) != XLATE_OK) {
error = OFPERR_OFPFMFC_UNKNOWN; /* Error processing actions. */
goto error_out;
} else {
/* Prepare learn actions. */
struct xc_entry *entry;
struct ofpbuf entries = aux->xcache.entries;
XC_ENTRY_FOR_EACH (entry, &entries) {
if (entry->type == XC_LEARN) {
struct ofproto_flow_mod *ofm = entry->learn.ofm;
error = ofproto_flow_mod_learn_refresh(ofm, time_msec());
if (error) {
goto error_out;
}
struct rule *rule = ofm->temp_rule;
ofm->learn_adds_rule = (rule->state == RULE_INITIALIZED);
if (ofm->learn_adds_rule) {
/* If learning on a different bridge, must use its next
* version number. */
ofm->version = (rule->ofproto == ofproto_)
? opo->version : rule->ofproto->tables_version + 1;
error = ofproto_flow_mod_learn_start(ofm);
if (error) {
goto error_out;
}
}
}
}
/* Success. */
aux->needs_help = (xout.slow & SLOW_ACTION) != 0;
recirc_refs_swap(&aux->rr, &xout.recircs); /* Hold recirc refs. */
}
xlate_out_uninit(&xout);
opo->aux = aux;
return 0;
error_out:
xlate_out_uninit(&xout);
ofproto_dpif_packet_out_delete(aux);
opo->aux = NULL;
return error;
}
static void
packet_xlate_revert(struct ofproto *ofproto OVS_UNUSED,
struct ofproto_packet_out *opo)
OVS_REQUIRES(ofproto_mutex)
{
struct ofproto_dpif_packet_out *aux = opo->aux;
ovs_assert(aux);
/* Revert the learned flows. */
struct xc_entry *entry;
struct ofpbuf entries = aux->xcache.entries;
XC_ENTRY_FOR_EACH (entry, &entries) {
if (entry->type == XC_LEARN && entry->learn.ofm->learn_adds_rule) {
ofproto_flow_mod_learn_revert(entry->learn.ofm);
}
}
ofproto_dpif_packet_out_delete(aux);
opo->aux = NULL;
}
/* Push stats and perform side effects of flow translation. */
static void
ofproto_dpif_xcache_execute(struct ofproto_dpif *ofproto,
struct xlate_cache *xcache,
struct dpif_flow_stats *stats)
OVS_REQUIRES(ofproto_mutex)
{
struct xc_entry *entry;
struct ofpbuf entries = xcache->entries;
XC_ENTRY_FOR_EACH (entry, &entries) {
switch (entry->type) {
case XC_LEARN:
/* Finish the learned flows. */
if (entry->learn.ofm->learn_adds_rule) {
ofproto_flow_mod_learn_finish(entry->learn.ofm, &ofproto->up);
}
break;
case XC_FIN_TIMEOUT:
if (stats->tcp_flags & (TCP_FIN | TCP_RST)) {
/* 'ofproto_mutex' already held */
ofproto_rule_reduce_timeouts__(&entry->fin.rule->up,
entry->fin.idle,
entry->fin.hard);
}
break;
/* All the rest can be dealt with by the xlate layer. */
case XC_TABLE:
case XC_RULE:
case XC_BOND:
case XC_NETDEV:
case XC_NETFLOW:
case XC_MIRROR:
case XC_NORMAL:
case XC_GROUP:
case XC_TNL_NEIGH:
case XC_TUNNEL_HEADER:
xlate_push_stats_entry(entry, stats, false);
break;
default:
OVS_NOT_REACHED();
}
}
}
static void
packet_execute_prepare(struct ofproto *ofproto_,
struct ofproto_packet_out *opo)
OVS_REQUIRES(ofproto_mutex)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
struct dpif_flow_stats stats;
struct dpif_execute *execute;
struct ofproto_dpif_packet_out *aux = opo->aux;
ovs_assert(aux);
/* Run the side effects from the xcache. */
dpif_flow_stats_extract(opo->flow, opo->packet, time_msec(), &stats);
ofproto_dpif_xcache_execute(ofproto, &aux->xcache, &stats);
execute = xzalloc(sizeof *execute);
execute->actions = xmemdup(aux->odp_actions.data, aux->odp_actions.size);
execute->actions_len = aux->odp_actions.size;
pkt_metadata_from_flow(&opo->packet->md, opo->flow);
execute->packet = opo->packet;
execute->flow = opo->flow;
execute->needs_help = aux->needs_help;
execute->probe = false;
execute->mtu = 0;
/* Fix up in_port. */
ofproto_dpif_set_packet_odp_port(ofproto, opo->flow->in_port.ofp_port,
opo->packet);
ofproto_dpif_packet_out_delete(aux);
opo->aux = execute;
}
static void
packet_execute(struct ofproto *ofproto_, struct ofproto_packet_out *opo)
OVS_EXCLUDED(ofproto_mutex)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
struct dpif_execute *execute = opo->aux;
if (!execute) {
return;
}
dpif_execute(ofproto->backer->dpif, execute);
free(CONST_CAST(struct nlattr *, execute->actions));
free(execute);
opo->aux = NULL;
}
static struct group_dpif *group_dpif_cast(const struct ofgroup *group)
{
return group ? CONTAINER_OF(group, struct group_dpif, up) : NULL;
}
static struct ofgroup *
group_alloc(void)
{
struct group_dpif *group = xzalloc(sizeof *group);
return &group->up;
}
static void
group_dealloc(struct ofgroup *group_)
{
struct group_dpif *group = group_dpif_cast(group_);
free(group);
}
static void
group_construct_stats(struct group_dpif *group)
OVS_REQUIRES(group->stats_mutex)
{
group->packet_count = 0;
group->byte_count = 0;
struct ofputil_bucket *bucket;
LIST_FOR_EACH (bucket, list_node, &group->up.buckets) {
bucket->stats.packet_count = 0;
bucket->stats.byte_count = 0;
}
}
void
group_dpif_credit_stats(struct group_dpif *group,
struct ofputil_bucket *bucket,
const struct dpif_flow_stats *stats)
{
ovs_mutex_lock(&group->stats_mutex);
group->packet_count += stats->n_packets;
group->byte_count += stats->n_bytes;
if (bucket) {
bucket->stats.packet_count += stats->n_packets;
bucket->stats.byte_count += stats->n_bytes;
} else { /* Credit to all buckets */
LIST_FOR_EACH (bucket, list_node, &group->up.buckets) {
bucket->stats.packet_count += stats->n_packets;
bucket->stats.byte_count += stats->n_bytes;
}
}
ovs_mutex_unlock(&group->stats_mutex);
}
/* Calculate the dp_hash mask needed to provide the least weighted bucket
* with at least one hash value and construct a mapping table from masked
* dp_hash value to group bucket using the Webster method.
* If the caller specifies a non-zero max_hash value, abort and return false
* if more hash values would be required. The absolute maximum number of
* hash values supported is 256. */
#define MAX_SELECT_GROUP_HASH_VALUES 256
static bool
group_setup_dp_hash_table(struct group_dpif *group, size_t max_hash)
{
struct ofputil_bucket *bucket;
uint32_t n_buckets = group->up.n_buckets;
uint64_t total_weight = 0;
uint16_t min_weight = UINT16_MAX;
struct webster {
struct ofputil_bucket *bucket;
uint32_t divisor;
double value;
int hits;
} *webster;
if (n_buckets == 0) {
VLOG_DBG(" Don't apply dp_hash method without buckets.");
return false;
}
webster = xcalloc(n_buckets, sizeof(struct webster));
int i = 0;
LIST_FOR_EACH (bucket, list_node, &group->up.buckets) {
if (bucket->weight > 0 && bucket->weight < min_weight) {
min_weight = bucket->weight;
}
total_weight += bucket->weight;
webster[i].bucket = bucket;
webster[i].divisor = 1;
webster[i].value = bucket->weight;
webster[i].hits = 0;
i++;
}
if (total_weight == 0) {
VLOG_DBG(" Total weight is zero. No active buckets.");
free(webster);
return false;
}
VLOG_DBG(" Minimum weight: %d, total weight: %"PRIu64,
min_weight, total_weight);
uint64_t min_slots = DIV_ROUND_UP(total_weight, min_weight);
uint64_t min_slots2 =
MAX(min_slots, MIN(n_buckets * 4, MAX_SELECT_GROUP_HASH_VALUES));
uint64_t min_slots3 = ROUND_UP_POW2(min_slots2);
uint64_t n_hash = MAX(16, min_slots3);
if (n_hash > MAX_SELECT_GROUP_HASH_VALUES ||
(max_hash != 0 && n_hash > max_hash)) {
VLOG_DBG(" Too many hash values required: %"PRIu64, n_hash);
free(webster);
return false;
}
VLOG_DBG(" Using %"PRIu64" hash values:", n_hash);
group->hash_mask = n_hash - 1;
if (group->hash_map) {
free(group->hash_map);
}
group->hash_map = xcalloc(n_hash, sizeof(struct ofputil_bucket *));
/* Use Webster method to distribute hash values over buckets. */
for (int hash = 0; hash < n_hash; hash++) {
struct webster *winner = &webster[0];
for (i = 1; i < n_buckets; i++) {
if (webster[i].value > winner->value) {
winner = &webster[i];
}
}
winner->hits++;
winner->divisor += 2;
winner->value = (double) winner->bucket->weight / winner->divisor;
group->hash_map[hash] = winner->bucket;
}
i = 0;
LIST_FOR_EACH (bucket, list_node, &group->up.buckets) {
double target = (n_hash * bucket->weight) / (double) total_weight;
VLOG_DBG(" Bucket %d: weight=%d, target=%.2f hits=%d",
bucket->bucket_id, bucket->weight,
target, webster[i].hits);
i++;
}
free(webster);
return true;
}
static void
group_set_selection_method(struct group_dpif *group)
{
const struct ofputil_group_props *props = &group->up.props;
const char *selection_method = props->selection_method;
if (selection_method[0] == '\0') {
VLOG_DBG("No selection method specified. Trying dp_hash.");
/* If the controller has not specified a selection method, check if
* the dp_hash selection method with max 256 hash values is appropriate
* for the given bucket configuration. */
if (group_setup_dp_hash_table(group, 256)) {
/* Use dp_hash selection method with symmetric L4 hash. */
group->selection_method = SEL_METHOD_DP_HASH;
group->hash_alg = OVS_HASH_ALG_SYM_L4;
group->hash_basis = 0;
VLOG_DBG("Use dp_hash with %d hash values using algorithm %d.",
group->hash_mask + 1, group->hash_alg);
} else {
/* Fall back to original default hashing in slow path. */
VLOG_DBG("Falling back to default hash method.");
group->selection_method = SEL_METHOD_DEFAULT;
}
} else if (!strcmp(selection_method, "dp_hash")) {
VLOG_DBG("Selection method specified: dp_hash.");
/* Try to use dp_hash if possible at all. */
if (group_setup_dp_hash_table(group, 0)) {
group->selection_method = SEL_METHOD_DP_HASH;
group->hash_alg = props->selection_method_param >> 32;
if (group->hash_alg >= __OVS_HASH_MAX) {
VLOG_DBG("Invalid dp_hash algorithm %d. "
"Defaulting to OVS_HASH_ALG_L4", group->hash_alg);
group->hash_alg = OVS_HASH_ALG_L4;
}
group->hash_basis = (uint32_t) props->selection_method_param;
VLOG_DBG("Use dp_hash with %d hash values using algorithm %d.",
group->hash_mask + 1, group->hash_alg);
} else {
/* Fall back to original default hashing in slow path. */
VLOG_DBG("Falling back to default hash method.");
group->selection_method = SEL_METHOD_DEFAULT;
}
} else if (!strcmp(selection_method, "hash")) {
VLOG_DBG("Selection method specified: hash.");
if (props->fields.values_size > 0) {
/* Controller has specified hash fields. */
struct ds s = DS_EMPTY_INITIALIZER;
oxm_format_field_array(&s, &props->fields);
VLOG_DBG("Hash fields: %s", ds_cstr(&s));
ds_destroy(&s);
group->selection_method = SEL_METHOD_HASH;
} else {
/* No hash fields. Fall back to original default hashing. */
VLOG_DBG("No hash fields. Falling back to default hash method.");
group->selection_method = SEL_METHOD_DEFAULT;
}
} else {
/* Parsing of groups should ensure this never happens */
OVS_NOT_REACHED();
}
}
static enum ofperr
group_construct(struct ofgroup *group_)
{
struct group_dpif *group = group_dpif_cast(group_);
ovs_mutex_init_adaptive(&group->stats_mutex);
ovs_mutex_lock(&group->stats_mutex);
group_construct_stats(group);
group->hash_map = NULL;
if (group->up.type == OFPGT11_SELECT) {
VLOG_DBG("Constructing select group %"PRIu32, group->up.group_id);
group_set_selection_method(group);
}
ovs_mutex_unlock(&group->stats_mutex);
return 0;
}
static void
group_destruct(struct ofgroup *group_)
{
struct group_dpif *group = group_dpif_cast(group_);
ovs_mutex_destroy(&group->stats_mutex);
if (group->hash_map) {
free(group->hash_map);
group->hash_map = NULL;
}
}
static void
group_modify(struct ofgroup *group_)
{
struct group_dpif *group = group_dpif_cast(group_);
if (group->hash_map) {
free(group->hash_map);
group->hash_map = NULL;
}
if (group->up.type == OFPGT11_SELECT) {
VLOG_DBG("Modifying select group %"PRIu32, group->up.group_id);
group_set_selection_method(group);
}
}
static enum ofperr
group_get_stats(const struct ofgroup *group_, struct ofputil_group_stats *ogs)
{
struct group_dpif *group = group_dpif_cast(group_);
ovs_mutex_lock(&group->stats_mutex);
ogs->packet_count = group->packet_count;
ogs->byte_count = group->byte_count;
struct bucket_counter *bucket_stats = ogs->bucket_stats;
struct ofputil_bucket *bucket;
LIST_FOR_EACH (bucket, list_node, &group->up.buckets) {
bucket_stats->packet_count = bucket->stats.packet_count;
bucket_stats->byte_count = bucket->stats.byte_count;
bucket_stats++;
}
ovs_mutex_unlock(&group->stats_mutex);
return 0;
}
/* If the group exists, this function increments the groups's reference count.
*
* Make sure to call ofproto_group_unref() after no longer needing to maintain
* a reference to the group. */
struct group_dpif *
group_dpif_lookup(struct ofproto_dpif *ofproto, uint32_t group_id,
ovs_version_t version, bool take_ref)
{
struct ofgroup *ofgroup = ofproto_group_lookup(&ofproto->up, group_id,
version, take_ref);
return ofgroup ? group_dpif_cast(ofgroup) : NULL;
}
/* Sends 'packet' out 'ofport'. If 'port' is a tunnel and that tunnel type
* supports a notion of an OAM flag, sets it if 'oam' is true.
* May modify 'packet'.
* Returns 0 if successful, otherwise a positive errno value. */
int
ofproto_dpif_send_packet(const struct ofport_dpif *ofport, bool oam,
struct dp_packet *packet)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofport->up.ofproto);
int error;
error = xlate_send_packet(ofport, oam, packet);
ovs_mutex_lock(&ofproto->stats_mutex);
ofproto->stats.tx_packets++;
ofproto->stats.tx_bytes += dp_packet_size(packet);
ovs_mutex_unlock(&ofproto->stats_mutex);
return error;
}
/* Return the version string of the datapath that backs up
* this 'ofproto'.
*/
static const char *
get_datapath_version(const struct ofproto *ofproto_)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
return ofproto->backer->dp_version_string;
}
static void
type_set_config(const char *type, const struct smap *other_config)
{
struct dpif_backer *backer;
backer = shash_find_data(&all_dpif_backers, type);
if (!backer) {
/* This is not necessarily a problem, since backers are only
* created on demand. */
return;
}
dpif_set_config(backer->dpif, other_config);
}
static void
ct_flush(const struct ofproto *ofproto_, const uint16_t *zone,
const struct ofp_ct_match *match)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
ct_dpif_flush(ofproto->backer->dpif, zone, match);
}
static struct ct_timeout_policy *
ct_timeout_policy_lookup(const struct hmap *ct_tps, struct simap *tp)
{
struct ct_timeout_policy *ct_tp;
HMAP_FOR_EACH_WITH_HASH (ct_tp, node, simap_hash(tp), ct_tps) {
if (simap_equal(&ct_tp->tp, tp)) {
return ct_tp;
}
}
return NULL;
}
static struct ct_timeout_policy *
ct_timeout_policy_alloc__(void)
{
struct ct_timeout_policy *ct_tp = xzalloc(sizeof *ct_tp);
simap_init(&ct_tp->tp);
return ct_tp;
}
static struct ct_timeout_policy *
ct_timeout_policy_alloc(struct simap *tp, struct id_pool *tp_ids)
{
struct simap_node *node;
struct ct_timeout_policy *ct_tp = ct_timeout_policy_alloc__();
SIMAP_FOR_EACH (node, tp) {
simap_put(&ct_tp->tp, node->name, node->data);
}
if (!id_pool_alloc_id(tp_ids, &ct_tp->tp_id)) {
VLOG_ERR_RL(&rl, "failed to allocate timeout policy id.");
simap_destroy(&ct_tp->tp);
free(ct_tp);
return NULL;
}
return ct_tp;
}
static void
ct_timeout_policy_destroy__(struct ct_timeout_policy *ct_tp)
{
simap_destroy(&ct_tp->tp);
free(ct_tp);
}
static void
ct_timeout_policy_destroy(struct ct_timeout_policy *ct_tp,
struct id_pool *tp_ids)
{
id_pool_free_id(tp_ids, ct_tp->tp_id);
ovsrcu_postpone(ct_timeout_policy_destroy__, ct_tp);
}
static void
ct_timeout_policy_unref(struct dpif_backer *backer,
struct ct_timeout_policy *ct_tp)
{
if (ct_tp) {
ct_tp->ref_count--;
if (!ct_tp->ref_count) {
hmap_remove(&backer->ct_tps, &ct_tp->node);
ovs_list_push_back(&backer->ct_tp_kill_list, &ct_tp->list_node);
}
}
}
static struct ct_zone *
ct_zone_lookup(const struct cmap *ct_zones, uint16_t zone_id)
{
struct ct_zone *ct_zone;
CMAP_FOR_EACH_WITH_HASH (ct_zone, node, hash_int(zone_id, 0), ct_zones) {
if (ct_zone->zone_id == zone_id) {
return ct_zone;
}
}
return NULL;
}
static struct ct_zone *
ct_zone_alloc(uint16_t zone_id)
{
struct ct_zone *ct_zone = xzalloc(sizeof *ct_zone);
ct_zone->zone_id = zone_id;
return ct_zone;
}
static void
ct_zone_destroy(struct ct_zone *ct_zone)
{
ovsrcu_postpone(free, ct_zone);
}
static void
ct_zone_remove_and_destroy(struct dpif_backer *backer, struct ct_zone *ct_zone)
{
cmap_remove(&backer->ct_zones, &ct_zone->node,
hash_int(ct_zone->zone_id, 0));
ct_zone_destroy(ct_zone);
}
static void
ct_add_timeout_policy_to_dpif(struct dpif *dpif,
struct ct_timeout_policy *ct_tp)
{
struct ct_dpif_timeout_policy cdtp;
struct simap_node *node;
memset(&cdtp, 0, sizeof cdtp);
cdtp.id = ct_tp->tp_id;
SIMAP_FOR_EACH (node, &ct_tp->tp) {
ct_dpif_set_timeout_policy_attr_by_name(&cdtp, node->name, node->data);
}
int err = ct_dpif_set_timeout_policy(dpif, &cdtp);
if (err) {
VLOG_ERR_RL(&rl, "failed to set timeout policy %"PRIu32" (%s)",
ct_tp->tp_id, ovs_strerror(err));
}
}
static void
clear_existing_ct_timeout_policies(struct dpif_backer *backer)
{
/* In kernel datapath, when OVS starts, there may be some pre-existing
* timeout policies in the kernel. To avoid reassigning the same timeout
* policy ids, we dump all the pre-existing timeout policies and keep
* the ids in the pool. Since OVS will not use those timeout policies
* for new datapath flow, we add them to the kill list and remove
* them later on. */
struct ct_dpif_timeout_policy cdtp;
void *state;
if (ct_dpif_timeout_policy_dump_start(backer->dpif, &state)) {
return;
}
while (!ct_dpif_timeout_policy_dump_next(backer->dpif, state, &cdtp)) {
struct ct_timeout_policy *ct_tp = ct_timeout_policy_alloc__();
ct_tp->tp_id = cdtp.id;
id_pool_add(backer->tp_ids, cdtp.id);
ovs_list_push_back(&backer->ct_tp_kill_list, &ct_tp->list_node);
}
ct_dpif_timeout_policy_dump_done(backer->dpif, state);
}
#define MAX_TIMEOUT_POLICY_ID UINT32_MAX
static void
ct_zone_config_init(struct dpif_backer *backer)
{
backer->tp_ids = id_pool_create(DEFAULT_TP_ID + 1,
MAX_TIMEOUT_POLICY_ID - 1);
cmap_init(&backer->ct_zones);
hmap_init(&backer->ct_tps);
ovs_list_init(&backer->ct_tp_kill_list);
ovs_list_init(&backer->ct_zone_limits_to_add);
ovs_list_init(&backer->ct_zone_limits_to_del);
clear_existing_ct_timeout_policies(backer);
}
static void
ct_zone_config_uninit(struct dpif_backer *backer)
{
struct ct_zone *ct_zone;
CMAP_FOR_EACH (ct_zone, node, &backer->ct_zones) {
ct_zone_remove_and_destroy(backer, ct_zone);
}
struct ct_timeout_policy *ct_tp;
HMAP_FOR_EACH_POP (ct_tp, node, &backer->ct_tps) {
ct_timeout_policy_destroy(ct_tp, backer->tp_ids);
}
LIST_FOR_EACH_POP (ct_tp, list_node, &backer->ct_tp_kill_list) {
ct_timeout_policy_destroy(ct_tp, backer->tp_ids);
}
id_pool_destroy(backer->tp_ids);
cmap_destroy(&backer->ct_zones);
hmap_destroy(&backer->ct_tps);
ct_dpif_free_zone_limits(&backer->ct_zone_limits_to_add);
ct_dpif_free_zone_limits(&backer->ct_zone_limits_to_del);
}
static void
ct_zone_timeout_policy_sweep(struct dpif_backer *backer)
{
if (!ovs_list_is_empty(&backer->ct_tp_kill_list)
&& time_msec() >= timeout_policy_cleanup_timer) {
struct ct_timeout_policy *ct_tp;
LIST_FOR_EACH_SAFE (ct_tp, list_node, &backer->ct_tp_kill_list) {
if (!ct_dpif_del_timeout_policy(backer->dpif, ct_tp->tp_id)) {
ovs_list_remove(&ct_tp->list_node);
ct_timeout_policy_destroy(ct_tp, backer->tp_ids);
} else {
/* INFO log raised by 'dpif' layer. */
}
}
timeout_policy_cleanup_timer = time_msec() +
TIMEOUT_POLICY_CLEANUP_INTERVAL;
}
}
static void
ct_set_zone_timeout_policy(const char *datapath_type, uint16_t zone_id,
struct simap *timeout_policy)
{
struct dpif_backer *backer = shash_find_data(&all_dpif_backers,
datapath_type);
if (!backer) {
return;
}
struct ct_timeout_policy *ct_tp = ct_timeout_policy_lookup(&backer->ct_tps,
timeout_policy);
if (!ct_tp) {
ct_tp = ct_timeout_policy_alloc(timeout_policy, backer->tp_ids);
if (ct_tp) {
hmap_insert(&backer->ct_tps, &ct_tp->node, simap_hash(&ct_tp->tp));
ct_add_timeout_policy_to_dpif(backer->dpif, ct_tp);
} else {
return;
}
}
struct ct_zone *ct_zone = ct_zone_lookup(&backer->ct_zones, zone_id);
if (ct_zone) {
if (ct_zone->ct_tp != ct_tp) {
/* Update the zone timeout policy. */
ct_timeout_policy_unref(backer, ct_zone->ct_tp);
ct_zone->ct_tp = ct_tp;
ct_tp->ref_count++;
backer->need_revalidate = REV_RECONFIGURE;
}
} else {
struct ct_zone *new_ct_zone = ct_zone_alloc(zone_id);
new_ct_zone->ct_tp = ct_tp;
cmap_insert(&backer->ct_zones, &new_ct_zone->node,
hash_int(zone_id, 0));
ct_tp->ref_count++;
backer->need_revalidate = REV_RECONFIGURE;
}
}
static void
ct_del_zone_timeout_policy(const char *datapath_type, uint16_t zone_id)
{
struct dpif_backer *backer = shash_find_data(&all_dpif_backers,
datapath_type);
if (!backer) {
return;
}
struct ct_zone *ct_zone = ct_zone_lookup(&backer->ct_zones, zone_id);
if (ct_zone) {
ct_timeout_policy_unref(backer, ct_zone->ct_tp);
ct_zone_remove_and_destroy(backer, ct_zone);
backer->need_revalidate = REV_RECONFIGURE;
}
}
static void
ct_zone_limit_update(const char *datapath_type, int32_t zone_id,
int64_t *limit)
{
struct dpif_backer *backer = shash_find_data(&all_dpif_backers,
datapath_type);
if (!backer) {
return;
}
if (limit) {
ct_dpif_push_zone_limit(&backer->ct_zone_limits_to_add, zone_id,
*limit, 0);
} else {
ct_dpif_push_zone_limit(&backer->ct_zone_limits_to_del, zone_id, 0, 0);
}
}
static void
ct_zone_limits_commit(struct dpif_backer *backer)
{
if (!ovs_list_is_empty(&backer->ct_zone_limits_to_add)) {
ct_dpif_set_limits(backer->dpif, &backer->ct_zone_limits_to_add);
ct_dpif_free_zone_limits(&backer->ct_zone_limits_to_add);
}
if (!ovs_list_is_empty(&backer->ct_zone_limits_to_del)) {
ct_dpif_del_limits(backer->dpif, &backer->ct_zone_limits_to_del);
ct_dpif_free_zone_limits(&backer->ct_zone_limits_to_del);
}
}
static void
ct_zone_limit_protection_update(const char *datapath_type, bool protected)
{
struct dpif_backer *backer = shash_find_data(&all_dpif_backers,
datapath_type);
if (!backer) {
return;
}
ct_dpif_set_zone_limit_protection(backer->dpif, protected);
}
static void
get_datapath_cap(const char *datapath_type, struct smap *cap)
{
bool explicit_drop_action;
struct dpif_backer_support *s;
struct dpif_backer *backer = shash_find_data(&all_dpif_backers,
datapath_type);
if (!backer) {
return;
}
s = &backer->rt_support;
/* ODP_SUPPORT_FIELDS */
smap_add_format(cap, "max_vlan_headers", "%"PRIuSIZE,
s->odp.max_vlan_headers);
smap_add_format(cap, "max_mpls_depth", "%"PRIuSIZE, s->odp.max_mpls_depth);
smap_add(cap, "recirc", s->odp.recirc ? "true" : "false");
smap_add(cap, "ct_state", s->odp.ct_state ? "true" : "false");
smap_add(cap, "ct_zone", s->odp.ct_zone ? "true" : "false");
smap_add(cap, "ct_mark", s->odp.ct_mark ? "true" : "false");
smap_add(cap, "ct_label", s->odp.ct_label ? "true" : "false");
smap_add(cap, "ct_state_nat", s->odp.ct_state_nat ? "true" : "false");
smap_add(cap, "ct_orig_tuple", s->odp.ct_orig_tuple ? "true" : "false");
smap_add(cap, "ct_orig_tuple6", s->odp.ct_orig_tuple6 ? "true" : "false");
smap_add(cap, "nd_ext", s->odp.nd_ext ? "true" : "false");
/* DPIF_SUPPORT_FIELDS */
smap_add(cap, "masked_set_action",
s->masked_set_action ? "true" : "false");
smap_add(cap, "tnl_push_pop", s->tnl_push_pop ? "true" : "false");
smap_add(cap, "ufid", s->ufid ? "true" : "false");
smap_add(cap, "trunc", s->trunc ? "true" : "false");
smap_add(cap, "clone", s->clone ? "true" : "false");
smap_add(cap, "sample_nesting", s->sample_nesting ? "true" : "false");
smap_add(cap, "ct_eventmask", s->ct_eventmask ? "true" : "false");
smap_add(cap, "ct_clear", s->ct_clear ? "true" : "false");
smap_add_format(cap, "max_hash_alg", "%"PRIuSIZE, s->max_hash_alg);
smap_add(cap, "check_pkt_len", s->check_pkt_len ? "true" : "false");
smap_add(cap, "ct_timeout", s->ct_timeout ? "true" : "false");
atomic_read_relaxed(&s->explicit_drop_action, &explicit_drop_action);
smap_add(cap, "explicit_drop_action",
explicit_drop_action ? "true" :"false");
smap_add(cap, "lb_output_action", s->lb_output_action ? "true" : "false");
smap_add(cap, "ct_zero_snat", s->ct_zero_snat ? "true" : "false");
smap_add(cap, "add_mpls", s->add_mpls ? "true" : "false");
smap_add(cap, "psample", s->psample ? "true" : "false");
/* The ct_tuple_flush is implemented on dpif level, so it is supported
* for all backers. */
smap_add(cap, "ct_flush", "true");
}
/* Gets timeout policy name in 'backer' based on 'zone', 'dl_type' and
* 'nw_proto'. Returns true if the zone-based timeout policy is configured.
* On success, stores the timeout policy name in 'tp_name', and sets
* 'unwildcard' based on the dpif implementation. If 'unwildcard' is true,
* the returned timeout policy is 'dl_type' and 'nw_proto' specific, and OVS
* needs to unwildcard the datapath flow for this timeout policy in flow
* translation.
*
* The caller is responsible for freeing 'tp_name'. */
bool
ofproto_dpif_ct_zone_timeout_policy_get_name(
const struct dpif_backer *backer, uint16_t zone, uint16_t dl_type,
uint8_t nw_proto, char **tp_name, bool *unwildcard)
{
if (!ct_dpif_timeout_policy_support_ipproto(nw_proto)) {
return false;
}
struct ct_zone *ct_zone = ct_zone_lookup(&backer->ct_zones, zone);
if (!ct_zone) {
return false;
}
bool is_generic;
if (ct_dpif_get_timeout_policy_name(backer->dpif,
ct_zone->ct_tp->tp_id, dl_type,
nw_proto, tp_name, &is_generic)) {
return false;
}
/* Unwildcard datapath flow if it is not a generic timeout policy. */
*unwildcard = !is_generic;
return true;
}
static bool
set_frag_handling(struct ofproto *ofproto_,
enum ofputil_frag_handling frag_handling)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
if (frag_handling != OFPUTIL_FRAG_REASM) {
ofproto->backer->need_revalidate = REV_RECONFIGURE;
return true;
} else {
return false;
}
}
static enum ofperr
nxt_resume(struct ofproto *ofproto_,
const struct ofputil_packet_in_private *pin)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
struct dpif_flow_stats stats;
struct xlate_cache xcache;
struct flow flow;
xlate_cache_init(&xcache);
/* Translate pin into datapath actions. */
uint64_t odp_actions_stub[1024 / 8];
struct ofpbuf odp_actions = OFPBUF_STUB_INITIALIZER(odp_actions_stub);
enum slow_path_reason slow;
enum ofperr error = xlate_resume(ofproto, pin, &odp_actions, &slow,
&flow, &xcache);
/* Steal 'pin->packet' and put it into a dp_packet. */
struct dp_packet packet;
dp_packet_init(&packet, pin->base.packet_len);
dp_packet_put(&packet, pin->base.packet, pin->base.packet_len);
/* Run the side effects from the xcache. */
dpif_flow_stats_extract(&flow, &packet, time_msec(), &stats);
ovs_mutex_lock(&ofproto_mutex);
ofproto_dpif_xcache_execute(ofproto, &xcache, &stats);
ovs_mutex_unlock(&ofproto_mutex);
pkt_metadata_from_flow(&packet.md, &pin->base.flow_metadata.flow);
/* Fix up in_port. */
packet.md.in_port.odp_port = pin->odp_port;
struct flow headers;
flow_extract(&packet, &headers);
/* Execute the datapath actions on the packet. */
struct dpif_execute execute = {
.actions = odp_actions.data,
.actions_len = odp_actions.size,
.needs_help = (slow & SLOW_ACTION) != 0,
.packet = &packet,
.flow = &headers,
};
dpif_execute(ofproto->backer->dpif, &execute);
/* Clean up. */
ofpbuf_uninit(&odp_actions);
dp_packet_uninit(&packet);
xlate_cache_uninit(&xcache);
return error;
}
/* NetFlow. */
static int
set_netflow(struct ofproto *ofproto_,
const struct netflow_options *netflow_options)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
if (netflow_options) {
if (!ofproto->netflow) {
ofproto->netflow = netflow_create();
ofproto->backer->need_revalidate = REV_RECONFIGURE;
}
return netflow_set_options(ofproto->netflow, netflow_options);
} else if (ofproto->netflow) {
ofproto->backer->need_revalidate = REV_RECONFIGURE;
netflow_unref(ofproto->netflow);
ofproto->netflow = NULL;
}
return 0;
}
static void
get_netflow_ids(const struct ofproto *ofproto_,
uint8_t *engine_type, uint8_t *engine_id)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
dpif_get_netflow_ids(ofproto->backer->dpif, engine_type, engine_id);
}
struct ofproto_dpif *
ofproto_dpif_lookup_by_name(const char *name)
{
struct ofproto_dpif *ofproto;
HMAP_FOR_EACH_WITH_HASH (ofproto, all_ofproto_dpifs_by_name_node,
hash_string(name, 0),
&all_ofproto_dpifs_by_name) {
if (!strcmp(ofproto->up.name, name)) {
return ofproto;
}
}
return NULL;
}
struct ofproto_dpif *
ofproto_dpif_lookup_by_uuid(const struct uuid *uuid)
{
return xlate_ofproto_lookup(uuid);
}
static void
ofproto_unixctl_fdb_flush(struct unixctl_conn *conn, int argc,
const char *argv[], void *aux OVS_UNUSED)
{
struct ofproto_dpif *ofproto;
if (argc > 1) {
ofproto = ofproto_dpif_lookup_by_name(argv[1]);
if (!ofproto) {
unixctl_command_reply_error(conn, "no such bridge");
return;
}
ovs_rwlock_wrlock(&ofproto->ml->rwlock);
mac_learning_flush(ofproto->ml);
ovs_rwlock_unlock(&ofproto->ml->rwlock);
} else {
HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_by_name_node,
&all_ofproto_dpifs_by_name) {
ovs_rwlock_wrlock(&ofproto->ml->rwlock);
mac_learning_flush(ofproto->ml);
ovs_rwlock_unlock(&ofproto->ml->rwlock);
}
}
unixctl_command_reply(conn, "table successfully flushed");
}
static void
ofproto_unixctl_mcast_snooping_flush(struct unixctl_conn *conn, int argc,
const char *argv[], void *aux OVS_UNUSED)
{
struct ofproto_dpif *ofproto;
if (argc > 1) {
ofproto = ofproto_dpif_lookup_by_name(argv[1]);
if (!ofproto) {
unixctl_command_reply_error(conn, "no such bridge");
return;
}
if (!mcast_snooping_enabled(ofproto->ms)) {
unixctl_command_reply_error(conn, "multicast snooping is disabled");
return;
}
mcast_snooping_mdb_flush(ofproto->ms);
} else {
HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_by_name_node,
&all_ofproto_dpifs_by_name) {
if (!mcast_snooping_enabled(ofproto->ms)) {
continue;
}
mcast_snooping_mdb_flush(ofproto->ms);
}
}
unixctl_command_reply(conn, "table successfully flushed");
}
static struct ofport_dpif *
ofbundle_get_a_port(const struct ofbundle *bundle)
{
return CONTAINER_OF(ovs_list_front(&bundle->ports), struct ofport_dpif,
bundle_node);
}
static void
ofproto_unixctl_fdb_show_text(const struct ofproto_dpif *ofproto,
struct ds *ds)
{
const struct mac_entry *e;
ds_put_cstr(ds, " port VLAN MAC Age\n");
ovs_rwlock_rdlock(&ofproto->ml->rwlock);
LIST_FOR_EACH (e, lru_node, &ofproto->ml->lrus) {
struct ofbundle *bundle = mac_entry_get_port(ofproto->ml, e);
char name[OFP_MAX_PORT_NAME_LEN];
int age = mac_entry_age(ofproto->ml, e);
ofputil_port_to_string(ofbundle_get_a_port(bundle)->up.ofp_port,
NULL, name, sizeof name);
ds_put_format(ds, "%5s %4d "ETH_ADDR_FMT" ",
name, e->vlan, ETH_ADDR_ARGS(e->mac));
if (MAC_ENTRY_AGE_STATIC_ENTRY == age) {
ds_put_format(ds, "static\n");
} else {
ds_put_format(ds, "%3d\n", age);
}
}
ovs_rwlock_unlock(&ofproto->ml->rwlock);
}
static void
ofproto_unixctl_fdb_show_json(const struct ofproto_dpif *ofproto,
struct json **fdb_entries)
{
struct json **json_entries = NULL;
const struct mac_entry *entry;
size_t num_entries;
int i = 0;
ovs_rwlock_rdlock(&ofproto->ml->rwlock);
num_entries = hmap_count(&ofproto->ml->table);
if (!num_entries) {
goto done_unlock;
}
json_entries = xmalloc(num_entries * sizeof *json_entries);
LIST_FOR_EACH (entry, lru_node, &ofproto->ml->lrus) {
struct ofbundle *bundle = mac_entry_get_port(ofproto->ml, entry);
struct ofport_dpif *port = ofbundle_get_a_port(bundle);
struct json *json_entry = json_object_create();
int age = mac_entry_age(ofproto->ml, entry);
ovs_assert(i < num_entries);
json_object_put(json_entry, "port",
json_integer_create(
(OVS_FORCE long long) port->up.ofp_port));
json_object_put(json_entry, "vlan", json_integer_create(entry->vlan));
json_object_put_format(json_entry, "mac", ETH_ADDR_FMT,
ETH_ADDR_ARGS(entry->mac));
if (MAC_ENTRY_AGE_STATIC_ENTRY == age) {
json_object_put(json_entry, "static", json_boolean_create(true));
} else {
json_object_put(json_entry, "age", json_integer_create(age));
}
json_entries[i++] = json_entry;
}
done_unlock:
ovs_rwlock_unlock(&ofproto->ml->rwlock);
*fdb_entries = json_array_create(json_entries, i);
}
static void
ofproto_unixctl_fdb_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
{
const struct ofproto_dpif *ofproto = ofproto_dpif_lookup_by_name(argv[1]);
if (!ofproto) {
unixctl_command_reply_error(conn, "no such bridge");
return;
}
if (unixctl_command_get_output_format(conn) == UNIXCTL_OUTPUT_FMT_JSON) {
struct json *fdb_entries;
ofproto_unixctl_fdb_show_json(ofproto, &fdb_entries);
unixctl_command_reply_json(conn, fdb_entries);
} else {
struct ds ds = DS_EMPTY_INITIALIZER;
ofproto_unixctl_fdb_show_text(ofproto, &ds);
unixctl_command_reply(conn, ds_cstr(&ds));
ds_destroy(&ds);
}
}
static void
ofproto_unixctl_fdb_add(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[], void *aux OVS_UNUSED)
{
const struct ofproto_dpif *ofproto;
const struct mac_entry *mac_entry;
const struct ofbundle *bundle = NULL;
struct ds ds = DS_EMPTY_INITIALIZER;
struct ofproto_port ofproto_port;
ofp_port_t in_port = OFPP_NONE;
const char *br_name = argv[1];
const char *port_name = argv[2];
uint16_t vlan = atoi(argv[3]);
struct eth_addr mac;
time_t age;
ofproto = ofproto_dpif_lookup_by_name(br_name);
if (!ofproto) {
unixctl_command_reply_error(conn, "no such bridge");
return;
}
if (!eth_addr_from_string(argv[4], &mac)) {
unixctl_command_reply_error(conn, "bad MAC address");
return;
}
if (ofproto_port_query_by_name(&ofproto->up, port_name, &ofproto_port)) {
unixctl_command_reply_error(conn,
"software error, odp port is present but no ofp port");
return;
}
in_port = ofproto_port.ofp_port;
ofproto_port_destroy(&ofproto_port);
/* Give a bit more information if the entry being added is overriding
* an existing entry. */
ovs_rwlock_rdlock(&ofproto->ml->rwlock);
mac_entry = mac_learning_lookup(ofproto->ml, mac, vlan);
if (mac_entry) {
bundle = mac_entry_get_port(ofproto->ml, mac_entry);
age = mac_entry->expires;
}
ovs_rwlock_unlock(&ofproto->ml->rwlock);
if (bundle && (strcmp(bundle->name, port_name) ||
age != MAC_ENTRY_AGE_STATIC_ENTRY)) {
char old_port_name[OFP_MAX_PORT_NAME_LEN];
ofputil_port_to_string(ofbundle_get_a_port(bundle)->up.ofp_port,
NULL, old_port_name, sizeof old_port_name);
ds_put_format(&ds, "Overriding already existing %s entry on %s\n",
(age == MAC_ENTRY_AGE_STATIC_ENTRY) ? "static" : "dynamic",
old_port_name);
}
if (!xlate_add_static_mac_entry(ofproto, in_port, mac, vlan)) {
unixctl_command_reply_error(conn, "could not add static mac entry\n");
} else {
unixctl_command_reply(conn, ds_cstr(&ds));
}
ds_destroy(&ds);
}
static void
ofproto_unixctl_fdb_delete(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[], void *aux OVS_UNUSED)
{
const struct ofproto_dpif *ofproto;
const char *br_name = argv[1];
uint16_t vlan = atoi(argv[2]);
struct eth_addr mac;
ofproto = ofproto_dpif_lookup_by_name(br_name);
if (!ofproto) {
unixctl_command_reply_error(conn, "no such bridge");
return;
}
if (!eth_addr_from_string(argv[3], &mac)) {
unixctl_command_reply_error(conn, "bad MAC address");
return;
}
if (!xlate_delete_static_mac_entry(ofproto, mac, vlan)) {
unixctl_command_reply_error(conn, "could not find static mac entry\n");
} else {
unixctl_command_reply(conn, NULL);
}
}
static void
ofproto_unixctl_fdb_stats_clear(struct unixctl_conn *conn, int argc,
const char *argv[], void *aux OVS_UNUSED)
{
struct ofproto_dpif *ofproto;
if (argc > 1) {
ofproto = ofproto_dpif_lookup_by_name(argv[1]);
if (!ofproto) {
unixctl_command_reply_error(conn, "no such bridge");
return;
}
ovs_rwlock_wrlock(&ofproto->ml->rwlock);
mac_learning_clear_statistics(ofproto->ml);
ovs_rwlock_unlock(&ofproto->ml->rwlock);
} else {
HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_by_name_node,
&all_ofproto_dpifs_by_name) {
ovs_rwlock_wrlock(&ofproto->ml->rwlock);
mac_learning_clear_statistics(ofproto->ml);
ovs_rwlock_unlock(&ofproto->ml->rwlock);
}
}
unixctl_command_reply(conn, "statistics successfully cleared");
}
static void
ofproto_unixctl_fdb_stats_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[], void *aux OVS_UNUSED)
{
struct ds ds = DS_EMPTY_INITIALIZER;
const struct ofproto_dpif *ofproto;
ofproto = ofproto_dpif_lookup_by_name(argv[1]);
if (!ofproto) {
unixctl_command_reply_error(conn, "no such bridge");
return;
}
ds_put_format(&ds, "Statistics for bridge \"%s\":\n", argv[1]);
ovs_rwlock_rdlock(&ofproto->ml->rwlock);
ds_put_format(&ds, " Current/maximum MAC entries in the table: %"
PRIuSIZE"/%"PRIuSIZE"\n",
hmap_count(&ofproto->ml->table), ofproto->ml->max_entries);
ds_put_format(&ds,
" Current static MAC entries in the table : %"PRIuSIZE"\n",
ofproto->ml->static_entries);
ds_put_format(&ds,
" Total number of learned MAC entries : %"PRIu64"\n",
ofproto->ml->total_learned);
ds_put_format(&ds,
" Total number of expired MAC entries : %"PRIu64"\n",
ofproto->ml->total_expired);
ds_put_format(&ds,
" Total number of evicted MAC entries : %"PRIu64"\n",
ofproto->ml->total_evicted);
ds_put_format(&ds,
" Total number of port moved MAC entries : %"PRIu64"\n",
ofproto->ml->total_moved);
ovs_rwlock_unlock(&ofproto->ml->rwlock);
unixctl_command_reply(conn, ds_cstr(&ds));
ds_destroy(&ds);
}
static void
ofproto_unixctl_mcast_snooping_show(struct unixctl_conn *conn,
int argc OVS_UNUSED,
const char *argv[],
void *aux OVS_UNUSED)
{
struct ds ds = DS_EMPTY_INITIALIZER;
const struct ofproto_dpif *ofproto;
const struct ofbundle *bundle;
const struct mcast_group *grp;
struct mcast_group_bundle *b;
struct mcast_mrouter_bundle *mrouter;
ofproto = ofproto_dpif_lookup_by_name(argv[1]);
if (!ofproto) {
unixctl_command_reply_error(conn, "no such bridge");
return;
}
if (!mcast_snooping_enabled(ofproto->ms)) {
unixctl_command_reply_error(conn, "multicast snooping is disabled");
return;
}
ds_put_cstr(&ds, " port VLAN protocol GROUP Age\n");
ovs_rwlock_rdlock(&ofproto->ms->rwlock);
LIST_FOR_EACH (grp, group_node, &ofproto->ms->group_lru) {
LIST_FOR_EACH(b, bundle_node, &grp->bundle_lru) {
char name[OFP_MAX_PORT_NAME_LEN];
bundle = b->port;
ofputil_port_to_string(ofbundle_get_a_port(bundle)->up.ofp_port,
NULL, name, sizeof name);
ds_put_format(&ds, "%5s %4d %-8s ", name, grp->vlan,
mcast_snooping_group_protocol_str(
grp->protocol_version));
ipv6_format_mapped(&grp->addr, &ds);
ds_put_format(&ds, " %3d\n",
mcast_bundle_age(ofproto->ms, b));
}
}
/* ports connected to multicast routers */
LIST_FOR_EACH(mrouter, mrouter_node, &ofproto->ms->mrouter_lru) {
char name[OFP_MAX_PORT_NAME_LEN];
bundle = mrouter->port;
ofputil_port_to_string(ofbundle_get_a_port(bundle)->up.ofp_port,
NULL, name, sizeof name);
ds_put_format(&ds, "%5s %4d %-8s querier %3d\n",
name, mrouter->vlan,
mcast_snooping_group_protocol_str(-1),
mcast_mrouter_age(ofproto->ms, mrouter));
}
ovs_rwlock_unlock(&ofproto->ms->rwlock);
unixctl_command_reply(conn, ds_cstr(&ds));
ds_destroy(&ds);
}
/* Store the current ofprotos in 'ofproto_shash'. Returns a sorted list
* of the 'ofproto_shash' nodes. It is the responsibility of the caller
* to destroy 'ofproto_shash' and free the returned value. */
static const struct shash_node **
get_ofprotos(struct shash *ofproto_shash)
{
const struct ofproto_dpif *ofproto;
HMAP_FOR_EACH (ofproto, all_ofproto_dpifs_by_name_node,
&all_ofproto_dpifs_by_name) {
char *name = xasprintf("%s@%s", ofproto->up.type, ofproto->up.name);
shash_add_nocopy(ofproto_shash, name, ofproto);
}
return shash_sort(ofproto_shash);
}
static void
ofproto_unixctl_dpif_dump_dps(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED,
void *aux OVS_UNUSED)
{
struct ds ds = DS_EMPTY_INITIALIZER;
struct shash ofproto_shash;
const struct shash_node **sorted_ofprotos;
int i;
shash_init(&ofproto_shash);
sorted_ofprotos = get_ofprotos(&ofproto_shash);
for (i = 0; i < shash_count(&ofproto_shash); i++) {
const struct shash_node *node = sorted_ofprotos[i];
ds_put_format(&ds, "%s\n", node->name);
}
shash_destroy(&ofproto_shash);
free(sorted_ofprotos);
unixctl_command_reply(conn, ds_cstr(&ds));
ds_destroy(&ds);
}
static void
show_dp_feature_bool(struct ds *ds, const char *feature, const bool *b)
{
ds_put_format(ds, "%s: %s\n", feature, *b ? "Yes" : "No");
}
static void
show_dp_feature_atomic_bool(struct ds *ds, const char *feature,
const atomic_bool *b)
{
bool value;
atomic_read_relaxed((atomic_bool *) b, &value);
ds_put_format(ds, "%s: %s\n", feature, value ? "Yes" : "No");
}
static void
show_dp_feature_size_t(struct ds *ds, const char *feature, const size_t *s)
{
ds_put_format(ds, "%s: %"PRIuSIZE"\n", feature, *s);
}
enum dpif_support_field_type {
DPIF_SUPPORT_FIELD_bool,
DPIF_SUPPORT_FIELD_size_t,
DPIF_SUPPORT_FIELD_atomic_bool,
};
struct dpif_support_field {
void *rt_ptr; /* Points to the 'rt_support' field. */
const void *bt_ptr; /* Points to the 'bt_support' field. */
const char *title;
enum dpif_support_field_type type;
};
#define DPIF_SUPPORT_FIELD_INITIALIZER(RT_PTR, BT_PTR, TITLE, TYPE) \
(struct dpif_support_field) {RT_PTR, BT_PTR, TITLE, TYPE}
static void
dpif_show_support(const struct dpif_backer_support *support, struct ds *ds)
{
#define DPIF_SUPPORT_FIELD(TYPE, NAME, TITLE) \
show_dp_feature_##TYPE (ds, TITLE, &support->NAME);
DPIF_SUPPORT_FIELDS
#undef DPIF_SUPPORT_FIELD
#define ODP_SUPPORT_FIELD(TYPE, NAME, TITLE) \
show_dp_feature_##TYPE (ds, TITLE, &support->odp.NAME );
ODP_SUPPORT_FIELDS
#undef ODP_SUPPORT_FIELD
}
static void
display_support_field(const char *name,
const struct dpif_support_field *field,
struct ds *ds)
{
switch (field->type) {
case DPIF_SUPPORT_FIELD_bool: {
bool v = *(bool *)field->rt_ptr;
bool b = *(bool *)field->bt_ptr;
ds_put_format(ds, "%s (%s) : [run time]:%s, [boot time]:%s\n", name,
field->title, v ? "true" : "false",
b ? "true" : "false");
break;
}
case DPIF_SUPPORT_FIELD_atomic_bool: {
bool b, v;
atomic_read_relaxed((atomic_bool *) field->rt_ptr, &v);
atomic_read_relaxed((atomic_bool *) field->bt_ptr, &b);
ds_put_format(ds, "%s (%s) : [run time]:%s, [boot time]:%s\n", name,
field->title, v ? "true" : "false",
b ? "true" : "false");
break;
}
case DPIF_SUPPORT_FIELD_size_t:
ds_put_format(ds, "%s (%s) : [run time]:%"PRIuSIZE
", [boot time]:%"PRIuSIZE"\n", name,
field->title, *(size_t *)field->rt_ptr,
*(size_t *)field->bt_ptr);
break;
default:
OVS_NOT_REACHED();
}
}
/* Set a field of 'rt_support' to a new value.
*
* Returns 'true' if the value is actually set. */
static bool
dpif_set_support(struct dpif_backer_support *rt_support,
struct dpif_backer_support *bt_support,
const char *name, const char *value, bool force,
struct ds *ds)
{
struct shash all_fields = SHASH_INITIALIZER(&all_fields);
struct dpif_support_field *field;
struct shash_node *node;
bool changed = false;
#define DPIF_SUPPORT_FIELD(TYPE, NAME, TITLE) \
{ \
struct dpif_support_field *f = xmalloc(sizeof *f); \
*f = DPIF_SUPPORT_FIELD_INITIALIZER(&rt_support->NAME, \
&bt_support->NAME, \
TITLE, \
DPIF_SUPPORT_FIELD_##TYPE); \
shash_add_once(&all_fields, #NAME, f); \
}
DPIF_SUPPORT_FIELDS;
#undef DPIF_SUPPORT_FIELD
#define ODP_SUPPORT_FIELD(TYPE, NAME, TITLE) \
{ \
struct dpif_support_field *f = xmalloc(sizeof *f); \
*f = DPIF_SUPPORT_FIELD_INITIALIZER(&rt_support->odp.NAME, \
&bt_support->odp.NAME, \
TITLE, \
DPIF_SUPPORT_FIELD_##TYPE); \
shash_add_once(&all_fields, #NAME, f); \
}
ODP_SUPPORT_FIELDS;
#undef ODP_SUPPORT_FIELD
if (!name) {
SHASH_FOR_EACH (node, &all_fields) {
display_support_field(node->name, node->data, ds);
}
goto done;
}
node = shash_find(&all_fields, name);
if (!node) {
ds_put_cstr(ds, "Unexpected support field");
goto done;
}
field = node->data;
if (!value) {
display_support_field(node->name, field, ds);
goto done;
}
if (field->type == DPIF_SUPPORT_FIELD_bool) {
if (!strcasecmp(value, "true")) {
if (*(bool *) field->bt_ptr || force) {
if (force) {
VLOG_WARN(
"Enabling an unsupported feature is very dangerous"
);
}
*(bool *) field->rt_ptr = true;
changed = true;
} else {
ds_put_cstr(ds,
"Can not enable features not supported by the datapath");
}
} else if (!strcasecmp(value, "false")) {
*(bool *)field->rt_ptr = false;
changed = true;
} else {
ds_put_cstr(ds, "Boolean value expected");
}
} else if (field->type == DPIF_SUPPORT_FIELD_size_t) {
int v;
if (str_to_int(value, 10, &v)) {
if (v >= 0) {
if (v <= *(size_t *)field->bt_ptr) {
*(size_t *)field->rt_ptr = v;
changed = true;
} else {
ds_put_cstr(ds, "Can not set value beyond the datapath capability");
}
} else {
ds_put_format(ds, "Negative number not expected");
}
} else {
ds_put_cstr(ds, "Integer number expected");
}
}
done:
shash_destroy_free_data(&all_fields);
return changed;
}
static struct json *
dpif_show_backer_json(struct json *backers, const struct dpif_backer *backer)
{
struct json *json_backer = json_object_create();
/* Add datapath as new JSON object using its name as key. */
json_object_put(backers, dpif_name(backer->dpif), json_backer);
/* Add datapath's stats under "stats" key. */
struct json *json_dp_stats = json_object_create();
struct dpif_dp_stats dp_stats;
dpif_get_dp_stats(backer->dpif, &dp_stats);
json_object_put_format(json_dp_stats, "hit", "%"PRIu64, dp_stats.n_hit);
json_object_put_format(json_dp_stats, "missed", "%"PRIu64,
dp_stats.n_missed);
json_object_put(json_backer, "stats", json_dp_stats);
/* Add datapath's bridges under "bridges" key. */
struct json *json_dp_bridges = json_object_create();
struct shash ofproto_shash = SHASH_INITIALIZER(&ofproto_shash);
free(get_ofprotos(&ofproto_shash));
struct shash_node *node;
SHASH_FOR_EACH (node, &ofproto_shash) {
struct ofproto_dpif *ofproto = node->data;
if (ofproto->backer != backer) {
continue;
}
/* Add bridge to "bridges" dictionary using its name as key. */
struct json *json_ofproto = json_object_create();
/* Add bridge ports to the current bridge dictionary. */
const struct shash_node *port;
SHASH_FOR_EACH (port, &ofproto->up.port_by_name) {
/* Add bridge port to a bridge's dict using port name as key. */
struct json *json_ofproto_port = json_object_create();
struct ofport *ofport = port->data;
/* Add OpenFlow port associated with a bridge port. */
json_object_put_format(json_ofproto_port, "ofport", "%"PRIu32,
ofport->ofp_port);
/* Add bridge port number. */
odp_port_t odp_port = ofp_port_to_odp_port(ofproto,
ofport->ofp_port);
if (odp_port != ODPP_NONE) {
json_object_put_format(json_ofproto_port, "port_no",
"%"PRIu32, odp_port);
} else {
json_object_put_string(json_ofproto_port, "port_no", "none");
}
/* Add type of a bridge port. */
json_object_put_string(json_ofproto_port, "type",
netdev_get_type(ofport->netdev));
/* Add config entries for a bridge port. */
struct smap config = SMAP_INITIALIZER(&config);
if (!netdev_get_config(ofport->netdev, &config)
&& smap_count(&config)) {
struct json *json_port_config = json_object_create();
struct smap_node *cfg_node;
SMAP_FOR_EACH (cfg_node, &config) {
json_object_put_string(json_port_config, cfg_node->key,
cfg_node->value);
}
json_object_put(json_ofproto_port, "config", json_port_config);
}
smap_destroy(&config);
json_object_put(json_ofproto, netdev_get_name(ofport->netdev),
json_ofproto_port);
} /* End of bridge port(s). */
json_object_put(json_dp_bridges, ofproto->up.name, json_ofproto);
} /* End of bridge(s). */
shash_destroy(&ofproto_shash);
json_object_put(json_backer, "bridges", json_dp_bridges);
return json_backer;
}
static void
dpif_show_backer_text(const struct dpif_backer *backer, struct ds *ds)
{
struct shash ofproto_shash = SHASH_INITIALIZER(&ofproto_shash);
const struct shash_node **ofprotos;
struct dpif_dp_stats dp_stats;
size_t i;
dpif_get_dp_stats(backer->dpif, &dp_stats);
ds_put_format(ds, "%s: hit:%"PRIu64" missed:%"PRIu64"\n",
dpif_name(backer->dpif), dp_stats.n_hit, dp_stats.n_missed);
ofprotos = get_ofprotos(&ofproto_shash);
for (i = 0; i < shash_count(&ofproto_shash); i++) {
struct ofproto_dpif *ofproto = ofprotos[i]->data;
const struct shash_node **ports;
size_t j;
if (ofproto->backer != backer) {
continue;
}
ds_put_format(ds, " %s:\n", ofproto->up.name);
ports = shash_sort(&ofproto->up.port_by_name);
for (j = 0; j < shash_count(&ofproto->up.port_by_name); j++) {
const struct shash_node *node = ports[j];
struct ofport *ofport = node->data;
struct smap config;
odp_port_t odp_port;
ds_put_format(ds, " %s %u/", netdev_get_name(ofport->netdev),
ofport->ofp_port);
odp_port = ofp_port_to_odp_port(ofproto, ofport->ofp_port);
if (odp_port != ODPP_NONE) {
ds_put_format(ds, "%"PRIu32":", odp_port);
} else {
ds_put_cstr(ds, "none:");
}
ds_put_format(ds, " (%s", netdev_get_type(ofport->netdev));
smap_init(&config);
if (!netdev_get_config(ofport->netdev, &config)) {
const struct smap_node **nodes = smap_sort(&config);
for (size_t k = 0; k < smap_count(&config); k++) {
ds_put_format(ds, "%c %s=%s", k ? ',' : ':',
nodes[k]->key, nodes[k]->value);
}
free(nodes);
}
smap_destroy(&config);
ds_put_char(ds, ')');
ds_put_char(ds, '\n');
}
free(ports);
}
shash_destroy(&ofproto_shash);
free(ofprotos);
}
static void
ofproto_unixctl_dpif_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
{
if (unixctl_command_get_output_format(conn) == UNIXCTL_OUTPUT_FMT_JSON) {
struct json *backers = json_object_create();
const struct shash_node *backer;
SHASH_FOR_EACH (backer, &all_dpif_backers) {
dpif_show_backer_json(backers, backer->data);
}
unixctl_command_reply_json(conn, backers);
} else {
const struct shash_node **backers = shash_sort(&all_dpif_backers);
struct ds ds = DS_EMPTY_INITIALIZER;
for (int i = 0; i < shash_count(&all_dpif_backers); i++) {
dpif_show_backer_text(backers[i]->data, &ds);
}
free(backers);
unixctl_command_reply(conn, ds_cstr(&ds));
ds_destroy(&ds);
}
}
static void
ofproto_unixctl_dpif_dump_flows(struct unixctl_conn *conn,
int argc OVS_UNUSED, const char *argv[],
void *aux OVS_UNUSED)
{
const struct ofproto_dpif *ofproto;
struct ds ds = DS_EMPTY_INITIALIZER;
struct dpif_flow_dump *flow_dump;
struct dpif_flow_dump_thread *flow_dump_thread;
struct dpif_flow f;
int error;
ofproto = ofproto_dpif_lookup_by_name(argv[argc - 1]);
if (!ofproto) {
unixctl_command_reply_error(conn, "no such bridge");
return;
}
bool verbosity = false;
bool names = false;
bool set_names = false;
for (int i = 1; i < argc - 1; i++) {
if (!strcmp(argv[i], "-m")) {
verbosity = true;
} else if (!strcmp(argv[i], "--names")) {
names = true;
set_names = true;
} else if (!strcmp(argv[i], "--no-names")) {
names = false;
set_names = true;
}
}
if (!set_names) {
names = verbosity;
}
struct hmap *portno_names = NULL;
if (names) {
portno_names = xmalloc(sizeof *portno_names);
hmap_init(portno_names);
struct dpif_port dpif_port;
struct dpif_port_dump port_dump;
DPIF_PORT_FOR_EACH (&dpif_port, &port_dump, ofproto->backer->dpif) {
odp_portno_names_set(portno_names, dpif_port.port_no,
dpif_port.name);
}
}
ds_init(&ds);
flow_dump = dpif_flow_dump_create(ofproto->backer->dpif, false, NULL);
flow_dump_thread = dpif_flow_dump_thread_create(flow_dump);
while (dpif_flow_dump_next(flow_dump_thread, &f, 1)) {
struct flow flow;
if ((odp_flow_key_to_flow(f.key, f.key_len, &flow, NULL)
== ODP_FIT_ERROR)
|| (xlate_lookup_ofproto(ofproto->backer, &flow, NULL, NULL)
!= ofproto)) {
continue;
}
if (verbosity) {
odp_format_ufid(&f.ufid, &ds);
ds_put_cstr(&ds, " ");
}
odp_flow_format(f.key, f.key_len, f.mask, f.mask_len,
portno_names, &ds, verbosity, false);
ds_put_cstr(&ds, ", ");
dpif_flow_stats_format(&f.stats, &ds);
ds_put_cstr(&ds, ", actions:");
format_odp_actions(&ds, f.actions, f.actions_len, portno_names);
ds_put_char(&ds, '\n');
}
dpif_flow_dump_thread_destroy(flow_dump_thread);
error = dpif_flow_dump_destroy(flow_dump);
if (error) {
ds_clear(&ds);
ds_put_format(&ds, "dpif/dump_flows failed: %s", ovs_strerror(errno));
unixctl_command_reply_error(conn, ds_cstr(&ds));
} else {
unixctl_command_reply(conn, ds_cstr(&ds));
}
if (portno_names) {
odp_portno_names_destroy(portno_names);
hmap_destroy(portno_names);
free(portno_names);
}
ds_destroy(&ds);
}
static void
ofproto_unixctl_dpif_show_dp_features(struct unixctl_conn *conn,
int argc, const char *argv[],
void *aux OVS_UNUSED)
{
struct ds ds = DS_EMPTY_INITIALIZER;
const char *br = argv[argc -1];
struct ofproto_dpif *ofproto = ofproto_dpif_lookup_by_name(br);
if (!ofproto) {
unixctl_command_reply_error(conn, "no such bridge");
return;
}
dpif_show_support(&ofproto->backer->bt_support, &ds);
unixctl_command_reply(conn, ds_cstr(&ds));
ds_destroy(&ds);
}
static void
ofproto_unixctl_dpif_set_dp_features(struct unixctl_conn *conn,
int argc, const char *argv[],
void *aux OVS_UNUSED)
{
struct ds ds = DS_EMPTY_INITIALIZER;
struct ofproto_dpif *ofproto;
bool changed, force = false;
const char *name, *value;
const char *br;
if (argc > 2 && !strcmp(argv[1], "--force")) {
force = true;
argc--;
argv++;
}
br = argv[1];
ofproto = ofproto_dpif_lookup_by_name(br);
if (!ofproto) {
unixctl_command_reply_error(conn, "no such bridge");
return;
}
name = argc > 2 ? argv[2] : NULL;
value = argc > 3 ? argv[3] : NULL;
changed = dpif_set_support(&ofproto->backer->rt_support,
&ofproto->backer->bt_support,
name, value, force, &ds);
if (changed) {
xlate_set_support(ofproto, &ofproto->backer->rt_support);
udpif_flush(ofproto->backer->udpif);
}
unixctl_command_reply(conn, ds_cstr(&ds));
ds_destroy(&ds);
}
static void
ofproto_unixctl_init(void)
{
static bool registered;
if (registered) {
return;
}
registered = true;
unixctl_command_register("fdb/add", "bridge port vlan mac", 4, 4,
ofproto_unixctl_fdb_add, NULL);
unixctl_command_register("fdb/del", "bridge vlan mac", 3, 3,
ofproto_unixctl_fdb_delete, NULL);
unixctl_command_register("fdb/flush", "[bridge]", 0, 1,
ofproto_unixctl_fdb_flush, NULL);
unixctl_command_register("fdb/show", "bridge", 1, 1,
ofproto_unixctl_fdb_show, NULL);
unixctl_command_register("fdb/stats-clear", "[bridge]", 0, 1,
ofproto_unixctl_fdb_stats_clear, NULL);
unixctl_command_register("fdb/stats-show", "bridge", 1, 1,
ofproto_unixctl_fdb_stats_show, NULL);
unixctl_command_register("mdb/flush", "[bridge]", 0, 1,
ofproto_unixctl_mcast_snooping_flush, NULL);
unixctl_command_register("mdb/show", "bridge", 1, 1,
ofproto_unixctl_mcast_snooping_show, NULL);
unixctl_command_register("dpif/dump-dps", "", 0, 0,
ofproto_unixctl_dpif_dump_dps, NULL);
unixctl_command_register("dpif/show", "", 0, 0, ofproto_unixctl_dpif_show,
NULL);
unixctl_command_register("dpif/show-dp-features", "bridge", 1, 1,
ofproto_unixctl_dpif_show_dp_features, NULL);
unixctl_command_register("dpif/dump-flows",
"[-m] [--names | --no-names] bridge", 1, INT_MAX,
ofproto_unixctl_dpif_dump_flows, NULL);
unixctl_command_register("dpif/set-dp-features",
"[--force] bridge [feature [value]]", 1, 4,
ofproto_unixctl_dpif_set_dp_features, NULL);
}
static odp_port_t
ofp_port_to_odp_port(const struct ofproto_dpif *ofproto, ofp_port_t ofp_port)
{
const struct ofport_dpif *ofport = ofp_port_to_ofport(ofproto, ofp_port);
return ofport ? ofport->odp_port : ODPP_NONE;
}
struct ofport_dpif *
odp_port_to_ofport(const struct dpif_backer *backer, odp_port_t odp_port)
{
struct ofport_dpif *port;
ovs_rwlock_rdlock(&backer->odp_to_ofport_lock);
HMAP_FOR_EACH_IN_BUCKET (port, odp_port_node, hash_odp_port(odp_port),
&backer->odp_to_ofport_map) {
if (port->odp_port == odp_port) {
ovs_rwlock_unlock(&backer->odp_to_ofport_lock);
return port;
}
}
ovs_rwlock_unlock(&backer->odp_to_ofport_lock);
return NULL;
}
static ofp_port_t
odp_port_to_ofp_port(const struct ofproto_dpif *ofproto, odp_port_t odp_port)
{
struct ofport_dpif *port;
port = odp_port_to_ofport(ofproto->backer, odp_port);
if (port && &ofproto->up == port->up.ofproto) {
return port->up.ofp_port;
} else {
return OFPP_NONE;
}
}
/* 'match' is non-const to allow for temporary modifications. Any changes are
* restored before returning. */
int
ofproto_dpif_add_internal_flow(struct ofproto_dpif *ofproto,
struct match *match, int priority,
uint16_t idle_timeout,
const struct ofpbuf *ofpacts,
struct rule **rulep)
{
struct ofputil_flow_mod fm;
struct rule_dpif *rule;
int error;
fm = (struct ofputil_flow_mod) {
.buffer_id = UINT32_MAX,
.priority = priority,
.table_id = TBL_INTERNAL,
.command = OFPFC_ADD,
.idle_timeout = idle_timeout,
.flags = OFPUTIL_FF_HIDDEN_FIELDS | OFPUTIL_FF_NO_READONLY,
.ofpacts = ofpacts->data,
.ofpacts_len = ofpacts->size,
};
minimatch_init(&fm.match, match);
error = ofproto_flow_mod(&ofproto->up, &fm);
minimatch_destroy(&fm.match);
if (error) {
VLOG_ERR_RL(&rl, "failed to add internal flow (%s)",
ofperr_to_string(error));
*rulep = NULL;
return error;
}
rule = rule_dpif_lookup_in_table(ofproto,
ofproto_dpif_get_tables_version(ofproto),
TBL_INTERNAL, &match->flow, &match->wc,
NULL);
if (rule) {
*rulep = &rule->up;
} else {
OVS_NOT_REACHED();
}
return 0;
}
int
ofproto_dpif_delete_internal_flow(struct ofproto_dpif *ofproto,
struct match *match, int priority)
{
struct ofputil_flow_mod fm;
int error;
fm = (struct ofputil_flow_mod) {
.buffer_id = UINT32_MAX,
.priority = priority,
.table_id = TBL_INTERNAL,
.out_port = OFPP_ANY,
.out_group = OFPG_ANY,
.flags = OFPUTIL_FF_HIDDEN_FIELDS | OFPUTIL_FF_NO_READONLY,
.command = OFPFC_DELETE_STRICT,
};
minimatch_init(&fm.match, match);
error = ofproto_flow_mod(&ofproto->up, &fm);
minimatch_destroy(&fm.match);
if (error) {
VLOG_ERR_RL(&rl, "failed to delete internal flow (%s)",
ofperr_to_string(error));
return error;
}
return 0;
}
static void
meter_get_features(const struct ofproto *ofproto_,
struct ofputil_meter_features *features)
{
const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
dpif_meter_get_features(ofproto->backer->dpif, features);
}
static enum ofperr
meter_set(struct ofproto *ofproto_, ofproto_meter_id *meter_id,
struct ofputil_meter_config *config)
{
struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
/* Provider ID unknown. Use backer to allocate a new DP meter */
if (meter_id->uint32 == UINT32_MAX) {
if (!ofproto->backer->meter_ids) {
return OFPERR_OFPMMFC_OUT_OF_METERS; /* Meters not supported. */
}
if(!id_pool_alloc_id(ofproto->backer->meter_ids, &meter_id->uint32)) {
return OFPERR_OFPMMFC_OUT_OF_METERS; /* Can't allocate meter. */
}
}
switch (dpif_meter_set(ofproto->backer->dpif, *meter_id, config)) {
case 0:
return 0;
case EFBIG: /* meter_id out of range */
case ENOMEM: /* Cannot allocate meter */
return OFPERR_OFPMMFC_OUT_OF_METERS;
case EBADF: /* Unsupported flags */
return OFPERR_OFPMMFC_BAD_FLAGS;
case EINVAL: /* Too many bands */
return OFPERR_OFPMMFC_OUT_OF_BANDS;
case ENODEV: /* Unsupported band type */
return OFPERR_OFPMMFC_BAD_BAND;
case EDOM: /* Rate must be non-zero */
return OFPERR_OFPMMFC_BAD_RATE;
default:
return OFPERR_OFPMMFC_UNKNOWN;
}
}
static enum ofperr
meter_get(const struct ofproto *ofproto_, ofproto_meter_id meter_id,
struct ofputil_meter_stats *stats, uint16_t n_bands)
{
const struct ofproto_dpif *ofproto = ofproto_dpif_cast(ofproto_);
if (!dpif_meter_get(ofproto->backer->dpif, meter_id, stats, n_bands)) {
return 0;
}
return OFPERR_OFPMMFC_UNKNOWN_METER;
}
struct free_meter_id_args {
struct ofproto_dpif *ofproto;
ofproto_meter_id meter_id;
};
static void
free_meter_id(struct free_meter_id_args *args)
{
struct ofproto_dpif *ofproto = args->ofproto;
dpif_meter_del(ofproto->backer->dpif, args->meter_id, NULL, 0);
id_pool_free_id(ofproto->backer->meter_ids, args->meter_id.uint32);
free(args);
}
static void
meter_del(struct ofproto *ofproto_, ofproto_meter_id meter_id)
{
struct free_meter_id_args *arg = xmalloc(sizeof *arg);
/* Before a meter can be deleted, Openflow spec requires all rules
* referring to the meter to be (automatically) removed before the
* meter is deleted. However, since vswitchd is multi-threaded,
* those rules and their actions remain accessible by other threads,
* especially by the handler and revalidator threads.
* Postpone meter deletion after RCU grace period, so that ongoing
* upcall translation or flow revalidation can complete. */
arg->ofproto = ofproto_dpif_cast(ofproto_);
arg->meter_id = meter_id;
ovsrcu_postpone(free_meter_id, arg);
}
const struct ofproto_class ofproto_dpif_class = {
init,
enumerate_types,
enumerate_names,
del,
port_open_type,
type_run,
type_wait,
alloc,
construct,
destruct,
dealloc,
run,
ofproto_dpif_wait,
NULL, /* get_memory_usage. */
type_get_memory_usage,
flush,
query_tables,
NULL, /* modify_tables */
set_tables_version,
port_alloc,
port_construct,
port_destruct,
port_dealloc,
port_modified,
port_reconfigured,
port_query_by_name,
port_add,
port_del,
port_set_config,
port_get_stats,
vport_get_status,
port_dump_start,
port_dump_next,
port_dump_done,
port_poll,
port_poll_wait,
port_is_lacp_current,
port_get_lacp_stats,
NULL, /* rule_choose_table */
rule_alloc,
rule_construct,
rule_insert,
NULL, /* rule_delete */
rule_destruct,
rule_dealloc,
rule_get_stats,
packet_xlate,
packet_xlate_revert,
packet_execute_prepare,
packet_execute,
set_frag_handling,
nxt_resume,
set_netflow,
get_netflow_ids,
set_sflow,
set_ipfix,
get_ipfix_stats,
set_local_sample,
set_cfm,
cfm_status_changed,
get_cfm_status,
set_lldp,
get_lldp_status,
set_aa,
aa_mapping_set,
aa_mapping_unset,
aa_vlan_get_queued,
aa_vlan_get_queue_size,
set_bfd,
bfd_status_changed,
get_bfd_status,
set_stp,
get_stp_status,
set_stp_port,
get_stp_port_status,
get_stp_port_stats,
set_rstp,
get_rstp_status,
set_rstp_port,
get_rstp_port_status,
set_queues,
bundle_set,
bundle_remove,
mirror_set__,
mirror_get_stats__,
set_flood_vlans,
is_mirror_output_bundle,
forward_bpdu_changed,
set_mac_table_config,
set_mcast_snooping,
set_mcast_snooping_port,
meter_get_features,
meter_set,
meter_get,
meter_del,
group_alloc, /* group_alloc */
group_construct, /* group_construct */
group_destruct, /* group_destruct */
group_dealloc, /* group_dealloc */
group_modify, /* group_modify */
group_get_stats, /* group_get_stats */
get_datapath_version, /* get_datapath_version */
get_datapath_cap,
type_set_config,
ct_flush, /* ct_flush */
ct_set_zone_timeout_policy,
ct_del_zone_timeout_policy,
ct_zone_limit_update,
ct_zone_limit_protection_update,
};