2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/lib/odp-util.c
Sharo, Randall A CIV SPAWARSYSCEN-ATLANTIC, 55200 e60e935b1f Implement set-field for IPv6 ND fields (nd_target, nd_sll, and nd_tll).
This patch adds set-field operations for nd_target, nd_sll, and nd_tll
fields, with and without masks, using Nicira extensions and OpenFlow 1.2
protocol.

Signed-off-by: Randall A Sharo <randall.sharo at navy.mil>
Signed-off-by: Ben Pfaff <blp@nicira.com>
2015-01-13 16:22:44 -08:00

4377 lines
142 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include <arpa/inet.h>
#include "odp-util.h"
#include <errno.h>
#include <inttypes.h>
#include <math.h>
#include <netinet/in.h>
#include <netinet/icmp6.h>
#include <stdlib.h>
#include <string.h>
#include "byte-order.h"
#include "coverage.h"
#include "dpif.h"
#include "dynamic-string.h"
#include "flow.h"
#include "netlink.h"
#include "ofpbuf.h"
#include "packets.h"
#include "simap.h"
#include "timeval.h"
#include "unaligned.h"
#include "util.h"
#include "openvswitch/vlog.h"
VLOG_DEFINE_THIS_MODULE(odp_util);
/* The interface between userspace and kernel uses an "OVS_*" prefix.
* Since this is fairly non-specific for the OVS userspace components,
* "ODP_*" (Open vSwitch Datapath) is used as the prefix for
* interactions with the datapath.
*/
/* The set of characters that may separate one action or one key attribute
* from another. */
static const char *delimiters = ", \t\r\n";
static int parse_odp_key_mask_attr(const char *, const struct simap *port_names,
struct ofpbuf *, struct ofpbuf *);
static void format_odp_key_attr(const struct nlattr *a,
const struct nlattr *ma,
const struct hmap *portno_names, struct ds *ds,
bool verbose);
/* Returns one the following for the action with the given OVS_ACTION_ATTR_*
* 'type':
*
* - For an action whose argument has a fixed length, returned that
* nonnegative length in bytes.
*
* - For an action with a variable-length argument, returns -2.
*
* - For an invalid 'type', returns -1. */
static int
odp_action_len(uint16_t type)
{
if (type > OVS_ACTION_ATTR_MAX) {
return -1;
}
switch ((enum ovs_action_attr) type) {
case OVS_ACTION_ATTR_OUTPUT: return sizeof(uint32_t);
case OVS_ACTION_ATTR_TUNNEL_PUSH: return -2;
case OVS_ACTION_ATTR_TUNNEL_POP: return sizeof(uint32_t);
case OVS_ACTION_ATTR_USERSPACE: return -2;
case OVS_ACTION_ATTR_PUSH_VLAN: return sizeof(struct ovs_action_push_vlan);
case OVS_ACTION_ATTR_POP_VLAN: return 0;
case OVS_ACTION_ATTR_PUSH_MPLS: return sizeof(struct ovs_action_push_mpls);
case OVS_ACTION_ATTR_POP_MPLS: return sizeof(ovs_be16);
case OVS_ACTION_ATTR_RECIRC: return sizeof(uint32_t);
case OVS_ACTION_ATTR_HASH: return sizeof(struct ovs_action_hash);
case OVS_ACTION_ATTR_SET: return -2;
case OVS_ACTION_ATTR_SET_MASKED: return -2;
case OVS_ACTION_ATTR_SAMPLE: return -2;
case OVS_ACTION_ATTR_UNSPEC:
case __OVS_ACTION_ATTR_MAX:
return -1;
}
return -1;
}
/* Returns a string form of 'attr'. The return value is either a statically
* allocated constant string or the 'bufsize'-byte buffer 'namebuf'. 'bufsize'
* should be at least OVS_KEY_ATTR_BUFSIZE. */
enum { OVS_KEY_ATTR_BUFSIZE = 3 + INT_STRLEN(unsigned int) + 1 };
static const char *
ovs_key_attr_to_string(enum ovs_key_attr attr, char *namebuf, size_t bufsize)
{
switch (attr) {
case OVS_KEY_ATTR_UNSPEC: return "unspec";
case OVS_KEY_ATTR_ENCAP: return "encap";
case OVS_KEY_ATTR_PRIORITY: return "skb_priority";
case OVS_KEY_ATTR_SKB_MARK: return "skb_mark";
case OVS_KEY_ATTR_TUNNEL: return "tunnel";
case OVS_KEY_ATTR_IN_PORT: return "in_port";
case OVS_KEY_ATTR_ETHERNET: return "eth";
case OVS_KEY_ATTR_VLAN: return "vlan";
case OVS_KEY_ATTR_ETHERTYPE: return "eth_type";
case OVS_KEY_ATTR_IPV4: return "ipv4";
case OVS_KEY_ATTR_IPV6: return "ipv6";
case OVS_KEY_ATTR_TCP: return "tcp";
case OVS_KEY_ATTR_TCP_FLAGS: return "tcp_flags";
case OVS_KEY_ATTR_UDP: return "udp";
case OVS_KEY_ATTR_SCTP: return "sctp";
case OVS_KEY_ATTR_ICMP: return "icmp";
case OVS_KEY_ATTR_ICMPV6: return "icmpv6";
case OVS_KEY_ATTR_ARP: return "arp";
case OVS_KEY_ATTR_ND: return "nd";
case OVS_KEY_ATTR_MPLS: return "mpls";
case OVS_KEY_ATTR_DP_HASH: return "dp_hash";
case OVS_KEY_ATTR_RECIRC_ID: return "recirc_id";
case __OVS_KEY_ATTR_MAX:
default:
snprintf(namebuf, bufsize, "key%u", (unsigned int) attr);
return namebuf;
}
}
static void
format_generic_odp_action(struct ds *ds, const struct nlattr *a)
{
size_t len = nl_attr_get_size(a);
ds_put_format(ds, "action%"PRId16, nl_attr_type(a));
if (len) {
const uint8_t *unspec;
unsigned int i;
unspec = nl_attr_get(a);
for (i = 0; i < len; i++) {
ds_put_char(ds, i ? ' ': '(');
ds_put_format(ds, "%02x", unspec[i]);
}
ds_put_char(ds, ')');
}
}
static void
format_odp_sample_action(struct ds *ds, const struct nlattr *attr)
{
static const struct nl_policy ovs_sample_policy[] = {
[OVS_SAMPLE_ATTR_PROBABILITY] = { .type = NL_A_U32 },
[OVS_SAMPLE_ATTR_ACTIONS] = { .type = NL_A_NESTED }
};
struct nlattr *a[ARRAY_SIZE(ovs_sample_policy)];
double percentage;
const struct nlattr *nla_acts;
int len;
ds_put_cstr(ds, "sample");
if (!nl_parse_nested(attr, ovs_sample_policy, a, ARRAY_SIZE(a))) {
ds_put_cstr(ds, "(error)");
return;
}
percentage = (100.0 * nl_attr_get_u32(a[OVS_SAMPLE_ATTR_PROBABILITY])) /
UINT32_MAX;
ds_put_format(ds, "(sample=%.1f%%,", percentage);
ds_put_cstr(ds, "actions(");
nla_acts = nl_attr_get(a[OVS_SAMPLE_ATTR_ACTIONS]);
len = nl_attr_get_size(a[OVS_SAMPLE_ATTR_ACTIONS]);
format_odp_actions(ds, nla_acts, len);
ds_put_format(ds, "))");
}
static const char *
slow_path_reason_to_string(uint32_t reason)
{
switch ((enum slow_path_reason) reason) {
#define SPR(ENUM, STRING, EXPLANATION) case ENUM: return STRING;
SLOW_PATH_REASONS
#undef SPR
}
return NULL;
}
const char *
slow_path_reason_to_explanation(enum slow_path_reason reason)
{
switch (reason) {
#define SPR(ENUM, STRING, EXPLANATION) case ENUM: return EXPLANATION;
SLOW_PATH_REASONS
#undef SPR
}
return "<unknown>";
}
static int
parse_flags(const char *s, const char *(*bit_to_string)(uint32_t),
uint32_t *res_flags, uint32_t allowed, uint32_t *res_mask)
{
uint32_t result = 0;
int n;
/* Parse masked flags in numeric format? */
if (res_mask && ovs_scan(s, "%"SCNi32"/%"SCNi32"%n",
res_flags, res_mask, &n) && n > 0) {
if (*res_flags & ~allowed || *res_mask & ~allowed) {
return -EINVAL;
}
return n;
}
n = 0;
if (res_mask && (*s == '+' || *s == '-')) {
uint32_t flags = 0, mask = 0;
/* Parse masked flags. */
while (s[n] != ')') {
bool set;
uint32_t bit;
int name_len;
if (s[n] == '+') {
set = true;
} else if (s[n] == '-') {
set = false;
} else {
return -EINVAL;
}
n++;
name_len = strcspn(s + n, "+-)");
for (bit = 1; bit; bit <<= 1) {
const char *fname = bit_to_string(bit);
size_t len;
if (!fname) {
continue;
}
len = strlen(fname);
if (len != name_len) {
continue;
}
if (!strncmp(s + n, fname, len)) {
if (mask & bit) {
/* bit already set. */
return -EINVAL;
}
if (!(bit & allowed)) {
return -EINVAL;
}
if (set) {
flags |= bit;
}
mask |= bit;
break;
}
}
if (!bit) {
return -EINVAL; /* Unknown flag name */
}
s += name_len;
}
*res_flags = flags;
*res_mask = mask;
return n;
}
/* Parse unmasked flags. If a flag is present, it is set, otherwise
* it is not set. */
while (s[n] != ')') {
unsigned long long int flags;
uint32_t bit;
int n0;
if (ovs_scan(&s[n], "%lli%n", &flags, &n0)) {
if (flags & ~allowed) {
return -EINVAL;
}
n += n0 + (s[n + n0] == ',');
result |= flags;
continue;
}
for (bit = 1; bit; bit <<= 1) {
const char *name = bit_to_string(bit);
size_t len;
if (!name) {
continue;
}
len = strlen(name);
if (!strncmp(s + n, name, len) &&
(s[n + len] == ',' || s[n + len] == ')')) {
if (!(bit & allowed)) {
return -EINVAL;
}
result |= bit;
n += len + (s[n + len] == ',');
break;
}
}
if (!bit) {
return -EINVAL;
}
}
*res_flags = result;
if (res_mask) {
*res_mask = UINT32_MAX;
}
return n;
}
static void
format_odp_userspace_action(struct ds *ds, const struct nlattr *attr)
{
static const struct nl_policy ovs_userspace_policy[] = {
[OVS_USERSPACE_ATTR_PID] = { .type = NL_A_U32 },
[OVS_USERSPACE_ATTR_USERDATA] = { .type = NL_A_UNSPEC,
.optional = true },
[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = { .type = NL_A_U32,
.optional = true },
};
struct nlattr *a[ARRAY_SIZE(ovs_userspace_policy)];
const struct nlattr *userdata_attr;
const struct nlattr *tunnel_out_port_attr;
if (!nl_parse_nested(attr, ovs_userspace_policy, a, ARRAY_SIZE(a))) {
ds_put_cstr(ds, "userspace(error)");
return;
}
ds_put_format(ds, "userspace(pid=%"PRIu32,
nl_attr_get_u32(a[OVS_USERSPACE_ATTR_PID]));
userdata_attr = a[OVS_USERSPACE_ATTR_USERDATA];
if (userdata_attr) {
const uint8_t *userdata = nl_attr_get(userdata_attr);
size_t userdata_len = nl_attr_get_size(userdata_attr);
bool userdata_unspec = true;
union user_action_cookie cookie;
if (userdata_len >= sizeof cookie.type
&& userdata_len <= sizeof cookie) {
memset(&cookie, 0, sizeof cookie);
memcpy(&cookie, userdata, userdata_len);
userdata_unspec = false;
if (userdata_len == sizeof cookie.sflow
&& cookie.type == USER_ACTION_COOKIE_SFLOW) {
ds_put_format(ds, ",sFlow("
"vid=%"PRIu16",pcp=%"PRIu8",output=%"PRIu32")",
vlan_tci_to_vid(cookie.sflow.vlan_tci),
vlan_tci_to_pcp(cookie.sflow.vlan_tci),
cookie.sflow.output);
} else if (userdata_len == sizeof cookie.slow_path
&& cookie.type == USER_ACTION_COOKIE_SLOW_PATH) {
ds_put_cstr(ds, ",slow_path(");
format_flags(ds, slow_path_reason_to_string,
cookie.slow_path.reason, ',');
ds_put_format(ds, ")");
} else if (userdata_len == sizeof cookie.flow_sample
&& cookie.type == USER_ACTION_COOKIE_FLOW_SAMPLE) {
ds_put_format(ds, ",flow_sample(probability=%"PRIu16
",collector_set_id=%"PRIu32
",obs_domain_id=%"PRIu32
",obs_point_id=%"PRIu32")",
cookie.flow_sample.probability,
cookie.flow_sample.collector_set_id,
cookie.flow_sample.obs_domain_id,
cookie.flow_sample.obs_point_id);
} else if (userdata_len >= sizeof cookie.ipfix
&& cookie.type == USER_ACTION_COOKIE_IPFIX) {
ds_put_format(ds, ",ipfix(output_port=%"PRIu32")",
cookie.ipfix.output_odp_port);
} else {
userdata_unspec = true;
}
}
if (userdata_unspec) {
size_t i;
ds_put_format(ds, ",userdata(");
for (i = 0; i < userdata_len; i++) {
ds_put_format(ds, "%02x", userdata[i]);
}
ds_put_char(ds, ')');
}
}
tunnel_out_port_attr = a[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT];
if (tunnel_out_port_attr) {
ds_put_format(ds, ",tunnel_out_port=%"PRIu32,
nl_attr_get_u32(tunnel_out_port_attr));
}
ds_put_char(ds, ')');
}
static void
format_vlan_tci(struct ds *ds, ovs_be16 tci, ovs_be16 mask, bool verbose)
{
if (verbose || vlan_tci_to_vid(tci) || vlan_tci_to_vid(mask)) {
ds_put_format(ds, "vid=%"PRIu16, vlan_tci_to_vid(tci));
if (vlan_tci_to_vid(mask) != VLAN_VID_MASK) { /* Partially masked. */
ds_put_format(ds, "/0x%"PRIx16, vlan_tci_to_vid(mask));
};
ds_put_char(ds, ',');
}
if (verbose || vlan_tci_to_pcp(tci) || vlan_tci_to_pcp(mask)) {
ds_put_format(ds, "pcp=%d", vlan_tci_to_pcp(tci));
if (vlan_tci_to_pcp(mask) != (VLAN_PCP_MASK >> VLAN_PCP_SHIFT)) {
ds_put_format(ds, "/0x%x", vlan_tci_to_pcp(mask));
}
ds_put_char(ds, ',');
}
if (!(tci & htons(VLAN_CFI))) {
ds_put_cstr(ds, "cfi=0");
ds_put_char(ds, ',');
}
ds_chomp(ds, ',');
}
static void
format_mpls_lse(struct ds *ds, ovs_be32 mpls_lse)
{
ds_put_format(ds, "label=%"PRIu32",tc=%d,ttl=%d,bos=%d",
mpls_lse_to_label(mpls_lse),
mpls_lse_to_tc(mpls_lse),
mpls_lse_to_ttl(mpls_lse),
mpls_lse_to_bos(mpls_lse));
}
static void
format_mpls(struct ds *ds, const struct ovs_key_mpls *mpls_key,
const struct ovs_key_mpls *mpls_mask, int n)
{
if (n == 1) {
ovs_be32 key = mpls_key->mpls_lse;
if (mpls_mask == NULL) {
format_mpls_lse(ds, key);
} else {
ovs_be32 mask = mpls_mask->mpls_lse;
ds_put_format(ds, "label=%"PRIu32"/0x%x,tc=%d/%x,ttl=%d/0x%x,bos=%d/%x",
mpls_lse_to_label(key), mpls_lse_to_label(mask),
mpls_lse_to_tc(key), mpls_lse_to_tc(mask),
mpls_lse_to_ttl(key), mpls_lse_to_ttl(mask),
mpls_lse_to_bos(key), mpls_lse_to_bos(mask));
}
} else {
int i;
for (i = 0; i < n; i++) {
ds_put_format(ds, "lse%d=%#"PRIx32,
i, ntohl(mpls_key[i].mpls_lse));
if (mpls_mask) {
ds_put_format(ds, "/%#"PRIx32, ntohl(mpls_mask[i].mpls_lse));
}
ds_put_char(ds, ',');
}
ds_chomp(ds, ',');
}
}
static void
format_odp_recirc_action(struct ds *ds, uint32_t recirc_id)
{
ds_put_format(ds, "recirc(%"PRIu32")", recirc_id);
}
static void
format_odp_hash_action(struct ds *ds, const struct ovs_action_hash *hash_act)
{
ds_put_format(ds, "hash(");
if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
ds_put_format(ds, "hash_l4(%"PRIu32")", hash_act->hash_basis);
} else {
ds_put_format(ds, "Unknown hash algorithm(%"PRIu32")",
hash_act->hash_alg);
}
ds_put_format(ds, ")");
}
static void
format_odp_tnl_push_header(struct ds *ds, struct ovs_action_push_tnl *data)
{
const struct eth_header *eth;
const struct ip_header *ip;
const void *l3;
eth = (const struct eth_header *)data->header;
l3 = eth + 1;
ip = (const struct ip_header *)l3;
/* Ethernet */
ds_put_format(ds, "header(size=%"PRIu8",type=%"PRIu8",eth(dst=",
data->header_len, data->tnl_type);
ds_put_format(ds, ETH_ADDR_FMT, ETH_ADDR_ARGS(eth->eth_dst));
ds_put_format(ds, ",src=");
ds_put_format(ds, ETH_ADDR_FMT, ETH_ADDR_ARGS(eth->eth_src));
ds_put_format(ds, ",dl_type=0x%04"PRIx16"),", ntohs(eth->eth_type));
/* IPv4 */
ds_put_format(ds, "ipv4(src="IP_FMT",dst="IP_FMT",proto=%"PRIu8
",tos=%#"PRIx8",ttl=%"PRIu8",frag=0x%"PRIx16"),",
IP_ARGS(get_16aligned_be32(&ip->ip_src)),
IP_ARGS(get_16aligned_be32(&ip->ip_dst)),
ip->ip_proto, ip->ip_tos,
ip->ip_ttl,
ip->ip_frag_off);
if (data->tnl_type == OVS_VPORT_TYPE_VXLAN) {
const struct vxlanhdr *vxh;
const struct udp_header *udp;
/* UDP */
udp = (const struct udp_header *) (ip + 1);
ds_put_format(ds, "udp(src=%"PRIu16",dst=%"PRIu16"),",
ntohs(udp->udp_src), ntohs(udp->udp_dst));
/* VxLan */
vxh = (const struct vxlanhdr *) (udp + 1);
ds_put_format(ds, "vxlan(flags=0x%"PRIx32",vni=0x%"PRIx32")",
ntohl(get_16aligned_be32(&vxh->vx_flags)),
ntohl(get_16aligned_be32(&vxh->vx_vni)));
} else if (data->tnl_type == OVS_VPORT_TYPE_GRE) {
const struct gre_base_hdr *greh;
ovs_16aligned_be32 *options;
void *l4;
l4 = ((uint8_t *)l3 + sizeof(struct ip_header));
greh = (const struct gre_base_hdr *) l4;
ds_put_format(ds, "gre((flags=0x%"PRIx16",proto=0x%"PRIx16")",
greh->flags, ntohs(greh->protocol));
options = (ovs_16aligned_be32 *)(greh + 1);
if (greh->flags & htons(GRE_CSUM)) {
ds_put_format(ds, ",csum=0x%"PRIx32, ntohl(get_16aligned_be32(options)));
options++;
}
if (greh->flags & htons(GRE_KEY)) {
ds_put_format(ds, ",key=0x%"PRIx32, ntohl(get_16aligned_be32(options)));
options++;
}
if (greh->flags & htons(GRE_SEQ)) {
ds_put_format(ds, ",seq=0x%"PRIx32, ntohl(get_16aligned_be32(options)));
options++;
}
ds_put_format(ds, ")");
}
ds_put_format(ds, ")");
}
static void
format_odp_tnl_push_action(struct ds *ds, const struct nlattr *attr)
{
struct ovs_action_push_tnl *data;
data = (struct ovs_action_push_tnl *) nl_attr_get(attr);
ds_put_format(ds, "tnl_push(tnl_port(%"PRIu32"),", data->tnl_port);
format_odp_tnl_push_header(ds, data);
ds_put_format(ds, ",out_port(%"PRIu32"))", data->out_port);
}
static void
format_odp_action(struct ds *ds, const struct nlattr *a)
{
int expected_len;
enum ovs_action_attr type = nl_attr_type(a);
const struct ovs_action_push_vlan *vlan;
size_t size;
expected_len = odp_action_len(nl_attr_type(a));
if (expected_len != -2 && nl_attr_get_size(a) != expected_len) {
ds_put_format(ds, "bad length %"PRIuSIZE", expected %d for: ",
nl_attr_get_size(a), expected_len);
format_generic_odp_action(ds, a);
return;
}
switch (type) {
case OVS_ACTION_ATTR_OUTPUT:
ds_put_format(ds, "%"PRIu32, nl_attr_get_u32(a));
break;
case OVS_ACTION_ATTR_TUNNEL_POP:
ds_put_format(ds, "tnl_pop(%"PRIu32")", nl_attr_get_u32(a));
break;
case OVS_ACTION_ATTR_TUNNEL_PUSH:
format_odp_tnl_push_action(ds, a);
break;
case OVS_ACTION_ATTR_USERSPACE:
format_odp_userspace_action(ds, a);
break;
case OVS_ACTION_ATTR_RECIRC:
format_odp_recirc_action(ds, nl_attr_get_u32(a));
break;
case OVS_ACTION_ATTR_HASH:
format_odp_hash_action(ds, nl_attr_get(a));
break;
case OVS_ACTION_ATTR_SET_MASKED:
a = nl_attr_get(a);
size = nl_attr_get_size(a) / 2;
ds_put_cstr(ds, "set(");
/* Masked set action not supported for tunnel key, which is bigger. */
if (size <= sizeof(struct ovs_key_ipv6)) {
struct nlattr attr[1 + DIV_ROUND_UP(sizeof(struct ovs_key_ipv6),
sizeof(struct nlattr))];
struct nlattr mask[1 + DIV_ROUND_UP(sizeof(struct ovs_key_ipv6),
sizeof(struct nlattr))];
mask->nla_type = attr->nla_type = nl_attr_type(a);
mask->nla_len = attr->nla_len = NLA_HDRLEN + size;
memcpy(attr + 1, (char *)(a + 1), size);
memcpy(mask + 1, (char *)(a + 1) + size, size);
format_odp_key_attr(attr, mask, NULL, ds, false);
} else {
format_odp_key_attr(a, NULL, NULL, ds, false);
}
ds_put_cstr(ds, ")");
break;
case OVS_ACTION_ATTR_SET:
ds_put_cstr(ds, "set(");
format_odp_key_attr(nl_attr_get(a), NULL, NULL, ds, true);
ds_put_cstr(ds, ")");
break;
case OVS_ACTION_ATTR_PUSH_VLAN:
vlan = nl_attr_get(a);
ds_put_cstr(ds, "push_vlan(");
if (vlan->vlan_tpid != htons(ETH_TYPE_VLAN)) {
ds_put_format(ds, "tpid=0x%04"PRIx16",", ntohs(vlan->vlan_tpid));
}
format_vlan_tci(ds, vlan->vlan_tci, OVS_BE16_MAX, false);
ds_put_char(ds, ')');
break;
case OVS_ACTION_ATTR_POP_VLAN:
ds_put_cstr(ds, "pop_vlan");
break;
case OVS_ACTION_ATTR_PUSH_MPLS: {
const struct ovs_action_push_mpls *mpls = nl_attr_get(a);
ds_put_cstr(ds, "push_mpls(");
format_mpls_lse(ds, mpls->mpls_lse);
ds_put_format(ds, ",eth_type=0x%"PRIx16")", ntohs(mpls->mpls_ethertype));
break;
}
case OVS_ACTION_ATTR_POP_MPLS: {
ovs_be16 ethertype = nl_attr_get_be16(a);
ds_put_format(ds, "pop_mpls(eth_type=0x%"PRIx16")", ntohs(ethertype));
break;
}
case OVS_ACTION_ATTR_SAMPLE:
format_odp_sample_action(ds, a);
break;
case OVS_ACTION_ATTR_UNSPEC:
case __OVS_ACTION_ATTR_MAX:
default:
format_generic_odp_action(ds, a);
break;
}
}
void
format_odp_actions(struct ds *ds, const struct nlattr *actions,
size_t actions_len)
{
if (actions_len) {
const struct nlattr *a;
unsigned int left;
NL_ATTR_FOR_EACH (a, left, actions, actions_len) {
if (a != actions) {
ds_put_char(ds, ',');
}
format_odp_action(ds, a);
}
if (left) {
int i;
if (left == actions_len) {
ds_put_cstr(ds, "<empty>");
}
ds_put_format(ds, ",***%u leftover bytes*** (", left);
for (i = 0; i < left; i++) {
ds_put_format(ds, "%02x", ((const uint8_t *) a)[i]);
}
ds_put_char(ds, ')');
}
} else {
ds_put_cstr(ds, "drop");
}
}
/* Separate out parse_odp_userspace_action() function. */
static int
parse_odp_userspace_action(const char *s, struct ofpbuf *actions)
{
uint32_t pid;
union user_action_cookie cookie;
struct ofpbuf buf;
odp_port_t tunnel_out_port;
int n = -1;
void *user_data = NULL;
size_t user_data_size = 0;
if (!ovs_scan(s, "userspace(pid=%"SCNi32"%n", &pid, &n)) {
return -EINVAL;
}
{
uint32_t output;
uint32_t probability;
uint32_t collector_set_id;
uint32_t obs_domain_id;
uint32_t obs_point_id;
int vid, pcp;
int n1 = -1;
if (ovs_scan(&s[n], ",sFlow(vid=%i,"
"pcp=%i,output=%"SCNi32")%n",
&vid, &pcp, &output, &n1)) {
uint16_t tci;
n += n1;
tci = vid | (pcp << VLAN_PCP_SHIFT);
if (tci) {
tci |= VLAN_CFI;
}
cookie.type = USER_ACTION_COOKIE_SFLOW;
cookie.sflow.vlan_tci = htons(tci);
cookie.sflow.output = output;
user_data = &cookie;
user_data_size = sizeof cookie.sflow;
} else if (ovs_scan(&s[n], ",slow_path(%n",
&n1)) {
int res;
n += n1;
cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
cookie.slow_path.unused = 0;
cookie.slow_path.reason = 0;
res = parse_flags(&s[n], slow_path_reason_to_string,
&cookie.slow_path.reason,
SLOW_PATH_REASON_MASK, NULL);
if (res < 0 || s[n + res] != ')') {
return res;
}
n += res + 1;
user_data = &cookie;
user_data_size = sizeof cookie.slow_path;
} else if (ovs_scan(&s[n], ",flow_sample(probability=%"SCNi32","
"collector_set_id=%"SCNi32","
"obs_domain_id=%"SCNi32","
"obs_point_id=%"SCNi32")%n",
&probability, &collector_set_id,
&obs_domain_id, &obs_point_id, &n1)) {
n += n1;
cookie.type = USER_ACTION_COOKIE_FLOW_SAMPLE;
cookie.flow_sample.probability = probability;
cookie.flow_sample.collector_set_id = collector_set_id;
cookie.flow_sample.obs_domain_id = obs_domain_id;
cookie.flow_sample.obs_point_id = obs_point_id;
user_data = &cookie;
user_data_size = sizeof cookie.flow_sample;
} else if (ovs_scan(&s[n], ",ipfix(output_port=%"SCNi32")%n",
&output, &n1) ) {
n += n1;
cookie.type = USER_ACTION_COOKIE_IPFIX;
cookie.ipfix.output_odp_port = u32_to_odp(output);
user_data = &cookie;
user_data_size = sizeof cookie.ipfix;
} else if (ovs_scan(&s[n], ",userdata(%n",
&n1)) {
char *end;
n += n1;
ofpbuf_init(&buf, 16);
end = ofpbuf_put_hex(&buf, &s[n], NULL);
if (end[0] != ')') {
return -EINVAL;
}
user_data = ofpbuf_data(&buf);
user_data_size = ofpbuf_size(&buf);
n = (end + 1) - s;
}
}
{
int n1 = -1;
if (ovs_scan(&s[n], ",tunnel_out_port=%"SCNi32")%n",
&tunnel_out_port, &n1)) {
odp_put_userspace_action(pid, user_data, user_data_size, tunnel_out_port, actions);
return n + n1;
} else if (s[n] == ')') {
odp_put_userspace_action(pid, user_data, user_data_size, ODPP_NONE, actions);
return n + 1;
}
}
return -EINVAL;
}
static int
ovs_parse_tnl_push(const char *s, struct ovs_action_push_tnl *data)
{
struct eth_header *eth;
struct ip_header *ip;
struct udp_header *udp;
struct gre_base_hdr *greh;
uint16_t gre_proto, dl_type, udp_src, udp_dst;
ovs_be32 sip, dip;
uint32_t tnl_type = 0, header_len = 0;
void *l3, *l4;
int n = 0;
if (!ovs_scan_len(s, &n, "tnl_push(tnl_port(%"SCNi32"),", &data->tnl_port)) {
return -EINVAL;
}
eth = (struct eth_header *) data->header;
l3 = (data->header + sizeof *eth);
l4 = ((uint8_t *) l3 + sizeof (struct ip_header));
ip = (struct ip_header *) l3;
if (!ovs_scan_len(s, &n, "header(size=%"SCNi32",type=%"SCNi32","
"eth(dst="ETH_ADDR_SCAN_FMT",",
&data->header_len,
&data->tnl_type,
ETH_ADDR_SCAN_ARGS(eth->eth_dst))) {
return -EINVAL;
}
if (!ovs_scan_len(s, &n, "src="ETH_ADDR_SCAN_FMT",",
ETH_ADDR_SCAN_ARGS(eth->eth_src))) {
return -EINVAL;
}
if (!ovs_scan_len(s, &n, "dl_type=0x%"SCNx16"),", &dl_type)) {
return -EINVAL;
}
eth->eth_type = htons(dl_type);
/* IPv4 */
if (!ovs_scan_len(s, &n, "ipv4(src="IP_SCAN_FMT",dst="IP_SCAN_FMT",proto=%"SCNi8
",tos=%"SCNi8",ttl=%"SCNi8",frag=0x%"SCNx16"),",
IP_SCAN_ARGS(&sip),
IP_SCAN_ARGS(&dip),
&ip->ip_proto, &ip->ip_tos,
&ip->ip_ttl, &ip->ip_frag_off)) {
return -EINVAL;
}
put_16aligned_be32(&ip->ip_src, sip);
put_16aligned_be32(&ip->ip_dst, dip);
/* Tunnel header */
udp = (struct udp_header *) l4;
greh = (struct gre_base_hdr *) l4;
if (ovs_scan_len(s, &n, "udp(src=%"SCNi16",dst=%"SCNi16"),",
&udp_src, &udp_dst)) {
struct vxlanhdr *vxh;
uint32_t vx_flags, vx_vni;
udp->udp_src = htons(udp_src);
udp->udp_dst = htons(udp_dst);
udp->udp_len = 0;
udp->udp_csum = 0;
vxh = (struct vxlanhdr *) (udp + 1);
if (!ovs_scan_len(s, &n, "vxlan(flags=0x%"SCNx32",vni=0x%"SCNx32"))",
&vx_flags, &vx_vni)) {
return -EINVAL;
}
put_16aligned_be32(&vxh->vx_flags, htonl(vx_flags));
put_16aligned_be32(&vxh->vx_vni, htonl(vx_vni));
tnl_type = OVS_VPORT_TYPE_VXLAN;
header_len = sizeof *eth + sizeof *ip +
sizeof *udp + sizeof *vxh;
} else if (ovs_scan_len(s, &n, "gre((flags=0x%"SCNx16",proto=0x%"SCNx16")",
&greh->flags, &gre_proto)){
tnl_type = OVS_VPORT_TYPE_GRE;
greh->protocol = htons(gre_proto);
ovs_16aligned_be32 *options = (ovs_16aligned_be32 *) (greh + 1);
if (greh->flags & htons(GRE_CSUM)) {
uint32_t csum;
if (!ovs_scan_len(s, &n, ",csum=0x%"SCNx32, &csum)) {
return -EINVAL;
}
put_16aligned_be32(options, htonl(csum));
options++;
}
if (greh->flags & htons(GRE_KEY)) {
uint32_t key;
if (!ovs_scan_len(s, &n, ",key=0x%"SCNx32, &key)) {
return -EINVAL;
}
put_16aligned_be32(options, htonl(key));
options++;
}
if (greh->flags & htons(GRE_SEQ)) {
uint32_t seq;
if (!ovs_scan_len(s, &n, ",seq=0x%"SCNx32, &seq)) {
return -EINVAL;
}
put_16aligned_be32(options, htonl(seq));
options++;
}
if (!ovs_scan_len(s, &n, "))")) {
return -EINVAL;
}
header_len = sizeof *eth + sizeof *ip +
((uint8_t *) options - (uint8_t *) greh);
} else {
return -EINVAL;
}
/* check tunnel meta data. */
if (data->tnl_type != tnl_type) {
return -EINVAL;
}
if (data->header_len != header_len) {
return -EINVAL;
}
/* Out port */
if (!ovs_scan_len(s, &n, ",out_port(%"SCNi32"))", &data->out_port)) {
return -EINVAL;
}
return n;
}
static int
parse_odp_action(const char *s, const struct simap *port_names,
struct ofpbuf *actions)
{
{
uint32_t port;
int n;
if (ovs_scan(s, "%"SCNi32"%n", &port, &n)) {
nl_msg_put_u32(actions, OVS_ACTION_ATTR_OUTPUT, port);
return n;
}
}
if (port_names) {
int len = strcspn(s, delimiters);
struct simap_node *node;
node = simap_find_len(port_names, s, len);
if (node) {
nl_msg_put_u32(actions, OVS_ACTION_ATTR_OUTPUT, node->data);
return len;
}
}
{
uint32_t recirc_id;
int n = -1;
if (ovs_scan(s, "recirc(%"PRIu32")%n", &recirc_id, &n)) {
nl_msg_put_u32(actions, OVS_ACTION_ATTR_RECIRC, recirc_id);
return n;
}
}
if (!strncmp(s, "userspace(", 10)) {
return parse_odp_userspace_action(s, actions);
}
if (!strncmp(s, "set(", 4)) {
size_t start_ofs;
int retval;
struct nlattr mask[128 / sizeof(struct nlattr)];
struct ofpbuf maskbuf;
struct nlattr *nested, *key;
size_t size;
/* 'mask' is big enough to hold any key. */
ofpbuf_use_stack(&maskbuf, mask, sizeof mask);
start_ofs = nl_msg_start_nested(actions, OVS_ACTION_ATTR_SET);
retval = parse_odp_key_mask_attr(s + 4, port_names, actions, &maskbuf);
if (retval < 0) {
return retval;
}
if (s[retval + 4] != ')') {
return -EINVAL;
}
nested = ofpbuf_at_assert(actions, start_ofs, sizeof *nested);
key = nested + 1;
size = nl_attr_get_size(mask);
if (size == nl_attr_get_size(key)) {
/* Change to masked set action if not fully masked. */
if (!is_all_ones(mask + 1, size)) {
key->nla_len += size;
ofpbuf_put(actions, mask + 1, size);
/* 'actions' may have been reallocated by ofpbuf_put(). */
nested = ofpbuf_at_assert(actions, start_ofs, sizeof *nested);
nested->nla_type = OVS_ACTION_ATTR_SET_MASKED;
}
}
nl_msg_end_nested(actions, start_ofs);
return retval + 5;
}
{
struct ovs_action_push_vlan push;
int tpid = ETH_TYPE_VLAN;
int vid, pcp;
int cfi = 1;
int n = -1;
if (ovs_scan(s, "push_vlan(vid=%i,pcp=%i)%n", &vid, &pcp, &n)
|| ovs_scan(s, "push_vlan(vid=%i,pcp=%i,cfi=%i)%n",
&vid, &pcp, &cfi, &n)
|| ovs_scan(s, "push_vlan(tpid=%i,vid=%i,pcp=%i)%n",
&tpid, &vid, &pcp, &n)
|| ovs_scan(s, "push_vlan(tpid=%i,vid=%i,pcp=%i,cfi=%i)%n",
&tpid, &vid, &pcp, &cfi, &n)) {
push.vlan_tpid = htons(tpid);
push.vlan_tci = htons((vid << VLAN_VID_SHIFT)
| (pcp << VLAN_PCP_SHIFT)
| (cfi ? VLAN_CFI : 0));
nl_msg_put_unspec(actions, OVS_ACTION_ATTR_PUSH_VLAN,
&push, sizeof push);
return n;
}
}
if (!strncmp(s, "pop_vlan", 8)) {
nl_msg_put_flag(actions, OVS_ACTION_ATTR_POP_VLAN);
return 8;
}
{
double percentage;
int n = -1;
if (ovs_scan(s, "sample(sample=%lf%%,actions(%n", &percentage, &n)
&& percentage >= 0. && percentage <= 100.0) {
size_t sample_ofs, actions_ofs;
double probability;
probability = floor(UINT32_MAX * (percentage / 100.0) + .5);
sample_ofs = nl_msg_start_nested(actions, OVS_ACTION_ATTR_SAMPLE);
nl_msg_put_u32(actions, OVS_SAMPLE_ATTR_PROBABILITY,
(probability <= 0 ? 0
: probability >= UINT32_MAX ? UINT32_MAX
: probability));
actions_ofs = nl_msg_start_nested(actions,
OVS_SAMPLE_ATTR_ACTIONS);
for (;;) {
int retval;
n += strspn(s + n, delimiters);
if (s[n] == ')') {
break;
}
retval = parse_odp_action(s + n, port_names, actions);
if (retval < 0) {
return retval;
}
n += retval;
}
nl_msg_end_nested(actions, actions_ofs);
nl_msg_end_nested(actions, sample_ofs);
return s[n + 1] == ')' ? n + 2 : -EINVAL;
}
}
{
uint32_t port;
int n;
if (ovs_scan(s, "tnl_pop(%"SCNi32")%n", &port, &n)) {
nl_msg_put_u32(actions, OVS_ACTION_ATTR_TUNNEL_POP, port);
return n;
}
}
{
struct ovs_action_push_tnl data;
int n;
n = ovs_parse_tnl_push(s, &data);
if (n > 0) {
odp_put_tnl_push_action(actions, &data);
return n;
} else if (n < 0) {
return n;
}
}
return -EINVAL;
}
/* Parses the string representation of datapath actions, in the format output
* by format_odp_action(). Returns 0 if successful, otherwise a positive errno
* value. On success, the ODP actions are appended to 'actions' as a series of
* Netlink attributes. On failure, no data is appended to 'actions'. Either
* way, 'actions''s data might be reallocated. */
int
odp_actions_from_string(const char *s, const struct simap *port_names,
struct ofpbuf *actions)
{
size_t old_size;
if (!strcasecmp(s, "drop")) {
return 0;
}
old_size = ofpbuf_size(actions);
for (;;) {
int retval;
s += strspn(s, delimiters);
if (!*s) {
return 0;
}
retval = parse_odp_action(s, port_names, actions);
if (retval < 0 || !strchr(delimiters, s[retval])) {
ofpbuf_set_size(actions, old_size);
return -retval;
}
s += retval;
}
return 0;
}
/* Returns the correct length of the payload for a flow key attribute of the
* specified 'type', -1 if 'type' is unknown, or -2 if the attribute's payload
* is variable length. */
static int
odp_flow_key_attr_len(uint16_t type)
{
if (type > OVS_KEY_ATTR_MAX) {
return -1;
}
switch ((enum ovs_key_attr) type) {
case OVS_KEY_ATTR_ENCAP: return -2;
case OVS_KEY_ATTR_PRIORITY: return 4;
case OVS_KEY_ATTR_SKB_MARK: return 4;
case OVS_KEY_ATTR_DP_HASH: return 4;
case OVS_KEY_ATTR_RECIRC_ID: return 4;
case OVS_KEY_ATTR_TUNNEL: return -2;
case OVS_KEY_ATTR_IN_PORT: return 4;
case OVS_KEY_ATTR_ETHERNET: return sizeof(struct ovs_key_ethernet);
case OVS_KEY_ATTR_VLAN: return sizeof(ovs_be16);
case OVS_KEY_ATTR_ETHERTYPE: return 2;
case OVS_KEY_ATTR_MPLS: return -2;
case OVS_KEY_ATTR_IPV4: return sizeof(struct ovs_key_ipv4);
case OVS_KEY_ATTR_IPV6: return sizeof(struct ovs_key_ipv6);
case OVS_KEY_ATTR_TCP: return sizeof(struct ovs_key_tcp);
case OVS_KEY_ATTR_TCP_FLAGS: return 2;
case OVS_KEY_ATTR_UDP: return sizeof(struct ovs_key_udp);
case OVS_KEY_ATTR_SCTP: return sizeof(struct ovs_key_sctp);
case OVS_KEY_ATTR_ICMP: return sizeof(struct ovs_key_icmp);
case OVS_KEY_ATTR_ICMPV6: return sizeof(struct ovs_key_icmpv6);
case OVS_KEY_ATTR_ARP: return sizeof(struct ovs_key_arp);
case OVS_KEY_ATTR_ND: return sizeof(struct ovs_key_nd);
case OVS_KEY_ATTR_UNSPEC:
case __OVS_KEY_ATTR_MAX:
return -1;
}
return -1;
}
static void
format_generic_odp_key(const struct nlattr *a, struct ds *ds)
{
size_t len = nl_attr_get_size(a);
if (len) {
const uint8_t *unspec;
unsigned int i;
unspec = nl_attr_get(a);
for (i = 0; i < len; i++) {
if (i) {
ds_put_char(ds, ' ');
}
ds_put_format(ds, "%02x", unspec[i]);
}
}
}
static const char *
ovs_frag_type_to_string(enum ovs_frag_type type)
{
switch (type) {
case OVS_FRAG_TYPE_NONE:
return "no";
case OVS_FRAG_TYPE_FIRST:
return "first";
case OVS_FRAG_TYPE_LATER:
return "later";
case __OVS_FRAG_TYPE_MAX:
default:
return "<error>";
}
}
static int
tunnel_key_attr_len(int type)
{
switch (type) {
case OVS_TUNNEL_KEY_ATTR_ID: return 8;
case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: return 4;
case OVS_TUNNEL_KEY_ATTR_IPV4_DST: return 4;
case OVS_TUNNEL_KEY_ATTR_TOS: return 1;
case OVS_TUNNEL_KEY_ATTR_TTL: return 1;
case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: return 0;
case OVS_TUNNEL_KEY_ATTR_CSUM: return 0;
case OVS_TUNNEL_KEY_ATTR_TP_SRC: return 2;
case OVS_TUNNEL_KEY_ATTR_TP_DST: return 2;
case OVS_TUNNEL_KEY_ATTR_OAM: return 0;
case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: return -2;
case __OVS_TUNNEL_KEY_ATTR_MAX:
return -1;
}
return -1;
}
#define GENEVE_OPT(class, type) ((OVS_FORCE uint32_t)(class) << 8 | (type))
static int
parse_geneve_opts(const struct nlattr *attr)
{
int opts_len = nl_attr_get_size(attr);
const struct geneve_opt *opt = nl_attr_get(attr);
while (opts_len > 0) {
int len;
if (opts_len < sizeof(*opt)) {
return -EINVAL;
}
len = sizeof(*opt) + opt->length * 4;
if (len > opts_len) {
return -EINVAL;
}
switch (GENEVE_OPT(opt->opt_class, opt->type)) {
default:
if (opt->type & GENEVE_CRIT_OPT_TYPE) {
return -EINVAL;
}
};
opt = opt + len / sizeof(*opt);
opts_len -= len;
};
return 0;
}
enum odp_key_fitness
odp_tun_key_from_attr(const struct nlattr *attr, struct flow_tnl *tun)
{
unsigned int left;
const struct nlattr *a;
bool ttl = false;
bool unknown = false;
NL_NESTED_FOR_EACH(a, left, attr) {
uint16_t type = nl_attr_type(a);
size_t len = nl_attr_get_size(a);
int expected_len = tunnel_key_attr_len(type);
if (len != expected_len && expected_len >= 0) {
return ODP_FIT_ERROR;
}
switch (type) {
case OVS_TUNNEL_KEY_ATTR_ID:
tun->tun_id = nl_attr_get_be64(a);
tun->flags |= FLOW_TNL_F_KEY;
break;
case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
tun->ip_src = nl_attr_get_be32(a);
break;
case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
tun->ip_dst = nl_attr_get_be32(a);
break;
case OVS_TUNNEL_KEY_ATTR_TOS:
tun->ip_tos = nl_attr_get_u8(a);
break;
case OVS_TUNNEL_KEY_ATTR_TTL:
tun->ip_ttl = nl_attr_get_u8(a);
ttl = true;
break;
case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
tun->flags |= FLOW_TNL_F_DONT_FRAGMENT;
break;
case OVS_TUNNEL_KEY_ATTR_CSUM:
tun->flags |= FLOW_TNL_F_CSUM;
break;
case OVS_TUNNEL_KEY_ATTR_TP_SRC:
tun->tp_src = nl_attr_get_be16(a);
break;
case OVS_TUNNEL_KEY_ATTR_TP_DST:
tun->tp_dst = nl_attr_get_be16(a);
break;
case OVS_TUNNEL_KEY_ATTR_OAM:
tun->flags |= FLOW_TNL_F_OAM;
break;
case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS: {
if (parse_geneve_opts(a)) {
return ODP_FIT_ERROR;
}
/* It is necessary to reproduce options exactly (including order)
* so it's easiest to just echo them back. */
unknown = true;
break;
}
default:
/* Allow this to show up as unexpected, if there are unknown
* tunnel attribute, eventually resulting in ODP_FIT_TOO_MUCH. */
unknown = true;
break;
}
}
if (!ttl) {
return ODP_FIT_ERROR;
}
if (unknown) {
return ODP_FIT_TOO_MUCH;
}
return ODP_FIT_PERFECT;
}
static void
tun_key_to_attr(struct ofpbuf *a, const struct flow_tnl *tun_key)
{
size_t tun_key_ofs;
tun_key_ofs = nl_msg_start_nested(a, OVS_KEY_ATTR_TUNNEL);
/* tun_id != 0 without FLOW_TNL_F_KEY is valid if tun_key is a mask. */
if (tun_key->tun_id || tun_key->flags & FLOW_TNL_F_KEY) {
nl_msg_put_be64(a, OVS_TUNNEL_KEY_ATTR_ID, tun_key->tun_id);
}
if (tun_key->ip_src) {
nl_msg_put_be32(a, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, tun_key->ip_src);
}
if (tun_key->ip_dst) {
nl_msg_put_be32(a, OVS_TUNNEL_KEY_ATTR_IPV4_DST, tun_key->ip_dst);
}
if (tun_key->ip_tos) {
nl_msg_put_u8(a, OVS_TUNNEL_KEY_ATTR_TOS, tun_key->ip_tos);
}
nl_msg_put_u8(a, OVS_TUNNEL_KEY_ATTR_TTL, tun_key->ip_ttl);
if (tun_key->flags & FLOW_TNL_F_DONT_FRAGMENT) {
nl_msg_put_flag(a, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT);
}
if (tun_key->flags & FLOW_TNL_F_CSUM) {
nl_msg_put_flag(a, OVS_TUNNEL_KEY_ATTR_CSUM);
}
if (tun_key->tp_src) {
nl_msg_put_be16(a, OVS_TUNNEL_KEY_ATTR_TP_SRC, tun_key->tp_src);
}
if (tun_key->tp_dst) {
nl_msg_put_be16(a, OVS_TUNNEL_KEY_ATTR_TP_DST, tun_key->tp_dst);
}
if (tun_key->flags & FLOW_TNL_F_OAM) {
nl_msg_put_flag(a, OVS_TUNNEL_KEY_ATTR_OAM);
}
nl_msg_end_nested(a, tun_key_ofs);
}
static bool
odp_mask_attr_is_wildcard(const struct nlattr *ma)
{
return is_all_zeros(nl_attr_get(ma), nl_attr_get_size(ma));
}
static bool
odp_mask_is_exact(enum ovs_key_attr attr, const void *mask, size_t size)
{
if (attr == OVS_KEY_ATTR_TCP_FLAGS) {
return TCP_FLAGS(*(ovs_be16 *)mask) == TCP_FLAGS(OVS_BE16_MAX);
}
if (attr == OVS_KEY_ATTR_IPV6) {
const struct ovs_key_ipv6 *ipv6_mask = mask;
return
((ipv6_mask->ipv6_label & htonl(IPV6_LABEL_MASK))
== htonl(IPV6_LABEL_MASK))
&& ipv6_mask->ipv6_proto == UINT8_MAX
&& ipv6_mask->ipv6_tclass == UINT8_MAX
&& ipv6_mask->ipv6_hlimit == UINT8_MAX
&& ipv6_mask->ipv6_frag == UINT8_MAX
&& ipv6_mask_is_exact((const struct in6_addr *)ipv6_mask->ipv6_src)
&& ipv6_mask_is_exact((const struct in6_addr *)ipv6_mask->ipv6_dst);
}
if (attr == OVS_KEY_ATTR_TUNNEL) {
const struct flow_tnl *tun_mask = mask;
return tun_mask->flags == FLOW_TNL_F_MASK
&& tun_mask->tun_id == OVS_BE64_MAX
&& tun_mask->ip_src == OVS_BE32_MAX
&& tun_mask->ip_dst == OVS_BE32_MAX
&& tun_mask->ip_tos == UINT8_MAX
&& tun_mask->ip_ttl == UINT8_MAX
&& tun_mask->tp_src == OVS_BE16_MAX
&& tun_mask->tp_dst == OVS_BE16_MAX;
}
if (attr == OVS_KEY_ATTR_ARP) {
/* ARP key has padding, ignore it. */
BUILD_ASSERT_DECL(sizeof(struct ovs_key_arp) == 24);
BUILD_ASSERT_DECL(offsetof(struct ovs_key_arp, arp_tha) == 10 + 6);
size = offsetof(struct ovs_key_arp, arp_tha) + ETH_ADDR_LEN;
ovs_assert(((uint16_t *)mask)[size/2] == 0);
}
return is_all_ones(mask, size);
}
static bool
odp_mask_attr_is_exact(const struct nlattr *ma)
{
struct flow_tnl tun_mask;
enum ovs_key_attr attr = nl_attr_type(ma);
const void *mask;
size_t size;
if (attr == OVS_KEY_ATTR_TUNNEL) {
memset(&tun_mask, 0, sizeof tun_mask);
odp_tun_key_from_attr(ma, &tun_mask);
mask = &tun_mask;
size = sizeof tun_mask;
} else {
mask = nl_attr_get(ma);
size = nl_attr_get_size(ma);
}
return odp_mask_is_exact(attr, mask, size);
}
void
odp_portno_names_set(struct hmap *portno_names, odp_port_t port_no,
char *port_name)
{
struct odp_portno_names *odp_portno_names;
odp_portno_names = xmalloc(sizeof *odp_portno_names);
odp_portno_names->port_no = port_no;
odp_portno_names->name = xstrdup(port_name);
hmap_insert(portno_names, &odp_portno_names->hmap_node,
hash_odp_port(port_no));
}
static char *
odp_portno_names_get(const struct hmap *portno_names, odp_port_t port_no)
{
struct odp_portno_names *odp_portno_names;
HMAP_FOR_EACH_IN_BUCKET (odp_portno_names, hmap_node,
hash_odp_port(port_no), portno_names) {
if (odp_portno_names->port_no == port_no) {
return odp_portno_names->name;
}
}
return NULL;
}
void
odp_portno_names_destroy(struct hmap *portno_names)
{
struct odp_portno_names *odp_portno_names, *odp_portno_names_next;
HMAP_FOR_EACH_SAFE (odp_portno_names, odp_portno_names_next,
hmap_node, portno_names) {
hmap_remove(portno_names, &odp_portno_names->hmap_node);
free(odp_portno_names->name);
free(odp_portno_names);
}
}
/* Format helpers. */
static void
format_eth(struct ds *ds, const char *name, const uint8_t key[ETH_ADDR_LEN],
const uint8_t (*mask)[ETH_ADDR_LEN], bool verbose)
{
bool mask_empty = mask && eth_addr_is_zero(*mask);
if (verbose || !mask_empty) {
bool mask_full = !mask || eth_mask_is_exact(*mask);
if (mask_full) {
ds_put_format(ds, "%s="ETH_ADDR_FMT",", name, ETH_ADDR_ARGS(key));
} else {
ds_put_format(ds, "%s=", name);
eth_format_masked(key, *mask, ds);
ds_put_char(ds, ',');
}
}
}
static void
format_be64(struct ds *ds, const char *name, ovs_be64 key,
const ovs_be64 *mask, bool verbose)
{
bool mask_empty = mask && !*mask;
if (verbose || !mask_empty) {
bool mask_full = !mask || *mask == OVS_BE64_MAX;
ds_put_format(ds, "%s=0x%"PRIx64, name, ntohll(key));
if (!mask_full) { /* Partially masked. */
ds_put_format(ds, "/%#"PRIx64, ntohll(*mask));
}
ds_put_char(ds, ',');
}
}
static void
format_ipv4(struct ds *ds, const char *name, ovs_be32 key,
const ovs_be32 *mask, bool verbose)
{
bool mask_empty = mask && !*mask;
if (verbose || !mask_empty) {
bool mask_full = !mask || *mask == OVS_BE32_MAX;
ds_put_format(ds, "%s="IP_FMT, name, IP_ARGS(key));
if (!mask_full) { /* Partially masked. */
ds_put_format(ds, "/"IP_FMT, IP_ARGS(*mask));
}
ds_put_char(ds, ',');
}
}
static void
format_ipv6(struct ds *ds, const char *name, const ovs_be32 key_[4],
const ovs_be32 (*mask_)[4], bool verbose)
{
char buf[INET6_ADDRSTRLEN];
const struct in6_addr *key = (const struct in6_addr *)key_;
const struct in6_addr *mask = mask_ ? (const struct in6_addr *)*mask_
: NULL;
bool mask_empty = mask && ipv6_mask_is_any(mask);
if (verbose || !mask_empty) {
bool mask_full = !mask || ipv6_mask_is_exact(mask);
inet_ntop(AF_INET6, key, buf, sizeof buf);
ds_put_format(ds, "%s=%s", name, buf);
if (!mask_full) { /* Partially masked. */
inet_ntop(AF_INET6, mask, buf, sizeof buf);
ds_put_format(ds, "/%s", buf);
}
ds_put_char(ds, ',');
}
}
static void
format_ipv6_label(struct ds *ds, const char *name, ovs_be32 key,
const ovs_be32 *mask, bool verbose)
{
bool mask_empty = mask && !*mask;
if (verbose || !mask_empty) {
bool mask_full = !mask
|| (*mask & htonl(IPV6_LABEL_MASK)) == htonl(IPV6_LABEL_MASK);
ds_put_format(ds, "%s=%#"PRIx32, name, ntohl(key));
if (!mask_full) { /* Partially masked. */
ds_put_format(ds, "/%#"PRIx32, ntohl(*mask));
}
ds_put_char(ds, ',');
}
}
static void
format_u8x(struct ds *ds, const char *name, uint8_t key,
const uint8_t *mask, bool verbose)
{
bool mask_empty = mask && !*mask;
if (verbose || !mask_empty) {
bool mask_full = !mask || *mask == UINT8_MAX;
ds_put_format(ds, "%s=%#"PRIx8, name, key);
if (!mask_full) { /* Partially masked. */
ds_put_format(ds, "/%#"PRIx8, *mask);
}
ds_put_char(ds, ',');
}
}
static void
format_u8u(struct ds *ds, const char *name, uint8_t key,
const uint8_t *mask, bool verbose)
{
bool mask_empty = mask && !*mask;
if (verbose || !mask_empty) {
bool mask_full = !mask || *mask == UINT8_MAX;
ds_put_format(ds, "%s=%"PRIu8, name, key);
if (!mask_full) { /* Partially masked. */
ds_put_format(ds, "/%#"PRIx8, *mask);
}
ds_put_char(ds, ',');
}
}
static void
format_be16(struct ds *ds, const char *name, ovs_be16 key,
const ovs_be16 *mask, bool verbose)
{
bool mask_empty = mask && !*mask;
if (verbose || !mask_empty) {
bool mask_full = !mask || *mask == OVS_BE16_MAX;
ds_put_format(ds, "%s=%"PRIu16, name, ntohs(key));
if (!mask_full) { /* Partially masked. */
ds_put_format(ds, "/%#"PRIx16, ntohs(*mask));
}
ds_put_char(ds, ',');
}
}
static void
format_tun_flags(struct ds *ds, const char *name, uint16_t key,
const uint16_t *mask, bool verbose)
{
bool mask_empty = mask && !*mask;
if (verbose || !mask_empty) {
bool mask_full = !mask || (*mask & FLOW_TNL_F_MASK) == FLOW_TNL_F_MASK;
ds_put_cstr(ds, name);
ds_put_char(ds, '(');
if (!mask_full) { /* Partially masked. */
format_flags_masked(ds, NULL, flow_tun_flag_to_string, key, *mask);
} else { /* Fully masked. */
format_flags(ds, flow_tun_flag_to_string, key, ',');
}
ds_put_cstr(ds, "),");
}
}
static void
format_frag(struct ds *ds, const char *name, uint8_t key,
const uint8_t *mask, bool verbose)
{
bool mask_empty = mask && !*mask;
/* ODP frag is an enumeration field; partial masks are not meaningful. */
if (verbose || !mask_empty) {
bool mask_full = !mask || *mask == UINT8_MAX;
if (!mask_full) { /* Partially masked. */
ds_put_format(ds, "error: partial mask not supported for frag (%#"
PRIx8"),", *mask);
} else {
ds_put_format(ds, "%s=%s,", name, ovs_frag_type_to_string(key));
}
}
}
#define MASK(PTR, FIELD) PTR ? &PTR->FIELD : NULL
static void
format_odp_key_attr(const struct nlattr *a, const struct nlattr *ma,
const struct hmap *portno_names, struct ds *ds,
bool verbose)
{
enum ovs_key_attr attr = nl_attr_type(a);
char namebuf[OVS_KEY_ATTR_BUFSIZE];
int expected_len;
bool is_exact;
is_exact = ma ? odp_mask_attr_is_exact(ma) : true;
ds_put_cstr(ds, ovs_key_attr_to_string(attr, namebuf, sizeof namebuf));
{
expected_len = odp_flow_key_attr_len(nl_attr_type(a));
if (expected_len != -2) {
bool bad_key_len = nl_attr_get_size(a) != expected_len;
bool bad_mask_len = ma && nl_attr_get_size(ma) != expected_len;
if (bad_key_len || bad_mask_len) {
if (bad_key_len) {
ds_put_format(ds, "(bad key length %"PRIuSIZE", expected %d)(",
nl_attr_get_size(a), expected_len);
}
format_generic_odp_key(a, ds);
if (ma) {
ds_put_char(ds, '/');
if (bad_mask_len) {
ds_put_format(ds, "(bad mask length %"PRIuSIZE", expected %d)(",
nl_attr_get_size(ma), expected_len);
}
format_generic_odp_key(ma, ds);
}
ds_put_char(ds, ')');
return;
}
}
}
ds_put_char(ds, '(');
switch (attr) {
case OVS_KEY_ATTR_ENCAP:
if (ma && nl_attr_get_size(ma) && nl_attr_get_size(a)) {
odp_flow_format(nl_attr_get(a), nl_attr_get_size(a),
nl_attr_get(ma), nl_attr_get_size(ma), NULL, ds,
verbose);
} else if (nl_attr_get_size(a)) {
odp_flow_format(nl_attr_get(a), nl_attr_get_size(a), NULL, 0, NULL,
ds, verbose);
}
break;
case OVS_KEY_ATTR_PRIORITY:
case OVS_KEY_ATTR_SKB_MARK:
case OVS_KEY_ATTR_DP_HASH:
case OVS_KEY_ATTR_RECIRC_ID:
ds_put_format(ds, "%#"PRIx32, nl_attr_get_u32(a));
if (!is_exact) {
ds_put_format(ds, "/%#"PRIx32, nl_attr_get_u32(ma));
}
break;
case OVS_KEY_ATTR_TUNNEL: {
struct flow_tnl key, mask_;
struct flow_tnl *mask = ma ? &mask_ : NULL;
if (mask) {
memset(mask, 0, sizeof *mask);
odp_tun_key_from_attr(ma, mask);
}
memset(&key, 0, sizeof key);
if (odp_tun_key_from_attr(a, &key) == ODP_FIT_ERROR) {
ds_put_format(ds, "error");
return;
}
format_be64(ds, "tun_id", key.tun_id, MASK(mask, tun_id), verbose);
format_ipv4(ds, "src", key.ip_src, MASK(mask, ip_src), verbose);
format_ipv4(ds, "dst", key.ip_dst, MASK(mask, ip_dst), verbose);
format_u8x(ds, "tos", key.ip_tos, MASK(mask, ip_tos), verbose);
format_u8u(ds, "ttl", key.ip_ttl, MASK(mask, ip_ttl), verbose);
format_be16(ds, "tp_src", key.tp_src, MASK(mask, tp_src), verbose);
format_be16(ds, "tp_dst", key.tp_dst, MASK(mask, tp_dst), verbose);
format_tun_flags(ds, "flags", key.flags, MASK(mask, flags), verbose);
ds_chomp(ds, ',');
break;
}
case OVS_KEY_ATTR_IN_PORT:
if (portno_names && verbose && is_exact) {
char *name = odp_portno_names_get(portno_names,
u32_to_odp(nl_attr_get_u32(a)));
if (name) {
ds_put_format(ds, "%s", name);
} else {
ds_put_format(ds, "%"PRIu32, nl_attr_get_u32(a));
}
} else {
ds_put_format(ds, "%"PRIu32, nl_attr_get_u32(a));
if (!is_exact) {
ds_put_format(ds, "/%#"PRIx32, nl_attr_get_u32(ma));
}
}
break;
case OVS_KEY_ATTR_ETHERNET: {
const struct ovs_key_ethernet *mask = ma ? nl_attr_get(ma) : NULL;
const struct ovs_key_ethernet *key = nl_attr_get(a);
format_eth(ds, "src", key->eth_src, MASK(mask, eth_src), verbose);
format_eth(ds, "dst", key->eth_dst, MASK(mask, eth_dst), verbose);
ds_chomp(ds, ',');
break;
}
case OVS_KEY_ATTR_VLAN:
format_vlan_tci(ds, nl_attr_get_be16(a),
ma ? nl_attr_get_be16(ma) : OVS_BE16_MAX, verbose);
break;
case OVS_KEY_ATTR_MPLS: {
const struct ovs_key_mpls *mpls_key = nl_attr_get(a);
const struct ovs_key_mpls *mpls_mask = NULL;
size_t size = nl_attr_get_size(a);
if (!size || size % sizeof *mpls_key) {
ds_put_format(ds, "(bad key length %"PRIuSIZE")", size);
return;
}
if (!is_exact) {
mpls_mask = nl_attr_get(ma);
if (size != nl_attr_get_size(ma)) {
ds_put_format(ds, "(key length %"PRIuSIZE" != "
"mask length %"PRIuSIZE")",
size, nl_attr_get_size(ma));
return;
}
}
format_mpls(ds, mpls_key, mpls_mask, size / sizeof *mpls_key);
break;
}
case OVS_KEY_ATTR_ETHERTYPE:
ds_put_format(ds, "0x%04"PRIx16, ntohs(nl_attr_get_be16(a)));
if (!is_exact) {
ds_put_format(ds, "/0x%04"PRIx16, ntohs(nl_attr_get_be16(ma)));
}
break;
case OVS_KEY_ATTR_IPV4: {
const struct ovs_key_ipv4 *key = nl_attr_get(a);
const struct ovs_key_ipv4 *mask = ma ? nl_attr_get(ma) : NULL;
format_ipv4(ds, "src", key->ipv4_src, MASK(mask, ipv4_src), verbose);
format_ipv4(ds, "dst", key->ipv4_dst, MASK(mask, ipv4_dst), verbose);
format_u8u(ds, "proto", key->ipv4_proto, MASK(mask, ipv4_proto),
verbose);
format_u8x(ds, "tos", key->ipv4_tos, MASK(mask, ipv4_tos), verbose);
format_u8u(ds, "ttl", key->ipv4_ttl, MASK(mask, ipv4_ttl), verbose);
format_frag(ds, "frag", key->ipv4_frag, MASK(mask, ipv4_frag),
verbose);
ds_chomp(ds, ',');
break;
}
case OVS_KEY_ATTR_IPV6: {
const struct ovs_key_ipv6 *key = nl_attr_get(a);
const struct ovs_key_ipv6 *mask = ma ? nl_attr_get(ma) : NULL;
format_ipv6(ds, "src", key->ipv6_src, MASK(mask, ipv6_src), verbose);
format_ipv6(ds, "dst", key->ipv6_dst, MASK(mask, ipv6_dst), verbose);
format_ipv6_label(ds, "label", key->ipv6_label, MASK(mask, ipv6_label),
verbose);
format_u8u(ds, "proto", key->ipv6_proto, MASK(mask, ipv6_proto),
verbose);
format_u8x(ds, "tclass", key->ipv6_tclass, MASK(mask, ipv6_tclass),
verbose);
format_u8u(ds, "hlimit", key->ipv6_hlimit, MASK(mask, ipv6_hlimit),
verbose);
format_frag(ds, "frag", key->ipv6_frag, MASK(mask, ipv6_frag),
verbose);
ds_chomp(ds, ',');
break;
}
/* These have the same structure and format. */
case OVS_KEY_ATTR_TCP:
case OVS_KEY_ATTR_UDP:
case OVS_KEY_ATTR_SCTP: {
const struct ovs_key_tcp *key = nl_attr_get(a);
const struct ovs_key_tcp *mask = ma ? nl_attr_get(ma) : NULL;
format_be16(ds, "src", key->tcp_src, MASK(mask, tcp_src), verbose);
format_be16(ds, "dst", key->tcp_dst, MASK(mask, tcp_dst), verbose);
ds_chomp(ds, ',');
break;
}
case OVS_KEY_ATTR_TCP_FLAGS:
if (!is_exact) {
format_flags_masked(ds, NULL, packet_tcp_flag_to_string,
ntohs(nl_attr_get_be16(a)),
ntohs(nl_attr_get_be16(ma)));
} else {
format_flags(ds, packet_tcp_flag_to_string,
ntohs(nl_attr_get_be16(a)), ',');
}
break;
case OVS_KEY_ATTR_ICMP: {
const struct ovs_key_icmp *key = nl_attr_get(a);
const struct ovs_key_icmp *mask = ma ? nl_attr_get(ma) : NULL;
format_u8u(ds, "type", key->icmp_type, MASK(mask, icmp_type), verbose);
format_u8u(ds, "code", key->icmp_code, MASK(mask, icmp_code), verbose);
ds_chomp(ds, ',');
break;
}
case OVS_KEY_ATTR_ICMPV6: {
const struct ovs_key_icmpv6 *key = nl_attr_get(a);
const struct ovs_key_icmpv6 *mask = ma ? nl_attr_get(ma) : NULL;
format_u8u(ds, "type", key->icmpv6_type, MASK(mask, icmpv6_type),
verbose);
format_u8u(ds, "code", key->icmpv6_code, MASK(mask, icmpv6_code),
verbose);
ds_chomp(ds, ',');
break;
}
case OVS_KEY_ATTR_ARP: {
const struct ovs_key_arp *mask = ma ? nl_attr_get(ma) : NULL;
const struct ovs_key_arp *key = nl_attr_get(a);
format_ipv4(ds, "sip", key->arp_sip, MASK(mask, arp_sip), verbose);
format_ipv4(ds, "tip", key->arp_tip, MASK(mask, arp_tip), verbose);
format_be16(ds, "op", key->arp_op, MASK(mask, arp_op), verbose);
format_eth(ds, "sha", key->arp_sha, MASK(mask, arp_sha), verbose);
format_eth(ds, "tha", key->arp_tha, MASK(mask, arp_tha), verbose);
ds_chomp(ds, ',');
break;
}
case OVS_KEY_ATTR_ND: {
const struct ovs_key_nd *mask = ma ? nl_attr_get(ma) : NULL;
const struct ovs_key_nd *key = nl_attr_get(a);
format_ipv6(ds, "target", key->nd_target, MASK(mask, nd_target),
verbose);
format_eth(ds, "sll", key->nd_sll, MASK(mask, nd_sll), verbose);
format_eth(ds, "tll", key->nd_tll, MASK(mask, nd_tll), verbose);
ds_chomp(ds, ',');
break;
}
case OVS_KEY_ATTR_UNSPEC:
case __OVS_KEY_ATTR_MAX:
default:
format_generic_odp_key(a, ds);
if (!is_exact) {
ds_put_char(ds, '/');
format_generic_odp_key(ma, ds);
}
break;
}
ds_put_char(ds, ')');
}
static struct nlattr *
generate_all_wildcard_mask(struct ofpbuf *ofp, const struct nlattr *key)
{
const struct nlattr *a;
unsigned int left;
int type = nl_attr_type(key);
int size = nl_attr_get_size(key);
if (odp_flow_key_attr_len(type) >=0) {
nl_msg_put_unspec_zero(ofp, type, size);
} else {
size_t nested_mask;
nested_mask = nl_msg_start_nested(ofp, type);
NL_ATTR_FOR_EACH(a, left, key, nl_attr_get_size(key)) {
generate_all_wildcard_mask(ofp, nl_attr_get(a));
}
nl_msg_end_nested(ofp, nested_mask);
}
return ofpbuf_base(ofp);
}
int
odp_ufid_from_string(const char *s_, ovs_u128 *ufid)
{
const char *s = s_;
if (ovs_scan(s, "ufid:")) {
size_t n;
s += 5;
if (ovs_scan(s, "0x")) {
s += 2;
}
n = strspn(s, "0123456789abcdefABCDEF");
if (n != 32) {
return -EINVAL;
}
if (!ovs_scan(s, "%16"SCNx64"%16"SCNx64, &ufid->u64.hi,
&ufid->u64.lo)) {
return -EINVAL;
}
s += n;
s += strspn(s, delimiters);
return s - s_;
}
return 0;
}
void
odp_format_ufid(const ovs_u128 *ufid, struct ds *ds)
{
ds_put_format(ds, "ufid:%016"PRIx64"%016"PRIx64, ufid->u64.hi,
ufid->u64.lo);
}
/* Appends to 'ds' a string representation of the 'key_len' bytes of
* OVS_KEY_ATTR_* attributes in 'key'. If non-null, additionally formats the
* 'mask_len' bytes of 'mask' which apply to 'key'. If 'portno_names' is
* non-null and 'verbose' is true, translates odp port number to its name. */
void
odp_flow_format(const struct nlattr *key, size_t key_len,
const struct nlattr *mask, size_t mask_len,
const struct hmap *portno_names, struct ds *ds, bool verbose)
{
if (key_len) {
const struct nlattr *a;
unsigned int left;
bool has_ethtype_key = false;
const struct nlattr *ma = NULL;
struct ofpbuf ofp;
bool first_field = true;
ofpbuf_init(&ofp, 100);
NL_ATTR_FOR_EACH (a, left, key, key_len) {
bool is_nested_attr;
bool is_wildcard = false;
int attr_type = nl_attr_type(a);
if (attr_type == OVS_KEY_ATTR_ETHERTYPE) {
has_ethtype_key = true;
}
is_nested_attr = (odp_flow_key_attr_len(attr_type) == -2);
if (mask && mask_len) {
ma = nl_attr_find__(mask, mask_len, nl_attr_type(a));
is_wildcard = ma ? odp_mask_attr_is_wildcard(ma) : true;
}
if (verbose || !is_wildcard || is_nested_attr) {
if (is_wildcard && !ma) {
ma = generate_all_wildcard_mask(&ofp, a);
}
if (!first_field) {
ds_put_char(ds, ',');
}
format_odp_key_attr(a, ma, portno_names, ds, verbose);
first_field = false;
}
ofpbuf_clear(&ofp);
}
ofpbuf_uninit(&ofp);
if (left) {
int i;
if (left == key_len) {
ds_put_cstr(ds, "<empty>");
}
ds_put_format(ds, ",***%u leftover bytes*** (", left);
for (i = 0; i < left; i++) {
ds_put_format(ds, "%02x", ((const uint8_t *) a)[i]);
}
ds_put_char(ds, ')');
}
if (!has_ethtype_key) {
ma = nl_attr_find__(mask, mask_len, OVS_KEY_ATTR_ETHERTYPE);
if (ma) {
ds_put_format(ds, ",eth_type(0/0x%04"PRIx16")",
ntohs(nl_attr_get_be16(ma)));
}
}
} else {
ds_put_cstr(ds, "<empty>");
}
}
/* Appends to 'ds' a string representation of the 'key_len' bytes of
* OVS_KEY_ATTR_* attributes in 'key'. */
void
odp_flow_key_format(const struct nlattr *key,
size_t key_len, struct ds *ds)
{
odp_flow_format(key, key_len, NULL, 0, NULL, ds, true);
}
static bool
ovs_frag_type_from_string(const char *s, enum ovs_frag_type *type)
{
if (!strcasecmp(s, "no")) {
*type = OVS_FRAG_TYPE_NONE;
} else if (!strcasecmp(s, "first")) {
*type = OVS_FRAG_TYPE_FIRST;
} else if (!strcasecmp(s, "later")) {
*type = OVS_FRAG_TYPE_LATER;
} else {
return false;
}
return true;
}
/* Parsing. */
static int
scan_eth(const char *s, uint8_t (*key)[ETH_ADDR_LEN],
uint8_t (*mask)[ETH_ADDR_LEN])
{
int n;
if (ovs_scan(s, ETH_ADDR_SCAN_FMT"%n", ETH_ADDR_SCAN_ARGS(*key), &n)) {
int len = n;
if (mask) {
if (ovs_scan(s + len, "/"ETH_ADDR_SCAN_FMT"%n",
ETH_ADDR_SCAN_ARGS(*mask), &n)) {
len += n;
} else {
memset(mask, 0xff, sizeof *mask);
}
}
return len;
}
return 0;
}
static int
scan_ipv4(const char *s, ovs_be32 *key, ovs_be32 *mask)
{
int n;
if (ovs_scan(s, IP_SCAN_FMT"%n", IP_SCAN_ARGS(key), &n)) {
int len = n;
if (mask) {
if (ovs_scan(s + len, "/"IP_SCAN_FMT"%n",
IP_SCAN_ARGS(mask), &n)) {
len += n;
} else {
*mask = OVS_BE32_MAX;
}
}
return len;
}
return 0;
}
static int
scan_ipv6(const char *s, ovs_be32 (*key)[4], ovs_be32 (*mask)[4])
{
int n;
char ipv6_s[IPV6_SCAN_LEN + 1];
if (ovs_scan(s, IPV6_SCAN_FMT"%n", ipv6_s, &n)
&& inet_pton(AF_INET6, ipv6_s, key) == 1) {
int len = n;
if (mask) {
if (ovs_scan(s + len, "/"IPV6_SCAN_FMT"%n", ipv6_s, &n)
&& inet_pton(AF_INET6, ipv6_s, mask) == 1) {
len += n;
} else {
memset(mask, 0xff, sizeof *mask);
}
}
return len;
}
return 0;
}
static int
scan_ipv6_label(const char *s, ovs_be32 *key, ovs_be32 *mask)
{
int key_, mask_;
int n;
if (ovs_scan(s, "%i%n", &key_, &n)
&& (key_ & ~IPV6_LABEL_MASK) == 0) {
int len = n;
*key = htonl(key_);
if (mask) {
if (ovs_scan(s + len, "/%i%n", &mask_, &n)
&& (mask_ & ~IPV6_LABEL_MASK) == 0) {
len += n;
*mask = htonl(mask_);
} else {
*mask = htonl(IPV6_LABEL_MASK);
}
}
return len;
}
return 0;
}
static int
scan_u8(const char *s, uint8_t *key, uint8_t *mask)
{
int n;
if (ovs_scan(s, "%"SCNi8"%n", key, &n)) {
int len = n;
if (mask) {
if (ovs_scan(s + len, "/%"SCNi8"%n", mask, &n)) {
len += n;
} else {
*mask = UINT8_MAX;
}
}
return len;
}
return 0;
}
static int
scan_u32(const char *s, uint32_t *key, uint32_t *mask)
{
int n;
if (ovs_scan(s, "%"SCNi32"%n", key, &n)) {
int len = n;
if (mask) {
if (ovs_scan(s + len, "/%"SCNi32"%n", mask, &n)) {
len += n;
} else {
*mask = UINT32_MAX;
}
}
return len;
}
return 0;
}
static int
scan_be16(const char *s, ovs_be16 *key, ovs_be16 *mask)
{
uint16_t key_, mask_;
int n;
if (ovs_scan(s, "%"SCNi16"%n", &key_, &n)) {
int len = n;
*key = htons(key_);
if (mask) {
if (ovs_scan(s + len, "/%"SCNi16"%n", &mask_, &n)) {
len += n;
*mask = htons(mask_);
} else {
*mask = OVS_BE16_MAX;
}
}
return len;
}
return 0;
}
static int
scan_be64(const char *s, ovs_be64 *key, ovs_be64 *mask)
{
uint64_t key_, mask_;
int n;
if (ovs_scan(s, "%"SCNi64"%n", &key_, &n)) {
int len = n;
*key = htonll(key_);
if (mask) {
if (ovs_scan(s + len, "/%"SCNi64"%n", &mask_, &n)) {
len += n;
*mask = htonll(mask_);
} else {
*mask = OVS_BE64_MAX;
}
}
return len;
}
return 0;
}
static int
scan_tun_flags(const char *s, uint16_t *key, uint16_t *mask)
{
uint32_t flags, fmask;
int n;
n = parse_flags(s, flow_tun_flag_to_string, &flags,
FLOW_TNL_F_MASK, mask ? &fmask : NULL);
if (n >= 0 && s[n] == ')') {
*key = flags;
if (mask) {
*mask = fmask;
}
return n + 1;
}
return 0;
}
static int
scan_tcp_flags(const char *s, ovs_be16 *key, ovs_be16 *mask)
{
uint32_t flags, fmask;
int n;
n = parse_flags(s, packet_tcp_flag_to_string, &flags,
TCP_FLAGS(OVS_BE16_MAX), mask ? &fmask : NULL);
if (n >= 0) {
*key = htons(flags);
if (mask) {
*mask = htons(fmask);
}
return n;
}
return 0;
}
static int
scan_frag(const char *s, uint8_t *key, uint8_t *mask)
{
int n;
char frag[8];
enum ovs_frag_type frag_type;
if (ovs_scan(s, "%7[a-z]%n", frag, &n)
&& ovs_frag_type_from_string(frag, &frag_type)) {
int len = n;
*key = frag_type;
if (mask) {
*mask = UINT8_MAX;
}
return len;
}
return 0;
}
static int
scan_port(const char *s, uint32_t *key, uint32_t *mask,
const struct simap *port_names)
{
int n;
if (ovs_scan(s, "%"SCNi32"%n", key, &n)) {
int len = n;
if (mask) {
if (ovs_scan(s + len, "/%"SCNi32"%n", mask, &n)) {
len += n;
} else {
*mask = UINT32_MAX;
}
}
return len;
} else if (port_names) {
const struct simap_node *node;
int len;
len = strcspn(s, ")");
node = simap_find_len(port_names, s, len);
if (node) {
*key = node->data;
if (mask) {
*mask = UINT32_MAX;
}
return len;
}
}
return 0;
}
/* Helper for vlan parsing. */
struct ovs_key_vlan__ {
ovs_be16 tci;
};
static bool
set_be16_bf(ovs_be16 *bf, uint8_t bits, uint8_t offset, uint16_t value)
{
const uint16_t mask = ((1U << bits) - 1) << offset;
if (value >> bits) {
return false;
}
*bf = htons((ntohs(*bf) & ~mask) | (value << offset));
return true;
}
static int
scan_be16_bf(const char *s, ovs_be16 *key, ovs_be16 *mask, uint8_t bits,
uint8_t offset)
{
uint16_t key_, mask_;
int n;
if (ovs_scan(s, "%"SCNi16"%n", &key_, &n)) {
int len = n;
if (set_be16_bf(key, bits, offset, key_)) {
if (mask) {
if (ovs_scan(s + len, "/%"SCNi16"%n", &mask_, &n)) {
len += n;
if (!set_be16_bf(mask, bits, offset, mask_)) {
return 0;
}
} else {
*mask |= htons(((1U << bits) - 1) << offset);
}
}
return len;
}
}
return 0;
}
static int
scan_vid(const char *s, ovs_be16 *key, ovs_be16 *mask)
{
return scan_be16_bf(s, key, mask, 12, VLAN_VID_SHIFT);
}
static int
scan_pcp(const char *s, ovs_be16 *key, ovs_be16 *mask)
{
return scan_be16_bf(s, key, mask, 3, VLAN_PCP_SHIFT);
}
static int
scan_cfi(const char *s, ovs_be16 *key, ovs_be16 *mask)
{
return scan_be16_bf(s, key, mask, 1, VLAN_CFI_SHIFT);
}
/* For MPLS. */
static bool
set_be32_bf(ovs_be32 *bf, uint8_t bits, uint8_t offset, uint32_t value)
{
const uint32_t mask = ((1U << bits) - 1) << offset;
if (value >> bits) {
return false;
}
*bf = htonl((ntohl(*bf) & ~mask) | (value << offset));
return true;
}
static int
scan_be32_bf(const char *s, ovs_be32 *key, ovs_be32 *mask, uint8_t bits,
uint8_t offset)
{
uint32_t key_, mask_;
int n;
if (ovs_scan(s, "%"SCNi32"%n", &key_, &n)) {
int len = n;
if (set_be32_bf(key, bits, offset, key_)) {
if (mask) {
if (ovs_scan(s + len, "/%"SCNi32"%n", &mask_, &n)) {
len += n;
if (!set_be32_bf(mask, bits, offset, mask_)) {
return 0;
}
} else {
*mask |= htonl(((1U << bits) - 1) << offset);
}
}
return len;
}
}
return 0;
}
static int
scan_mpls_label(const char *s, ovs_be32 *key, ovs_be32 *mask)
{
return scan_be32_bf(s, key, mask, 20, MPLS_LABEL_SHIFT);
}
static int
scan_mpls_tc(const char *s, ovs_be32 *key, ovs_be32 *mask)
{
return scan_be32_bf(s, key, mask, 3, MPLS_TC_SHIFT);
}
static int
scan_mpls_ttl(const char *s, ovs_be32 *key, ovs_be32 *mask)
{
return scan_be32_bf(s, key, mask, 8, MPLS_TTL_SHIFT);
}
static int
scan_mpls_bos(const char *s, ovs_be32 *key, ovs_be32 *mask)
{
return scan_be32_bf(s, key, mask, 1, MPLS_BOS_SHIFT);
}
/* ATTR is compile-time constant, so only the case with correct data type
* will be used. However, the compiler complains about the data type for
* the other cases, so we must cast to make the compiler silent. */
#define SCAN_PUT_ATTR(BUF, ATTR, DATA) \
if ((ATTR) == OVS_KEY_ATTR_TUNNEL) { \
tun_key_to_attr(BUF, (const struct flow_tnl *)(void *)&(DATA)); \
} else { \
nl_msg_put_unspec(BUF, ATTR, &(DATA), sizeof (DATA)); \
}
#define SCAN_IF(NAME) \
if (strncmp(s, NAME, strlen(NAME)) == 0) { \
const char *start = s; \
int len; \
\
s += strlen(NAME)
/* Usually no special initialization is needed. */
#define SCAN_BEGIN(NAME, TYPE) \
SCAN_IF(NAME); \
TYPE skey, smask; \
memset(&skey, 0, sizeof skey); \
memset(&smask, 0, sizeof smask); \
do { \
len = 0;
/* VLAN needs special initialization. */
#define SCAN_BEGIN_INIT(NAME, TYPE, KEY_INIT, MASK_INIT) \
SCAN_IF(NAME); \
TYPE skey = KEY_INIT; \
TYPE smask = MASK_INIT; \
do { \
len = 0;
/* Scan unnamed entry as 'TYPE' */
#define SCAN_TYPE(TYPE, KEY, MASK) \
len = scan_##TYPE(s, KEY, MASK); \
if (len == 0) { \
return -EINVAL; \
} \
s += len
/* Scan named ('NAME') entry 'FIELD' as 'TYPE'. */
#define SCAN_FIELD(NAME, TYPE, FIELD) \
if (strncmp(s, NAME, strlen(NAME)) == 0) { \
s += strlen(NAME); \
SCAN_TYPE(TYPE, &skey.FIELD, mask ? &smask.FIELD : NULL); \
continue; \
}
#define SCAN_FINISH() \
} while (*s++ == ',' && len != 0); \
if (s[-1] != ')') { \
return -EINVAL; \
}
#define SCAN_FINISH_SINGLE() \
} while (false); \
if (*s++ != ')') { \
return -EINVAL; \
}
#define SCAN_PUT(ATTR) \
if (!mask || !is_all_zeros(&smask, sizeof smask)) { \
SCAN_PUT_ATTR(key, ATTR, skey); \
if (mask) { \
SCAN_PUT_ATTR(mask, ATTR, smask); \
} \
}
#define SCAN_END(ATTR) \
SCAN_FINISH(); \
SCAN_PUT(ATTR); \
return s - start; \
}
#define SCAN_END_SINGLE(ATTR) \
SCAN_FINISH_SINGLE(); \
SCAN_PUT(ATTR); \
return s - start; \
}
#define SCAN_SINGLE(NAME, TYPE, SCAN_AS, ATTR) \
SCAN_BEGIN(NAME, TYPE) { \
SCAN_TYPE(SCAN_AS, &skey, &smask); \
} SCAN_END_SINGLE(ATTR)
#define SCAN_SINGLE_NO_MASK(NAME, TYPE, SCAN_AS, ATTR) \
SCAN_BEGIN(NAME, TYPE) { \
SCAN_TYPE(SCAN_AS, &skey, NULL); \
} SCAN_END_SINGLE(ATTR)
/* scan_port needs one extra argument. */
#define SCAN_SINGLE_PORT(NAME, TYPE, ATTR) \
SCAN_BEGIN(NAME, TYPE) { \
len = scan_port(s, &skey, &smask, port_names); \
if (len == 0) { \
return -EINVAL; \
} \
s += len; \
} SCAN_END_SINGLE(ATTR)
static int
parse_odp_key_mask_attr(const char *s, const struct simap *port_names,
struct ofpbuf *key, struct ofpbuf *mask)
{
SCAN_SINGLE("skb_priority(", uint32_t, u32, OVS_KEY_ATTR_PRIORITY);
SCAN_SINGLE("skb_mark(", uint32_t, u32, OVS_KEY_ATTR_SKB_MARK);
SCAN_SINGLE_NO_MASK("recirc_id(", uint32_t, u32, OVS_KEY_ATTR_RECIRC_ID);
SCAN_SINGLE("dp_hash(", uint32_t, u32, OVS_KEY_ATTR_DP_HASH);
SCAN_BEGIN("tunnel(", struct flow_tnl) {
SCAN_FIELD("tun_id=", be64, tun_id);
SCAN_FIELD("src=", ipv4, ip_src);
SCAN_FIELD("dst=", ipv4, ip_dst);
SCAN_FIELD("tos=", u8, ip_tos);
SCAN_FIELD("ttl=", u8, ip_ttl);
SCAN_FIELD("tp_src=", be16, tp_src);
SCAN_FIELD("tp_dst=", be16, tp_dst);
SCAN_FIELD("flags(", tun_flags, flags);
} SCAN_END(OVS_KEY_ATTR_TUNNEL);
SCAN_SINGLE_PORT("in_port(", uint32_t, OVS_KEY_ATTR_IN_PORT);
SCAN_BEGIN("eth(", struct ovs_key_ethernet) {
SCAN_FIELD("src=", eth, eth_src);
SCAN_FIELD("dst=", eth, eth_dst);
} SCAN_END(OVS_KEY_ATTR_ETHERNET);
SCAN_BEGIN_INIT("vlan(", struct ovs_key_vlan__,
{ htons(VLAN_CFI) }, { htons(VLAN_CFI) }) {
SCAN_FIELD("vid=", vid, tci);
SCAN_FIELD("pcp=", pcp, tci);
SCAN_FIELD("cfi=", cfi, tci);
} SCAN_END(OVS_KEY_ATTR_VLAN);
SCAN_SINGLE("eth_type(", ovs_be16, be16, OVS_KEY_ATTR_ETHERTYPE);
SCAN_BEGIN("mpls(", struct ovs_key_mpls) {
SCAN_FIELD("label=", mpls_label, mpls_lse);
SCAN_FIELD("tc=", mpls_tc, mpls_lse);
SCAN_FIELD("ttl=", mpls_ttl, mpls_lse);
SCAN_FIELD("bos=", mpls_bos, mpls_lse);
} SCAN_END(OVS_KEY_ATTR_MPLS);
SCAN_BEGIN("ipv4(", struct ovs_key_ipv4) {
SCAN_FIELD("src=", ipv4, ipv4_src);
SCAN_FIELD("dst=", ipv4, ipv4_dst);
SCAN_FIELD("proto=", u8, ipv4_proto);
SCAN_FIELD("tos=", u8, ipv4_tos);
SCAN_FIELD("ttl=", u8, ipv4_ttl);
SCAN_FIELD("frag=", frag, ipv4_frag);
} SCAN_END(OVS_KEY_ATTR_IPV4);
SCAN_BEGIN("ipv6(", struct ovs_key_ipv6) {
SCAN_FIELD("src=", ipv6, ipv6_src);
SCAN_FIELD("dst=", ipv6, ipv6_dst);
SCAN_FIELD("label=", ipv6_label, ipv6_label);
SCAN_FIELD("proto=", u8, ipv6_proto);
SCAN_FIELD("tclass=", u8, ipv6_tclass);
SCAN_FIELD("hlimit=", u8, ipv6_hlimit);
SCAN_FIELD("frag=", frag, ipv6_frag);
} SCAN_END(OVS_KEY_ATTR_IPV6);
SCAN_BEGIN("tcp(", struct ovs_key_tcp) {
SCAN_FIELD("src=", be16, tcp_src);
SCAN_FIELD("dst=", be16, tcp_dst);
} SCAN_END(OVS_KEY_ATTR_TCP);
SCAN_SINGLE("tcp_flags(", ovs_be16, tcp_flags, OVS_KEY_ATTR_TCP_FLAGS);
SCAN_BEGIN("udp(", struct ovs_key_udp) {
SCAN_FIELD("src=", be16, udp_src);
SCAN_FIELD("dst=", be16, udp_dst);
} SCAN_END(OVS_KEY_ATTR_UDP);
SCAN_BEGIN("sctp(", struct ovs_key_sctp) {
SCAN_FIELD("src=", be16, sctp_src);
SCAN_FIELD("dst=", be16, sctp_dst);
} SCAN_END(OVS_KEY_ATTR_SCTP);
SCAN_BEGIN("icmp(", struct ovs_key_icmp) {
SCAN_FIELD("type=", u8, icmp_type);
SCAN_FIELD("code=", u8, icmp_code);
} SCAN_END(OVS_KEY_ATTR_ICMP);
SCAN_BEGIN("icmpv6(", struct ovs_key_icmpv6) {
SCAN_FIELD("type=", u8, icmpv6_type);
SCAN_FIELD("code=", u8, icmpv6_code);
} SCAN_END(OVS_KEY_ATTR_ICMPV6);
SCAN_BEGIN("arp(", struct ovs_key_arp) {
SCAN_FIELD("sip=", ipv4, arp_sip);
SCAN_FIELD("tip=", ipv4, arp_tip);
SCAN_FIELD("op=", be16, arp_op);
SCAN_FIELD("sha=", eth, arp_sha);
SCAN_FIELD("tha=", eth, arp_tha);
} SCAN_END(OVS_KEY_ATTR_ARP);
SCAN_BEGIN("nd(", struct ovs_key_nd) {
SCAN_FIELD("target=", ipv6, nd_target);
SCAN_FIELD("sll=", eth, nd_sll);
SCAN_FIELD("tll=", eth, nd_tll);
} SCAN_END(OVS_KEY_ATTR_ND);
/* Encap open-coded. */
if (!strncmp(s, "encap(", 6)) {
const char *start = s;
size_t encap, encap_mask = 0;
encap = nl_msg_start_nested(key, OVS_KEY_ATTR_ENCAP);
if (mask) {
encap_mask = nl_msg_start_nested(mask, OVS_KEY_ATTR_ENCAP);
}
s += 6;
for (;;) {
int retval;
s += strspn(s, delimiters);
if (!*s) {
return -EINVAL;
} else if (*s == ')') {
break;
}
retval = parse_odp_key_mask_attr(s, port_names, key, mask);
if (retval < 0) {
return retval;
}
s += retval;
}
s++;
nl_msg_end_nested(key, encap);
if (mask) {
nl_msg_end_nested(mask, encap_mask);
}
return s - start;
}
return -EINVAL;
}
/* Parses the string representation of a datapath flow key, in the
* format output by odp_flow_key_format(). Returns 0 if successful,
* otherwise a positive errno value. On success, the flow key is
* appended to 'key' as a series of Netlink attributes. On failure, no
* data is appended to 'key'. Either way, 'key''s data might be
* reallocated.
*
* If 'port_names' is nonnull, it points to an simap that maps from a port name
* to a port number. (Port names may be used instead of port numbers in
* in_port.)
*
* On success, the attributes appended to 'key' are individually syntactically
* valid, but they may not be valid as a sequence. 'key' might, for example,
* have duplicated keys. odp_flow_key_to_flow() will detect those errors. */
int
odp_flow_from_string(const char *s, const struct simap *port_names,
struct ofpbuf *key, struct ofpbuf *mask)
{
const size_t old_size = ofpbuf_size(key);
for (;;) {
int retval;
s += strspn(s, delimiters);
if (!*s) {
return 0;
}
retval = parse_odp_key_mask_attr(s, port_names, key, mask);
if (retval < 0) {
ofpbuf_set_size(key, old_size);
return -retval;
}
s += retval;
}
return 0;
}
static uint8_t
ovs_to_odp_frag(uint8_t nw_frag, bool is_mask)
{
if (is_mask) {
/* Netlink interface 'enum ovs_frag_type' is an 8-bit enumeration type,
* not a set of flags or bitfields. Hence, if the struct flow nw_frag
* mask, which is a set of bits, has the FLOW_NW_FRAG_ANY as zero, we
* must use a zero mask for the netlink frag field, and all ones mask
* otherwise. */
return (nw_frag & FLOW_NW_FRAG_ANY) ? UINT8_MAX : 0;
}
return !(nw_frag & FLOW_NW_FRAG_ANY) ? OVS_FRAG_TYPE_NONE
: nw_frag & FLOW_NW_FRAG_LATER ? OVS_FRAG_TYPE_LATER
: OVS_FRAG_TYPE_FIRST;
}
static void get_ethernet_key(const struct flow *, struct ovs_key_ethernet *);
static void put_ethernet_key(const struct ovs_key_ethernet *, struct flow *);
static void get_ipv4_key(const struct flow *, struct ovs_key_ipv4 *,
bool is_mask);
static void put_ipv4_key(const struct ovs_key_ipv4 *, struct flow *,
bool is_mask);
static void get_ipv6_key(const struct flow *, struct ovs_key_ipv6 *,
bool is_mask);
static void put_ipv6_key(const struct ovs_key_ipv6 *, struct flow *,
bool is_mask);
static void get_arp_key(const struct flow *, struct ovs_key_arp *);
static void put_arp_key(const struct ovs_key_arp *, struct flow *);
static void get_nd_key(const struct flow *, struct ovs_key_nd *);
static void put_nd_key(const struct ovs_key_nd *, struct flow *);
/* These share the same layout. */
union ovs_key_tp {
struct ovs_key_tcp tcp;
struct ovs_key_udp udp;
struct ovs_key_sctp sctp;
};
static void get_tp_key(const struct flow *, union ovs_key_tp *);
static void put_tp_key(const union ovs_key_tp *, struct flow *);
static void
odp_flow_key_from_flow__(struct ofpbuf *buf, const struct flow *flow,
const struct flow *mask, odp_port_t odp_in_port,
size_t max_mpls_depth, bool recirc, bool export_mask)
{
struct ovs_key_ethernet *eth_key;
size_t encap;
const struct flow *data = export_mask ? mask : flow;
nl_msg_put_u32(buf, OVS_KEY_ATTR_PRIORITY, data->skb_priority);
if (flow->tunnel.ip_dst || export_mask) {
tun_key_to_attr(buf, &data->tunnel);
}
nl_msg_put_u32(buf, OVS_KEY_ATTR_SKB_MARK, data->pkt_mark);
if (recirc) {
nl_msg_put_u32(buf, OVS_KEY_ATTR_RECIRC_ID, data->recirc_id);
nl_msg_put_u32(buf, OVS_KEY_ATTR_DP_HASH, data->dp_hash);
}
/* Add an ingress port attribute if this is a mask or 'odp_in_port'
* is not the magical value "ODPP_NONE". */
if (export_mask || odp_in_port != ODPP_NONE) {
nl_msg_put_odp_port(buf, OVS_KEY_ATTR_IN_PORT, odp_in_port);
}
eth_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ETHERNET,
sizeof *eth_key);
get_ethernet_key(data, eth_key);
if (flow->vlan_tci != htons(0) || flow->dl_type == htons(ETH_TYPE_VLAN)) {
if (export_mask) {
nl_msg_put_be16(buf, OVS_KEY_ATTR_ETHERTYPE, OVS_BE16_MAX);
} else {
nl_msg_put_be16(buf, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_TYPE_VLAN));
}
nl_msg_put_be16(buf, OVS_KEY_ATTR_VLAN, data->vlan_tci);
encap = nl_msg_start_nested(buf, OVS_KEY_ATTR_ENCAP);
if (flow->vlan_tci == htons(0)) {
goto unencap;
}
} else {
encap = 0;
}
if (ntohs(flow->dl_type) < ETH_TYPE_MIN) {
/* For backwards compatibility with kernels that don't support
* wildcarding, the following convention is used to encode the
* OVS_KEY_ATTR_ETHERTYPE for key and mask:
*
* key mask matches
* -------- -------- -------
* >0x5ff 0xffff Specified Ethernet II Ethertype.
* >0x5ff 0 Any Ethernet II or non-Ethernet II frame.
* <none> 0xffff Any non-Ethernet II frame (except valid
* 802.3 SNAP packet with valid eth_type).
*/
if (export_mask) {
nl_msg_put_be16(buf, OVS_KEY_ATTR_ETHERTYPE, OVS_BE16_MAX);
}
goto unencap;
}
nl_msg_put_be16(buf, OVS_KEY_ATTR_ETHERTYPE, data->dl_type);
if (flow->dl_type == htons(ETH_TYPE_IP)) {
struct ovs_key_ipv4 *ipv4_key;
ipv4_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_IPV4,
sizeof *ipv4_key);
get_ipv4_key(data, ipv4_key, export_mask);
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
struct ovs_key_ipv6 *ipv6_key;
ipv6_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_IPV6,
sizeof *ipv6_key);
get_ipv6_key(data, ipv6_key, export_mask);
} else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
flow->dl_type == htons(ETH_TYPE_RARP)) {
struct ovs_key_arp *arp_key;
arp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ARP,
sizeof *arp_key);
get_arp_key(data, arp_key);
} else if (eth_type_mpls(flow->dl_type)) {
struct ovs_key_mpls *mpls_key;
int i, n;
n = flow_count_mpls_labels(flow, NULL);
n = MIN(n, max_mpls_depth);
mpls_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_MPLS,
n * sizeof *mpls_key);
for (i = 0; i < n; i++) {
mpls_key[i].mpls_lse = data->mpls_lse[i];
}
}
if (is_ip_any(flow) && !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
if (flow->nw_proto == IPPROTO_TCP) {
union ovs_key_tp *tcp_key;
tcp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_TCP,
sizeof *tcp_key);
get_tp_key(data, tcp_key);
if (data->tcp_flags) {
nl_msg_put_be16(buf, OVS_KEY_ATTR_TCP_FLAGS, data->tcp_flags);
}
} else if (flow->nw_proto == IPPROTO_UDP) {
union ovs_key_tp *udp_key;
udp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_UDP,
sizeof *udp_key);
get_tp_key(data, udp_key);
} else if (flow->nw_proto == IPPROTO_SCTP) {
union ovs_key_tp *sctp_key;
sctp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_SCTP,
sizeof *sctp_key);
get_tp_key(data, sctp_key);
} else if (flow->dl_type == htons(ETH_TYPE_IP)
&& flow->nw_proto == IPPROTO_ICMP) {
struct ovs_key_icmp *icmp_key;
icmp_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ICMP,
sizeof *icmp_key);
icmp_key->icmp_type = ntohs(data->tp_src);
icmp_key->icmp_code = ntohs(data->tp_dst);
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)
&& flow->nw_proto == IPPROTO_ICMPV6) {
struct ovs_key_icmpv6 *icmpv6_key;
icmpv6_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ICMPV6,
sizeof *icmpv6_key);
icmpv6_key->icmpv6_type = ntohs(data->tp_src);
icmpv6_key->icmpv6_code = ntohs(data->tp_dst);
if (flow->tp_dst == htons(0)
&& (flow->tp_src == htons(ND_NEIGHBOR_SOLICIT)
|| flow->tp_src == htons(ND_NEIGHBOR_ADVERT))
&& (!export_mask || (data->tp_src == htons(0xffff)
&& data->tp_dst == htons(0xffff)))) {
struct ovs_key_nd *nd_key;
nd_key = nl_msg_put_unspec_uninit(buf, OVS_KEY_ATTR_ND,
sizeof *nd_key);
memcpy(nd_key->nd_target, &data->nd_target,
sizeof nd_key->nd_target);
memcpy(nd_key->nd_sll, data->arp_sha, ETH_ADDR_LEN);
memcpy(nd_key->nd_tll, data->arp_tha, ETH_ADDR_LEN);
}
}
}
unencap:
if (encap) {
nl_msg_end_nested(buf, encap);
}
}
/* Appends a representation of 'flow' as OVS_KEY_ATTR_* attributes to 'buf'.
* 'flow->in_port' is ignored (since it is likely to be an OpenFlow port
* number rather than a datapath port number). Instead, if 'odp_in_port'
* is anything other than ODPP_NONE, it is included in 'buf' as the input
* port.
*
* 'buf' must have at least ODPUTIL_FLOW_KEY_BYTES bytes of space, or be
* capable of being expanded to allow for that much space.
*
* 'recirc' indicates support for recirculation fields. If this is true, then
* these fields will always be serialised. */
void
odp_flow_key_from_flow(struct ofpbuf *buf, const struct flow *flow,
const struct flow *mask, odp_port_t odp_in_port,
bool recirc)
{
odp_flow_key_from_flow__(buf, flow, mask, odp_in_port, SIZE_MAX, recirc,
false);
}
/* Appends a representation of 'mask' as OVS_KEY_ATTR_* attributes to
* 'buf'. 'flow' is used as a template to determine how to interpret
* 'mask'. For example, the 'dl_type' of 'mask' describes the mask, but
* it doesn't indicate whether the other fields should be interpreted as
* ARP, IPv4, IPv6, etc.
*
* 'buf' must have at least ODPUTIL_FLOW_KEY_BYTES bytes of space, or be
* capable of being expanded to allow for that much space.
*
* 'recirc' indicates support for recirculation fields. If this is true, then
* these fields will always be serialised. */
void
odp_flow_key_from_mask(struct ofpbuf *buf, const struct flow *mask,
const struct flow *flow, uint32_t odp_in_port_mask,
size_t max_mpls_depth, bool recirc)
{
odp_flow_key_from_flow__(buf, flow, mask, u32_to_odp(odp_in_port_mask),
max_mpls_depth, recirc, true);
}
/* Generate ODP flow key from the given packet metadata */
void
odp_key_from_pkt_metadata(struct ofpbuf *buf, const struct pkt_metadata *md)
{
nl_msg_put_u32(buf, OVS_KEY_ATTR_PRIORITY, md->skb_priority);
if (md->tunnel.ip_dst) {
tun_key_to_attr(buf, &md->tunnel);
}
nl_msg_put_u32(buf, OVS_KEY_ATTR_SKB_MARK, md->pkt_mark);
/* Add an ingress port attribute if 'odp_in_port' is not the magical
* value "ODPP_NONE". */
if (md->in_port.odp_port != ODPP_NONE) {
nl_msg_put_odp_port(buf, OVS_KEY_ATTR_IN_PORT, md->in_port.odp_port);
}
}
/* Generate packet metadata from the given ODP flow key. */
void
odp_key_to_pkt_metadata(const struct nlattr *key, size_t key_len,
struct pkt_metadata *md)
{
const struct nlattr *nla;
size_t left;
uint32_t wanted_attrs = 1u << OVS_KEY_ATTR_PRIORITY |
1u << OVS_KEY_ATTR_SKB_MARK | 1u << OVS_KEY_ATTR_TUNNEL |
1u << OVS_KEY_ATTR_IN_PORT;
*md = PKT_METADATA_INITIALIZER(ODPP_NONE);
NL_ATTR_FOR_EACH (nla, left, key, key_len) {
uint16_t type = nl_attr_type(nla);
size_t len = nl_attr_get_size(nla);
int expected_len = odp_flow_key_attr_len(type);
if (len != expected_len && expected_len >= 0) {
continue;
}
switch (type) {
case OVS_KEY_ATTR_RECIRC_ID:
md->recirc_id = nl_attr_get_u32(nla);
wanted_attrs &= ~(1u << OVS_KEY_ATTR_RECIRC_ID);
break;
case OVS_KEY_ATTR_DP_HASH:
md->dp_hash = nl_attr_get_u32(nla);
wanted_attrs &= ~(1u << OVS_KEY_ATTR_DP_HASH);
break;
case OVS_KEY_ATTR_PRIORITY:
md->skb_priority = nl_attr_get_u32(nla);
wanted_attrs &= ~(1u << OVS_KEY_ATTR_PRIORITY);
break;
case OVS_KEY_ATTR_SKB_MARK:
md->pkt_mark = nl_attr_get_u32(nla);
wanted_attrs &= ~(1u << OVS_KEY_ATTR_SKB_MARK);
break;
case OVS_KEY_ATTR_TUNNEL: {
enum odp_key_fitness res;
res = odp_tun_key_from_attr(nla, &md->tunnel);
if (res == ODP_FIT_ERROR) {
memset(&md->tunnel, 0, sizeof md->tunnel);
} else if (res == ODP_FIT_PERFECT) {
wanted_attrs &= ~(1u << OVS_KEY_ATTR_TUNNEL);
}
break;
}
case OVS_KEY_ATTR_IN_PORT:
md->in_port.odp_port = nl_attr_get_odp_port(nla);
wanted_attrs &= ~(1u << OVS_KEY_ATTR_IN_PORT);
break;
default:
break;
}
if (!wanted_attrs) {
return; /* Have everything. */
}
}
}
uint32_t
odp_flow_key_hash(const struct nlattr *key, size_t key_len)
{
BUILD_ASSERT_DECL(!(NLA_ALIGNTO % sizeof(uint32_t)));
return hash_words(ALIGNED_CAST(const uint32_t *, key),
key_len / sizeof(uint32_t), 0);
}
static void
log_odp_key_attributes(struct vlog_rate_limit *rl, const char *title,
uint64_t attrs, int out_of_range_attr,
const struct nlattr *key, size_t key_len)
{
struct ds s;
int i;
if (VLOG_DROP_DBG(rl)) {
return;
}
ds_init(&s);
for (i = 0; i < 64; i++) {
if (attrs & (UINT64_C(1) << i)) {
char namebuf[OVS_KEY_ATTR_BUFSIZE];
ds_put_format(&s, " %s",
ovs_key_attr_to_string(i, namebuf, sizeof namebuf));
}
}
if (out_of_range_attr) {
ds_put_format(&s, " %d (and possibly others)", out_of_range_attr);
}
ds_put_cstr(&s, ": ");
odp_flow_key_format(key, key_len, &s);
VLOG_DBG("%s:%s", title, ds_cstr(&s));
ds_destroy(&s);
}
static uint8_t
odp_to_ovs_frag(uint8_t odp_frag, bool is_mask)
{
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
if (is_mask) {
return odp_frag ? FLOW_NW_FRAG_MASK : 0;
}
if (odp_frag > OVS_FRAG_TYPE_LATER) {
VLOG_ERR_RL(&rl, "invalid frag %"PRIu8" in flow key", odp_frag);
return 0xff; /* Error. */
}
return (odp_frag == OVS_FRAG_TYPE_NONE) ? 0
: (odp_frag == OVS_FRAG_TYPE_FIRST) ? FLOW_NW_FRAG_ANY
: FLOW_NW_FRAG_ANY | FLOW_NW_FRAG_LATER;
}
static bool
parse_flow_nlattrs(const struct nlattr *key, size_t key_len,
const struct nlattr *attrs[], uint64_t *present_attrsp,
int *out_of_range_attrp)
{
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10);
const struct nlattr *nla;
uint64_t present_attrs;
size_t left;
BUILD_ASSERT(OVS_KEY_ATTR_MAX < CHAR_BIT * sizeof present_attrs);
present_attrs = 0;
*out_of_range_attrp = 0;
NL_ATTR_FOR_EACH (nla, left, key, key_len) {
uint16_t type = nl_attr_type(nla);
size_t len = nl_attr_get_size(nla);
int expected_len = odp_flow_key_attr_len(type);
if (len != expected_len && expected_len >= 0) {
char namebuf[OVS_KEY_ATTR_BUFSIZE];
VLOG_ERR_RL(&rl, "attribute %s has length %"PRIuSIZE" but should have "
"length %d", ovs_key_attr_to_string(type, namebuf,
sizeof namebuf),
len, expected_len);
return false;
}
if (type > OVS_KEY_ATTR_MAX) {
*out_of_range_attrp = type;
} else {
if (present_attrs & (UINT64_C(1) << type)) {
char namebuf[OVS_KEY_ATTR_BUFSIZE];
VLOG_ERR_RL(&rl, "duplicate %s attribute in flow key",
ovs_key_attr_to_string(type,
namebuf, sizeof namebuf));
return false;
}
present_attrs |= UINT64_C(1) << type;
attrs[type] = nla;
}
}
if (left) {
VLOG_ERR_RL(&rl, "trailing garbage in flow key");
return false;
}
*present_attrsp = present_attrs;
return true;
}
static enum odp_key_fitness
check_expectations(uint64_t present_attrs, int out_of_range_attr,
uint64_t expected_attrs,
const struct nlattr *key, size_t key_len)
{
uint64_t missing_attrs;
uint64_t extra_attrs;
missing_attrs = expected_attrs & ~present_attrs;
if (missing_attrs) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10);
log_odp_key_attributes(&rl, "expected but not present",
missing_attrs, 0, key, key_len);
return ODP_FIT_TOO_LITTLE;
}
extra_attrs = present_attrs & ~expected_attrs;
if (extra_attrs || out_of_range_attr) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(10, 10);
log_odp_key_attributes(&rl, "present but not expected",
extra_attrs, out_of_range_attr, key, key_len);
return ODP_FIT_TOO_MUCH;
}
return ODP_FIT_PERFECT;
}
static bool
parse_ethertype(const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1],
uint64_t present_attrs, uint64_t *expected_attrs,
struct flow *flow, const struct flow *src_flow)
{
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
bool is_mask = flow != src_flow;
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ETHERTYPE)) {
flow->dl_type = nl_attr_get_be16(attrs[OVS_KEY_ATTR_ETHERTYPE]);
if (!is_mask && ntohs(flow->dl_type) < ETH_TYPE_MIN) {
VLOG_ERR_RL(&rl, "invalid Ethertype %"PRIu16" in flow key",
ntohs(flow->dl_type));
return false;
}
if (is_mask && ntohs(src_flow->dl_type) < ETH_TYPE_MIN &&
flow->dl_type != htons(0xffff)) {
return false;
}
*expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ETHERTYPE;
} else {
if (!is_mask) {
flow->dl_type = htons(FLOW_DL_TYPE_NONE);
} else if (ntohs(src_flow->dl_type) < ETH_TYPE_MIN) {
/* See comments in odp_flow_key_from_flow__(). */
VLOG_ERR_RL(&rl, "mask expected for non-Ethernet II frame");
return false;
}
}
return true;
}
static enum odp_key_fitness
parse_l2_5_onward(const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1],
uint64_t present_attrs, int out_of_range_attr,
uint64_t expected_attrs, struct flow *flow,
const struct nlattr *key, size_t key_len,
const struct flow *src_flow)
{
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
bool is_mask = src_flow != flow;
const void *check_start = NULL;
size_t check_len = 0;
enum ovs_key_attr expected_bit = 0xff;
if (eth_type_mpls(src_flow->dl_type)) {
if (!is_mask || present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_MPLS)) {
expected_attrs |= (UINT64_C(1) << OVS_KEY_ATTR_MPLS);
}
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_MPLS)) {
size_t size = nl_attr_get_size(attrs[OVS_KEY_ATTR_MPLS]);
const ovs_be32 *mpls_lse = nl_attr_get(attrs[OVS_KEY_ATTR_MPLS]);
int n = size / sizeof(ovs_be32);
int i;
if (!size || size % sizeof(ovs_be32)) {
return ODP_FIT_ERROR;
}
if (flow->mpls_lse[0] && flow->dl_type != htons(0xffff)) {
return ODP_FIT_ERROR;
}
for (i = 0; i < n && i < FLOW_MAX_MPLS_LABELS; i++) {
flow->mpls_lse[i] = mpls_lse[i];
}
if (n > FLOW_MAX_MPLS_LABELS) {
return ODP_FIT_TOO_MUCH;
}
if (!is_mask) {
/* BOS may be set only in the innermost label. */
for (i = 0; i < n - 1; i++) {
if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
return ODP_FIT_ERROR;
}
}
/* BOS must be set in the innermost label. */
if (n < FLOW_MAX_MPLS_LABELS
&& !(flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK))) {
return ODP_FIT_TOO_LITTLE;
}
}
}
goto done;
} else if (src_flow->dl_type == htons(ETH_TYPE_IP)) {
if (!is_mask) {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_IPV4;
}
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_IPV4)) {
const struct ovs_key_ipv4 *ipv4_key;
ipv4_key = nl_attr_get(attrs[OVS_KEY_ATTR_IPV4]);
put_ipv4_key(ipv4_key, flow, is_mask);
if (flow->nw_frag > FLOW_NW_FRAG_MASK) {
return ODP_FIT_ERROR;
}
if (is_mask) {
check_start = ipv4_key;
check_len = sizeof *ipv4_key;
expected_bit = OVS_KEY_ATTR_IPV4;
}
}
} else if (src_flow->dl_type == htons(ETH_TYPE_IPV6)) {
if (!is_mask) {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_IPV6;
}
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_IPV6)) {
const struct ovs_key_ipv6 *ipv6_key;
ipv6_key = nl_attr_get(attrs[OVS_KEY_ATTR_IPV6]);
put_ipv6_key(ipv6_key, flow, is_mask);
if (flow->nw_frag > FLOW_NW_FRAG_MASK) {
return ODP_FIT_ERROR;
}
if (is_mask) {
check_start = ipv6_key;
check_len = sizeof *ipv6_key;
expected_bit = OVS_KEY_ATTR_IPV6;
}
}
} else if (src_flow->dl_type == htons(ETH_TYPE_ARP) ||
src_flow->dl_type == htons(ETH_TYPE_RARP)) {
if (!is_mask) {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ARP;
}
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ARP)) {
const struct ovs_key_arp *arp_key;
arp_key = nl_attr_get(attrs[OVS_KEY_ATTR_ARP]);
if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
VLOG_ERR_RL(&rl, "unsupported ARP opcode %"PRIu16" in flow "
"key", ntohs(arp_key->arp_op));
return ODP_FIT_ERROR;
}
put_arp_key(arp_key, flow);
if (is_mask) {
check_start = arp_key;
check_len = sizeof *arp_key;
expected_bit = OVS_KEY_ATTR_ARP;
}
}
} else {
goto done;
}
if (check_len > 0) { /* Happens only when 'is_mask'. */
if (!is_all_zeros(check_start, check_len) &&
flow->dl_type != htons(0xffff)) {
return ODP_FIT_ERROR;
} else {
expected_attrs |= UINT64_C(1) << expected_bit;
}
}
expected_bit = OVS_KEY_ATTR_UNSPEC;
if (src_flow->nw_proto == IPPROTO_TCP
&& (src_flow->dl_type == htons(ETH_TYPE_IP) ||
src_flow->dl_type == htons(ETH_TYPE_IPV6))
&& !(src_flow->nw_frag & FLOW_NW_FRAG_LATER)) {
if (!is_mask) {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_TCP;
}
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_TCP)) {
const union ovs_key_tp *tcp_key;
tcp_key = nl_attr_get(attrs[OVS_KEY_ATTR_TCP]);
put_tp_key(tcp_key, flow);
expected_bit = OVS_KEY_ATTR_TCP;
}
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_TCP_FLAGS)) {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_TCP_FLAGS;
flow->tcp_flags = nl_attr_get_be16(attrs[OVS_KEY_ATTR_TCP_FLAGS]);
}
} else if (src_flow->nw_proto == IPPROTO_UDP
&& (src_flow->dl_type == htons(ETH_TYPE_IP) ||
src_flow->dl_type == htons(ETH_TYPE_IPV6))
&& !(src_flow->nw_frag & FLOW_NW_FRAG_LATER)) {
if (!is_mask) {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_UDP;
}
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_UDP)) {
const union ovs_key_tp *udp_key;
udp_key = nl_attr_get(attrs[OVS_KEY_ATTR_UDP]);
put_tp_key(udp_key, flow);
expected_bit = OVS_KEY_ATTR_UDP;
}
} else if (src_flow->nw_proto == IPPROTO_SCTP
&& (src_flow->dl_type == htons(ETH_TYPE_IP) ||
src_flow->dl_type == htons(ETH_TYPE_IPV6))
&& !(src_flow->nw_frag & FLOW_NW_FRAG_LATER)) {
if (!is_mask) {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_SCTP;
}
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_SCTP)) {
const union ovs_key_tp *sctp_key;
sctp_key = nl_attr_get(attrs[OVS_KEY_ATTR_SCTP]);
put_tp_key(sctp_key, flow);
expected_bit = OVS_KEY_ATTR_SCTP;
}
} else if (src_flow->nw_proto == IPPROTO_ICMP
&& src_flow->dl_type == htons(ETH_TYPE_IP)
&& !(src_flow->nw_frag & FLOW_NW_FRAG_LATER)) {
if (!is_mask) {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ICMP;
}
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ICMP)) {
const struct ovs_key_icmp *icmp_key;
icmp_key = nl_attr_get(attrs[OVS_KEY_ATTR_ICMP]);
flow->tp_src = htons(icmp_key->icmp_type);
flow->tp_dst = htons(icmp_key->icmp_code);
expected_bit = OVS_KEY_ATTR_ICMP;
}
} else if (src_flow->nw_proto == IPPROTO_ICMPV6
&& src_flow->dl_type == htons(ETH_TYPE_IPV6)
&& !(src_flow->nw_frag & FLOW_NW_FRAG_LATER)) {
if (!is_mask) {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ICMPV6;
}
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ICMPV6)) {
const struct ovs_key_icmpv6 *icmpv6_key;
icmpv6_key = nl_attr_get(attrs[OVS_KEY_ATTR_ICMPV6]);
flow->tp_src = htons(icmpv6_key->icmpv6_type);
flow->tp_dst = htons(icmpv6_key->icmpv6_code);
expected_bit = OVS_KEY_ATTR_ICMPV6;
if (src_flow->tp_dst == htons(0) &&
(src_flow->tp_src == htons(ND_NEIGHBOR_SOLICIT) ||
src_flow->tp_src == htons(ND_NEIGHBOR_ADVERT))) {
if (!is_mask) {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ND;
}
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ND)) {
const struct ovs_key_nd *nd_key;
nd_key = nl_attr_get(attrs[OVS_KEY_ATTR_ND]);
memcpy(&flow->nd_target, nd_key->nd_target,
sizeof flow->nd_target);
memcpy(flow->arp_sha, nd_key->nd_sll, ETH_ADDR_LEN);
memcpy(flow->arp_tha, nd_key->nd_tll, ETH_ADDR_LEN);
if (is_mask) {
if (!is_all_zeros(nd_key, sizeof *nd_key) &&
(flow->tp_src != htons(0xffff) ||
flow->tp_dst != htons(0xffff))) {
return ODP_FIT_ERROR;
} else {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ND;
}
}
}
}
}
}
if (is_mask && expected_bit != OVS_KEY_ATTR_UNSPEC) {
if ((flow->tp_src || flow->tp_dst) && flow->nw_proto != 0xff) {
return ODP_FIT_ERROR;
} else {
expected_attrs |= UINT64_C(1) << expected_bit;
}
}
done:
return check_expectations(present_attrs, out_of_range_attr, expected_attrs,
key, key_len);
}
/* Parse 802.1Q header then encapsulated L3 attributes. */
static enum odp_key_fitness
parse_8021q_onward(const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1],
uint64_t present_attrs, int out_of_range_attr,
uint64_t expected_attrs, struct flow *flow,
const struct nlattr *key, size_t key_len,
const struct flow *src_flow)
{
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
bool is_mask = src_flow != flow;
const struct nlattr *encap
= (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ENCAP)
? attrs[OVS_KEY_ATTR_ENCAP] : NULL);
enum odp_key_fitness encap_fitness;
enum odp_key_fitness fitness;
/* Calculate fitness of outer attributes. */
if (!is_mask) {
expected_attrs |= ((UINT64_C(1) << OVS_KEY_ATTR_VLAN) |
(UINT64_C(1) << OVS_KEY_ATTR_ENCAP));
} else {
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_VLAN)) {
expected_attrs |= (UINT64_C(1) << OVS_KEY_ATTR_VLAN);
}
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ENCAP)) {
expected_attrs |= (UINT64_C(1) << OVS_KEY_ATTR_ENCAP);
}
}
fitness = check_expectations(present_attrs, out_of_range_attr,
expected_attrs, key, key_len);
/* Set vlan_tci.
* Remove the TPID from dl_type since it's not the real Ethertype. */
flow->dl_type = htons(0);
flow->vlan_tci = (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_VLAN)
? nl_attr_get_be16(attrs[OVS_KEY_ATTR_VLAN])
: htons(0));
if (!is_mask) {
if (!(present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_VLAN))) {
return ODP_FIT_TOO_LITTLE;
} else if (flow->vlan_tci == htons(0)) {
/* Corner case for a truncated 802.1Q header. */
if (fitness == ODP_FIT_PERFECT && nl_attr_get_size(encap)) {
return ODP_FIT_TOO_MUCH;
}
return fitness;
} else if (!(flow->vlan_tci & htons(VLAN_CFI))) {
VLOG_ERR_RL(&rl, "OVS_KEY_ATTR_VLAN 0x%04"PRIx16" is nonzero "
"but CFI bit is not set", ntohs(flow->vlan_tci));
return ODP_FIT_ERROR;
}
} else {
if (!(present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ENCAP))) {
return fitness;
}
}
/* Now parse the encapsulated attributes. */
if (!parse_flow_nlattrs(nl_attr_get(encap), nl_attr_get_size(encap),
attrs, &present_attrs, &out_of_range_attr)) {
return ODP_FIT_ERROR;
}
expected_attrs = 0;
if (!parse_ethertype(attrs, present_attrs, &expected_attrs, flow, src_flow)) {
return ODP_FIT_ERROR;
}
encap_fitness = parse_l2_5_onward(attrs, present_attrs, out_of_range_attr,
expected_attrs, flow, key, key_len,
src_flow);
/* The overall fitness is the worse of the outer and inner attributes. */
return MAX(fitness, encap_fitness);
}
static enum odp_key_fitness
odp_flow_key_to_flow__(const struct nlattr *key, size_t key_len,
struct flow *flow, const struct flow *src_flow)
{
const struct nlattr *attrs[OVS_KEY_ATTR_MAX + 1];
uint64_t expected_attrs;
uint64_t present_attrs;
int out_of_range_attr;
bool is_mask = src_flow != flow;
memset(flow, 0, sizeof *flow);
/* Parse attributes. */
if (!parse_flow_nlattrs(key, key_len, attrs, &present_attrs,
&out_of_range_attr)) {
return ODP_FIT_ERROR;
}
expected_attrs = 0;
/* Metadata. */
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_RECIRC_ID)) {
flow->recirc_id = nl_attr_get_u32(attrs[OVS_KEY_ATTR_RECIRC_ID]);
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_RECIRC_ID;
} else if (is_mask) {
/* Always exact match recirc_id if it is not specified. */
flow->recirc_id = UINT32_MAX;
}
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_DP_HASH)) {
flow->dp_hash = nl_attr_get_u32(attrs[OVS_KEY_ATTR_DP_HASH]);
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_DP_HASH;
}
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_PRIORITY)) {
flow->skb_priority = nl_attr_get_u32(attrs[OVS_KEY_ATTR_PRIORITY]);
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_PRIORITY;
}
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_SKB_MARK)) {
flow->pkt_mark = nl_attr_get_u32(attrs[OVS_KEY_ATTR_SKB_MARK]);
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_SKB_MARK;
}
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_TUNNEL)) {
enum odp_key_fitness res;
res = odp_tun_key_from_attr(attrs[OVS_KEY_ATTR_TUNNEL], &flow->tunnel);
if (res == ODP_FIT_ERROR) {
return ODP_FIT_ERROR;
} else if (res == ODP_FIT_PERFECT) {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_TUNNEL;
}
}
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_IN_PORT)) {
flow->in_port.odp_port
= nl_attr_get_odp_port(attrs[OVS_KEY_ATTR_IN_PORT]);
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_IN_PORT;
} else if (!is_mask) {
flow->in_port.odp_port = ODPP_NONE;
}
/* Ethernet header. */
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_ETHERNET)) {
const struct ovs_key_ethernet *eth_key;
eth_key = nl_attr_get(attrs[OVS_KEY_ATTR_ETHERNET]);
put_ethernet_key(eth_key, flow);
if (is_mask) {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ETHERNET;
}
}
if (!is_mask) {
expected_attrs |= UINT64_C(1) << OVS_KEY_ATTR_ETHERNET;
}
/* Get Ethertype or 802.1Q TPID or FLOW_DL_TYPE_NONE. */
if (!parse_ethertype(attrs, present_attrs, &expected_attrs, flow,
src_flow)) {
return ODP_FIT_ERROR;
}
if (is_mask
? (src_flow->vlan_tci & htons(VLAN_CFI)) != 0
: src_flow->dl_type == htons(ETH_TYPE_VLAN)) {
return parse_8021q_onward(attrs, present_attrs, out_of_range_attr,
expected_attrs, flow, key, key_len, src_flow);
}
if (is_mask) {
flow->vlan_tci = htons(0xffff);
if (present_attrs & (UINT64_C(1) << OVS_KEY_ATTR_VLAN)) {
flow->vlan_tci = nl_attr_get_be16(attrs[OVS_KEY_ATTR_VLAN]);
expected_attrs |= (UINT64_C(1) << OVS_KEY_ATTR_VLAN);
}
}
return parse_l2_5_onward(attrs, present_attrs, out_of_range_attr,
expected_attrs, flow, key, key_len, src_flow);
}
/* Converts the 'key_len' bytes of OVS_KEY_ATTR_* attributes in 'key' to a flow
* structure in 'flow'. Returns an ODP_FIT_* value that indicates how well
* 'key' fits our expectations for what a flow key should contain.
*
* The 'in_port' will be the datapath's understanding of the port. The
* caller will need to translate with odp_port_to_ofp_port() if the
* OpenFlow port is needed.
*
* This function doesn't take the packet itself as an argument because none of
* the currently understood OVS_KEY_ATTR_* attributes require it. Currently,
* it is always possible to infer which additional attribute(s) should appear
* by looking at the attributes for lower-level protocols, e.g. if the network
* protocol in OVS_KEY_ATTR_IPV4 or OVS_KEY_ATTR_IPV6 is IPPROTO_TCP then we
* know that a OVS_KEY_ATTR_TCP attribute must appear and that otherwise it
* must be absent. */
enum odp_key_fitness
odp_flow_key_to_flow(const struct nlattr *key, size_t key_len,
struct flow *flow)
{
return odp_flow_key_to_flow__(key, key_len, flow, flow);
}
/* Converts the 'key_len' bytes of OVS_KEY_ATTR_* attributes in 'key' to a mask
* structure in 'mask'. 'flow' must be a previously translated flow
* corresponding to 'mask'. Returns an ODP_FIT_* value that indicates how well
* 'key' fits our expectations for what a flow key should contain. */
enum odp_key_fitness
odp_flow_key_to_mask(const struct nlattr *key, size_t key_len,
struct flow *mask, const struct flow *flow)
{
return odp_flow_key_to_flow__(key, key_len, mask, flow);
}
/* Returns 'fitness' as a string, for use in debug messages. */
const char *
odp_key_fitness_to_string(enum odp_key_fitness fitness)
{
switch (fitness) {
case ODP_FIT_PERFECT:
return "OK";
case ODP_FIT_TOO_MUCH:
return "too_much";
case ODP_FIT_TOO_LITTLE:
return "too_little";
case ODP_FIT_ERROR:
return "error";
default:
return "<unknown>";
}
}
/* Appends an OVS_ACTION_ATTR_USERSPACE action to 'odp_actions' that specifies
* Netlink PID 'pid'. If 'userdata' is nonnull, adds a userdata attribute
* whose contents are the 'userdata_size' bytes at 'userdata' and returns the
* offset within 'odp_actions' of the start of the cookie. (If 'userdata' is
* null, then the return value is not meaningful.) */
size_t
odp_put_userspace_action(uint32_t pid,
const void *userdata, size_t userdata_size,
odp_port_t tunnel_out_port,
struct ofpbuf *odp_actions)
{
size_t userdata_ofs;
size_t offset;
offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_USERSPACE);
nl_msg_put_u32(odp_actions, OVS_USERSPACE_ATTR_PID, pid);
if (userdata) {
userdata_ofs = ofpbuf_size(odp_actions) + NLA_HDRLEN;
/* The OVS kernel module before OVS 1.11 and the upstream Linux kernel
* module before Linux 3.10 required the userdata to be exactly 8 bytes
* long:
*
* - The kernel rejected shorter userdata with -ERANGE.
*
* - The kernel silently dropped userdata beyond the first 8 bytes.
*
* Thus, for maximum compatibility, always put at least 8 bytes. (We
* separately disable features that required more than 8 bytes.) */
memcpy(nl_msg_put_unspec_zero(odp_actions, OVS_USERSPACE_ATTR_USERDATA,
MAX(8, userdata_size)),
userdata, userdata_size);
} else {
userdata_ofs = 0;
}
if (tunnel_out_port != ODPP_NONE) {
nl_msg_put_odp_port(odp_actions, OVS_USERSPACE_ATTR_EGRESS_TUN_PORT,
tunnel_out_port);
}
nl_msg_end_nested(odp_actions, offset);
return userdata_ofs;
}
void
odp_put_tunnel_action(const struct flow_tnl *tunnel,
struct ofpbuf *odp_actions)
{
size_t offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SET);
tun_key_to_attr(odp_actions, tunnel);
nl_msg_end_nested(odp_actions, offset);
}
void
odp_put_tnl_push_action(struct ofpbuf *odp_actions,
struct ovs_action_push_tnl *data)
{
int size = offsetof(struct ovs_action_push_tnl, header);
size += data->header_len;
nl_msg_put_unspec(odp_actions, OVS_ACTION_ATTR_TUNNEL_PUSH, data, size);
}
/* The commit_odp_actions() function and its helpers. */
static void
commit_set_action(struct ofpbuf *odp_actions, enum ovs_key_attr key_type,
const void *key, size_t key_size)
{
size_t offset = nl_msg_start_nested(odp_actions, OVS_ACTION_ATTR_SET);
nl_msg_put_unspec(odp_actions, key_type, key, key_size);
nl_msg_end_nested(odp_actions, offset);
}
/* Masked set actions have a mask following the data within the netlink
* attribute. The unmasked bits in the data will be cleared as the data
* is copied to the action. */
void
commit_masked_set_action(struct ofpbuf *odp_actions,
enum ovs_key_attr key_type,
const void *key_, const void *mask_, size_t key_size)
{
size_t offset = nl_msg_start_nested(odp_actions,
OVS_ACTION_ATTR_SET_MASKED);
char *data = nl_msg_put_unspec_uninit(odp_actions, key_type, key_size * 2);
const char *key = key_, *mask = mask_;
memcpy(data + key_size, mask, key_size);
/* Clear unmasked bits while copying. */
while (key_size--) {
*data++ = *key++ & *mask++;
}
nl_msg_end_nested(odp_actions, offset);
}
/* If any of the flow key data that ODP actions can modify are different in
* 'base->tunnel' and 'flow->tunnel', appends a set_tunnel ODP action to
* 'odp_actions' that change the flow tunneling information in key from
* 'base->tunnel' into 'flow->tunnel', and then changes 'base->tunnel' in the
* same way. In other words, operates the same as commit_odp_actions(), but
* only on tunneling information. */
void
commit_odp_tunnel_action(const struct flow *flow, struct flow *base,
struct ofpbuf *odp_actions)
{
/* A valid IPV4_TUNNEL must have non-zero ip_dst. */
if (flow->tunnel.ip_dst) {
if (!memcmp(&base->tunnel, &flow->tunnel, sizeof base->tunnel)) {
return;
}
memcpy(&base->tunnel, &flow->tunnel, sizeof base->tunnel);
odp_put_tunnel_action(&base->tunnel, odp_actions);
}
}
static bool
commit(enum ovs_key_attr attr, bool use_masked_set,
const void *key, void *base, void *mask, size_t size,
struct ofpbuf *odp_actions)
{
if (memcmp(key, base, size)) {
bool fully_masked = odp_mask_is_exact(attr, mask, size);
if (use_masked_set && !fully_masked) {
commit_masked_set_action(odp_actions, attr, key, mask, size);
} else {
if (!fully_masked) {
memset(mask, 0xff, size);
}
commit_set_action(odp_actions, attr, key, size);
}
memcpy(base, key, size);
return true;
} else {
/* Mask bits are set when we have either read or set the corresponding
* values. Masked bits will be exact-matched, no need to set them
* if the value did not actually change. */
return false;
}
}
static void
get_ethernet_key(const struct flow *flow, struct ovs_key_ethernet *eth)
{
memcpy(eth->eth_src, flow->dl_src, ETH_ADDR_LEN);
memcpy(eth->eth_dst, flow->dl_dst, ETH_ADDR_LEN);
}
static void
put_ethernet_key(const struct ovs_key_ethernet *eth, struct flow *flow)
{
memcpy(flow->dl_src, eth->eth_src, ETH_ADDR_LEN);
memcpy(flow->dl_dst, eth->eth_dst, ETH_ADDR_LEN);
}
static void
commit_set_ether_addr_action(const struct flow *flow, struct flow *base_flow,
struct ofpbuf *odp_actions,
struct flow_wildcards *wc,
bool use_masked)
{
struct ovs_key_ethernet key, base, mask;
get_ethernet_key(flow, &key);
get_ethernet_key(base_flow, &base);
get_ethernet_key(&wc->masks, &mask);
if (commit(OVS_KEY_ATTR_ETHERNET, use_masked,
&key, &base, &mask, sizeof key, odp_actions)) {
put_ethernet_key(&base, base_flow);
put_ethernet_key(&mask, &wc->masks);
}
}
static void
pop_vlan(struct flow *base,
struct ofpbuf *odp_actions, struct flow_wildcards *wc)
{
memset(&wc->masks.vlan_tci, 0xff, sizeof wc->masks.vlan_tci);
if (base->vlan_tci & htons(VLAN_CFI)) {
nl_msg_put_flag(odp_actions, OVS_ACTION_ATTR_POP_VLAN);
base->vlan_tci = 0;
}
}
static void
commit_vlan_action(ovs_be16 vlan_tci, struct flow *base,
struct ofpbuf *odp_actions, struct flow_wildcards *wc)
{
if (base->vlan_tci == vlan_tci) {
return;
}
pop_vlan(base, odp_actions, wc);
if (vlan_tci & htons(VLAN_CFI)) {
struct ovs_action_push_vlan vlan;
vlan.vlan_tpid = htons(ETH_TYPE_VLAN);
vlan.vlan_tci = vlan_tci;
nl_msg_put_unspec(odp_actions, OVS_ACTION_ATTR_PUSH_VLAN,
&vlan, sizeof vlan);
}
base->vlan_tci = vlan_tci;
}
/* Wildcarding already done at action translation time. */
static void
commit_mpls_action(const struct flow *flow, struct flow *base,
struct ofpbuf *odp_actions)
{
int base_n = flow_count_mpls_labels(base, NULL);
int flow_n = flow_count_mpls_labels(flow, NULL);
int common_n = flow_count_common_mpls_labels(flow, flow_n, base, base_n,
NULL);
while (base_n > common_n) {
if (base_n - 1 == common_n && flow_n > common_n) {
/* If there is only one more LSE in base than there are common
* between base and flow; and flow has at least one more LSE than
* is common then the topmost LSE of base may be updated using
* set */
struct ovs_key_mpls mpls_key;
mpls_key.mpls_lse = flow->mpls_lse[flow_n - base_n];
commit_set_action(odp_actions, OVS_KEY_ATTR_MPLS,
&mpls_key, sizeof mpls_key);
flow_set_mpls_lse(base, 0, mpls_key.mpls_lse);
common_n++;
} else {
/* Otherwise, if there more LSEs in base than are common between
* base and flow then pop the topmost one. */
ovs_be16 dl_type;
bool popped;
/* If all the LSEs are to be popped and this is not the outermost
* LSE then use ETH_TYPE_MPLS as the ethertype parameter of the
* POP_MPLS action instead of flow->dl_type.
*
* This is because the POP_MPLS action requires its ethertype
* argument to be an MPLS ethernet type but in this case
* flow->dl_type will be a non-MPLS ethernet type.
*
* When the final POP_MPLS action occurs it use flow->dl_type and
* the and the resulting packet will have the desired dl_type. */
if ((!eth_type_mpls(flow->dl_type)) && base_n > 1) {
dl_type = htons(ETH_TYPE_MPLS);
} else {
dl_type = flow->dl_type;
}
nl_msg_put_be16(odp_actions, OVS_ACTION_ATTR_POP_MPLS, dl_type);
popped = flow_pop_mpls(base, base_n, flow->dl_type, NULL);
ovs_assert(popped);
base_n--;
}
}
/* If, after the above popping and setting, there are more LSEs in flow
* than base then some LSEs need to be pushed. */
while (base_n < flow_n) {
struct ovs_action_push_mpls *mpls;
mpls = nl_msg_put_unspec_zero(odp_actions,
OVS_ACTION_ATTR_PUSH_MPLS,
sizeof *mpls);
mpls->mpls_ethertype = flow->dl_type;
mpls->mpls_lse = flow->mpls_lse[flow_n - base_n - 1];
flow_push_mpls(base, base_n, mpls->mpls_ethertype, NULL);
flow_set_mpls_lse(base, 0, mpls->mpls_lse);
base_n++;
}
}
static void
get_ipv4_key(const struct flow *flow, struct ovs_key_ipv4 *ipv4, bool is_mask)
{
ipv4->ipv4_src = flow->nw_src;
ipv4->ipv4_dst = flow->nw_dst;
ipv4->ipv4_proto = flow->nw_proto;
ipv4->ipv4_tos = flow->nw_tos;
ipv4->ipv4_ttl = flow->nw_ttl;
ipv4->ipv4_frag = ovs_to_odp_frag(flow->nw_frag, is_mask);
}
static void
put_ipv4_key(const struct ovs_key_ipv4 *ipv4, struct flow *flow, bool is_mask)
{
flow->nw_src = ipv4->ipv4_src;
flow->nw_dst = ipv4->ipv4_dst;
flow->nw_proto = ipv4->ipv4_proto;
flow->nw_tos = ipv4->ipv4_tos;
flow->nw_ttl = ipv4->ipv4_ttl;
flow->nw_frag = odp_to_ovs_frag(ipv4->ipv4_frag, is_mask);
}
static void
commit_set_ipv4_action(const struct flow *flow, struct flow *base_flow,
struct ofpbuf *odp_actions, struct flow_wildcards *wc,
bool use_masked)
{
struct ovs_key_ipv4 key, mask, base;
/* Check that nw_proto and nw_frag remain unchanged. */
ovs_assert(flow->nw_proto == base_flow->nw_proto &&
flow->nw_frag == base_flow->nw_frag);
get_ipv4_key(flow, &key, false);
get_ipv4_key(base_flow, &base, false);
get_ipv4_key(&wc->masks, &mask, true);
mask.ipv4_proto = 0; /* Not writeable. */
mask.ipv4_frag = 0; /* Not writable. */
if (commit(OVS_KEY_ATTR_IPV4, use_masked, &key, &base, &mask, sizeof key,
odp_actions)) {
put_ipv4_key(&base, base_flow, false);
if (mask.ipv4_proto != 0) { /* Mask was changed by commit(). */
put_ipv4_key(&mask, &wc->masks, true);
}
}
}
static void
get_ipv6_key(const struct flow *flow, struct ovs_key_ipv6 *ipv6, bool is_mask)
{
memcpy(ipv6->ipv6_src, &flow->ipv6_src, sizeof ipv6->ipv6_src);
memcpy(ipv6->ipv6_dst, &flow->ipv6_dst, sizeof ipv6->ipv6_dst);
ipv6->ipv6_label = flow->ipv6_label;
ipv6->ipv6_proto = flow->nw_proto;
ipv6->ipv6_tclass = flow->nw_tos;
ipv6->ipv6_hlimit = flow->nw_ttl;
ipv6->ipv6_frag = ovs_to_odp_frag(flow->nw_frag, is_mask);
}
static void
put_ipv6_key(const struct ovs_key_ipv6 *ipv6, struct flow *flow, bool is_mask)
{
memcpy(&flow->ipv6_src, ipv6->ipv6_src, sizeof flow->ipv6_src);
memcpy(&flow->ipv6_dst, ipv6->ipv6_dst, sizeof flow->ipv6_dst);
flow->ipv6_label = ipv6->ipv6_label;
flow->nw_proto = ipv6->ipv6_proto;
flow->nw_tos = ipv6->ipv6_tclass;
flow->nw_ttl = ipv6->ipv6_hlimit;
flow->nw_frag = odp_to_ovs_frag(ipv6->ipv6_frag, is_mask);
}
static void
commit_set_ipv6_action(const struct flow *flow, struct flow *base_flow,
struct ofpbuf *odp_actions, struct flow_wildcards *wc,
bool use_masked)
{
struct ovs_key_ipv6 key, mask, base;
/* Check that nw_proto and nw_frag remain unchanged. */
ovs_assert(flow->nw_proto == base_flow->nw_proto &&
flow->nw_frag == base_flow->nw_frag);
get_ipv6_key(flow, &key, false);
get_ipv6_key(base_flow, &base, false);
get_ipv6_key(&wc->masks, &mask, true);
mask.ipv6_proto = 0; /* Not writeable. */
mask.ipv6_frag = 0; /* Not writable. */
if (commit(OVS_KEY_ATTR_IPV6, use_masked, &key, &base, &mask, sizeof key,
odp_actions)) {
put_ipv6_key(&base, base_flow, false);
if (mask.ipv6_proto != 0) { /* Mask was changed by commit(). */
put_ipv6_key(&mask, &wc->masks, true);
}
}
}
static void
get_arp_key(const struct flow *flow, struct ovs_key_arp *arp)
{
/* ARP key has padding, clear it. */
memset(arp, 0, sizeof *arp);
arp->arp_sip = flow->nw_src;
arp->arp_tip = flow->nw_dst;
arp->arp_op = htons(flow->nw_proto);
memcpy(arp->arp_sha, flow->arp_sha, ETH_ADDR_LEN);
memcpy(arp->arp_tha, flow->arp_tha, ETH_ADDR_LEN);
}
static void
put_arp_key(const struct ovs_key_arp *arp, struct flow *flow)
{
flow->nw_src = arp->arp_sip;
flow->nw_dst = arp->arp_tip;
flow->nw_proto = ntohs(arp->arp_op);
memcpy(flow->arp_sha, arp->arp_sha, ETH_ADDR_LEN);
memcpy(flow->arp_tha, arp->arp_tha, ETH_ADDR_LEN);
}
static enum slow_path_reason
commit_set_arp_action(const struct flow *flow, struct flow *base_flow,
struct ofpbuf *odp_actions, struct flow_wildcards *wc)
{
struct ovs_key_arp key, mask, base;
get_arp_key(flow, &key);
get_arp_key(base_flow, &base);
get_arp_key(&wc->masks, &mask);
if (commit(OVS_KEY_ATTR_ARP, true, &key, &base, &mask, sizeof key,
odp_actions)) {
put_arp_key(&base, base_flow);
put_arp_key(&mask, &wc->masks);
return SLOW_ACTION;
}
return 0;
}
static void
get_nd_key(const struct flow *flow, struct ovs_key_nd *nd)
{
memcpy(nd->nd_target, &flow->nd_target, sizeof flow->nd_target);
/* nd_sll and nd_tll are stored in arp_sha and arp_tha, respectively */
memcpy(nd->nd_sll, flow->arp_sha, ETH_ADDR_LEN);
memcpy(nd->nd_tll, flow->arp_tha, ETH_ADDR_LEN);
}
static void
put_nd_key(const struct ovs_key_nd *nd, struct flow *flow)
{
memcpy(&flow->nd_target, &flow->nd_target, sizeof flow->nd_target);
/* nd_sll and nd_tll are stored in arp_sha and arp_tha, respectively */
memcpy(flow->arp_sha, nd->nd_sll, ETH_ADDR_LEN);
memcpy(flow->arp_tha, nd->nd_tll, ETH_ADDR_LEN);
}
static enum slow_path_reason
commit_set_nd_action(const struct flow *flow, struct flow *base_flow,
struct ofpbuf *odp_actions,
struct flow_wildcards *wc, bool use_masked)
{
struct ovs_key_nd key, mask, base;
get_nd_key(flow, &key);
get_nd_key(base_flow, &base);
get_nd_key(&wc->masks, &mask);
if (commit(OVS_KEY_ATTR_ND, use_masked, &key, &base, &mask, sizeof key,
odp_actions)) {
put_nd_key(&base, base_flow);
put_nd_key(&mask, &wc->masks);
return SLOW_ACTION;
}
return 0;
}
static enum slow_path_reason
commit_set_nw_action(const struct flow *flow, struct flow *base,
struct ofpbuf *odp_actions, struct flow_wildcards *wc,
bool use_masked)
{
/* Check if 'flow' really has an L3 header. */
if (!flow->nw_proto) {
return 0;
}
switch (ntohs(base->dl_type)) {
case ETH_TYPE_IP:
commit_set_ipv4_action(flow, base, odp_actions, wc, use_masked);
break;
case ETH_TYPE_IPV6:
commit_set_ipv6_action(flow, base, odp_actions, wc, use_masked);
return commit_set_nd_action(flow, base, odp_actions, wc, use_masked);
case ETH_TYPE_ARP:
return commit_set_arp_action(flow, base, odp_actions, wc);
}
return 0;
}
/* TCP, UDP, and SCTP keys have the same layout. */
BUILD_ASSERT_DECL(sizeof(struct ovs_key_tcp) == sizeof(struct ovs_key_udp) &&
sizeof(struct ovs_key_tcp) == sizeof(struct ovs_key_sctp));
static void
get_tp_key(const struct flow *flow, union ovs_key_tp *tp)
{
tp->tcp.tcp_src = flow->tp_src;
tp->tcp.tcp_dst = flow->tp_dst;
}
static void
put_tp_key(const union ovs_key_tp *tp, struct flow *flow)
{
flow->tp_src = tp->tcp.tcp_src;
flow->tp_dst = tp->tcp.tcp_dst;
}
static void
commit_set_port_action(const struct flow *flow, struct flow *base_flow,
struct ofpbuf *odp_actions, struct flow_wildcards *wc,
bool use_masked)
{
enum ovs_key_attr key_type;
union ovs_key_tp key, mask, base;
/* Check if 'flow' really has an L3 header. */
if (!flow->nw_proto) {
return;
}
if (!is_ip_any(base_flow)) {
return;
}
if (flow->nw_proto == IPPROTO_TCP) {
key_type = OVS_KEY_ATTR_TCP;
} else if (flow->nw_proto == IPPROTO_UDP) {
key_type = OVS_KEY_ATTR_UDP;
} else if (flow->nw_proto == IPPROTO_SCTP) {
key_type = OVS_KEY_ATTR_SCTP;
} else {
return;
}
get_tp_key(flow, &key);
get_tp_key(base_flow, &base);
get_tp_key(&wc->masks, &mask);
if (commit(key_type, use_masked, &key, &base, &mask, sizeof key,
odp_actions)) {
put_tp_key(&base, base_flow);
put_tp_key(&mask, &wc->masks);
}
}
static void
commit_set_priority_action(const struct flow *flow, struct flow *base_flow,
struct ofpbuf *odp_actions,
struct flow_wildcards *wc,
bool use_masked)
{
uint32_t key, mask, base;
key = flow->skb_priority;
base = base_flow->skb_priority;
mask = wc->masks.skb_priority;
if (commit(OVS_KEY_ATTR_PRIORITY, use_masked, &key, &base, &mask,
sizeof key, odp_actions)) {
base_flow->skb_priority = base;
wc->masks.skb_priority = mask;
}
}
static void
commit_set_pkt_mark_action(const struct flow *flow, struct flow *base_flow,
struct ofpbuf *odp_actions,
struct flow_wildcards *wc,
bool use_masked)
{
uint32_t key, mask, base;
key = flow->pkt_mark;
base = base_flow->pkt_mark;
mask = wc->masks.pkt_mark;
if (commit(OVS_KEY_ATTR_SKB_MARK, use_masked, &key, &base, &mask,
sizeof key, odp_actions)) {
base_flow->pkt_mark = base;
wc->masks.pkt_mark = mask;
}
}
/* If any of the flow key data that ODP actions can modify are different in
* 'base' and 'flow', appends ODP actions to 'odp_actions' that change the flow
* key from 'base' into 'flow', and then changes 'base' the same way. Does not
* commit set_tunnel actions. Users should call commit_odp_tunnel_action()
* in addition to this function if needed. Sets fields in 'wc' that are
* used as part of the action.
*
* Returns a reason to force processing the flow's packets into the userspace
* slow path, if there is one, otherwise 0. */
enum slow_path_reason
commit_odp_actions(const struct flow *flow, struct flow *base,
struct ofpbuf *odp_actions, struct flow_wildcards *wc,
bool use_masked)
{
enum slow_path_reason slow;
commit_set_ether_addr_action(flow, base, odp_actions, wc, use_masked);
slow = commit_set_nw_action(flow, base, odp_actions, wc, use_masked);
commit_set_port_action(flow, base, odp_actions, wc, use_masked);
commit_mpls_action(flow, base, odp_actions);
commit_vlan_action(flow->vlan_tci, base, odp_actions, wc);
commit_set_priority_action(flow, base, odp_actions, wc, use_masked);
commit_set_pkt_mark_action(flow, base, odp_actions, wc, use_masked);
return slow;
}