2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/lib/dpif-netdev-perf.h
Ilya Maximets e7e9973b80 dpif-netdev: Forwarding optimization for flows with a simple match.
There are cases where users might want simple forwarding or drop rules
for all packets received from a specific port, e.g ::

  "in_port=1,actions=2"
  "in_port=2,actions=IN_PORT"
  "in_port=3,vlan_tci=0x1234/0x1fff,actions=drop"
  "in_port=4,actions=push_vlan:0x8100,set_field:4196->vlan_vid,output:3"

There are also cases where complex OpenFlow rules can be simplified
down to datapath flows with very simple match criteria.

In theory, for very simple forwarding, OVS doesn't need to parse
packets at all in order to follow these rules.  "Simple match" lookup
optimization is intended to speed up packet forwarding in these cases.

Design:

Due to various implementation constraints userspace datapath has
following flow fields always in exact match (i.e. it's required to
match at least these fields of a packet even if the OF rule doesn't
need that):

  - recirc_id
  - in_port
  - packet_type
  - dl_type
  - vlan_tci (CFI + VID) - in most cases
  - nw_frag - for ip packets

Not all of these fields are related to packet itself.  We already
know the current 'recirc_id' and the 'in_port' before starting the
packet processing.  It also seems safe to assume that we're working
with Ethernet packets.  So, for the simple OF rule we need to match
only on 'dl_type', 'vlan_tci' and 'nw_frag'.

'in_port', 'dl_type', 'nw_frag' and 13 bits of 'vlan_tci' can be
combined in a single 64bit integer (mark) that can be used as a
hash in hash map.  We are using only VID and CFI form the 'vlan_tci',
flows that need to match on PCP will not qualify for the optimization.
Workaround for matching on non-existence of vlan updated to match on
CFI and VID only in order to qualify for the optimization.  CFI is
always set by OVS if vlan is present in a packet, so there is no need
to match on PCP in this case.  'nw_frag' takes 2 bits of PCP inside
the simple match mark.

New per-PMD flow table 'simple_match_table' introduced to store
simple match flows only.  'dp_netdev_flow_add' adds flow to the
usual 'flow_table' and to the 'simple_match_table' if the flow
meets following constraints:

  - 'recirc_id' in flow match is 0.
  - 'packet_type' in flow match is Ethernet.
  - Flow wildcards contains only minimal set of non-wildcarded fields
    (listed above).

If the number of flows for current 'in_port' in a regular 'flow_table'
equals number of flows for current 'in_port' in a 'simple_match_table',
we may use simple match optimization, because all the flows we have
are simple match flows.  This means that we only need to parse
'dl_type', 'vlan_tci' and 'nw_frag' to perform packet matching.
Now we make the unique flow mark from the 'in_port', 'dl_type',
'nw_frag' and 'vlan_tci' and looking for it in the 'simple_match_table'.
On successful lookup we don't need to run full 'miniflow_extract()'.

Unsuccessful lookup technically means that we have no suitable flow
in the datapath and upcall will be required.  So, in this case EMC and
SMC lookups are disabled.  We may optimize this path in the future by
bypassing the dpcls lookup too.

Performance improvement of this solution on a 'simple match' flows
should be comparable with partial HW offloading, because it parses same
packet fields and uses similar flow lookup scheme.
However, unlike partial HW offloading, it works for all port types
including virtual ones.

Performance results when compared to EMC:

Test setup:

             virtio-user   OVS    virtio-user
  Testpmd1  ------------>  pmd1  ------------>  Testpmd2
  (txonly)       x<------  pmd2  <------------ (mac swap)

Single stream of 64byte packets.  Actions:
  in_port=vhost0,actions=vhost1
  in_port=vhost1,actions=vhost0

Stats collected from pmd1 and pmd2, so there are 2 scenarios:
Virt-to-Virt   :     Testpmd1 ------> pmd1 ------> Testpmd2.
Virt-to-NoCopy :     Testpmd2 ------> pmd2 --->x   Testpmd1.
Here the packet sent from pmd2 to Testpmd1 is always dropped, because
the virtqueue is full since Testpmd1 is in txonly mode and doesn't
receive any packets.  This should be closer to the performance of a
VM-to-Phy scenario.

Test performed on machine with Intel Xeon CPU E5-2690 v4 @ 2.60GHz.
Table below represents improvement in throughput when compared to EMC.

 +----------------+------------------------+------------------------+
 |                |    Default (-g -O2)    | "-Ofast -march=native" |
 |   Scenario     +------------+-----------+------------+-----------+
 |                |     GCC    |   Clang   |     GCC    |   Clang   |
 +----------------+------------+-----------+------------+-----------+
 | Virt-to-Virt   |    +18.9%  |   +25.5%  |    +10.8%  |   +16.7%  |
 | Virt-to-NoCopy |    +24.3%  |   +33.7%  |    +14.9%  |   +22.0%  |
 +----------------+------------+-----------+------------+-----------+

For Phy-to-Phy case performance improvement should be even higher, but
it's not the main use-case for this functionality.  Performance
difference for the non-simple flows is within a margin of error.

Acked-by: Sriharsha Basavapatna <sriharsha.basavapatna@broadcom.com>
Signed-off-by: Ilya Maximets <i.maximets@ovn.org>
2022-01-07 20:32:20 +01:00

439 lines
15 KiB
C

/*
* Copyright (c) 2017 Ericsson AB.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef DPIF_NETDEV_PERF_H
#define DPIF_NETDEV_PERF_H 1
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <time.h>
#include <math.h>
#ifdef DPDK_NETDEV
#include <rte_config.h>
#include <rte_cycles.h>
#endif
#include "openvswitch/vlog.h"
#include "ovs-atomic.h"
#include "timeval.h"
#include "unixctl.h"
#include "util.h"
#ifdef __cplusplus
extern "C" {
#endif
/* This module encapsulates data structures and functions to maintain basic PMD
* performance metrics such as packet counters, execution cycles as well as
* histograms and time series recording for more detailed PMD metrics.
*
* It provides a clean API for dpif-netdev to initialize, update and read and
* reset these metrics.
*
* The basic set of PMD counters is implemented as atomic_uint64_t variables
* to guarantee correct read also in 32-bit systems.
*
* The detailed PMD performance metrics are only supported on 64-bit systems
* with atomic 64-bit read and store semantics for plain uint64_t counters.
*/
/* Set of counter types maintained in pmd_perf_stats. */
enum pmd_stat_type {
PMD_STAT_PHWOL_HIT, /* Packets that had a partial HWOL hit (phwol). */
PMD_STAT_MFEX_OPT_HIT, /* Packets that had miniflow optimized match. */
PMD_STAT_SIMPLE_HIT, /* Packets that had a simple match hit. */
PMD_STAT_EXACT_HIT, /* Packets that had an exact match (emc). */
PMD_STAT_SMC_HIT, /* Packets that had a sig match hit (SMC). */
PMD_STAT_MASKED_HIT, /* Packets that matched in the flow table. */
PMD_STAT_MISS, /* Packets that did not match and upcall was ok. */
PMD_STAT_LOST, /* Packets that did not match and upcall failed. */
/* The above statistics account for the total
* number of packet passes through the datapath
* pipeline and should not be overlapping with each
* other. */
PMD_STAT_MASKED_LOOKUP, /* Number of subtable lookups for flow table
hits. Each MASKED_HIT hit will have >= 1
MASKED_LOOKUP(s). */
PMD_STAT_RECV, /* Packets entering the datapath pipeline from an
* interface. */
PMD_STAT_RECIRC, /* Packets reentering the datapath pipeline due to
* recirculation. */
PMD_STAT_SENT_PKTS, /* Packets that have been sent. */
PMD_STAT_SENT_BATCHES, /* Number of batches sent. */
PMD_CYCLES_ITER_IDLE, /* Cycles spent in idle iterations. */
PMD_CYCLES_ITER_BUSY, /* Cycles spent in busy iterations. */
PMD_CYCLES_UPCALL, /* Cycles spent processing upcalls. */
PMD_N_STATS
};
/* Array of PMD counters indexed by enum pmd_stat_type.
* The n[] array contains the actual counter values since initialization
* of the PMD. Counters are atomically updated from the PMD but are
* read and cleared also from other processes. To clear the counters at
* PMD run-time, the current counter values are copied over to the zero[]
* array. To read counters we subtract zero[] value from n[]. */
struct pmd_counters {
atomic_uint64_t n[PMD_N_STATS]; /* Value since _init(). */
uint64_t zero[PMD_N_STATS]; /* Value at last _clear(). */
};
/* Data structure to collect statistical distribution of an integer measurement
* type in form of a histogram. The wall[] array contains the inclusive
* upper boundaries of the bins, while the bin[] array contains the actual
* counters per bin. The histogram walls are typically set automatically
* using the functions provided below.*/
#define NUM_BINS 32 /* Number of histogram bins. */
struct histogram {
uint32_t wall[NUM_BINS];
uint64_t bin[NUM_BINS];
};
/* Data structure to record details PMD execution metrics per iteration for
* a history period of up to HISTORY_LEN iterations in circular buffer.
* Also used to record up to HISTORY_LEN millisecond averages/totals of these
* metrics.*/
struct iter_stats {
uint64_t timestamp; /* Iteration no. or millisecond. */
uint64_t cycles; /* Number of TSC cycles spent in it. or ms. */
uint64_t busy_cycles; /* Cycles spent in busy iterations or ms. */
uint32_t iterations; /* Iterations in ms. */
uint32_t pkts; /* Packets processed in iteration or ms. */
uint32_t upcalls; /* Number of upcalls in iteration or ms. */
uint32_t upcall_cycles; /* Cycles spent in upcalls in it. or ms. */
uint32_t batches; /* Number of rx batches in iteration or ms. */
uint32_t max_vhost_qfill; /* Maximum fill level in iteration or ms. */
};
#define HISTORY_LEN 1000 /* Length of recorded history
(iterations and ms). */
#define DEF_HIST_SHOW 20 /* Default number of history samples to
display. */
struct history {
size_t idx; /* Slot to which next call to history_store()
will write. */
struct iter_stats sample[HISTORY_LEN];
};
/* Container for all performance metrics of a PMD within the struct
* dp_netdev_pmd_thread. The metrics must be updated from within the PMD
* thread but can be read from any thread. The basic PMD counters in
* struct pmd_counters can be read without protection against concurrent
* clearing. The other metrics may only be safely read with the clear_mutex
* held to protect against concurrent clearing. */
struct pmd_perf_stats {
/* Prevents interference between PMD polling and stats clearing. */
struct ovs_mutex stats_mutex;
/* Set by CLI thread to order clearing of PMD stats. */
volatile bool clear;
/* Prevents stats retrieval while clearing is in progress. */
struct ovs_mutex clear_mutex;
/* Start of the current performance measurement period. */
uint64_t start_ms;
/* Counter for PMD iterations. */
uint64_t iteration_cnt;
/* Start of the current iteration. */
uint64_t start_tsc;
/* Latest TSC time stamp taken in PMD. */
uint64_t last_tsc;
/* Used to space certain checks in time. */
uint64_t next_check_tsc;
/* If non-NULL, outermost cycle timer currently running in PMD. */
struct cycle_timer *cur_timer;
/* Set of PMD counters with their zero offsets. */
struct pmd_counters counters;
/* Statistics of the current iteration. */
struct iter_stats current;
/* Totals for the current millisecond. */
struct iter_stats totals;
/* Histograms for the PMD metrics. */
struct histogram cycles;
struct histogram pkts;
struct histogram cycles_per_pkt;
struct histogram upcalls;
struct histogram cycles_per_upcall;
struct histogram pkts_per_batch;
struct histogram max_vhost_qfill;
/* Iteration history buffer. */
struct history iterations;
/* Millisecond history buffer. */
struct history milliseconds;
/* Suspicious iteration log. */
uint32_t log_susp_it;
/* Start of iteration range to log. */
uint32_t log_begin_it;
/* End of iteration range to log. */
uint32_t log_end_it;
/* Reason for logging suspicious iteration. */
char *log_reason;
};
#ifdef __linux__
static inline uint64_t
rdtsc_syscall(struct pmd_perf_stats *s)
{
struct timespec val;
uint64_t v;
if (clock_gettime(CLOCK_MONOTONIC_RAW, &val) != 0) {
return s->last_tsc;
}
v = val.tv_sec * UINT64_C(1000000000) + val.tv_nsec;
return s->last_tsc = v;
}
#endif
/* Support for accurate timing of PMD execution on TSC clock cycle level.
* These functions are intended to be invoked in the context of pmd threads. */
/* Read the TSC cycle register and cache it. Any function not requiring clock
* cycle accuracy should read the cached value using cycles_counter_get() to
* avoid the overhead of reading the TSC register. */
static inline uint64_t
cycles_counter_update(struct pmd_perf_stats *s)
{
#ifdef DPDK_NETDEV
return s->last_tsc = rte_get_tsc_cycles();
#elif !defined(_MSC_VER) && defined(__x86_64__)
uint32_t h, l;
asm volatile("rdtsc" : "=a" (l), "=d" (h));
return s->last_tsc = ((uint64_t) h << 32) | l;
#elif !defined(_MSC_VER) && defined(__aarch64__)
asm volatile("mrs %0, cntvct_el0" : "=r" (s->last_tsc));
return s->last_tsc;
#elif defined(__linux__)
return rdtsc_syscall(s);
#else
return s->last_tsc = 0;
#endif
}
static inline uint64_t
cycles_counter_get(struct pmd_perf_stats *s)
{
return s->last_tsc;
}
void pmd_perf_estimate_tsc_frequency(void);
/* A nestable timer for measuring execution time in TSC cycles.
*
* Usage:
* struct cycle_timer timer;
*
* cycle_timer_start(pmd, &timer);
* <Timed execution>
* uint64_t cycles = cycle_timer_stop(pmd, &timer);
*
* The caller must guarantee that a call to cycle_timer_start() is always
* paired with a call to cycle_stimer_stop().
*
* Is is possible to have nested cycles timers within the timed code. The
* execution time measured by the nested timers is excluded from the time
* measured by the embracing timer.
*/
struct cycle_timer {
uint64_t start;
uint64_t suspended;
struct cycle_timer *interrupted;
};
static inline void
cycle_timer_start(struct pmd_perf_stats *s,
struct cycle_timer *timer)
{
struct cycle_timer *cur_timer = s->cur_timer;
uint64_t now = cycles_counter_update(s);
if (cur_timer) {
cur_timer->suspended = now;
}
timer->interrupted = cur_timer;
timer->start = now;
timer->suspended = 0;
s->cur_timer = timer;
}
static inline uint64_t
cycle_timer_stop(struct pmd_perf_stats *s,
struct cycle_timer *timer)
{
/* Assert that this is the current cycle timer. */
ovs_assert(s->cur_timer == timer);
uint64_t now = cycles_counter_update(s);
struct cycle_timer *intr_timer = timer->interrupted;
if (intr_timer) {
/* Adjust the start offset by the suspended cycles. */
intr_timer->start += now - intr_timer->suspended;
}
/* Restore suspended timer, if any. */
s->cur_timer = intr_timer;
return now - timer->start;
}
/* Functions to initialize and reset the PMD performance metrics. */
void pmd_perf_stats_init(struct pmd_perf_stats *s);
void pmd_perf_stats_clear(struct pmd_perf_stats *s);
void pmd_perf_stats_clear_lock(struct pmd_perf_stats *s);
/* Functions to read and update PMD counters. */
void pmd_perf_read_counters(struct pmd_perf_stats *s,
uint64_t stats[PMD_N_STATS]);
/* PMD performance counters are updated lock-less. For real PMDs
* they are only updated from the PMD thread itself. In the case of the
* NON-PMD they might be updated from multiple threads, but we can live
* with losing a rare update as 100% accuracy is not required.
* However, as counters are read for display from outside the PMD thread
* with e.g. pmd-stats-show, we make sure that the 64-bit read and store
* operations are atomic also on 32-bit systems so that readers cannot
* not read garbage. On 64-bit systems this incurs no overhead. */
static inline void
pmd_perf_update_counter(struct pmd_perf_stats *s,
enum pmd_stat_type counter, int delta)
{
uint64_t tmp;
atomic_read_relaxed(&s->counters.n[counter], &tmp);
tmp += delta;
atomic_store_relaxed(&s->counters.n[counter], tmp);
}
/* Functions to manipulate a sample history. */
static inline void
histogram_add_sample(struct histogram *hist, uint32_t val)
{
/* TODO: Can do better with binary search? */
for (int i = 0; i < NUM_BINS-1; i++) {
if (val <= hist->wall[i]) {
hist->bin[i]++;
return;
}
}
hist->bin[NUM_BINS-1]++;
}
uint64_t histogram_samples(const struct histogram *hist);
/* This function is used to advance the given history index by positive
* offset in the circular history buffer. */
static inline uint32_t
history_add(uint32_t idx, uint32_t offset)
{
return (idx + offset) % HISTORY_LEN;
}
/* This function computes the difference between two indices into the
* circular history buffer. The result is always positive in the range
* 0 .. HISTORY_LEN-1 and specifies the number of steps to reach idx1
* starting from idx2. It can also be used to retreat the history index
* idx1 by idx2 steps. */
static inline uint32_t
history_sub(uint32_t idx1, uint32_t idx2)
{
return (idx1 + HISTORY_LEN - idx2) % HISTORY_LEN;
}
static inline struct iter_stats *
history_current(struct history *h)
{
return &h->sample[h->idx];
}
static inline struct iter_stats *
history_next(struct history *h)
{
size_t next_idx = history_add(h->idx, 1);
struct iter_stats *next = &h->sample[next_idx];
memset(next, 0, sizeof(*next));
h->idx = next_idx;
return next;
}
static inline struct iter_stats *
history_store(struct history *h, struct iter_stats *is)
{
if (is) {
h->sample[h->idx] = *is;
}
/* Advance the history pointer */
return history_next(h);
}
/* Data and function related to logging of suspicious iterations. */
extern bool log_enabled;
extern bool log_extend;
extern uint32_t log_q_thr;
extern uint64_t iter_cycle_threshold;
void pmd_perf_set_log_susp_iteration(struct pmd_perf_stats *s, char *reason);
void pmd_perf_log_susp_iteration_neighborhood(struct pmd_perf_stats *s);
/* Functions recording PMD metrics per iteration. */
void
pmd_perf_start_iteration(struct pmd_perf_stats *s);
void
pmd_perf_end_iteration(struct pmd_perf_stats *s, int rx_packets,
int tx_packets, bool full_metrics);
/* Formatting the output of commands. */
struct pmd_perf_params {
int command_type;
bool histograms;
size_t iter_hist_len;
size_t ms_hist_len;
};
void pmd_perf_format_overall_stats(struct ds *str, struct pmd_perf_stats *s,
double duration);
void pmd_perf_format_histograms(struct ds *str, struct pmd_perf_stats *s);
void pmd_perf_format_iteration_history(struct ds *str,
struct pmd_perf_stats *s,
int n_iter);
void pmd_perf_format_ms_history(struct ds *str, struct pmd_perf_stats *s,
int n_ms);
void pmd_perf_log_set_cmd(struct unixctl_conn *conn,
int argc, const char *argv[],
void *aux OVS_UNUSED);
#ifdef __cplusplus
}
#endif
#endif /* DPIF_NETDEV_PERF_H */