2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/lib/flow.c
Simon Horman e878338bf1 OXM: Allow masking of ARP SHA and THA
Signed-off-by: Simon Horman <horms@verge.net.au>
[blp@nicira.com added NEWS, updated a few overlooked meta-flow bits]
Signed-off-by: Ben Pfaff <blp@nicira.com>
2012-07-19 09:33:31 -07:00

1080 lines
35 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2008, 2009, 2010, 2011, 2012 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include <sys/types.h>
#include "flow.h"
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <netinet/in.h>
#include <netinet/icmp6.h>
#include <netinet/ip6.h>
#include <stdlib.h>
#include <string.h>
#include "byte-order.h"
#include "coverage.h"
#include "dynamic-string.h"
#include "hash.h"
#include "ofpbuf.h"
#include "openflow/openflow.h"
#include "packets.h"
#include "unaligned.h"
#include "vlog.h"
VLOG_DEFINE_THIS_MODULE(flow);
COVERAGE_DEFINE(flow_extract);
static struct arp_eth_header *
pull_arp(struct ofpbuf *packet)
{
return ofpbuf_try_pull(packet, ARP_ETH_HEADER_LEN);
}
static struct ip_header *
pull_ip(struct ofpbuf *packet)
{
if (packet->size >= IP_HEADER_LEN) {
struct ip_header *ip = packet->data;
int ip_len = IP_IHL(ip->ip_ihl_ver) * 4;
if (ip_len >= IP_HEADER_LEN && packet->size >= ip_len) {
return ofpbuf_pull(packet, ip_len);
}
}
return NULL;
}
static struct tcp_header *
pull_tcp(struct ofpbuf *packet)
{
if (packet->size >= TCP_HEADER_LEN) {
struct tcp_header *tcp = packet->data;
int tcp_len = TCP_OFFSET(tcp->tcp_ctl) * 4;
if (tcp_len >= TCP_HEADER_LEN && packet->size >= tcp_len) {
return ofpbuf_pull(packet, tcp_len);
}
}
return NULL;
}
static struct udp_header *
pull_udp(struct ofpbuf *packet)
{
return ofpbuf_try_pull(packet, UDP_HEADER_LEN);
}
static struct icmp_header *
pull_icmp(struct ofpbuf *packet)
{
return ofpbuf_try_pull(packet, ICMP_HEADER_LEN);
}
static struct icmp6_hdr *
pull_icmpv6(struct ofpbuf *packet)
{
return ofpbuf_try_pull(packet, sizeof(struct icmp6_hdr));
}
static void
parse_vlan(struct ofpbuf *b, struct flow *flow)
{
struct qtag_prefix {
ovs_be16 eth_type; /* ETH_TYPE_VLAN */
ovs_be16 tci;
};
if (b->size >= sizeof(struct qtag_prefix) + sizeof(ovs_be16)) {
struct qtag_prefix *qp = ofpbuf_pull(b, sizeof *qp);
flow->vlan_tci = qp->tci | htons(VLAN_CFI);
}
}
static ovs_be16
parse_ethertype(struct ofpbuf *b)
{
struct llc_snap_header *llc;
ovs_be16 proto;
proto = *(ovs_be16 *) ofpbuf_pull(b, sizeof proto);
if (ntohs(proto) >= ETH_TYPE_MIN) {
return proto;
}
if (b->size < sizeof *llc) {
return htons(FLOW_DL_TYPE_NONE);
}
llc = b->data;
if (llc->llc.llc_dsap != LLC_DSAP_SNAP
|| llc->llc.llc_ssap != LLC_SSAP_SNAP
|| llc->llc.llc_cntl != LLC_CNTL_SNAP
|| memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
sizeof llc->snap.snap_org)) {
return htons(FLOW_DL_TYPE_NONE);
}
ofpbuf_pull(b, sizeof *llc);
return llc->snap.snap_type;
}
static int
parse_ipv6(struct ofpbuf *packet, struct flow *flow)
{
const struct ip6_hdr *nh;
ovs_be32 tc_flow;
int nexthdr;
nh = ofpbuf_try_pull(packet, sizeof *nh);
if (!nh) {
return EINVAL;
}
nexthdr = nh->ip6_nxt;
flow->ipv6_src = nh->ip6_src;
flow->ipv6_dst = nh->ip6_dst;
tc_flow = get_unaligned_be32(&nh->ip6_flow);
flow->nw_tos = ntohl(tc_flow) >> 20;
flow->ipv6_label = tc_flow & htonl(IPV6_LABEL_MASK);
flow->nw_ttl = nh->ip6_hlim;
flow->nw_proto = IPPROTO_NONE;
while (1) {
if ((nexthdr != IPPROTO_HOPOPTS)
&& (nexthdr != IPPROTO_ROUTING)
&& (nexthdr != IPPROTO_DSTOPTS)
&& (nexthdr != IPPROTO_AH)
&& (nexthdr != IPPROTO_FRAGMENT)) {
/* It's either a terminal header (e.g., TCP, UDP) or one we
* don't understand. In either case, we're done with the
* packet, so use it to fill in 'nw_proto'. */
break;
}
/* We only verify that at least 8 bytes of the next header are
* available, but many of these headers are longer. Ensure that
* accesses within the extension header are within those first 8
* bytes. All extension headers are required to be at least 8
* bytes. */
if (packet->size < 8) {
return EINVAL;
}
if ((nexthdr == IPPROTO_HOPOPTS)
|| (nexthdr == IPPROTO_ROUTING)
|| (nexthdr == IPPROTO_DSTOPTS)) {
/* These headers, while different, have the fields we care about
* in the same location and with the same interpretation. */
const struct ip6_ext *ext_hdr = (struct ip6_ext *)packet->data;
nexthdr = ext_hdr->ip6e_nxt;
if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 1) * 8)) {
return EINVAL;
}
} else if (nexthdr == IPPROTO_AH) {
/* A standard AH definition isn't available, but the fields
* we care about are in the same location as the generic
* option header--only the header length is calculated
* differently. */
const struct ip6_ext *ext_hdr = (struct ip6_ext *)packet->data;
nexthdr = ext_hdr->ip6e_nxt;
if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 2) * 4)) {
return EINVAL;
}
} else if (nexthdr == IPPROTO_FRAGMENT) {
const struct ip6_frag *frag_hdr = (struct ip6_frag *)packet->data;
nexthdr = frag_hdr->ip6f_nxt;
if (!ofpbuf_try_pull(packet, sizeof *frag_hdr)) {
return EINVAL;
}
/* We only process the first fragment. */
if (frag_hdr->ip6f_offlg != htons(0)) {
if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) == htons(0)) {
flow->nw_frag = FLOW_NW_FRAG_ANY;
} else {
flow->nw_frag |= FLOW_NW_FRAG_LATER;
nexthdr = IPPROTO_FRAGMENT;
break;
}
}
}
}
flow->nw_proto = nexthdr;
return 0;
}
static void
parse_tcp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow)
{
const struct tcp_header *tcp = pull_tcp(b);
if (tcp) {
flow->tp_src = tcp->tcp_src;
flow->tp_dst = tcp->tcp_dst;
packet->l7 = b->data;
}
}
static void
parse_udp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow)
{
const struct udp_header *udp = pull_udp(b);
if (udp) {
flow->tp_src = udp->udp_src;
flow->tp_dst = udp->udp_dst;
packet->l7 = b->data;
}
}
static bool
parse_icmpv6(struct ofpbuf *b, struct flow *flow)
{
const struct icmp6_hdr *icmp = pull_icmpv6(b);
if (!icmp) {
return false;
}
/* The ICMPv6 type and code fields use the 16-bit transport port
* fields, so we need to store them in 16-bit network byte order. */
flow->tp_src = htons(icmp->icmp6_type);
flow->tp_dst = htons(icmp->icmp6_code);
if (icmp->icmp6_code == 0 &&
(icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
const struct in6_addr *nd_target;
nd_target = ofpbuf_try_pull(b, sizeof *nd_target);
if (!nd_target) {
return false;
}
flow->nd_target = *nd_target;
while (b->size >= 8) {
/* The minimum size of an option is 8 bytes, which also is
* the size of Ethernet link-layer options. */
const struct nd_opt_hdr *nd_opt = b->data;
int opt_len = nd_opt->nd_opt_len * 8;
if (!opt_len || opt_len > b->size) {
goto invalid;
}
/* Store the link layer address if the appropriate option is
* provided. It is considered an error if the same link
* layer option is specified twice. */
if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR
&& opt_len == 8) {
if (eth_addr_is_zero(flow->arp_sha)) {
memcpy(flow->arp_sha, nd_opt + 1, ETH_ADDR_LEN);
} else {
goto invalid;
}
} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR
&& opt_len == 8) {
if (eth_addr_is_zero(flow->arp_tha)) {
memcpy(flow->arp_tha, nd_opt + 1, ETH_ADDR_LEN);
} else {
goto invalid;
}
}
if (!ofpbuf_try_pull(b, opt_len)) {
goto invalid;
}
}
}
return true;
invalid:
memset(&flow->nd_target, 0, sizeof(flow->nd_target));
memset(flow->arp_sha, 0, sizeof(flow->arp_sha));
memset(flow->arp_tha, 0, sizeof(flow->arp_tha));
return false;
}
/* Initializes 'flow' members from 'packet', 'skb_priority', 'tun_id', and
* 'ofp_in_port'.
*
* Initializes 'packet' header pointers as follows:
*
* - packet->l2 to the start of the Ethernet header.
*
* - packet->l3 to just past the Ethernet header, or just past the
* vlan_header if one is present, to the first byte of the payload of the
* Ethernet frame.
*
* - packet->l4 to just past the IPv4 header, if one is present and has a
* correct length, and otherwise NULL.
*
* - packet->l7 to just past the TCP or UDP or ICMP header, if one is
* present and has a correct length, and otherwise NULL.
*/
void
flow_extract(struct ofpbuf *packet, uint32_t skb_priority, ovs_be64 tun_id,
uint16_t ofp_in_port, struct flow *flow)
{
struct ofpbuf b = *packet;
struct eth_header *eth;
COVERAGE_INC(flow_extract);
memset(flow, 0, sizeof *flow);
flow->tun_id = tun_id;
flow->in_port = ofp_in_port;
flow->skb_priority = skb_priority;
packet->l2 = b.data;
packet->l3 = NULL;
packet->l4 = NULL;
packet->l7 = NULL;
if (b.size < sizeof *eth) {
return;
}
/* Link layer. */
eth = b.data;
memcpy(flow->dl_src, eth->eth_src, ETH_ADDR_LEN);
memcpy(flow->dl_dst, eth->eth_dst, ETH_ADDR_LEN);
/* dl_type, vlan_tci. */
ofpbuf_pull(&b, ETH_ADDR_LEN * 2);
if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
parse_vlan(&b, flow);
}
flow->dl_type = parse_ethertype(&b);
/* Network layer. */
packet->l3 = b.data;
if (flow->dl_type == htons(ETH_TYPE_IP)) {
const struct ip_header *nh = pull_ip(&b);
if (nh) {
packet->l4 = b.data;
flow->nw_src = get_unaligned_be32(&nh->ip_src);
flow->nw_dst = get_unaligned_be32(&nh->ip_dst);
flow->nw_proto = nh->ip_proto;
flow->nw_tos = nh->ip_tos;
if (IP_IS_FRAGMENT(nh->ip_frag_off)) {
flow->nw_frag = FLOW_NW_FRAG_ANY;
if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) {
flow->nw_frag |= FLOW_NW_FRAG_LATER;
}
}
flow->nw_ttl = nh->ip_ttl;
if (!(nh->ip_frag_off & htons(IP_FRAG_OFF_MASK))) {
if (flow->nw_proto == IPPROTO_TCP) {
parse_tcp(packet, &b, flow);
} else if (flow->nw_proto == IPPROTO_UDP) {
parse_udp(packet, &b, flow);
} else if (flow->nw_proto == IPPROTO_ICMP) {
const struct icmp_header *icmp = pull_icmp(&b);
if (icmp) {
flow->tp_src = htons(icmp->icmp_type);
flow->tp_dst = htons(icmp->icmp_code);
packet->l7 = b.data;
}
}
}
}
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
if (parse_ipv6(&b, flow)) {
return;
}
packet->l4 = b.data;
if (flow->nw_proto == IPPROTO_TCP) {
parse_tcp(packet, &b, flow);
} else if (flow->nw_proto == IPPROTO_UDP) {
parse_udp(packet, &b, flow);
} else if (flow->nw_proto == IPPROTO_ICMPV6) {
if (parse_icmpv6(&b, flow)) {
packet->l7 = b.data;
}
}
} else if (flow->dl_type == htons(ETH_TYPE_ARP)) {
const struct arp_eth_header *arp = pull_arp(&b);
if (arp && arp->ar_hrd == htons(1)
&& arp->ar_pro == htons(ETH_TYPE_IP)
&& arp->ar_hln == ETH_ADDR_LEN
&& arp->ar_pln == 4) {
/* We only match on the lower 8 bits of the opcode. */
if (ntohs(arp->ar_op) <= 0xff) {
flow->nw_proto = ntohs(arp->ar_op);
}
if ((flow->nw_proto == ARP_OP_REQUEST)
|| (flow->nw_proto == ARP_OP_REPLY)) {
flow->nw_src = arp->ar_spa;
flow->nw_dst = arp->ar_tpa;
memcpy(flow->arp_sha, arp->ar_sha, ETH_ADDR_LEN);
memcpy(flow->arp_tha, arp->ar_tha, ETH_ADDR_LEN);
}
}
}
}
/* For every bit of a field that is wildcarded in 'wildcards', sets the
* corresponding bit in 'flow' to zero. */
void
flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards)
{
const flow_wildcards_t wc = wildcards->wildcards;
int i;
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 14);
for (i = 0; i < FLOW_N_REGS; i++) {
flow->regs[i] &= wildcards->reg_masks[i];
}
flow->tun_id &= wildcards->tun_id_mask;
flow->metadata &= wildcards->metadata_mask;
flow->nw_src &= wildcards->nw_src_mask;
flow->nw_dst &= wildcards->nw_dst_mask;
if (wc & FWW_IN_PORT) {
flow->in_port = 0;
}
flow->vlan_tci &= wildcards->vlan_tci_mask;
if (wc & FWW_DL_TYPE) {
flow->dl_type = htons(0);
}
flow->tp_src &= wildcards->tp_src_mask;
flow->tp_dst &= wildcards->tp_dst_mask;
eth_addr_bitand(flow->dl_src, wildcards->dl_src_mask, flow->dl_src);
eth_addr_bitand(flow->dl_dst, wildcards->dl_dst_mask, flow->dl_dst);
if (wc & FWW_NW_PROTO) {
flow->nw_proto = 0;
}
flow->ipv6_label &= wildcards->ipv6_label_mask;
if (wc & FWW_NW_DSCP) {
flow->nw_tos &= ~IP_DSCP_MASK;
}
if (wc & FWW_NW_ECN) {
flow->nw_tos &= ~IP_ECN_MASK;
}
if (wc & FWW_NW_TTL) {
flow->nw_ttl = 0;
}
flow->nw_frag &= wildcards->nw_frag_mask;
eth_addr_bitand(flow->arp_sha, wildcards->arp_sha_mask, flow->arp_sha);
eth_addr_bitand(flow->arp_tha, wildcards->arp_tha_mask, flow->arp_tha);
flow->ipv6_src = ipv6_addr_bitand(&flow->ipv6_src,
&wildcards->ipv6_src_mask);
flow->ipv6_dst = ipv6_addr_bitand(&flow->ipv6_dst,
&wildcards->ipv6_dst_mask);
flow->nd_target = ipv6_addr_bitand(&flow->nd_target,
&wildcards->nd_target_mask);
flow->skb_priority = 0;
}
/* Initializes 'fmd' with the metadata found in 'flow'. */
void
flow_get_metadata(const struct flow *flow, struct flow_metadata *fmd)
{
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 14);
fmd->tun_id = flow->tun_id;
fmd->tun_id_mask = htonll(UINT64_MAX);
fmd->metadata = flow->metadata;
fmd->metadata_mask = htonll(UINT64_MAX);
memcpy(fmd->regs, flow->regs, sizeof fmd->regs);
memset(fmd->reg_masks, 0xff, sizeof fmd->reg_masks);
fmd->in_port = flow->in_port;
}
char *
flow_to_string(const struct flow *flow)
{
struct ds ds = DS_EMPTY_INITIALIZER;
flow_format(&ds, flow);
return ds_cstr(&ds);
}
void
flow_format(struct ds *ds, const struct flow *flow)
{
ds_put_format(ds, "priority:%"PRIu32
",tunnel:%#"PRIx64
",metadata:%#"PRIx64
",in_port:%04"PRIx16,
flow->skb_priority,
ntohll(flow->tun_id),
ntohll(flow->metadata),
flow->in_port);
ds_put_format(ds, ",tci(");
if (flow->vlan_tci) {
ds_put_format(ds, "vlan:%"PRIu16",pcp:%d",
vlan_tci_to_vid(flow->vlan_tci),
vlan_tci_to_pcp(flow->vlan_tci));
} else {
ds_put_char(ds, '0');
}
ds_put_format(ds, ") mac("ETH_ADDR_FMT"->"ETH_ADDR_FMT
") type:%04"PRIx16,
ETH_ADDR_ARGS(flow->dl_src),
ETH_ADDR_ARGS(flow->dl_dst),
ntohs(flow->dl_type));
if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
ds_put_format(ds, " label:%#"PRIx32" proto:%"PRIu8" tos:%#"PRIx8
" ttl:%"PRIu8" ipv6(",
ntohl(flow->ipv6_label), flow->nw_proto,
flow->nw_tos, flow->nw_ttl);
print_ipv6_addr(ds, &flow->ipv6_src);
ds_put_cstr(ds, "->");
print_ipv6_addr(ds, &flow->ipv6_dst);
ds_put_char(ds, ')');
} else {
ds_put_format(ds, " proto:%"PRIu8" tos:%#"PRIx8" ttl:%"PRIu8
" ip("IP_FMT"->"IP_FMT")",
flow->nw_proto, flow->nw_tos, flow->nw_ttl,
IP_ARGS(&flow->nw_src), IP_ARGS(&flow->nw_dst));
}
if (flow->nw_frag) {
ds_put_format(ds, " frag(%s)",
flow->nw_frag == FLOW_NW_FRAG_ANY ? "first"
: flow->nw_frag == (FLOW_NW_FRAG_ANY | FLOW_NW_FRAG_LATER)
? "later" : "<error>");
}
if (flow->tp_src || flow->tp_dst) {
ds_put_format(ds, " port(%"PRIu16"->%"PRIu16")",
ntohs(flow->tp_src), ntohs(flow->tp_dst));
}
if (!eth_addr_is_zero(flow->arp_sha) || !eth_addr_is_zero(flow->arp_tha)) {
ds_put_format(ds, " arp_ha("ETH_ADDR_FMT"->"ETH_ADDR_FMT")",
ETH_ADDR_ARGS(flow->arp_sha),
ETH_ADDR_ARGS(flow->arp_tha));
}
}
void
flow_print(FILE *stream, const struct flow *flow)
{
char *s = flow_to_string(flow);
fputs(s, stream);
free(s);
}
/* flow_wildcards functions. */
/* Initializes 'wc' as a set of wildcards that matches every packet. */
void
flow_wildcards_init_catchall(struct flow_wildcards *wc)
{
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 14);
wc->wildcards = FWW_ALL;
wc->tun_id_mask = htonll(0);
wc->nw_src_mask = htonl(0);
wc->nw_dst_mask = htonl(0);
wc->ipv6_src_mask = in6addr_any;
wc->ipv6_dst_mask = in6addr_any;
wc->ipv6_label_mask = htonl(0);
wc->nd_target_mask = in6addr_any;
memset(wc->reg_masks, 0, sizeof wc->reg_masks);
wc->metadata_mask = htonll(0);
wc->vlan_tci_mask = htons(0);
wc->nw_frag_mask = 0;
wc->tp_src_mask = htons(0);
wc->tp_dst_mask = htons(0);
memset(wc->dl_src_mask, 0, ETH_ADDR_LEN);
memset(wc->dl_dst_mask, 0, ETH_ADDR_LEN);
memset(wc->arp_sha_mask, 0, ETH_ADDR_LEN);
memset(wc->arp_tha_mask, 0, ETH_ADDR_LEN);
memset(wc->zeros, 0, sizeof wc->zeros);
}
/* Initializes 'wc' as an exact-match set of wildcards; that is, 'wc' does not
* wildcard any bits or fields. */
void
flow_wildcards_init_exact(struct flow_wildcards *wc)
{
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 14);
wc->wildcards = 0;
wc->tun_id_mask = htonll(UINT64_MAX);
wc->nw_src_mask = htonl(UINT32_MAX);
wc->nw_dst_mask = htonl(UINT32_MAX);
wc->ipv6_src_mask = in6addr_exact;
wc->ipv6_dst_mask = in6addr_exact;
wc->ipv6_label_mask = htonl(UINT32_MAX);
wc->nd_target_mask = in6addr_exact;
memset(wc->reg_masks, 0xff, sizeof wc->reg_masks);
wc->metadata_mask = htonll(UINT64_MAX);
wc->vlan_tci_mask = htons(UINT16_MAX);
wc->nw_frag_mask = UINT8_MAX;
wc->tp_src_mask = htons(UINT16_MAX);
wc->tp_dst_mask = htons(UINT16_MAX);
memset(wc->dl_src_mask, 0xff, ETH_ADDR_LEN);
memset(wc->dl_dst_mask, 0xff, ETH_ADDR_LEN);
memset(wc->arp_sha_mask, 0xff, ETH_ADDR_LEN);
memset(wc->arp_tha_mask, 0xff, ETH_ADDR_LEN);
memset(wc->zeros, 0, sizeof wc->zeros);
}
/* Returns true if 'wc' is exact-match, false if 'wc' wildcards any bits or
* fields. */
bool
flow_wildcards_is_exact(const struct flow_wildcards *wc)
{
int i;
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 14);
if (wc->wildcards
|| wc->tun_id_mask != htonll(UINT64_MAX)
|| wc->nw_src_mask != htonl(UINT32_MAX)
|| wc->nw_dst_mask != htonl(UINT32_MAX)
|| wc->tp_src_mask != htons(UINT16_MAX)
|| wc->tp_dst_mask != htons(UINT16_MAX)
|| wc->vlan_tci_mask != htons(UINT16_MAX)
|| wc->metadata_mask != htonll(UINT64_MAX)
|| !eth_mask_is_exact(wc->dl_src_mask)
|| !eth_mask_is_exact(wc->dl_dst_mask)
|| !eth_mask_is_exact(wc->arp_sha_mask)
|| !eth_mask_is_exact(wc->arp_tha_mask)
|| !ipv6_mask_is_exact(&wc->ipv6_src_mask)
|| !ipv6_mask_is_exact(&wc->ipv6_dst_mask)
|| wc->ipv6_label_mask != htonl(UINT32_MAX)
|| !ipv6_mask_is_exact(&wc->nd_target_mask)
|| wc->nw_frag_mask != UINT8_MAX) {
return false;
}
for (i = 0; i < FLOW_N_REGS; i++) {
if (wc->reg_masks[i] != UINT32_MAX) {
return false;
}
}
return true;
}
/* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or
* fields. */
bool
flow_wildcards_is_catchall(const struct flow_wildcards *wc)
{
int i;
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 14);
if (wc->wildcards != FWW_ALL
|| wc->tun_id_mask != htonll(0)
|| wc->nw_src_mask != htonl(0)
|| wc->nw_dst_mask != htonl(0)
|| wc->tp_src_mask != htons(0)
|| wc->tp_dst_mask != htons(0)
|| wc->vlan_tci_mask != htons(0)
|| wc->metadata_mask != htonll(0)
|| !eth_addr_is_zero(wc->dl_src_mask)
|| !eth_addr_is_zero(wc->dl_dst_mask)
|| !eth_addr_is_zero(wc->arp_sha_mask)
|| !eth_addr_is_zero(wc->arp_tha_mask)
|| !ipv6_mask_is_any(&wc->ipv6_src_mask)
|| !ipv6_mask_is_any(&wc->ipv6_dst_mask)
|| wc->ipv6_label_mask != htonl(0)
|| !ipv6_mask_is_any(&wc->nd_target_mask)
|| wc->nw_frag_mask != 0) {
return false;
}
for (i = 0; i < FLOW_N_REGS; i++) {
if (wc->reg_masks[i] != 0) {
return false;
}
}
return true;
}
/* Initializes 'dst' as the combination of wildcards in 'src1' and 'src2'.
* That is, a bit or a field is wildcarded in 'dst' if it is wildcarded in
* 'src1' or 'src2' or both. */
void
flow_wildcards_combine(struct flow_wildcards *dst,
const struct flow_wildcards *src1,
const struct flow_wildcards *src2)
{
int i;
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 14);
dst->wildcards = src1->wildcards | src2->wildcards;
dst->tun_id_mask = src1->tun_id_mask & src2->tun_id_mask;
dst->nw_src_mask = src1->nw_src_mask & src2->nw_src_mask;
dst->nw_dst_mask = src1->nw_dst_mask & src2->nw_dst_mask;
dst->ipv6_src_mask = ipv6_addr_bitand(&src1->ipv6_src_mask,
&src2->ipv6_src_mask);
dst->ipv6_dst_mask = ipv6_addr_bitand(&src1->ipv6_dst_mask,
&src2->ipv6_dst_mask);
dst->ipv6_label_mask = src1->ipv6_label_mask & src2->ipv6_label_mask;
dst->nd_target_mask = ipv6_addr_bitand(&src1->nd_target_mask,
&src2->nd_target_mask);
for (i = 0; i < FLOW_N_REGS; i++) {
dst->reg_masks[i] = src1->reg_masks[i] & src2->reg_masks[i];
}
dst->metadata_mask = src1->metadata_mask & src2->metadata_mask;
dst->vlan_tci_mask = src1->vlan_tci_mask & src2->vlan_tci_mask;
dst->tp_src_mask = src1->tp_src_mask & src2->tp_src_mask;
dst->tp_dst_mask = src1->tp_dst_mask & src2->tp_dst_mask;
eth_addr_bitand(src1->dl_src_mask, src2->dl_src_mask, dst->dl_src_mask);
eth_addr_bitand(src1->dl_dst_mask, src2->dl_dst_mask, dst->dl_dst_mask);
eth_addr_bitand(src1->arp_sha_mask, src2->arp_sha_mask, dst->arp_sha_mask);
eth_addr_bitand(src1->arp_tha_mask, src2->arp_tha_mask, dst->arp_tha_mask);
}
/* Returns a hash of the wildcards in 'wc'. */
uint32_t
flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis)
{
/* If you change struct flow_wildcards and thereby trigger this
* assertion, please check that the new struct flow_wildcards has no holes
* in it before you update the assertion. */
BUILD_ASSERT_DECL(sizeof *wc == 112 + FLOW_N_REGS * 4);
return hash_bytes(wc, sizeof *wc, basis);
}
/* Returns true if 'a' and 'b' represent the same wildcards, false if they are
* different. */
bool
flow_wildcards_equal(const struct flow_wildcards *a,
const struct flow_wildcards *b)
{
int i;
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 14);
if (a->wildcards != b->wildcards
|| a->tun_id_mask != b->tun_id_mask
|| a->nw_src_mask != b->nw_src_mask
|| a->nw_dst_mask != b->nw_dst_mask
|| a->vlan_tci_mask != b->vlan_tci_mask
|| a->metadata_mask != b->metadata_mask
|| !ipv6_addr_equals(&a->ipv6_src_mask, &b->ipv6_src_mask)
|| !ipv6_addr_equals(&a->ipv6_dst_mask, &b->ipv6_dst_mask)
|| a->ipv6_label_mask != b->ipv6_label_mask
|| !ipv6_addr_equals(&a->nd_target_mask, &b->nd_target_mask)
|| a->tp_src_mask != b->tp_src_mask
|| a->tp_dst_mask != b->tp_dst_mask
|| !eth_addr_equals(a->dl_src_mask, b->dl_src_mask)
|| !eth_addr_equals(a->dl_dst_mask, b->dl_dst_mask)
|| !eth_addr_equals(a->arp_sha_mask, b->arp_sha_mask)
|| !eth_addr_equals(a->arp_tha_mask, b->arp_tha_mask)) {
return false;
}
for (i = 0; i < FLOW_N_REGS; i++) {
if (a->reg_masks[i] != b->reg_masks[i]) {
return false;
}
}
return true;
}
/* Returns true if at least one bit or field is wildcarded in 'a' but not in
* 'b', false otherwise. */
bool
flow_wildcards_has_extra(const struct flow_wildcards *a,
const struct flow_wildcards *b)
{
int i;
uint8_t eth_masked[ETH_ADDR_LEN];
struct in6_addr ipv6_masked;
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 14);
for (i = 0; i < FLOW_N_REGS; i++) {
if ((a->reg_masks[i] & b->reg_masks[i]) != b->reg_masks[i]) {
return true;
}
}
eth_addr_bitand(a->dl_src_mask, b->dl_src_mask, eth_masked);
if (!eth_addr_equals(eth_masked, b->dl_src_mask)) {
return true;
}
eth_addr_bitand(a->dl_dst_mask, b->dl_dst_mask, eth_masked);
if (!eth_addr_equals(eth_masked, b->dl_dst_mask)) {
return true;
}
eth_addr_bitand(a->arp_sha_mask, b->arp_sha_mask, eth_masked);
if (!eth_addr_equals(eth_masked, b->arp_sha_mask)) {
return true;
}
eth_addr_bitand(a->arp_tha_mask, b->arp_tha_mask, eth_masked);
if (!eth_addr_equals(eth_masked, b->arp_tha_mask)) {
return true;
}
ipv6_masked = ipv6_addr_bitand(&a->ipv6_src_mask, &b->ipv6_src_mask);
if (!ipv6_addr_equals(&ipv6_masked, &b->ipv6_src_mask)) {
return true;
}
ipv6_masked = ipv6_addr_bitand(&a->ipv6_dst_mask, &b->ipv6_dst_mask);
if (!ipv6_addr_equals(&ipv6_masked, &b->ipv6_dst_mask)) {
return true;
}
ipv6_masked = ipv6_addr_bitand(&a->nd_target_mask, &b->nd_target_mask);
if (!ipv6_addr_equals(&ipv6_masked, &b->nd_target_mask)) {
return true;
}
return (a->wildcards & ~b->wildcards
|| (a->tun_id_mask & b->tun_id_mask) != b->tun_id_mask
|| (a->nw_src_mask & b->nw_src_mask) != b->nw_src_mask
|| (a->nw_dst_mask & b->nw_dst_mask) != b->nw_dst_mask
|| (a->ipv6_label_mask & b->ipv6_label_mask) != b->ipv6_label_mask
|| (a->vlan_tci_mask & b->vlan_tci_mask) != b->vlan_tci_mask
|| (a->metadata_mask & b->metadata_mask) != b->metadata_mask
|| (a->tp_src_mask & b->tp_src_mask) != b->tp_src_mask
|| (a->tp_dst_mask & b->tp_dst_mask) != b->tp_dst_mask);
}
/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
* (A 0-bit indicates a wildcard bit.) */
void
flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
{
wc->reg_masks[idx] = mask;
}
/* Hashes 'flow' based on its L2 through L4 protocol information. */
uint32_t
flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
{
struct {
union {
ovs_be32 ipv4_addr;
struct in6_addr ipv6_addr;
};
ovs_be16 eth_type;
ovs_be16 vlan_tci;
ovs_be16 tp_port;
uint8_t eth_addr[ETH_ADDR_LEN];
uint8_t ip_proto;
} fields;
int i;
memset(&fields, 0, sizeof fields);
for (i = 0; i < ETH_ADDR_LEN; i++) {
fields.eth_addr[i] = flow->dl_src[i] ^ flow->dl_dst[i];
}
fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK);
fields.eth_type = flow->dl_type;
/* UDP source and destination port are not taken into account because they
* will not necessarily be symmetric in a bidirectional flow. */
if (fields.eth_type == htons(ETH_TYPE_IP)) {
fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
fields.ip_proto = flow->nw_proto;
if (fields.ip_proto == IPPROTO_TCP) {
fields.tp_port = flow->tp_src ^ flow->tp_dst;
}
} else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
const uint8_t *a = &flow->ipv6_src.s6_addr[0];
const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];
for (i=0; i<16; i++) {
ipv6_addr[i] = a[i] ^ b[i];
}
fields.ip_proto = flow->nw_proto;
if (fields.ip_proto == IPPROTO_TCP) {
fields.tp_port = flow->tp_src ^ flow->tp_dst;
}
}
return hash_bytes(&fields, sizeof fields, basis);
}
/* Hashes the portions of 'flow' designated by 'fields'. */
uint32_t
flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields,
uint16_t basis)
{
switch (fields) {
case NX_HASH_FIELDS_ETH_SRC:
return hash_bytes(flow->dl_src, sizeof flow->dl_src, basis);
case NX_HASH_FIELDS_SYMMETRIC_L4:
return flow_hash_symmetric_l4(flow, basis);
}
NOT_REACHED();
}
/* Returns a string representation of 'fields'. */
const char *
flow_hash_fields_to_str(enum nx_hash_fields fields)
{
switch (fields) {
case NX_HASH_FIELDS_ETH_SRC: return "eth_src";
case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4";
default: return "<unknown>";
}
}
/* Returns true if the value of 'fields' is supported. Otherwise false. */
bool
flow_hash_fields_valid(enum nx_hash_fields fields)
{
return fields == NX_HASH_FIELDS_ETH_SRC
|| fields == NX_HASH_FIELDS_SYMMETRIC_L4;
}
/* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
* OpenFlow 1.0 "dl_vlan" value:
*
* - If it is in the range 0...4095, 'flow->vlan_tci' is set to match
* that VLAN. Any existing PCP match is unchanged (it becomes 0 if
* 'flow' previously matched packets without a VLAN header).
*
* - If it is OFP_VLAN_NONE, 'flow->vlan_tci' is set to match a packet
* without a VLAN tag.
*
* - Other values of 'vid' should not be used. */
void
flow_set_vlan_vid(struct flow *flow, ovs_be16 vid)
{
if (vid == htons(OFP10_VLAN_NONE)) {
flow->vlan_tci = htons(0);
} else {
vid &= htons(VLAN_VID_MASK);
flow->vlan_tci &= ~htons(VLAN_VID_MASK);
flow->vlan_tci |= htons(VLAN_CFI) | vid;
}
}
/* Sets the VLAN PCP that 'flow' matches to 'pcp', which should be in the
* range 0...7.
*
* This function has no effect on the VLAN ID that 'flow' matches.
*
* After calling this function, 'flow' will not match packets without a VLAN
* header. */
void
flow_set_vlan_pcp(struct flow *flow, uint8_t pcp)
{
pcp &= 0x07;
flow->vlan_tci &= ~htons(VLAN_PCP_MASK);
flow->vlan_tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
}
/* Puts into 'b' a packet that flow_extract() would parse as having the given
* 'flow'.
*
* (This is useful only for testing, obviously, and the packet isn't really
* valid. It hasn't got any checksums filled in, for one, and lots of fields
* are just zeroed.) */
void
flow_compose(struct ofpbuf *b, const struct flow *flow)
{
eth_compose(b, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0);
if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) {
struct eth_header *eth = b->l2;
eth->eth_type = htons(b->size);
return;
}
if (flow->vlan_tci & htons(VLAN_CFI)) {
eth_push_vlan(b, flow->vlan_tci);
}
if (flow->dl_type == htons(ETH_TYPE_IP)) {
struct ip_header *ip;
b->l3 = ip = ofpbuf_put_zeros(b, sizeof *ip);
ip->ip_ihl_ver = IP_IHL_VER(5, 4);
ip->ip_tos = flow->nw_tos;
ip->ip_proto = flow->nw_proto;
ip->ip_src = flow->nw_src;
ip->ip_dst = flow->nw_dst;
if (flow->nw_frag & FLOW_NW_FRAG_ANY) {
ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS);
if (flow->nw_frag & FLOW_NW_FRAG_LATER) {
ip->ip_frag_off |= htons(100);
}
}
if (!(flow->nw_frag & FLOW_NW_FRAG_ANY)
|| !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
if (flow->nw_proto == IPPROTO_TCP) {
struct tcp_header *tcp;
b->l4 = tcp = ofpbuf_put_zeros(b, sizeof *tcp);
tcp->tcp_src = flow->tp_src;
tcp->tcp_dst = flow->tp_dst;
tcp->tcp_ctl = TCP_CTL(0, 5);
} else if (flow->nw_proto == IPPROTO_UDP) {
struct udp_header *udp;
b->l4 = udp = ofpbuf_put_zeros(b, sizeof *udp);
udp->udp_src = flow->tp_src;
udp->udp_dst = flow->tp_dst;
} else if (flow->nw_proto == IPPROTO_ICMP) {
struct icmp_header *icmp;
b->l4 = icmp = ofpbuf_put_zeros(b, sizeof *icmp);
icmp->icmp_type = ntohs(flow->tp_src);
icmp->icmp_code = ntohs(flow->tp_dst);
}
}
ip->ip_tot_len = htons((uint8_t *) b->data + b->size
- (uint8_t *) b->l3);
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
/* XXX */
} else if (flow->dl_type == htons(ETH_TYPE_ARP)) {
struct arp_eth_header *arp;
b->l3 = arp = ofpbuf_put_zeros(b, sizeof *arp);
arp->ar_hrd = htons(1);
arp->ar_pro = htons(ETH_TYPE_IP);
arp->ar_hln = ETH_ADDR_LEN;
arp->ar_pln = 4;
arp->ar_op = htons(flow->nw_proto);
if (flow->nw_proto == ARP_OP_REQUEST ||
flow->nw_proto == ARP_OP_REPLY) {
arp->ar_spa = flow->nw_src;
arp->ar_tpa = flow->nw_dst;
memcpy(arp->ar_sha, flow->arp_sha, ETH_ADDR_LEN);
memcpy(arp->ar_tha, flow->arp_tha, ETH_ADDR_LEN);
}
}
}