mirror of
https://github.com/openvswitch/ovs
synced 2025-08-22 09:58:01 +00:00
To easily allow both in- and out-of-tree building of the Python wrapper for the OVS JSON parser (e.g. w/ pip), move json.h to include/openvswitch. This also requires moving lib/{hmap,shash}.h. Both hmap.h and shash.h were #include-ing "util.h" even though the headers themselves did not use anything from there, but rather from include/openvswitch/util.h. Fixing that required including util.h in several C files mostly due to OVS_NOT_REACHED and things like xmalloc. Signed-off-by: Terry Wilson <twilson@redhat.com> Signed-off-by: Ben Pfaff <blp@ovn.org>
2613 lines
86 KiB
C
2613 lines
86 KiB
C
/*
|
||
* Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Nicira, Inc.
|
||
*
|
||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
* you may not use this file except in compliance with the License.
|
||
* You may obtain a copy of the License at:
|
||
*
|
||
* http://www.apache.org/licenses/LICENSE-2.0
|
||
*
|
||
* Unless required by applicable law or agreed to in writing, software
|
||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
* See the License for the specific language governing permissions and
|
||
* limitations under the License.
|
||
*/
|
||
#include <config.h>
|
||
#include <sys/types.h>
|
||
#include "flow.h"
|
||
#include <errno.h>
|
||
#include <inttypes.h>
|
||
#include <limits.h>
|
||
#include <netinet/in.h>
|
||
#include <netinet/icmp6.h>
|
||
#include <netinet/ip6.h>
|
||
#include <stdint.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include "byte-order.h"
|
||
#include "colors.h"
|
||
#include "coverage.h"
|
||
#include "csum.h"
|
||
#include "openvswitch/dynamic-string.h"
|
||
#include "hash.h"
|
||
#include "jhash.h"
|
||
#include "openvswitch/match.h"
|
||
#include "dp-packet.h"
|
||
#include "openflow/openflow.h"
|
||
#include "packets.h"
|
||
#include "odp-util.h"
|
||
#include "random.h"
|
||
#include "unaligned.h"
|
||
#include "util.h"
|
||
|
||
COVERAGE_DEFINE(flow_extract);
|
||
COVERAGE_DEFINE(miniflow_malloc);
|
||
|
||
/* U64 indices for segmented flow classification. */
|
||
const uint8_t flow_segment_u64s[4] = {
|
||
FLOW_SEGMENT_1_ENDS_AT / sizeof(uint64_t),
|
||
FLOW_SEGMENT_2_ENDS_AT / sizeof(uint64_t),
|
||
FLOW_SEGMENT_3_ENDS_AT / sizeof(uint64_t),
|
||
FLOW_U64S
|
||
};
|
||
|
||
/* Asserts that field 'f1' follows immediately after 'f0' in struct flow,
|
||
* without any intervening padding. */
|
||
#define ASSERT_SEQUENTIAL(f0, f1) \
|
||
BUILD_ASSERT_DECL(offsetof(struct flow, f0) \
|
||
+ MEMBER_SIZEOF(struct flow, f0) \
|
||
== offsetof(struct flow, f1))
|
||
|
||
/* Asserts that fields 'f0' and 'f1' are in the same 32-bit aligned word within
|
||
* struct flow. */
|
||
#define ASSERT_SAME_WORD(f0, f1) \
|
||
BUILD_ASSERT_DECL(offsetof(struct flow, f0) / 4 \
|
||
== offsetof(struct flow, f1) / 4)
|
||
|
||
/* Asserts that 'f0' and 'f1' are both sequential and within the same 32-bit
|
||
* aligned word in struct flow. */
|
||
#define ASSERT_SEQUENTIAL_SAME_WORD(f0, f1) \
|
||
ASSERT_SEQUENTIAL(f0, f1); \
|
||
ASSERT_SAME_WORD(f0, f1)
|
||
|
||
/* miniflow_extract() assumes the following to be true to optimize the
|
||
* extraction process. */
|
||
ASSERT_SEQUENTIAL_SAME_WORD(dl_type, vlan_tci);
|
||
|
||
ASSERT_SEQUENTIAL_SAME_WORD(nw_frag, nw_tos);
|
||
ASSERT_SEQUENTIAL_SAME_WORD(nw_tos, nw_ttl);
|
||
ASSERT_SEQUENTIAL_SAME_WORD(nw_ttl, nw_proto);
|
||
|
||
/* TCP flags in the middle of a BE64, zeroes in the other half. */
|
||
BUILD_ASSERT_DECL(offsetof(struct flow, tcp_flags) % 8 == 4);
|
||
|
||
#if WORDS_BIGENDIAN
|
||
#define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl) \
|
||
<< 16)
|
||
#else
|
||
#define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl))
|
||
#endif
|
||
|
||
ASSERT_SEQUENTIAL_SAME_WORD(tp_src, tp_dst);
|
||
|
||
/* Removes 'size' bytes from the head end of '*datap', of size '*sizep', which
|
||
* must contain at least 'size' bytes of data. Returns the first byte of data
|
||
* removed. */
|
||
static inline const void *
|
||
data_pull(const void **datap, size_t *sizep, size_t size)
|
||
{
|
||
const char *data = *datap;
|
||
*datap = data + size;
|
||
*sizep -= size;
|
||
return data;
|
||
}
|
||
|
||
/* If '*datap' has at least 'size' bytes of data, removes that many bytes from
|
||
* the head end of '*datap' and returns the first byte removed. Otherwise,
|
||
* returns a null pointer without modifying '*datap'. */
|
||
static inline const void *
|
||
data_try_pull(const void **datap, size_t *sizep, size_t size)
|
||
{
|
||
return OVS_LIKELY(*sizep >= size) ? data_pull(datap, sizep, size) : NULL;
|
||
}
|
||
|
||
/* Context for pushing data to a miniflow. */
|
||
struct mf_ctx {
|
||
struct flowmap map;
|
||
uint64_t *data;
|
||
uint64_t * const end;
|
||
};
|
||
|
||
/* miniflow_push_* macros allow filling in a miniflow data values in order.
|
||
* Assertions are needed only when the layout of the struct flow is modified.
|
||
* 'ofs' is a compile-time constant, which allows most of the code be optimized
|
||
* away. Some GCC versions gave warnings on ALWAYS_INLINE, so these are
|
||
* defined as macros. */
|
||
|
||
#if (FLOW_WC_SEQ != 36)
|
||
#define MINIFLOW_ASSERT(X) ovs_assert(X)
|
||
BUILD_MESSAGE("FLOW_WC_SEQ changed: miniflow_extract() will have runtime "
|
||
"assertions enabled. Consider updating FLOW_WC_SEQ after "
|
||
"testing")
|
||
#else
|
||
#define MINIFLOW_ASSERT(X)
|
||
#endif
|
||
|
||
/* True if 'IDX' and higher bits are not set. */
|
||
#define ASSERT_FLOWMAP_NOT_SET(FM, IDX) \
|
||
{ \
|
||
MINIFLOW_ASSERT(!((FM)->bits[(IDX) / MAP_T_BITS] & \
|
||
(MAP_MAX << ((IDX) % MAP_T_BITS)))); \
|
||
for (size_t i = (IDX) / MAP_T_BITS + 1; i < FLOWMAP_UNITS; i++) { \
|
||
MINIFLOW_ASSERT(!(FM)->bits[i]); \
|
||
} \
|
||
}
|
||
|
||
#define miniflow_set_map(MF, OFS) \
|
||
{ \
|
||
ASSERT_FLOWMAP_NOT_SET(&MF.map, (OFS)); \
|
||
flowmap_set(&MF.map, (OFS), 1); \
|
||
}
|
||
|
||
#define miniflow_assert_in_map(MF, OFS) \
|
||
MINIFLOW_ASSERT(flowmap_is_set(&MF.map, (OFS))); \
|
||
ASSERT_FLOWMAP_NOT_SET(&MF.map, (OFS) + 1)
|
||
|
||
#define miniflow_push_uint64_(MF, OFS, VALUE) \
|
||
{ \
|
||
MINIFLOW_ASSERT(MF.data < MF.end && (OFS) % 8 == 0); \
|
||
*MF.data++ = VALUE; \
|
||
miniflow_set_map(MF, OFS / 8); \
|
||
}
|
||
|
||
#define miniflow_push_be64_(MF, OFS, VALUE) \
|
||
miniflow_push_uint64_(MF, OFS, (OVS_FORCE uint64_t)(VALUE))
|
||
|
||
#define miniflow_push_uint32_(MF, OFS, VALUE) \
|
||
{ \
|
||
MINIFLOW_ASSERT(MF.data < MF.end); \
|
||
\
|
||
if ((OFS) % 8 == 0) { \
|
||
miniflow_set_map(MF, OFS / 8); \
|
||
*(uint32_t *)MF.data = VALUE; \
|
||
} else if ((OFS) % 8 == 4) { \
|
||
miniflow_assert_in_map(MF, OFS / 8); \
|
||
*((uint32_t *)MF.data + 1) = VALUE; \
|
||
MF.data++; \
|
||
} \
|
||
}
|
||
|
||
#define miniflow_push_be32_(MF, OFS, VALUE) \
|
||
miniflow_push_uint32_(MF, OFS, (OVS_FORCE uint32_t)(VALUE))
|
||
|
||
#define miniflow_push_uint16_(MF, OFS, VALUE) \
|
||
{ \
|
||
MINIFLOW_ASSERT(MF.data < MF.end); \
|
||
\
|
||
if ((OFS) % 8 == 0) { \
|
||
miniflow_set_map(MF, OFS / 8); \
|
||
*(uint16_t *)MF.data = VALUE; \
|
||
} else if ((OFS) % 8 == 2) { \
|
||
miniflow_assert_in_map(MF, OFS / 8); \
|
||
*((uint16_t *)MF.data + 1) = VALUE; \
|
||
} else if ((OFS) % 8 == 4) { \
|
||
miniflow_assert_in_map(MF, OFS / 8); \
|
||
*((uint16_t *)MF.data + 2) = VALUE; \
|
||
} else if ((OFS) % 8 == 6) { \
|
||
miniflow_assert_in_map(MF, OFS / 8); \
|
||
*((uint16_t *)MF.data + 3) = VALUE; \
|
||
MF.data++; \
|
||
} \
|
||
}
|
||
|
||
#define miniflow_push_uint8_(MF, OFS, VALUE) \
|
||
{ \
|
||
MINIFLOW_ASSERT(MF.data < MF.end); \
|
||
\
|
||
if ((OFS) % 8 == 0) { \
|
||
miniflow_set_map(MF, OFS / 8); \
|
||
*(uint8_t *)MF.data = VALUE; \
|
||
} else if ((OFS) % 8 == 7) { \
|
||
miniflow_assert_in_map(MF, OFS / 8); \
|
||
*((uint8_t *)MF.data + 7) = VALUE; \
|
||
MF.data++; \
|
||
} else { \
|
||
miniflow_assert_in_map(MF, OFS / 8); \
|
||
*((uint8_t *)MF.data + ((OFS) % 8)) = VALUE; \
|
||
} \
|
||
}
|
||
|
||
#define miniflow_pad_to_64_(MF, OFS) \
|
||
{ \
|
||
MINIFLOW_ASSERT((OFS) % 8 != 0); \
|
||
miniflow_assert_in_map(MF, OFS / 8); \
|
||
\
|
||
memset((uint8_t *)MF.data + (OFS) % 8, 0, 8 - (OFS) % 8); \
|
||
MF.data++; \
|
||
}
|
||
|
||
#define miniflow_pad_from_64_(MF, OFS) \
|
||
{ \
|
||
MINIFLOW_ASSERT(MF.data < MF.end); \
|
||
\
|
||
MINIFLOW_ASSERT((OFS) % 8 != 0); \
|
||
miniflow_set_map(MF, OFS / 8); \
|
||
\
|
||
memset((uint8_t *)MF.data, 0, (OFS) % 8); \
|
||
}
|
||
|
||
#define miniflow_push_be16_(MF, OFS, VALUE) \
|
||
miniflow_push_uint16_(MF, OFS, (OVS_FORCE uint16_t)VALUE);
|
||
|
||
#define miniflow_push_be8_(MF, OFS, VALUE) \
|
||
miniflow_push_uint8_(MF, OFS, (OVS_FORCE uint8_t)VALUE);
|
||
|
||
#define miniflow_set_maps(MF, OFS, N_WORDS) \
|
||
{ \
|
||
size_t ofs = (OFS); \
|
||
size_t n_words = (N_WORDS); \
|
||
\
|
||
MINIFLOW_ASSERT(n_words && MF.data + n_words <= MF.end); \
|
||
ASSERT_FLOWMAP_NOT_SET(&MF.map, ofs); \
|
||
flowmap_set(&MF.map, ofs, n_words); \
|
||
}
|
||
|
||
/* Data at 'valuep' may be unaligned. */
|
||
#define miniflow_push_words_(MF, OFS, VALUEP, N_WORDS) \
|
||
{ \
|
||
MINIFLOW_ASSERT((OFS) % 8 == 0); \
|
||
miniflow_set_maps(MF, (OFS) / 8, (N_WORDS)); \
|
||
memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof *MF.data); \
|
||
MF.data += (N_WORDS); \
|
||
}
|
||
|
||
/* Push 32-bit words padded to 64-bits. */
|
||
#define miniflow_push_words_32_(MF, OFS, VALUEP, N_WORDS) \
|
||
{ \
|
||
miniflow_set_maps(MF, (OFS) / 8, DIV_ROUND_UP(N_WORDS, 2)); \
|
||
memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof(uint32_t)); \
|
||
MF.data += DIV_ROUND_UP(N_WORDS, 2); \
|
||
if ((N_WORDS) & 1) { \
|
||
*((uint32_t *)MF.data - 1) = 0; \
|
||
} \
|
||
}
|
||
|
||
/* Data at 'valuep' may be unaligned. */
|
||
/* MACs start 64-aligned, and must be followed by other data or padding. */
|
||
#define miniflow_push_macs_(MF, OFS, VALUEP) \
|
||
{ \
|
||
miniflow_set_maps(MF, (OFS) / 8, 2); \
|
||
memcpy(MF.data, (VALUEP), 2 * ETH_ADDR_LEN); \
|
||
MF.data += 1; /* First word only. */ \
|
||
}
|
||
|
||
#define miniflow_push_uint32(MF, FIELD, VALUE) \
|
||
miniflow_push_uint32_(MF, offsetof(struct flow, FIELD), VALUE)
|
||
|
||
#define miniflow_push_be32(MF, FIELD, VALUE) \
|
||
miniflow_push_be32_(MF, offsetof(struct flow, FIELD), VALUE)
|
||
|
||
#define miniflow_push_uint16(MF, FIELD, VALUE) \
|
||
miniflow_push_uint16_(MF, offsetof(struct flow, FIELD), VALUE)
|
||
|
||
#define miniflow_push_be16(MF, FIELD, VALUE) \
|
||
miniflow_push_be16_(MF, offsetof(struct flow, FIELD), VALUE)
|
||
|
||
#define miniflow_push_uint8(MF, FIELD, VALUE) \
|
||
miniflow_push_uint8_(MF, offsetof(struct flow, FIELD), VALUE)
|
||
|
||
#define miniflow_pad_to_64(MF, FIELD) \
|
||
miniflow_pad_to_64_(MF, OFFSETOFEND(struct flow, FIELD))
|
||
|
||
#define miniflow_pad_from_64(MF, FIELD) \
|
||
miniflow_pad_from_64_(MF, offsetof(struct flow, FIELD))
|
||
|
||
#define miniflow_push_words(MF, FIELD, VALUEP, N_WORDS) \
|
||
miniflow_push_words_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS)
|
||
|
||
#define miniflow_push_words_32(MF, FIELD, VALUEP, N_WORDS) \
|
||
miniflow_push_words_32_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS)
|
||
|
||
#define miniflow_push_macs(MF, FIELD, VALUEP) \
|
||
miniflow_push_macs_(MF, offsetof(struct flow, FIELD), VALUEP)
|
||
|
||
/* Pulls the MPLS headers at '*datap' and returns the count of them. */
|
||
static inline int
|
||
parse_mpls(const void **datap, size_t *sizep)
|
||
{
|
||
const struct mpls_hdr *mh;
|
||
int count = 0;
|
||
|
||
while ((mh = data_try_pull(datap, sizep, sizeof *mh))) {
|
||
count++;
|
||
if (mh->mpls_lse.lo & htons(1 << MPLS_BOS_SHIFT)) {
|
||
break;
|
||
}
|
||
}
|
||
return MIN(count, FLOW_MAX_MPLS_LABELS);
|
||
}
|
||
|
||
static inline ovs_be16
|
||
parse_vlan(const void **datap, size_t *sizep)
|
||
{
|
||
const struct eth_header *eth = *datap;
|
||
|
||
struct qtag_prefix {
|
||
ovs_be16 eth_type; /* ETH_TYPE_VLAN */
|
||
ovs_be16 tci;
|
||
};
|
||
|
||
data_pull(datap, sizep, ETH_ADDR_LEN * 2);
|
||
|
||
if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
|
||
if (OVS_LIKELY(*sizep
|
||
>= sizeof(struct qtag_prefix) + sizeof(ovs_be16))) {
|
||
const struct qtag_prefix *qp = data_pull(datap, sizep, sizeof *qp);
|
||
return qp->tci | htons(VLAN_CFI);
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
static inline ovs_be16
|
||
parse_ethertype(const void **datap, size_t *sizep)
|
||
{
|
||
const struct llc_snap_header *llc;
|
||
ovs_be16 proto;
|
||
|
||
proto = *(ovs_be16 *) data_pull(datap, sizep, sizeof proto);
|
||
if (OVS_LIKELY(ntohs(proto) >= ETH_TYPE_MIN)) {
|
||
return proto;
|
||
}
|
||
|
||
if (OVS_UNLIKELY(*sizep < sizeof *llc)) {
|
||
return htons(FLOW_DL_TYPE_NONE);
|
||
}
|
||
|
||
llc = *datap;
|
||
if (OVS_UNLIKELY(llc->llc.llc_dsap != LLC_DSAP_SNAP
|
||
|| llc->llc.llc_ssap != LLC_SSAP_SNAP
|
||
|| llc->llc.llc_cntl != LLC_CNTL_SNAP
|
||
|| memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
|
||
sizeof llc->snap.snap_org))) {
|
||
return htons(FLOW_DL_TYPE_NONE);
|
||
}
|
||
|
||
data_pull(datap, sizep, sizeof *llc);
|
||
|
||
if (OVS_LIKELY(ntohs(llc->snap.snap_type) >= ETH_TYPE_MIN)) {
|
||
return llc->snap.snap_type;
|
||
}
|
||
|
||
return htons(FLOW_DL_TYPE_NONE);
|
||
}
|
||
|
||
static inline void
|
||
parse_icmpv6(const void **datap, size_t *sizep, const struct icmp6_hdr *icmp,
|
||
const struct in6_addr **nd_target,
|
||
struct eth_addr arp_buf[2])
|
||
{
|
||
if (icmp->icmp6_code == 0 &&
|
||
(icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
|
||
icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
|
||
|
||
*nd_target = data_try_pull(datap, sizep, sizeof **nd_target);
|
||
if (OVS_UNLIKELY(!*nd_target)) {
|
||
return;
|
||
}
|
||
|
||
while (*sizep >= 8) {
|
||
/* The minimum size of an option is 8 bytes, which also is
|
||
* the size of Ethernet link-layer options. */
|
||
const struct ovs_nd_opt *nd_opt = *datap;
|
||
int opt_len = nd_opt->nd_opt_len * ND_OPT_LEN;
|
||
|
||
if (!opt_len || opt_len > *sizep) {
|
||
return;
|
||
}
|
||
|
||
/* Store the link layer address if the appropriate option is
|
||
* provided. It is considered an error if the same link
|
||
* layer option is specified twice. */
|
||
if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR
|
||
&& opt_len == 8) {
|
||
if (OVS_LIKELY(eth_addr_is_zero(arp_buf[0]))) {
|
||
arp_buf[0] = nd_opt->nd_opt_mac;
|
||
} else {
|
||
goto invalid;
|
||
}
|
||
} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR
|
||
&& opt_len == 8) {
|
||
if (OVS_LIKELY(eth_addr_is_zero(arp_buf[1]))) {
|
||
arp_buf[1] = nd_opt->nd_opt_mac;
|
||
} else {
|
||
goto invalid;
|
||
}
|
||
}
|
||
|
||
if (OVS_UNLIKELY(!data_try_pull(datap, sizep, opt_len))) {
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
return;
|
||
|
||
invalid:
|
||
*nd_target = NULL;
|
||
arp_buf[0] = eth_addr_zero;
|
||
arp_buf[1] = eth_addr_zero;
|
||
}
|
||
|
||
/* Initializes 'flow' members from 'packet' and 'md'
|
||
*
|
||
* Initializes 'packet' header l2 pointer to the start of the Ethernet
|
||
* header, and the layer offsets as follows:
|
||
*
|
||
* - packet->l2_5_ofs to the start of the MPLS shim header, or UINT16_MAX
|
||
* when there is no MPLS shim header.
|
||
*
|
||
* - packet->l3_ofs to just past the Ethernet header, or just past the
|
||
* vlan_header if one is present, to the first byte of the payload of the
|
||
* Ethernet frame. UINT16_MAX if the frame is too short to contain an
|
||
* Ethernet header.
|
||
*
|
||
* - packet->l4_ofs to just past the IPv4 header, if one is present and
|
||
* has at least the content used for the fields of interest for the flow,
|
||
* otherwise UINT16_MAX.
|
||
*/
|
||
void
|
||
flow_extract(struct dp_packet *packet, struct flow *flow)
|
||
{
|
||
struct {
|
||
struct miniflow mf;
|
||
uint64_t buf[FLOW_U64S];
|
||
} m;
|
||
|
||
COVERAGE_INC(flow_extract);
|
||
|
||
miniflow_extract(packet, &m.mf);
|
||
miniflow_expand(&m.mf, flow);
|
||
}
|
||
|
||
/* Caller is responsible for initializing 'dst' with enough storage for
|
||
* FLOW_U64S * 8 bytes. */
|
||
void
|
||
miniflow_extract(struct dp_packet *packet, struct miniflow *dst)
|
||
{
|
||
const struct pkt_metadata *md = &packet->md;
|
||
const void *data = dp_packet_data(packet);
|
||
size_t size = dp_packet_size(packet);
|
||
uint64_t *values = miniflow_values(dst);
|
||
struct mf_ctx mf = { FLOWMAP_EMPTY_INITIALIZER, values,
|
||
values + FLOW_U64S };
|
||
const char *l2;
|
||
ovs_be16 dl_type;
|
||
uint8_t nw_frag, nw_tos, nw_ttl, nw_proto;
|
||
|
||
/* Metadata. */
|
||
if (flow_tnl_dst_is_set(&md->tunnel)) {
|
||
miniflow_push_words(mf, tunnel, &md->tunnel,
|
||
offsetof(struct flow_tnl, metadata) /
|
||
sizeof(uint64_t));
|
||
|
||
if (!(md->tunnel.flags & FLOW_TNL_F_UDPIF)) {
|
||
if (md->tunnel.metadata.present.map) {
|
||
miniflow_push_words(mf, tunnel.metadata, &md->tunnel.metadata,
|
||
sizeof md->tunnel.metadata /
|
||
sizeof(uint64_t));
|
||
}
|
||
} else {
|
||
if (md->tunnel.metadata.present.len) {
|
||
miniflow_push_words(mf, tunnel.metadata.present,
|
||
&md->tunnel.metadata.present, 1);
|
||
miniflow_push_words(mf, tunnel.metadata.opts.gnv,
|
||
md->tunnel.metadata.opts.gnv,
|
||
DIV_ROUND_UP(md->tunnel.metadata.present.len,
|
||
sizeof(uint64_t)));
|
||
}
|
||
}
|
||
}
|
||
if (md->skb_priority || md->pkt_mark) {
|
||
miniflow_push_uint32(mf, skb_priority, md->skb_priority);
|
||
miniflow_push_uint32(mf, pkt_mark, md->pkt_mark);
|
||
}
|
||
miniflow_push_uint32(mf, dp_hash, md->dp_hash);
|
||
miniflow_push_uint32(mf, in_port, odp_to_u32(md->in_port.odp_port));
|
||
if (md->recirc_id || md->ct_state) {
|
||
miniflow_push_uint32(mf, recirc_id, md->recirc_id);
|
||
miniflow_push_uint16(mf, ct_state, md->ct_state);
|
||
miniflow_push_uint16(mf, ct_zone, md->ct_zone);
|
||
}
|
||
|
||
if (md->ct_state) {
|
||
miniflow_push_uint32(mf, ct_mark, md->ct_mark);
|
||
miniflow_pad_to_64(mf, ct_mark);
|
||
|
||
if (!ovs_u128_is_zero(md->ct_label)) {
|
||
miniflow_push_words(mf, ct_label, &md->ct_label,
|
||
sizeof md->ct_label / sizeof(uint64_t));
|
||
}
|
||
}
|
||
|
||
/* Initialize packet's layer pointer and offsets. */
|
||
l2 = data;
|
||
dp_packet_reset_offsets(packet);
|
||
|
||
/* Must have full Ethernet header to proceed. */
|
||
if (OVS_UNLIKELY(size < sizeof(struct eth_header))) {
|
||
goto out;
|
||
} else {
|
||
ovs_be16 vlan_tci;
|
||
|
||
/* Link layer. */
|
||
ASSERT_SEQUENTIAL(dl_dst, dl_src);
|
||
miniflow_push_macs(mf, dl_dst, data);
|
||
/* dl_type, vlan_tci. */
|
||
vlan_tci = parse_vlan(&data, &size);
|
||
dl_type = parse_ethertype(&data, &size);
|
||
miniflow_push_be16(mf, dl_type, dl_type);
|
||
miniflow_push_be16(mf, vlan_tci, vlan_tci);
|
||
}
|
||
|
||
/* Parse mpls. */
|
||
if (OVS_UNLIKELY(eth_type_mpls(dl_type))) {
|
||
int count;
|
||
const void *mpls = data;
|
||
|
||
packet->l2_5_ofs = (char *)data - l2;
|
||
count = parse_mpls(&data, &size);
|
||
miniflow_push_words_32(mf, mpls_lse, mpls, count);
|
||
}
|
||
|
||
/* Network layer. */
|
||
packet->l3_ofs = (char *)data - l2;
|
||
|
||
nw_frag = 0;
|
||
if (OVS_LIKELY(dl_type == htons(ETH_TYPE_IP))) {
|
||
const struct ip_header *nh = data;
|
||
int ip_len;
|
||
uint16_t tot_len;
|
||
|
||
if (OVS_UNLIKELY(size < IP_HEADER_LEN)) {
|
||
goto out;
|
||
}
|
||
ip_len = IP_IHL(nh->ip_ihl_ver) * 4;
|
||
|
||
if (OVS_UNLIKELY(ip_len < IP_HEADER_LEN)) {
|
||
goto out;
|
||
}
|
||
if (OVS_UNLIKELY(size < ip_len)) {
|
||
goto out;
|
||
}
|
||
tot_len = ntohs(nh->ip_tot_len);
|
||
if (OVS_UNLIKELY(tot_len > size)) {
|
||
goto out;
|
||
}
|
||
if (OVS_UNLIKELY(size - tot_len > UINT8_MAX)) {
|
||
goto out;
|
||
}
|
||
dp_packet_set_l2_pad_size(packet, size - tot_len);
|
||
size = tot_len; /* Never pull padding. */
|
||
|
||
/* Push both source and destination address at once. */
|
||
miniflow_push_words(mf, nw_src, &nh->ip_src, 1);
|
||
|
||
miniflow_push_be32(mf, ipv6_label, 0); /* Padding for IPv4. */
|
||
|
||
nw_tos = nh->ip_tos;
|
||
nw_ttl = nh->ip_ttl;
|
||
nw_proto = nh->ip_proto;
|
||
if (OVS_UNLIKELY(IP_IS_FRAGMENT(nh->ip_frag_off))) {
|
||
nw_frag = FLOW_NW_FRAG_ANY;
|
||
if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) {
|
||
nw_frag |= FLOW_NW_FRAG_LATER;
|
||
}
|
||
}
|
||
data_pull(&data, &size, ip_len);
|
||
} else if (dl_type == htons(ETH_TYPE_IPV6)) {
|
||
const struct ovs_16aligned_ip6_hdr *nh;
|
||
ovs_be32 tc_flow;
|
||
uint16_t plen;
|
||
|
||
if (OVS_UNLIKELY(size < sizeof *nh)) {
|
||
goto out;
|
||
}
|
||
nh = data_pull(&data, &size, sizeof *nh);
|
||
|
||
plen = ntohs(nh->ip6_plen);
|
||
if (OVS_UNLIKELY(plen > size)) {
|
||
goto out;
|
||
}
|
||
/* Jumbo Payload option not supported yet. */
|
||
if (OVS_UNLIKELY(size - plen > UINT8_MAX)) {
|
||
goto out;
|
||
}
|
||
dp_packet_set_l2_pad_size(packet, size - plen);
|
||
size = plen; /* Never pull padding. */
|
||
|
||
miniflow_push_words(mf, ipv6_src, &nh->ip6_src,
|
||
sizeof nh->ip6_src / 8);
|
||
miniflow_push_words(mf, ipv6_dst, &nh->ip6_dst,
|
||
sizeof nh->ip6_dst / 8);
|
||
|
||
tc_flow = get_16aligned_be32(&nh->ip6_flow);
|
||
{
|
||
ovs_be32 label = tc_flow & htonl(IPV6_LABEL_MASK);
|
||
miniflow_push_be32(mf, ipv6_label, label);
|
||
}
|
||
|
||
nw_tos = ntohl(tc_flow) >> 20;
|
||
nw_ttl = nh->ip6_hlim;
|
||
nw_proto = nh->ip6_nxt;
|
||
|
||
while (1) {
|
||
if (OVS_LIKELY((nw_proto != IPPROTO_HOPOPTS)
|
||
&& (nw_proto != IPPROTO_ROUTING)
|
||
&& (nw_proto != IPPROTO_DSTOPTS)
|
||
&& (nw_proto != IPPROTO_AH)
|
||
&& (nw_proto != IPPROTO_FRAGMENT))) {
|
||
/* It's either a terminal header (e.g., TCP, UDP) or one we
|
||
* don't understand. In either case, we're done with the
|
||
* packet, so use it to fill in 'nw_proto'. */
|
||
break;
|
||
}
|
||
|
||
/* We only verify that at least 8 bytes of the next header are
|
||
* available, but many of these headers are longer. Ensure that
|
||
* accesses within the extension header are within those first 8
|
||
* bytes. All extension headers are required to be at least 8
|
||
* bytes. */
|
||
if (OVS_UNLIKELY(size < 8)) {
|
||
goto out;
|
||
}
|
||
|
||
if ((nw_proto == IPPROTO_HOPOPTS)
|
||
|| (nw_proto == IPPROTO_ROUTING)
|
||
|| (nw_proto == IPPROTO_DSTOPTS)) {
|
||
/* These headers, while different, have the fields we care
|
||
* about in the same location and with the same
|
||
* interpretation. */
|
||
const struct ip6_ext *ext_hdr = data;
|
||
nw_proto = ext_hdr->ip6e_nxt;
|
||
if (OVS_UNLIKELY(!data_try_pull(&data, &size,
|
||
(ext_hdr->ip6e_len + 1) * 8))) {
|
||
goto out;
|
||
}
|
||
} else if (nw_proto == IPPROTO_AH) {
|
||
/* A standard AH definition isn't available, but the fields
|
||
* we care about are in the same location as the generic
|
||
* option header--only the header length is calculated
|
||
* differently. */
|
||
const struct ip6_ext *ext_hdr = data;
|
||
nw_proto = ext_hdr->ip6e_nxt;
|
||
if (OVS_UNLIKELY(!data_try_pull(&data, &size,
|
||
(ext_hdr->ip6e_len + 2) * 4))) {
|
||
goto out;
|
||
}
|
||
} else if (nw_proto == IPPROTO_FRAGMENT) {
|
||
const struct ovs_16aligned_ip6_frag *frag_hdr = data;
|
||
|
||
nw_proto = frag_hdr->ip6f_nxt;
|
||
if (!data_try_pull(&data, &size, sizeof *frag_hdr)) {
|
||
goto out;
|
||
}
|
||
|
||
/* We only process the first fragment. */
|
||
if (frag_hdr->ip6f_offlg != htons(0)) {
|
||
nw_frag = FLOW_NW_FRAG_ANY;
|
||
if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) {
|
||
nw_frag |= FLOW_NW_FRAG_LATER;
|
||
nw_proto = IPPROTO_FRAGMENT;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
} else {
|
||
if (dl_type == htons(ETH_TYPE_ARP) ||
|
||
dl_type == htons(ETH_TYPE_RARP)) {
|
||
struct eth_addr arp_buf[2];
|
||
const struct arp_eth_header *arp = (const struct arp_eth_header *)
|
||
data_try_pull(&data, &size, ARP_ETH_HEADER_LEN);
|
||
|
||
if (OVS_LIKELY(arp) && OVS_LIKELY(arp->ar_hrd == htons(1))
|
||
&& OVS_LIKELY(arp->ar_pro == htons(ETH_TYPE_IP))
|
||
&& OVS_LIKELY(arp->ar_hln == ETH_ADDR_LEN)
|
||
&& OVS_LIKELY(arp->ar_pln == 4)) {
|
||
miniflow_push_be32(mf, nw_src,
|
||
get_16aligned_be32(&arp->ar_spa));
|
||
miniflow_push_be32(mf, nw_dst,
|
||
get_16aligned_be32(&arp->ar_tpa));
|
||
|
||
/* We only match on the lower 8 bits of the opcode. */
|
||
if (OVS_LIKELY(ntohs(arp->ar_op) <= 0xff)) {
|
||
miniflow_push_be32(mf, ipv6_label, 0); /* Pad with ARP. */
|
||
miniflow_push_be32(mf, nw_frag, htonl(ntohs(arp->ar_op)));
|
||
}
|
||
|
||
/* Must be adjacent. */
|
||
ASSERT_SEQUENTIAL(arp_sha, arp_tha);
|
||
|
||
arp_buf[0] = arp->ar_sha;
|
||
arp_buf[1] = arp->ar_tha;
|
||
miniflow_push_macs(mf, arp_sha, arp_buf);
|
||
miniflow_pad_to_64(mf, arp_tha);
|
||
}
|
||
}
|
||
goto out;
|
||
}
|
||
|
||
packet->l4_ofs = (char *)data - l2;
|
||
miniflow_push_be32(mf, nw_frag,
|
||
BYTES_TO_BE32(nw_frag, nw_tos, nw_ttl, nw_proto));
|
||
|
||
if (OVS_LIKELY(!(nw_frag & FLOW_NW_FRAG_LATER))) {
|
||
if (OVS_LIKELY(nw_proto == IPPROTO_TCP)) {
|
||
if (OVS_LIKELY(size >= TCP_HEADER_LEN)) {
|
||
const struct tcp_header *tcp = data;
|
||
|
||
miniflow_push_be32(mf, arp_tha.ea[2], 0);
|
||
miniflow_push_be32(mf, tcp_flags,
|
||
TCP_FLAGS_BE32(tcp->tcp_ctl));
|
||
miniflow_push_be16(mf, tp_src, tcp->tcp_src);
|
||
miniflow_push_be16(mf, tp_dst, tcp->tcp_dst);
|
||
miniflow_pad_to_64(mf, tp_dst);
|
||
}
|
||
} else if (OVS_LIKELY(nw_proto == IPPROTO_UDP)) {
|
||
if (OVS_LIKELY(size >= UDP_HEADER_LEN)) {
|
||
const struct udp_header *udp = data;
|
||
|
||
miniflow_push_be16(mf, tp_src, udp->udp_src);
|
||
miniflow_push_be16(mf, tp_dst, udp->udp_dst);
|
||
miniflow_pad_to_64(mf, tp_dst);
|
||
}
|
||
} else if (OVS_LIKELY(nw_proto == IPPROTO_SCTP)) {
|
||
if (OVS_LIKELY(size >= SCTP_HEADER_LEN)) {
|
||
const struct sctp_header *sctp = data;
|
||
|
||
miniflow_push_be16(mf, tp_src, sctp->sctp_src);
|
||
miniflow_push_be16(mf, tp_dst, sctp->sctp_dst);
|
||
miniflow_pad_to_64(mf, tp_dst);
|
||
}
|
||
} else if (OVS_LIKELY(nw_proto == IPPROTO_ICMP)) {
|
||
if (OVS_LIKELY(size >= ICMP_HEADER_LEN)) {
|
||
const struct icmp_header *icmp = data;
|
||
|
||
miniflow_push_be16(mf, tp_src, htons(icmp->icmp_type));
|
||
miniflow_push_be16(mf, tp_dst, htons(icmp->icmp_code));
|
||
miniflow_pad_to_64(mf, tp_dst);
|
||
}
|
||
} else if (OVS_LIKELY(nw_proto == IPPROTO_IGMP)) {
|
||
if (OVS_LIKELY(size >= IGMP_HEADER_LEN)) {
|
||
const struct igmp_header *igmp = data;
|
||
|
||
miniflow_push_be16(mf, tp_src, htons(igmp->igmp_type));
|
||
miniflow_push_be16(mf, tp_dst, htons(igmp->igmp_code));
|
||
miniflow_push_be32(mf, igmp_group_ip4,
|
||
get_16aligned_be32(&igmp->group));
|
||
}
|
||
} else if (OVS_LIKELY(nw_proto == IPPROTO_ICMPV6)) {
|
||
if (OVS_LIKELY(size >= sizeof(struct icmp6_hdr))) {
|
||
const struct in6_addr *nd_target = NULL;
|
||
struct eth_addr arp_buf[2] = { { { { 0 } } } };
|
||
const struct icmp6_hdr *icmp = data_pull(&data, &size,
|
||
sizeof *icmp);
|
||
parse_icmpv6(&data, &size, icmp, &nd_target, arp_buf);
|
||
if (nd_target) {
|
||
miniflow_push_words(mf, nd_target, nd_target,
|
||
sizeof *nd_target / sizeof(uint64_t));
|
||
}
|
||
miniflow_push_macs(mf, arp_sha, arp_buf);
|
||
miniflow_pad_to_64(mf, arp_tha);
|
||
miniflow_push_be16(mf, tp_src, htons(icmp->icmp6_type));
|
||
miniflow_push_be16(mf, tp_dst, htons(icmp->icmp6_code));
|
||
miniflow_pad_to_64(mf, tp_dst);
|
||
}
|
||
}
|
||
}
|
||
out:
|
||
dst->map = mf.map;
|
||
}
|
||
|
||
/* For every bit of a field that is wildcarded in 'wildcards', sets the
|
||
* corresponding bit in 'flow' to zero. */
|
||
void
|
||
flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards)
|
||
{
|
||
uint64_t *flow_u64 = (uint64_t *) flow;
|
||
const uint64_t *wc_u64 = (const uint64_t *) &wildcards->masks;
|
||
size_t i;
|
||
|
||
for (i = 0; i < FLOW_U64S; i++) {
|
||
flow_u64[i] &= wc_u64[i];
|
||
}
|
||
}
|
||
|
||
void
|
||
flow_unwildcard_tp_ports(const struct flow *flow, struct flow_wildcards *wc)
|
||
{
|
||
if (flow->nw_proto != IPPROTO_ICMP) {
|
||
memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
|
||
memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
|
||
} else {
|
||
wc->masks.tp_src = htons(0xff);
|
||
wc->masks.tp_dst = htons(0xff);
|
||
}
|
||
}
|
||
|
||
/* Initializes 'flow_metadata' with the metadata found in 'flow'. */
|
||
void
|
||
flow_get_metadata(const struct flow *flow, struct match *flow_metadata)
|
||
{
|
||
int i;
|
||
|
||
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 36);
|
||
|
||
match_init_catchall(flow_metadata);
|
||
if (flow->tunnel.tun_id != htonll(0)) {
|
||
match_set_tun_id(flow_metadata, flow->tunnel.tun_id);
|
||
}
|
||
if (flow->tunnel.flags & FLOW_TNL_PUB_F_MASK) {
|
||
match_set_tun_flags(flow_metadata,
|
||
flow->tunnel.flags & FLOW_TNL_PUB_F_MASK);
|
||
}
|
||
if (flow->tunnel.ip_src) {
|
||
match_set_tun_src(flow_metadata, flow->tunnel.ip_src);
|
||
}
|
||
if (flow->tunnel.ip_dst) {
|
||
match_set_tun_dst(flow_metadata, flow->tunnel.ip_dst);
|
||
}
|
||
if (ipv6_addr_is_set(&flow->tunnel.ipv6_src)) {
|
||
match_set_tun_ipv6_src(flow_metadata, &flow->tunnel.ipv6_src);
|
||
}
|
||
if (ipv6_addr_is_set(&flow->tunnel.ipv6_dst)) {
|
||
match_set_tun_ipv6_dst(flow_metadata, &flow->tunnel.ipv6_dst);
|
||
}
|
||
if (flow->tunnel.gbp_id != htons(0)) {
|
||
match_set_tun_gbp_id(flow_metadata, flow->tunnel.gbp_id);
|
||
}
|
||
if (flow->tunnel.gbp_flags) {
|
||
match_set_tun_gbp_flags(flow_metadata, flow->tunnel.gbp_flags);
|
||
}
|
||
tun_metadata_get_fmd(&flow->tunnel, flow_metadata);
|
||
if (flow->metadata != htonll(0)) {
|
||
match_set_metadata(flow_metadata, flow->metadata);
|
||
}
|
||
|
||
for (i = 0; i < FLOW_N_REGS; i++) {
|
||
if (flow->regs[i]) {
|
||
match_set_reg(flow_metadata, i, flow->regs[i]);
|
||
}
|
||
}
|
||
|
||
if (flow->pkt_mark != 0) {
|
||
match_set_pkt_mark(flow_metadata, flow->pkt_mark);
|
||
}
|
||
|
||
match_set_in_port(flow_metadata, flow->in_port.ofp_port);
|
||
if (flow->ct_state != 0) {
|
||
match_set_ct_state(flow_metadata, flow->ct_state);
|
||
}
|
||
if (flow->ct_zone != 0) {
|
||
match_set_ct_zone(flow_metadata, flow->ct_zone);
|
||
}
|
||
if (flow->ct_mark != 0) {
|
||
match_set_ct_mark(flow_metadata, flow->ct_mark);
|
||
}
|
||
if (!ovs_u128_is_zero(flow->ct_label)) {
|
||
match_set_ct_label(flow_metadata, flow->ct_label);
|
||
}
|
||
}
|
||
|
||
const char *ct_state_to_string(uint32_t state)
|
||
{
|
||
switch (state) {
|
||
case CS_REPLY_DIR:
|
||
return "rpl";
|
||
case CS_TRACKED:
|
||
return "trk";
|
||
case CS_NEW:
|
||
return "new";
|
||
case CS_ESTABLISHED:
|
||
return "est";
|
||
case CS_RELATED:
|
||
return "rel";
|
||
case CS_INVALID:
|
||
return "inv";
|
||
case CS_SRC_NAT:
|
||
return "snat";
|
||
case CS_DST_NAT:
|
||
return "dnat";
|
||
default:
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
char *
|
||
flow_to_string(const struct flow *flow)
|
||
{
|
||
struct ds ds = DS_EMPTY_INITIALIZER;
|
||
flow_format(&ds, flow);
|
||
return ds_cstr(&ds);
|
||
}
|
||
|
||
const char *
|
||
flow_tun_flag_to_string(uint32_t flags)
|
||
{
|
||
switch (flags) {
|
||
case FLOW_TNL_F_DONT_FRAGMENT:
|
||
return "df";
|
||
case FLOW_TNL_F_CSUM:
|
||
return "csum";
|
||
case FLOW_TNL_F_KEY:
|
||
return "key";
|
||
case FLOW_TNL_F_OAM:
|
||
return "oam";
|
||
default:
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
void
|
||
format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t),
|
||
uint32_t flags, char del)
|
||
{
|
||
uint32_t bad = 0;
|
||
|
||
if (!flags) {
|
||
ds_put_char(ds, '0');
|
||
return;
|
||
}
|
||
while (flags) {
|
||
uint32_t bit = rightmost_1bit(flags);
|
||
const char *s;
|
||
|
||
s = bit_to_string(bit);
|
||
if (s) {
|
||
ds_put_format(ds, "%s%c", s, del);
|
||
} else {
|
||
bad |= bit;
|
||
}
|
||
|
||
flags &= ~bit;
|
||
}
|
||
|
||
if (bad) {
|
||
ds_put_format(ds, "0x%"PRIx32"%c", bad, del);
|
||
}
|
||
ds_chomp(ds, del);
|
||
}
|
||
|
||
void
|
||
format_flags_masked(struct ds *ds, const char *name,
|
||
const char *(*bit_to_string)(uint32_t), uint32_t flags,
|
||
uint32_t mask, uint32_t max_mask)
|
||
{
|
||
if (name) {
|
||
ds_put_format(ds, "%s%s=%s", colors.param, name, colors.end);
|
||
}
|
||
|
||
if (mask == max_mask) {
|
||
format_flags(ds, bit_to_string, flags, '|');
|
||
return;
|
||
}
|
||
|
||
if (!mask) {
|
||
ds_put_cstr(ds, "0/0");
|
||
return;
|
||
}
|
||
|
||
while (mask) {
|
||
uint32_t bit = rightmost_1bit(mask);
|
||
const char *s = bit_to_string(bit);
|
||
|
||
ds_put_format(ds, "%s%s", (flags & bit) ? "+" : "-",
|
||
s ? s : "[Unknown]");
|
||
mask &= ~bit;
|
||
}
|
||
}
|
||
|
||
/* Scans a string 's' of flags to determine their numerical value and
|
||
* returns the number of characters parsed using 'bit_to_string' to
|
||
* lookup flag names. Scanning continues until the character 'end' is
|
||
* reached.
|
||
*
|
||
* In the event of a failure, a negative error code will be returned. In
|
||
* addition, if 'res_string' is non-NULL then a descriptive string will
|
||
* be returned incorporating the identifying string 'field_name'. This
|
||
* error string must be freed by the caller.
|
||
*
|
||
* Upon success, the flag values will be stored in 'res_flags' and
|
||
* optionally 'res_mask', if it is non-NULL (if it is NULL then any masks
|
||
* present in the original string will be considered an error). The
|
||
* caller may restrict the acceptable set of values through the mask
|
||
* 'allowed'. */
|
||
int
|
||
parse_flags(const char *s, const char *(*bit_to_string)(uint32_t),
|
||
char end, const char *field_name, char **res_string,
|
||
uint32_t *res_flags, uint32_t allowed, uint32_t *res_mask)
|
||
{
|
||
uint32_t result = 0;
|
||
int n;
|
||
|
||
/* Parse masked flags in numeric format? */
|
||
if (res_mask && ovs_scan(s, "%"SCNi32"/%"SCNi32"%n",
|
||
res_flags, res_mask, &n) && n > 0) {
|
||
if (*res_flags & ~allowed || *res_mask & ~allowed) {
|
||
goto unknown;
|
||
}
|
||
return n;
|
||
}
|
||
|
||
n = 0;
|
||
|
||
if (res_mask && (*s == '+' || *s == '-')) {
|
||
uint32_t flags = 0, mask = 0;
|
||
|
||
/* Parse masked flags. */
|
||
while (s[0] != end) {
|
||
bool set;
|
||
uint32_t bit;
|
||
size_t len;
|
||
|
||
if (s[0] == '+') {
|
||
set = true;
|
||
} else if (s[0] == '-') {
|
||
set = false;
|
||
} else {
|
||
if (res_string) {
|
||
*res_string = xasprintf("%s: %s must be preceded by '+' "
|
||
"(for SET) or '-' (NOT SET)", s,
|
||
field_name);
|
||
}
|
||
return -EINVAL;
|
||
}
|
||
s++;
|
||
n++;
|
||
|
||
for (bit = 1; bit; bit <<= 1) {
|
||
const char *fname = bit_to_string(bit);
|
||
|
||
if (!fname) {
|
||
continue;
|
||
}
|
||
|
||
len = strlen(fname);
|
||
if (strncmp(s, fname, len) ||
|
||
(s[len] != '+' && s[len] != '-' && s[len] != end)) {
|
||
continue;
|
||
}
|
||
|
||
if (mask & bit) {
|
||
/* bit already set. */
|
||
if (res_string) {
|
||
*res_string = xasprintf("%s: Each %s flag can be "
|
||
"specified only once", s,
|
||
field_name);
|
||
}
|
||
return -EINVAL;
|
||
}
|
||
if (!(bit & allowed)) {
|
||
goto unknown;
|
||
}
|
||
if (set) {
|
||
flags |= bit;
|
||
}
|
||
mask |= bit;
|
||
break;
|
||
}
|
||
|
||
if (!bit) {
|
||
goto unknown;
|
||
}
|
||
s += len;
|
||
n += len;
|
||
}
|
||
|
||
*res_flags = flags;
|
||
*res_mask = mask;
|
||
return n;
|
||
}
|
||
|
||
/* Parse unmasked flags. If a flag is present, it is set, otherwise
|
||
* it is not set. */
|
||
while (s[n] != end) {
|
||
unsigned long long int flags;
|
||
uint32_t bit;
|
||
int n0;
|
||
|
||
if (ovs_scan(&s[n], "%lli%n", &flags, &n0)) {
|
||
if (flags & ~allowed) {
|
||
goto unknown;
|
||
}
|
||
n += n0 + (s[n + n0] == '|');
|
||
result |= flags;
|
||
continue;
|
||
}
|
||
|
||
for (bit = 1; bit; bit <<= 1) {
|
||
const char *name = bit_to_string(bit);
|
||
size_t len;
|
||
|
||
if (!name) {
|
||
continue;
|
||
}
|
||
|
||
len = strlen(name);
|
||
if (!strncmp(s + n, name, len) &&
|
||
(s[n + len] == '|' || s[n + len] == end)) {
|
||
if (!(bit & allowed)) {
|
||
goto unknown;
|
||
}
|
||
result |= bit;
|
||
n += len + (s[n + len] == '|');
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!bit) {
|
||
goto unknown;
|
||
}
|
||
}
|
||
|
||
*res_flags = result;
|
||
if (res_mask) {
|
||
*res_mask = UINT32_MAX;
|
||
}
|
||
if (res_string) {
|
||
*res_string = NULL;
|
||
}
|
||
return n;
|
||
|
||
unknown:
|
||
if (res_string) {
|
||
*res_string = xasprintf("%s: unknown %s flag(s)", s, field_name);
|
||
}
|
||
return -EINVAL;
|
||
}
|
||
|
||
void
|
||
flow_format(struct ds *ds, const struct flow *flow)
|
||
{
|
||
struct match match;
|
||
struct flow_wildcards *wc = &match.wc;
|
||
|
||
match_wc_init(&match, flow);
|
||
|
||
/* As this function is most often used for formatting a packet in a
|
||
* packet-in message, skip formatting the packet context fields that are
|
||
* all-zeroes to make the print-out easier on the eyes. This means that a
|
||
* missing context field implies a zero value for that field. This is
|
||
* similar to OpenFlow encoding of these fields, as the specification
|
||
* states that all-zeroes context fields should not be encoded in the
|
||
* packet-in messages. */
|
||
if (!flow->in_port.ofp_port) {
|
||
WC_UNMASK_FIELD(wc, in_port);
|
||
}
|
||
if (!flow->skb_priority) {
|
||
WC_UNMASK_FIELD(wc, skb_priority);
|
||
}
|
||
if (!flow->pkt_mark) {
|
||
WC_UNMASK_FIELD(wc, pkt_mark);
|
||
}
|
||
if (!flow->recirc_id) {
|
||
WC_UNMASK_FIELD(wc, recirc_id);
|
||
}
|
||
if (!flow->dp_hash) {
|
||
WC_UNMASK_FIELD(wc, dp_hash);
|
||
}
|
||
if (!flow->ct_state) {
|
||
WC_UNMASK_FIELD(wc, ct_state);
|
||
}
|
||
if (!flow->ct_zone) {
|
||
WC_UNMASK_FIELD(wc, ct_zone);
|
||
}
|
||
if (!flow->ct_mark) {
|
||
WC_UNMASK_FIELD(wc, ct_mark);
|
||
}
|
||
if (ovs_u128_is_zero(flow->ct_label)) {
|
||
WC_UNMASK_FIELD(wc, ct_label);
|
||
}
|
||
for (int i = 0; i < FLOW_N_REGS; i++) {
|
||
if (!flow->regs[i]) {
|
||
WC_UNMASK_FIELD(wc, regs[i]);
|
||
}
|
||
}
|
||
if (!flow->metadata) {
|
||
WC_UNMASK_FIELD(wc, metadata);
|
||
}
|
||
|
||
match_format(&match, ds, OFP_DEFAULT_PRIORITY);
|
||
}
|
||
|
||
void
|
||
flow_print(FILE *stream, const struct flow *flow)
|
||
{
|
||
char *s = flow_to_string(flow);
|
||
fputs(s, stream);
|
||
free(s);
|
||
}
|
||
|
||
/* flow_wildcards functions. */
|
||
|
||
/* Initializes 'wc' as a set of wildcards that matches every packet. */
|
||
void
|
||
flow_wildcards_init_catchall(struct flow_wildcards *wc)
|
||
{
|
||
memset(&wc->masks, 0, sizeof wc->masks);
|
||
}
|
||
|
||
/* Converts a flow into flow wildcards. It sets the wildcard masks based on
|
||
* the packet headers extracted to 'flow'. It will not set the mask for fields
|
||
* that do not make sense for the packet type. OpenFlow-only metadata is
|
||
* wildcarded, but other metadata is unconditionally exact-matched. */
|
||
void flow_wildcards_init_for_packet(struct flow_wildcards *wc,
|
||
const struct flow *flow)
|
||
{
|
||
memset(&wc->masks, 0x0, sizeof wc->masks);
|
||
|
||
/* Update this function whenever struct flow changes. */
|
||
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 36);
|
||
|
||
if (flow_tnl_dst_is_set(&flow->tunnel)) {
|
||
if (flow->tunnel.flags & FLOW_TNL_F_KEY) {
|
||
WC_MASK_FIELD(wc, tunnel.tun_id);
|
||
}
|
||
WC_MASK_FIELD(wc, tunnel.ip_src);
|
||
WC_MASK_FIELD(wc, tunnel.ip_dst);
|
||
WC_MASK_FIELD(wc, tunnel.ipv6_src);
|
||
WC_MASK_FIELD(wc, tunnel.ipv6_dst);
|
||
WC_MASK_FIELD(wc, tunnel.flags);
|
||
WC_MASK_FIELD(wc, tunnel.ip_tos);
|
||
WC_MASK_FIELD(wc, tunnel.ip_ttl);
|
||
WC_MASK_FIELD(wc, tunnel.tp_src);
|
||
WC_MASK_FIELD(wc, tunnel.tp_dst);
|
||
WC_MASK_FIELD(wc, tunnel.gbp_id);
|
||
WC_MASK_FIELD(wc, tunnel.gbp_flags);
|
||
|
||
if (!(flow->tunnel.flags & FLOW_TNL_F_UDPIF)) {
|
||
if (flow->tunnel.metadata.present.map) {
|
||
wc->masks.tunnel.metadata.present.map =
|
||
flow->tunnel.metadata.present.map;
|
||
WC_MASK_FIELD(wc, tunnel.metadata.opts.u8);
|
||
}
|
||
} else {
|
||
WC_MASK_FIELD(wc, tunnel.metadata.present.len);
|
||
memset(wc->masks.tunnel.metadata.opts.gnv, 0xff,
|
||
flow->tunnel.metadata.present.len);
|
||
}
|
||
} else if (flow->tunnel.tun_id) {
|
||
WC_MASK_FIELD(wc, tunnel.tun_id);
|
||
}
|
||
|
||
/* metadata, regs, and conj_id wildcarded. */
|
||
|
||
WC_MASK_FIELD(wc, skb_priority);
|
||
WC_MASK_FIELD(wc, pkt_mark);
|
||
WC_MASK_FIELD(wc, ct_state);
|
||
WC_MASK_FIELD(wc, ct_zone);
|
||
WC_MASK_FIELD(wc, ct_mark);
|
||
WC_MASK_FIELD(wc, ct_label);
|
||
WC_MASK_FIELD(wc, recirc_id);
|
||
WC_MASK_FIELD(wc, dp_hash);
|
||
WC_MASK_FIELD(wc, in_port);
|
||
|
||
/* actset_output wildcarded. */
|
||
|
||
WC_MASK_FIELD(wc, dl_dst);
|
||
WC_MASK_FIELD(wc, dl_src);
|
||
WC_MASK_FIELD(wc, dl_type);
|
||
WC_MASK_FIELD(wc, vlan_tci);
|
||
|
||
if (flow->dl_type == htons(ETH_TYPE_IP)) {
|
||
WC_MASK_FIELD(wc, nw_src);
|
||
WC_MASK_FIELD(wc, nw_dst);
|
||
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
|
||
WC_MASK_FIELD(wc, ipv6_src);
|
||
WC_MASK_FIELD(wc, ipv6_dst);
|
||
WC_MASK_FIELD(wc, ipv6_label);
|
||
} else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
|
||
flow->dl_type == htons(ETH_TYPE_RARP)) {
|
||
WC_MASK_FIELD(wc, nw_src);
|
||
WC_MASK_FIELD(wc, nw_dst);
|
||
WC_MASK_FIELD(wc, nw_proto);
|
||
WC_MASK_FIELD(wc, arp_sha);
|
||
WC_MASK_FIELD(wc, arp_tha);
|
||
return;
|
||
} else if (eth_type_mpls(flow->dl_type)) {
|
||
for (int i = 0; i < FLOW_MAX_MPLS_LABELS; i++) {
|
||
WC_MASK_FIELD(wc, mpls_lse[i]);
|
||
if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
|
||
break;
|
||
}
|
||
}
|
||
return;
|
||
} else {
|
||
return; /* Unknown ethertype. */
|
||
}
|
||
|
||
/* IPv4 or IPv6. */
|
||
WC_MASK_FIELD(wc, nw_frag);
|
||
WC_MASK_FIELD(wc, nw_tos);
|
||
WC_MASK_FIELD(wc, nw_ttl);
|
||
WC_MASK_FIELD(wc, nw_proto);
|
||
|
||
/* No transport layer header in later fragments. */
|
||
if (!(flow->nw_frag & FLOW_NW_FRAG_LATER) &&
|
||
(flow->nw_proto == IPPROTO_ICMP ||
|
||
flow->nw_proto == IPPROTO_ICMPV6 ||
|
||
flow->nw_proto == IPPROTO_TCP ||
|
||
flow->nw_proto == IPPROTO_UDP ||
|
||
flow->nw_proto == IPPROTO_SCTP ||
|
||
flow->nw_proto == IPPROTO_IGMP)) {
|
||
WC_MASK_FIELD(wc, tp_src);
|
||
WC_MASK_FIELD(wc, tp_dst);
|
||
|
||
if (flow->nw_proto == IPPROTO_TCP) {
|
||
WC_MASK_FIELD(wc, tcp_flags);
|
||
} else if (flow->nw_proto == IPPROTO_ICMPV6) {
|
||
WC_MASK_FIELD(wc, arp_sha);
|
||
WC_MASK_FIELD(wc, arp_tha);
|
||
WC_MASK_FIELD(wc, nd_target);
|
||
} else if (flow->nw_proto == IPPROTO_IGMP) {
|
||
WC_MASK_FIELD(wc, igmp_group_ip4);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return a map of possible fields for a packet of the same type as 'flow'.
|
||
* Including extra bits in the returned mask is not wrong, it is just less
|
||
* optimal.
|
||
*
|
||
* This is a less precise version of flow_wildcards_init_for_packet() above. */
|
||
void
|
||
flow_wc_map(const struct flow *flow, struct flowmap *map)
|
||
{
|
||
/* Update this function whenever struct flow changes. */
|
||
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 36);
|
||
|
||
flowmap_init(map);
|
||
|
||
if (flow_tnl_dst_is_set(&flow->tunnel)) {
|
||
FLOWMAP_SET__(map, tunnel, offsetof(struct flow_tnl, metadata));
|
||
if (!(flow->tunnel.flags & FLOW_TNL_F_UDPIF)) {
|
||
if (flow->tunnel.metadata.present.map) {
|
||
FLOWMAP_SET(map, tunnel.metadata);
|
||
}
|
||
} else {
|
||
FLOWMAP_SET(map, tunnel.metadata.present.len);
|
||
FLOWMAP_SET__(map, tunnel.metadata.opts.gnv,
|
||
flow->tunnel.metadata.present.len);
|
||
}
|
||
}
|
||
|
||
/* Metadata fields that can appear on packet input. */
|
||
FLOWMAP_SET(map, skb_priority);
|
||
FLOWMAP_SET(map, pkt_mark);
|
||
FLOWMAP_SET(map, recirc_id);
|
||
FLOWMAP_SET(map, dp_hash);
|
||
FLOWMAP_SET(map, in_port);
|
||
FLOWMAP_SET(map, dl_dst);
|
||
FLOWMAP_SET(map, dl_src);
|
||
FLOWMAP_SET(map, dl_type);
|
||
FLOWMAP_SET(map, vlan_tci);
|
||
FLOWMAP_SET(map, ct_state);
|
||
FLOWMAP_SET(map, ct_zone);
|
||
FLOWMAP_SET(map, ct_mark);
|
||
FLOWMAP_SET(map, ct_label);
|
||
|
||
/* Ethertype-dependent fields. */
|
||
if (OVS_LIKELY(flow->dl_type == htons(ETH_TYPE_IP))) {
|
||
FLOWMAP_SET(map, nw_src);
|
||
FLOWMAP_SET(map, nw_dst);
|
||
FLOWMAP_SET(map, nw_proto);
|
||
FLOWMAP_SET(map, nw_frag);
|
||
FLOWMAP_SET(map, nw_tos);
|
||
FLOWMAP_SET(map, nw_ttl);
|
||
FLOWMAP_SET(map, tp_src);
|
||
FLOWMAP_SET(map, tp_dst);
|
||
|
||
if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_IGMP)) {
|
||
FLOWMAP_SET(map, igmp_group_ip4);
|
||
} else {
|
||
FLOWMAP_SET(map, tcp_flags);
|
||
}
|
||
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
|
||
FLOWMAP_SET(map, ipv6_src);
|
||
FLOWMAP_SET(map, ipv6_dst);
|
||
FLOWMAP_SET(map, ipv6_label);
|
||
FLOWMAP_SET(map, nw_proto);
|
||
FLOWMAP_SET(map, nw_frag);
|
||
FLOWMAP_SET(map, nw_tos);
|
||
FLOWMAP_SET(map, nw_ttl);
|
||
FLOWMAP_SET(map, tp_src);
|
||
FLOWMAP_SET(map, tp_dst);
|
||
|
||
if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_ICMPV6)) {
|
||
FLOWMAP_SET(map, nd_target);
|
||
FLOWMAP_SET(map, arp_sha);
|
||
FLOWMAP_SET(map, arp_tha);
|
||
} else {
|
||
FLOWMAP_SET(map, tcp_flags);
|
||
}
|
||
} else if (eth_type_mpls(flow->dl_type)) {
|
||
FLOWMAP_SET(map, mpls_lse);
|
||
} else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
|
||
flow->dl_type == htons(ETH_TYPE_RARP)) {
|
||
FLOWMAP_SET(map, nw_src);
|
||
FLOWMAP_SET(map, nw_dst);
|
||
FLOWMAP_SET(map, nw_proto);
|
||
FLOWMAP_SET(map, arp_sha);
|
||
FLOWMAP_SET(map, arp_tha);
|
||
}
|
||
}
|
||
|
||
/* Clear the metadata and register wildcard masks. They are not packet
|
||
* header fields. */
|
||
void
|
||
flow_wildcards_clear_non_packet_fields(struct flow_wildcards *wc)
|
||
{
|
||
/* Update this function whenever struct flow changes. */
|
||
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 36);
|
||
|
||
memset(&wc->masks.metadata, 0, sizeof wc->masks.metadata);
|
||
memset(&wc->masks.regs, 0, sizeof wc->masks.regs);
|
||
wc->masks.actset_output = 0;
|
||
wc->masks.conj_id = 0;
|
||
}
|
||
|
||
/* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or
|
||
* fields. */
|
||
bool
|
||
flow_wildcards_is_catchall(const struct flow_wildcards *wc)
|
||
{
|
||
const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
|
||
size_t i;
|
||
|
||
for (i = 0; i < FLOW_U64S; i++) {
|
||
if (wc_u64[i]) {
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Sets 'dst' as the bitwise AND of wildcards in 'src1' and 'src2'.
|
||
* That is, a bit or a field is wildcarded in 'dst' if it is wildcarded
|
||
* in 'src1' or 'src2' or both. */
|
||
void
|
||
flow_wildcards_and(struct flow_wildcards *dst,
|
||
const struct flow_wildcards *src1,
|
||
const struct flow_wildcards *src2)
|
||
{
|
||
uint64_t *dst_u64 = (uint64_t *) &dst->masks;
|
||
const uint64_t *src1_u64 = (const uint64_t *) &src1->masks;
|
||
const uint64_t *src2_u64 = (const uint64_t *) &src2->masks;
|
||
size_t i;
|
||
|
||
for (i = 0; i < FLOW_U64S; i++) {
|
||
dst_u64[i] = src1_u64[i] & src2_u64[i];
|
||
}
|
||
}
|
||
|
||
/* Sets 'dst' as the bitwise OR of wildcards in 'src1' and 'src2'. That
|
||
* is, a bit or a field is wildcarded in 'dst' if it is neither
|
||
* wildcarded in 'src1' nor 'src2'. */
|
||
void
|
||
flow_wildcards_or(struct flow_wildcards *dst,
|
||
const struct flow_wildcards *src1,
|
||
const struct flow_wildcards *src2)
|
||
{
|
||
uint64_t *dst_u64 = (uint64_t *) &dst->masks;
|
||
const uint64_t *src1_u64 = (const uint64_t *) &src1->masks;
|
||
const uint64_t *src2_u64 = (const uint64_t *) &src2->masks;
|
||
size_t i;
|
||
|
||
for (i = 0; i < FLOW_U64S; i++) {
|
||
dst_u64[i] = src1_u64[i] | src2_u64[i];
|
||
}
|
||
}
|
||
|
||
/* Returns a hash of the wildcards in 'wc'. */
|
||
uint32_t
|
||
flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis)
|
||
{
|
||
return flow_hash(&wc->masks, basis);
|
||
}
|
||
|
||
/* Returns true if 'a' and 'b' represent the same wildcards, false if they are
|
||
* different. */
|
||
bool
|
||
flow_wildcards_equal(const struct flow_wildcards *a,
|
||
const struct flow_wildcards *b)
|
||
{
|
||
return flow_equal(&a->masks, &b->masks);
|
||
}
|
||
|
||
/* Returns true if at least one bit or field is wildcarded in 'a' but not in
|
||
* 'b', false otherwise. */
|
||
bool
|
||
flow_wildcards_has_extra(const struct flow_wildcards *a,
|
||
const struct flow_wildcards *b)
|
||
{
|
||
const uint64_t *a_u64 = (const uint64_t *) &a->masks;
|
||
const uint64_t *b_u64 = (const uint64_t *) &b->masks;
|
||
size_t i;
|
||
|
||
for (i = 0; i < FLOW_U64S; i++) {
|
||
if ((a_u64[i] & b_u64[i]) != b_u64[i]) {
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Returns true if 'a' and 'b' are equal, except that 0-bits (wildcarded bits)
|
||
* in 'wc' do not need to be equal in 'a' and 'b'. */
|
||
bool
|
||
flow_equal_except(const struct flow *a, const struct flow *b,
|
||
const struct flow_wildcards *wc)
|
||
{
|
||
const uint64_t *a_u64 = (const uint64_t *) a;
|
||
const uint64_t *b_u64 = (const uint64_t *) b;
|
||
const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
|
||
size_t i;
|
||
|
||
for (i = 0; i < FLOW_U64S; i++) {
|
||
if ((a_u64[i] ^ b_u64[i]) & wc_u64[i]) {
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
|
||
* (A 0-bit indicates a wildcard bit.) */
|
||
void
|
||
flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
|
||
{
|
||
wc->masks.regs[idx] = mask;
|
||
}
|
||
|
||
/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
|
||
* (A 0-bit indicates a wildcard bit.) */
|
||
void
|
||
flow_wildcards_set_xreg_mask(struct flow_wildcards *wc, int idx, uint64_t mask)
|
||
{
|
||
flow_set_xreg(&wc->masks, idx, mask);
|
||
}
|
||
|
||
/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
|
||
* (A 0-bit indicates a wildcard bit.) */
|
||
void
|
||
flow_wildcards_set_xxreg_mask(struct flow_wildcards *wc, int idx,
|
||
ovs_u128 mask)
|
||
{
|
||
flow_set_xxreg(&wc->masks, idx, mask);
|
||
}
|
||
|
||
/* Calculates the 5-tuple hash from the given miniflow.
|
||
* This returns the same value as flow_hash_5tuple for the corresponding
|
||
* flow. */
|
||
uint32_t
|
||
miniflow_hash_5tuple(const struct miniflow *flow, uint32_t basis)
|
||
{
|
||
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 36);
|
||
uint32_t hash = basis;
|
||
|
||
if (flow) {
|
||
ovs_be16 dl_type = MINIFLOW_GET_BE16(flow, dl_type);
|
||
uint8_t nw_proto;
|
||
|
||
if (dl_type == htons(ETH_TYPE_IPV6)) {
|
||
struct flowmap map = FLOWMAP_EMPTY_INITIALIZER;
|
||
uint64_t value;
|
||
|
||
FLOWMAP_SET(&map, ipv6_src);
|
||
FLOWMAP_SET(&map, ipv6_dst);
|
||
|
||
MINIFLOW_FOR_EACH_IN_FLOWMAP(value, flow, map) {
|
||
hash = hash_add64(hash, value);
|
||
}
|
||
} else if (dl_type == htons(ETH_TYPE_IP)
|
||
|| dl_type == htons(ETH_TYPE_ARP)) {
|
||
hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_src));
|
||
hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_dst));
|
||
} else {
|
||
goto out;
|
||
}
|
||
|
||
nw_proto = MINIFLOW_GET_U8(flow, nw_proto);
|
||
hash = hash_add(hash, nw_proto);
|
||
if (nw_proto != IPPROTO_TCP && nw_proto != IPPROTO_UDP
|
||
&& nw_proto != IPPROTO_SCTP && nw_proto != IPPROTO_ICMP
|
||
&& nw_proto != IPPROTO_ICMPV6) {
|
||
goto out;
|
||
}
|
||
|
||
/* Add both ports at once. */
|
||
hash = hash_add(hash, MINIFLOW_GET_U32(flow, tp_src));
|
||
}
|
||
out:
|
||
return hash_finish(hash, 42);
|
||
}
|
||
|
||
ASSERT_SEQUENTIAL_SAME_WORD(tp_src, tp_dst);
|
||
ASSERT_SEQUENTIAL(ipv6_src, ipv6_dst);
|
||
|
||
/* Calculates the 5-tuple hash from the given flow. */
|
||
uint32_t
|
||
flow_hash_5tuple(const struct flow *flow, uint32_t basis)
|
||
{
|
||
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 36);
|
||
uint32_t hash = basis;
|
||
|
||
if (flow) {
|
||
|
||
if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
|
||
const uint64_t *flow_u64 = (const uint64_t *)flow;
|
||
int ofs = offsetof(struct flow, ipv6_src) / 8;
|
||
int end = ofs + 2 * sizeof flow->ipv6_src / 8;
|
||
|
||
for (;ofs < end; ofs++) {
|
||
hash = hash_add64(hash, flow_u64[ofs]);
|
||
}
|
||
} else if (flow->dl_type == htons(ETH_TYPE_IP)
|
||
|| flow->dl_type == htons(ETH_TYPE_ARP)) {
|
||
hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_src);
|
||
hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_dst);
|
||
} else {
|
||
goto out;
|
||
}
|
||
|
||
hash = hash_add(hash, flow->nw_proto);
|
||
if (flow->nw_proto != IPPROTO_TCP && flow->nw_proto != IPPROTO_UDP
|
||
&& flow->nw_proto != IPPROTO_SCTP && flow->nw_proto != IPPROTO_ICMP
|
||
&& flow->nw_proto != IPPROTO_ICMPV6) {
|
||
goto out;
|
||
}
|
||
|
||
/* Add both ports at once. */
|
||
hash = hash_add(hash,
|
||
((const uint32_t *)flow)[offsetof(struct flow, tp_src)
|
||
/ sizeof(uint32_t)]);
|
||
}
|
||
out:
|
||
return hash_finish(hash, 42); /* Arbitrary number. */
|
||
}
|
||
|
||
/* Hashes 'flow' based on its L2 through L4 protocol information. */
|
||
uint32_t
|
||
flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
|
||
{
|
||
struct {
|
||
union {
|
||
ovs_be32 ipv4_addr;
|
||
struct in6_addr ipv6_addr;
|
||
};
|
||
ovs_be16 eth_type;
|
||
ovs_be16 vlan_tci;
|
||
ovs_be16 tp_port;
|
||
struct eth_addr eth_addr;
|
||
uint8_t ip_proto;
|
||
} fields;
|
||
|
||
int i;
|
||
|
||
memset(&fields, 0, sizeof fields);
|
||
for (i = 0; i < ARRAY_SIZE(fields.eth_addr.be16); i++) {
|
||
fields.eth_addr.be16[i] = flow->dl_src.be16[i] ^ flow->dl_dst.be16[i];
|
||
}
|
||
fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK);
|
||
fields.eth_type = flow->dl_type;
|
||
|
||
/* UDP source and destination port are not taken into account because they
|
||
* will not necessarily be symmetric in a bidirectional flow. */
|
||
if (fields.eth_type == htons(ETH_TYPE_IP)) {
|
||
fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
|
||
fields.ip_proto = flow->nw_proto;
|
||
if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
|
||
fields.tp_port = flow->tp_src ^ flow->tp_dst;
|
||
}
|
||
} else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
|
||
const uint8_t *a = &flow->ipv6_src.s6_addr[0];
|
||
const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
|
||
uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];
|
||
|
||
for (i=0; i<16; i++) {
|
||
ipv6_addr[i] = a[i] ^ b[i];
|
||
}
|
||
fields.ip_proto = flow->nw_proto;
|
||
if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
|
||
fields.tp_port = flow->tp_src ^ flow->tp_dst;
|
||
}
|
||
}
|
||
return jhash_bytes(&fields, sizeof fields, basis);
|
||
}
|
||
|
||
/* Hashes 'flow' based on its L3 through L4 protocol information */
|
||
uint32_t
|
||
flow_hash_symmetric_l3l4(const struct flow *flow, uint32_t basis,
|
||
bool inc_udp_ports)
|
||
{
|
||
uint32_t hash = basis;
|
||
|
||
/* UDP source and destination port are also taken into account. */
|
||
if (flow->dl_type == htons(ETH_TYPE_IP)) {
|
||
hash = hash_add(hash,
|
||
(OVS_FORCE uint32_t) (flow->nw_src ^ flow->nw_dst));
|
||
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
|
||
/* IPv6 addresses are 64-bit aligned inside struct flow. */
|
||
const uint64_t *a = ALIGNED_CAST(uint64_t *, flow->ipv6_src.s6_addr);
|
||
const uint64_t *b = ALIGNED_CAST(uint64_t *, flow->ipv6_dst.s6_addr);
|
||
|
||
for (int i = 0; i < 4; i++) {
|
||
hash = hash_add64(hash, a[i] ^ b[i]);
|
||
}
|
||
} else {
|
||
/* Cannot hash non-IP flows */
|
||
return 0;
|
||
}
|
||
|
||
hash = hash_add(hash, flow->nw_proto);
|
||
if (flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_SCTP ||
|
||
(inc_udp_ports && flow->nw_proto == IPPROTO_UDP)) {
|
||
hash = hash_add(hash,
|
||
(OVS_FORCE uint16_t) (flow->tp_src ^ flow->tp_dst));
|
||
}
|
||
|
||
return hash_finish(hash, basis);
|
||
}
|
||
|
||
/* Initialize a flow with random fields that matter for nx_hash_fields. */
|
||
void
|
||
flow_random_hash_fields(struct flow *flow)
|
||
{
|
||
uint16_t rnd = random_uint16();
|
||
|
||
/* Initialize to all zeros. */
|
||
memset(flow, 0, sizeof *flow);
|
||
|
||
eth_addr_random(&flow->dl_src);
|
||
eth_addr_random(&flow->dl_dst);
|
||
|
||
flow->vlan_tci = (OVS_FORCE ovs_be16) (random_uint16() & VLAN_VID_MASK);
|
||
|
||
/* Make most of the random flows IPv4, some IPv6, and rest random. */
|
||
flow->dl_type = rnd < 0x8000 ? htons(ETH_TYPE_IP) :
|
||
rnd < 0xc000 ? htons(ETH_TYPE_IPV6) : (OVS_FORCE ovs_be16)rnd;
|
||
|
||
if (dl_type_is_ip_any(flow->dl_type)) {
|
||
if (flow->dl_type == htons(ETH_TYPE_IP)) {
|
||
flow->nw_src = (OVS_FORCE ovs_be32)random_uint32();
|
||
flow->nw_dst = (OVS_FORCE ovs_be32)random_uint32();
|
||
} else {
|
||
random_bytes(&flow->ipv6_src, sizeof flow->ipv6_src);
|
||
random_bytes(&flow->ipv6_dst, sizeof flow->ipv6_dst);
|
||
}
|
||
/* Make most of IP flows TCP, some UDP or SCTP, and rest random. */
|
||
rnd = random_uint16();
|
||
flow->nw_proto = rnd < 0x8000 ? IPPROTO_TCP :
|
||
rnd < 0xc000 ? IPPROTO_UDP :
|
||
rnd < 0xd000 ? IPPROTO_SCTP : (uint8_t)rnd;
|
||
if (flow->nw_proto == IPPROTO_TCP ||
|
||
flow->nw_proto == IPPROTO_UDP ||
|
||
flow->nw_proto == IPPROTO_SCTP) {
|
||
flow->tp_src = (OVS_FORCE ovs_be16)random_uint16();
|
||
flow->tp_dst = (OVS_FORCE ovs_be16)random_uint16();
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Masks the fields in 'wc' that are used by the flow hash 'fields'. */
|
||
void
|
||
flow_mask_hash_fields(const struct flow *flow, struct flow_wildcards *wc,
|
||
enum nx_hash_fields fields)
|
||
{
|
||
switch (fields) {
|
||
case NX_HASH_FIELDS_ETH_SRC:
|
||
memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
|
||
break;
|
||
|
||
case NX_HASH_FIELDS_SYMMETRIC_L4:
|
||
memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
|
||
memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
|
||
if (flow->dl_type == htons(ETH_TYPE_IP)) {
|
||
memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
|
||
memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
|
||
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
|
||
memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
|
||
memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
|
||
}
|
||
if (is_ip_any(flow)) {
|
||
memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
|
||
flow_unwildcard_tp_ports(flow, wc);
|
||
}
|
||
wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
|
||
break;
|
||
|
||
case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP:
|
||
if (is_ip_any(flow) && flow->nw_proto == IPPROTO_UDP) {
|
||
memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
|
||
memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
|
||
}
|
||
/* no break */
|
||
case NX_HASH_FIELDS_SYMMETRIC_L3L4:
|
||
if (flow->dl_type == htons(ETH_TYPE_IP)) {
|
||
memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
|
||
memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
|
||
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
|
||
memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
|
||
memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
|
||
} else {
|
||
break; /* non-IP flow */
|
||
}
|
||
|
||
memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
|
||
if (flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_SCTP) {
|
||
memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
|
||
memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
OVS_NOT_REACHED();
|
||
}
|
||
}
|
||
|
||
/* Hashes the portions of 'flow' designated by 'fields'. */
|
||
uint32_t
|
||
flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields,
|
||
uint16_t basis)
|
||
{
|
||
switch (fields) {
|
||
|
||
case NX_HASH_FIELDS_ETH_SRC:
|
||
return jhash_bytes(&flow->dl_src, sizeof flow->dl_src, basis);
|
||
|
||
case NX_HASH_FIELDS_SYMMETRIC_L4:
|
||
return flow_hash_symmetric_l4(flow, basis);
|
||
|
||
case NX_HASH_FIELDS_SYMMETRIC_L3L4:
|
||
return flow_hash_symmetric_l3l4(flow, basis, false);
|
||
|
||
case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP:
|
||
return flow_hash_symmetric_l3l4(flow, basis, true);
|
||
|
||
}
|
||
|
||
OVS_NOT_REACHED();
|
||
}
|
||
|
||
/* Returns a string representation of 'fields'. */
|
||
const char *
|
||
flow_hash_fields_to_str(enum nx_hash_fields fields)
|
||
{
|
||
switch (fields) {
|
||
case NX_HASH_FIELDS_ETH_SRC: return "eth_src";
|
||
case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4";
|
||
case NX_HASH_FIELDS_SYMMETRIC_L3L4: return "symmetric_l3l4";
|
||
case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP: return "symmetric_l3l4+udp";
|
||
default: return "<unknown>";
|
||
}
|
||
}
|
||
|
||
/* Returns true if the value of 'fields' is supported. Otherwise false. */
|
||
bool
|
||
flow_hash_fields_valid(enum nx_hash_fields fields)
|
||
{
|
||
return fields == NX_HASH_FIELDS_ETH_SRC
|
||
|| fields == NX_HASH_FIELDS_SYMMETRIC_L4
|
||
|| fields == NX_HASH_FIELDS_SYMMETRIC_L3L4
|
||
|| fields == NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP;
|
||
}
|
||
|
||
/* Returns a hash value for the bits of 'flow' that are active based on
|
||
* 'wc', given 'basis'. */
|
||
uint32_t
|
||
flow_hash_in_wildcards(const struct flow *flow,
|
||
const struct flow_wildcards *wc, uint32_t basis)
|
||
{
|
||
const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
|
||
const uint64_t *flow_u64 = (const uint64_t *) flow;
|
||
uint32_t hash;
|
||
size_t i;
|
||
|
||
hash = basis;
|
||
for (i = 0; i < FLOW_U64S; i++) {
|
||
hash = hash_add64(hash, flow_u64[i] & wc_u64[i]);
|
||
}
|
||
return hash_finish(hash, 8 * FLOW_U64S);
|
||
}
|
||
|
||
/* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
|
||
* OpenFlow 1.0 "dl_vlan" value:
|
||
*
|
||
* - If it is in the range 0...4095, 'flow->vlan_tci' is set to match
|
||
* that VLAN. Any existing PCP match is unchanged (it becomes 0 if
|
||
* 'flow' previously matched packets without a VLAN header).
|
||
*
|
||
* - If it is OFP_VLAN_NONE, 'flow->vlan_tci' is set to match a packet
|
||
* without a VLAN tag.
|
||
*
|
||
* - Other values of 'vid' should not be used. */
|
||
void
|
||
flow_set_dl_vlan(struct flow *flow, ovs_be16 vid)
|
||
{
|
||
if (vid == htons(OFP10_VLAN_NONE)) {
|
||
flow->vlan_tci = htons(0);
|
||
} else {
|
||
vid &= htons(VLAN_VID_MASK);
|
||
flow->vlan_tci &= ~htons(VLAN_VID_MASK);
|
||
flow->vlan_tci |= htons(VLAN_CFI) | vid;
|
||
}
|
||
}
|
||
|
||
/* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
|
||
* OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID
|
||
* plus CFI). */
|
||
void
|
||
flow_set_vlan_vid(struct flow *flow, ovs_be16 vid)
|
||
{
|
||
ovs_be16 mask = htons(VLAN_VID_MASK | VLAN_CFI);
|
||
flow->vlan_tci &= ~mask;
|
||
flow->vlan_tci |= vid & mask;
|
||
}
|
||
|
||
/* Sets the VLAN PCP that 'flow' matches to 'pcp', which should be in the
|
||
* range 0...7.
|
||
*
|
||
* This function has no effect on the VLAN ID that 'flow' matches.
|
||
*
|
||
* After calling this function, 'flow' will not match packets without a VLAN
|
||
* header. */
|
||
void
|
||
flow_set_vlan_pcp(struct flow *flow, uint8_t pcp)
|
||
{
|
||
pcp &= 0x07;
|
||
flow->vlan_tci &= ~htons(VLAN_PCP_MASK);
|
||
flow->vlan_tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
|
||
}
|
||
|
||
/* Returns the number of MPLS LSEs present in 'flow'
|
||
*
|
||
* Returns 0 if the 'dl_type' of 'flow' is not an MPLS ethernet type.
|
||
* Otherwise traverses 'flow''s MPLS label stack stopping at the
|
||
* first entry that has the BoS bit set. If no such entry exists then
|
||
* the maximum number of LSEs that can be stored in 'flow' is returned.
|
||
*/
|
||
int
|
||
flow_count_mpls_labels(const struct flow *flow, struct flow_wildcards *wc)
|
||
{
|
||
/* dl_type is always masked. */
|
||
if (eth_type_mpls(flow->dl_type)) {
|
||
int i;
|
||
int cnt;
|
||
|
||
cnt = 0;
|
||
for (i = 0; i < FLOW_MAX_MPLS_LABELS; i++) {
|
||
if (wc) {
|
||
wc->masks.mpls_lse[i] |= htonl(MPLS_BOS_MASK);
|
||
}
|
||
if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
|
||
return i + 1;
|
||
}
|
||
if (flow->mpls_lse[i]) {
|
||
cnt++;
|
||
}
|
||
}
|
||
return cnt;
|
||
} else {
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Returns the number consecutive of MPLS LSEs, starting at the
|
||
* innermost LSE, that are common in 'a' and 'b'.
|
||
*
|
||
* 'an' must be flow_count_mpls_labels(a).
|
||
* 'bn' must be flow_count_mpls_labels(b).
|
||
*/
|
||
int
|
||
flow_count_common_mpls_labels(const struct flow *a, int an,
|
||
const struct flow *b, int bn,
|
||
struct flow_wildcards *wc)
|
||
{
|
||
int min_n = MIN(an, bn);
|
||
if (min_n == 0) {
|
||
return 0;
|
||
} else {
|
||
int common_n = 0;
|
||
int a_last = an - 1;
|
||
int b_last = bn - 1;
|
||
int i;
|
||
|
||
for (i = 0; i < min_n; i++) {
|
||
if (wc) {
|
||
wc->masks.mpls_lse[a_last - i] = OVS_BE32_MAX;
|
||
wc->masks.mpls_lse[b_last - i] = OVS_BE32_MAX;
|
||
}
|
||
if (a->mpls_lse[a_last - i] != b->mpls_lse[b_last - i]) {
|
||
break;
|
||
} else {
|
||
common_n++;
|
||
}
|
||
}
|
||
|
||
return common_n;
|
||
}
|
||
}
|
||
|
||
/* Adds a new outermost MPLS label to 'flow' and changes 'flow''s Ethernet type
|
||
* to 'mpls_eth_type', which must be an MPLS Ethertype.
|
||
*
|
||
* If the new label is the first MPLS label in 'flow', it is generated as;
|
||
*
|
||
* - label: 2, if 'flow' is IPv6, otherwise 0.
|
||
*
|
||
* - TTL: IPv4 or IPv6 TTL, if present and nonzero, otherwise 64.
|
||
*
|
||
* - TC: IPv4 or IPv6 TOS, if present, otherwise 0.
|
||
*
|
||
* - BoS: 1.
|
||
*
|
||
* If the new label is the second or later label MPLS label in 'flow', it is
|
||
* generated as;
|
||
*
|
||
* - label: Copied from outer label.
|
||
*
|
||
* - TTL: Copied from outer label.
|
||
*
|
||
* - TC: Copied from outer label.
|
||
*
|
||
* - BoS: 0.
|
||
*
|
||
* 'n' must be flow_count_mpls_labels(flow). 'n' must be less than
|
||
* FLOW_MAX_MPLS_LABELS (because otherwise flow->mpls_lse[] would overflow).
|
||
*/
|
||
void
|
||
flow_push_mpls(struct flow *flow, int n, ovs_be16 mpls_eth_type,
|
||
struct flow_wildcards *wc)
|
||
{
|
||
ovs_assert(eth_type_mpls(mpls_eth_type));
|
||
ovs_assert(n < FLOW_MAX_MPLS_LABELS);
|
||
|
||
if (n) {
|
||
int i;
|
||
|
||
if (wc) {
|
||
memset(&wc->masks.mpls_lse, 0xff, sizeof *wc->masks.mpls_lse * n);
|
||
}
|
||
for (i = n; i >= 1; i--) {
|
||
flow->mpls_lse[i] = flow->mpls_lse[i - 1];
|
||
}
|
||
flow->mpls_lse[0] = (flow->mpls_lse[1] & htonl(~MPLS_BOS_MASK));
|
||
} else {
|
||
int label = 0; /* IPv4 Explicit Null. */
|
||
int tc = 0;
|
||
int ttl = 64;
|
||
|
||
if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
|
||
label = 2;
|
||
}
|
||
|
||
if (is_ip_any(flow)) {
|
||
tc = (flow->nw_tos & IP_DSCP_MASK) >> 2;
|
||
if (wc) {
|
||
wc->masks.nw_tos |= IP_DSCP_MASK;
|
||
wc->masks.nw_ttl = 0xff;
|
||
}
|
||
|
||
if (flow->nw_ttl) {
|
||
ttl = flow->nw_ttl;
|
||
}
|
||
}
|
||
|
||
flow->mpls_lse[0] = set_mpls_lse_values(ttl, tc, 1, htonl(label));
|
||
|
||
/* Clear all L3 and L4 fields and dp_hash. */
|
||
BUILD_ASSERT(FLOW_WC_SEQ == 36);
|
||
memset((char *) flow + FLOW_SEGMENT_2_ENDS_AT, 0,
|
||
sizeof(struct flow) - FLOW_SEGMENT_2_ENDS_AT);
|
||
flow->dp_hash = 0;
|
||
}
|
||
flow->dl_type = mpls_eth_type;
|
||
}
|
||
|
||
/* Tries to remove the outermost MPLS label from 'flow'. Returns true if
|
||
* successful, false otherwise. On success, sets 'flow''s Ethernet type to
|
||
* 'eth_type'.
|
||
*
|
||
* 'n' must be flow_count_mpls_labels(flow). */
|
||
bool
|
||
flow_pop_mpls(struct flow *flow, int n, ovs_be16 eth_type,
|
||
struct flow_wildcards *wc)
|
||
{
|
||
int i;
|
||
|
||
if (n == 0) {
|
||
/* Nothing to pop. */
|
||
return false;
|
||
} else if (n == FLOW_MAX_MPLS_LABELS) {
|
||
if (wc) {
|
||
wc->masks.mpls_lse[n - 1] |= htonl(MPLS_BOS_MASK);
|
||
}
|
||
if (!(flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK))) {
|
||
/* Can't pop because don't know what to fill in mpls_lse[n - 1]. */
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (wc) {
|
||
memset(&wc->masks.mpls_lse[1], 0xff,
|
||
sizeof *wc->masks.mpls_lse * (n - 1));
|
||
}
|
||
for (i = 1; i < n; i++) {
|
||
flow->mpls_lse[i - 1] = flow->mpls_lse[i];
|
||
}
|
||
flow->mpls_lse[n - 1] = 0;
|
||
flow->dl_type = eth_type;
|
||
return true;
|
||
}
|
||
|
||
/* Sets the MPLS Label that 'flow' matches to 'label', which is interpreted
|
||
* as an OpenFlow 1.1 "mpls_label" value. */
|
||
void
|
||
flow_set_mpls_label(struct flow *flow, int idx, ovs_be32 label)
|
||
{
|
||
set_mpls_lse_label(&flow->mpls_lse[idx], label);
|
||
}
|
||
|
||
/* Sets the MPLS TTL that 'flow' matches to 'ttl', which should be in the
|
||
* range 0...255. */
|
||
void
|
||
flow_set_mpls_ttl(struct flow *flow, int idx, uint8_t ttl)
|
||
{
|
||
set_mpls_lse_ttl(&flow->mpls_lse[idx], ttl);
|
||
}
|
||
|
||
/* Sets the MPLS TC that 'flow' matches to 'tc', which should be in the
|
||
* range 0...7. */
|
||
void
|
||
flow_set_mpls_tc(struct flow *flow, int idx, uint8_t tc)
|
||
{
|
||
set_mpls_lse_tc(&flow->mpls_lse[idx], tc);
|
||
}
|
||
|
||
/* Sets the MPLS BOS bit that 'flow' matches to which should be 0 or 1. */
|
||
void
|
||
flow_set_mpls_bos(struct flow *flow, int idx, uint8_t bos)
|
||
{
|
||
set_mpls_lse_bos(&flow->mpls_lse[idx], bos);
|
||
}
|
||
|
||
/* Sets the entire MPLS LSE. */
|
||
void
|
||
flow_set_mpls_lse(struct flow *flow, int idx, ovs_be32 lse)
|
||
{
|
||
flow->mpls_lse[idx] = lse;
|
||
}
|
||
|
||
static size_t
|
||
flow_compose_l4(struct dp_packet *p, const struct flow *flow)
|
||
{
|
||
size_t l4_len = 0;
|
||
|
||
if (!(flow->nw_frag & FLOW_NW_FRAG_ANY)
|
||
|| !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
|
||
if (flow->nw_proto == IPPROTO_TCP) {
|
||
struct tcp_header *tcp;
|
||
|
||
l4_len = sizeof *tcp;
|
||
tcp = dp_packet_put_zeros(p, l4_len);
|
||
tcp->tcp_src = flow->tp_src;
|
||
tcp->tcp_dst = flow->tp_dst;
|
||
tcp->tcp_ctl = TCP_CTL(ntohs(flow->tcp_flags), 5);
|
||
} else if (flow->nw_proto == IPPROTO_UDP) {
|
||
struct udp_header *udp;
|
||
|
||
l4_len = sizeof *udp;
|
||
udp = dp_packet_put_zeros(p, l4_len);
|
||
udp->udp_src = flow->tp_src;
|
||
udp->udp_dst = flow->tp_dst;
|
||
} else if (flow->nw_proto == IPPROTO_SCTP) {
|
||
struct sctp_header *sctp;
|
||
|
||
l4_len = sizeof *sctp;
|
||
sctp = dp_packet_put_zeros(p, l4_len);
|
||
sctp->sctp_src = flow->tp_src;
|
||
sctp->sctp_dst = flow->tp_dst;
|
||
} else if (flow->nw_proto == IPPROTO_ICMP) {
|
||
struct icmp_header *icmp;
|
||
|
||
l4_len = sizeof *icmp;
|
||
icmp = dp_packet_put_zeros(p, l4_len);
|
||
icmp->icmp_type = ntohs(flow->tp_src);
|
||
icmp->icmp_code = ntohs(flow->tp_dst);
|
||
icmp->icmp_csum = csum(icmp, ICMP_HEADER_LEN);
|
||
} else if (flow->nw_proto == IPPROTO_IGMP) {
|
||
struct igmp_header *igmp;
|
||
|
||
l4_len = sizeof *igmp;
|
||
igmp = dp_packet_put_zeros(p, l4_len);
|
||
igmp->igmp_type = ntohs(flow->tp_src);
|
||
igmp->igmp_code = ntohs(flow->tp_dst);
|
||
put_16aligned_be32(&igmp->group, flow->igmp_group_ip4);
|
||
igmp->igmp_csum = csum(igmp, IGMP_HEADER_LEN);
|
||
} else if (flow->nw_proto == IPPROTO_ICMPV6) {
|
||
struct icmp6_hdr *icmp;
|
||
|
||
l4_len = sizeof *icmp;
|
||
icmp = dp_packet_put_zeros(p, l4_len);
|
||
icmp->icmp6_type = ntohs(flow->tp_src);
|
||
icmp->icmp6_code = ntohs(flow->tp_dst);
|
||
|
||
if (icmp->icmp6_code == 0 &&
|
||
(icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
|
||
icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
|
||
struct in6_addr *nd_target;
|
||
struct ovs_nd_opt *nd_opt;
|
||
|
||
l4_len += sizeof *nd_target;
|
||
nd_target = dp_packet_put_zeros(p, sizeof *nd_target);
|
||
*nd_target = flow->nd_target;
|
||
|
||
if (!eth_addr_is_zero(flow->arp_sha)) {
|
||
l4_len += 8;
|
||
nd_opt = dp_packet_put_zeros(p, 8);
|
||
nd_opt->nd_opt_len = 1;
|
||
nd_opt->nd_opt_type = ND_OPT_SOURCE_LINKADDR;
|
||
nd_opt->nd_opt_mac = flow->arp_sha;
|
||
}
|
||
if (!eth_addr_is_zero(flow->arp_tha)) {
|
||
l4_len += 8;
|
||
nd_opt = dp_packet_put_zeros(p, 8);
|
||
nd_opt->nd_opt_len = 1;
|
||
nd_opt->nd_opt_type = ND_OPT_TARGET_LINKADDR;
|
||
nd_opt->nd_opt_mac = flow->arp_tha;
|
||
}
|
||
}
|
||
icmp->icmp6_cksum = (OVS_FORCE uint16_t)
|
||
csum(icmp, (char *)dp_packet_tail(p) - (char *)icmp);
|
||
}
|
||
}
|
||
return l4_len;
|
||
}
|
||
|
||
/* Puts into 'b' a packet that flow_extract() would parse as having the given
|
||
* 'flow'.
|
||
*
|
||
* (This is useful only for testing, obviously, and the packet isn't really
|
||
* valid. It hasn't got some checksums filled in, for one, and lots of fields
|
||
* are just zeroed.) */
|
||
void
|
||
flow_compose(struct dp_packet *p, const struct flow *flow)
|
||
{
|
||
size_t l4_len;
|
||
|
||
/* eth_compose() sets l3 pointer and makes sure it is 32-bit aligned. */
|
||
eth_compose(p, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0);
|
||
if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) {
|
||
struct eth_header *eth = dp_packet_l2(p);
|
||
eth->eth_type = htons(dp_packet_size(p));
|
||
return;
|
||
}
|
||
|
||
if (flow->vlan_tci & htons(VLAN_CFI)) {
|
||
eth_push_vlan(p, htons(ETH_TYPE_VLAN), flow->vlan_tci);
|
||
}
|
||
|
||
if (flow->dl_type == htons(ETH_TYPE_IP)) {
|
||
struct ip_header *ip;
|
||
|
||
ip = dp_packet_put_zeros(p, sizeof *ip);
|
||
ip->ip_ihl_ver = IP_IHL_VER(5, 4);
|
||
ip->ip_tos = flow->nw_tos;
|
||
ip->ip_ttl = flow->nw_ttl;
|
||
ip->ip_proto = flow->nw_proto;
|
||
put_16aligned_be32(&ip->ip_src, flow->nw_src);
|
||
put_16aligned_be32(&ip->ip_dst, flow->nw_dst);
|
||
|
||
if (flow->nw_frag & FLOW_NW_FRAG_ANY) {
|
||
ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS);
|
||
if (flow->nw_frag & FLOW_NW_FRAG_LATER) {
|
||
ip->ip_frag_off |= htons(100);
|
||
}
|
||
}
|
||
|
||
dp_packet_set_l4(p, dp_packet_tail(p));
|
||
|
||
l4_len = flow_compose_l4(p, flow);
|
||
|
||
ip = dp_packet_l3(p);
|
||
ip->ip_tot_len = htons(p->l4_ofs - p->l3_ofs + l4_len);
|
||
ip->ip_csum = csum(ip, sizeof *ip);
|
||
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
|
||
struct ovs_16aligned_ip6_hdr *nh;
|
||
|
||
nh = dp_packet_put_zeros(p, sizeof *nh);
|
||
put_16aligned_be32(&nh->ip6_flow, htonl(6 << 28) |
|
||
htonl(flow->nw_tos << 20) | flow->ipv6_label);
|
||
nh->ip6_hlim = flow->nw_ttl;
|
||
nh->ip6_nxt = flow->nw_proto;
|
||
|
||
memcpy(&nh->ip6_src, &flow->ipv6_src, sizeof(nh->ip6_src));
|
||
memcpy(&nh->ip6_dst, &flow->ipv6_dst, sizeof(nh->ip6_dst));
|
||
|
||
dp_packet_set_l4(p, dp_packet_tail(p));
|
||
|
||
l4_len = flow_compose_l4(p, flow);
|
||
|
||
nh = dp_packet_l3(p);
|
||
nh->ip6_plen = htons(l4_len);
|
||
} else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
|
||
flow->dl_type == htons(ETH_TYPE_RARP)) {
|
||
struct arp_eth_header *arp;
|
||
|
||
arp = dp_packet_put_zeros(p, sizeof *arp);
|
||
dp_packet_set_l3(p, arp);
|
||
arp->ar_hrd = htons(1);
|
||
arp->ar_pro = htons(ETH_TYPE_IP);
|
||
arp->ar_hln = ETH_ADDR_LEN;
|
||
arp->ar_pln = 4;
|
||
arp->ar_op = htons(flow->nw_proto);
|
||
|
||
if (flow->nw_proto == ARP_OP_REQUEST ||
|
||
flow->nw_proto == ARP_OP_REPLY) {
|
||
put_16aligned_be32(&arp->ar_spa, flow->nw_src);
|
||
put_16aligned_be32(&arp->ar_tpa, flow->nw_dst);
|
||
arp->ar_sha = flow->arp_sha;
|
||
arp->ar_tha = flow->arp_tha;
|
||
}
|
||
}
|
||
|
||
if (eth_type_mpls(flow->dl_type)) {
|
||
int n;
|
||
|
||
p->l2_5_ofs = p->l3_ofs;
|
||
for (n = 1; n < FLOW_MAX_MPLS_LABELS; n++) {
|
||
if (flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK)) {
|
||
break;
|
||
}
|
||
}
|
||
while (n > 0) {
|
||
push_mpls(p, flow->dl_type, flow->mpls_lse[--n]);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Compressed flow. */
|
||
|
||
/* Completes an initialization of 'dst' as a miniflow copy of 'src' begun by
|
||
* the caller. The caller must have already computed 'dst->map' properly to
|
||
* indicate the significant uint64_t elements of 'src'.
|
||
*
|
||
* Normally the significant elements are the ones that are non-zero. However,
|
||
* when a miniflow is initialized from a (mini)mask, the values can be zeroes,
|
||
* so that the flow and mask always have the same maps. */
|
||
void
|
||
miniflow_init(struct miniflow *dst, const struct flow *src)
|
||
{
|
||
uint64_t *dst_u64 = miniflow_values(dst);
|
||
size_t idx;
|
||
|
||
FLOWMAP_FOR_EACH_INDEX(idx, dst->map) {
|
||
*dst_u64++ = flow_u64_value(src, idx);
|
||
}
|
||
}
|
||
|
||
/* Initialize the maps of 'flow' from 'src'. */
|
||
void
|
||
miniflow_map_init(struct miniflow *flow, const struct flow *src)
|
||
{
|
||
/* Initialize map, counting the number of nonzero elements. */
|
||
flowmap_init(&flow->map);
|
||
for (size_t i = 0; i < FLOW_U64S; i++) {
|
||
if (flow_u64_value(src, i)) {
|
||
flowmap_set(&flow->map, i, 1);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Allocates 'n' count of miniflows, consecutive in memory, initializing the
|
||
* map of each from 'src'.
|
||
* Returns the size of the miniflow data. */
|
||
size_t
|
||
miniflow_alloc(struct miniflow *dsts[], size_t n, const struct miniflow *src)
|
||
{
|
||
size_t n_values = miniflow_n_values(src);
|
||
size_t data_size = MINIFLOW_VALUES_SIZE(n_values);
|
||
struct miniflow *dst = xmalloc(n * (sizeof *src + data_size));
|
||
size_t i;
|
||
|
||
COVERAGE_INC(miniflow_malloc);
|
||
|
||
for (i = 0; i < n; i++) {
|
||
*dst = *src; /* Copy maps. */
|
||
dsts[i] = dst;
|
||
dst += 1; /* Just past the maps. */
|
||
dst = (struct miniflow *)((uint64_t *)dst + n_values); /* Skip data. */
|
||
}
|
||
return data_size;
|
||
}
|
||
|
||
/* Returns a miniflow copy of 'src'. The caller must eventually free() the
|
||
* returned miniflow. */
|
||
struct miniflow *
|
||
miniflow_create(const struct flow *src)
|
||
{
|
||
struct miniflow tmp;
|
||
struct miniflow *dst;
|
||
|
||
miniflow_map_init(&tmp, src);
|
||
|
||
miniflow_alloc(&dst, 1, &tmp);
|
||
miniflow_init(dst, src);
|
||
return dst;
|
||
}
|
||
|
||
/* Initializes 'dst' as a copy of 'src'. The caller must have allocated
|
||
* 'dst' to have inline space for 'n_values' data in 'src'. */
|
||
void
|
||
miniflow_clone(struct miniflow *dst, const struct miniflow *src,
|
||
size_t n_values)
|
||
{
|
||
*dst = *src; /* Copy maps. */
|
||
memcpy(miniflow_values(dst), miniflow_get_values(src),
|
||
MINIFLOW_VALUES_SIZE(n_values));
|
||
}
|
||
|
||
/* Initializes 'dst' as a copy of 'src'. */
|
||
void
|
||
miniflow_expand(const struct miniflow *src, struct flow *dst)
|
||
{
|
||
memset(dst, 0, sizeof *dst);
|
||
flow_union_with_miniflow(dst, src);
|
||
}
|
||
|
||
/* Returns true if 'a' and 'b' are equal miniflows, false otherwise. */
|
||
bool
|
||
miniflow_equal(const struct miniflow *a, const struct miniflow *b)
|
||
{
|
||
const uint64_t *ap = miniflow_get_values(a);
|
||
const uint64_t *bp = miniflow_get_values(b);
|
||
|
||
/* This is mostly called after a matching hash, so it is highly likely that
|
||
* the maps are equal as well. */
|
||
if (OVS_LIKELY(flowmap_equal(a->map, b->map))) {
|
||
return !memcmp(ap, bp, miniflow_n_values(a) * sizeof *ap);
|
||
} else {
|
||
size_t idx;
|
||
|
||
FLOWMAP_FOR_EACH_INDEX (idx, flowmap_or(a->map, b->map)) {
|
||
if ((flowmap_is_set(&a->map, idx) ? *ap++ : 0)
|
||
!= (flowmap_is_set(&b->map, idx) ? *bp++ : 0)) {
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Returns false if 'a' and 'b' differ at the places where there are 1-bits
|
||
* in 'mask', true otherwise. */
|
||
bool
|
||
miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b,
|
||
const struct minimask *mask)
|
||
{
|
||
const uint64_t *p = miniflow_get_values(&mask->masks);
|
||
size_t idx;
|
||
|
||
FLOWMAP_FOR_EACH_INDEX(idx, mask->masks.map) {
|
||
if ((miniflow_get(a, idx) ^ miniflow_get(b, idx)) & *p++) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
|
||
* in 'mask', false if they differ. */
|
||
bool
|
||
miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b,
|
||
const struct minimask *mask)
|
||
{
|
||
const uint64_t *p = miniflow_get_values(&mask->masks);
|
||
size_t idx;
|
||
|
||
FLOWMAP_FOR_EACH_INDEX(idx, mask->masks.map) {
|
||
if ((miniflow_get(a, idx) ^ flow_u64_value(b, idx)) & *p++) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
void
|
||
minimask_init(struct minimask *mask, const struct flow_wildcards *wc)
|
||
{
|
||
miniflow_init(&mask->masks, &wc->masks);
|
||
}
|
||
|
||
/* Returns a minimask copy of 'wc'. The caller must eventually free the
|
||
* returned minimask with free(). */
|
||
struct minimask *
|
||
minimask_create(const struct flow_wildcards *wc)
|
||
{
|
||
return (struct minimask *)miniflow_create(&wc->masks);
|
||
}
|
||
|
||
/* Initializes 'dst_' as the bit-wise "and" of 'a_' and 'b_'.
|
||
*
|
||
* The caller must provide room for FLOW_U64S "uint64_t"s in 'storage', which
|
||
* must follow '*dst_' in memory, for use by 'dst_'. The caller must *not*
|
||
* free 'dst_' free(). */
|
||
void
|
||
minimask_combine(struct minimask *dst_,
|
||
const struct minimask *a_, const struct minimask *b_,
|
||
uint64_t storage[FLOW_U64S])
|
||
{
|
||
struct miniflow *dst = &dst_->masks;
|
||
uint64_t *dst_values = storage;
|
||
const struct miniflow *a = &a_->masks;
|
||
const struct miniflow *b = &b_->masks;
|
||
size_t idx;
|
||
|
||
flowmap_init(&dst->map);
|
||
|
||
FLOWMAP_FOR_EACH_INDEX(idx, flowmap_and(a->map, b->map)) {
|
||
/* Both 'a' and 'b' have non-zero data at 'idx'. */
|
||
uint64_t mask = *miniflow_get__(a, idx) & *miniflow_get__(b, idx);
|
||
|
||
if (mask) {
|
||
flowmap_set(&dst->map, idx, 1);
|
||
*dst_values++ = mask;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Initializes 'wc' as a copy of 'mask'. */
|
||
void
|
||
minimask_expand(const struct minimask *mask, struct flow_wildcards *wc)
|
||
{
|
||
miniflow_expand(&mask->masks, &wc->masks);
|
||
}
|
||
|
||
/* Returns true if 'a' and 'b' are the same flow mask, false otherwise.
|
||
* Minimasks may not have zero data values, so for the minimasks to be the
|
||
* same, they need to have the same map and the same data values. */
|
||
bool
|
||
minimask_equal(const struct minimask *a, const struct minimask *b)
|
||
{
|
||
return !memcmp(a, b, sizeof *a
|
||
+ MINIFLOW_VALUES_SIZE(miniflow_n_values(&a->masks)));
|
||
}
|
||
|
||
/* Returns true if at least one bit matched by 'b' is wildcarded by 'a',
|
||
* false otherwise. */
|
||
bool
|
||
minimask_has_extra(const struct minimask *a, const struct minimask *b)
|
||
{
|
||
const uint64_t *bp = miniflow_get_values(&b->masks);
|
||
size_t idx;
|
||
|
||
FLOWMAP_FOR_EACH_INDEX(idx, b->masks.map) {
|
||
uint64_t b_u64 = *bp++;
|
||
|
||
/* 'b_u64' is non-zero, check if the data in 'a' is either zero
|
||
* or misses some of the bits in 'b_u64'. */
|
||
if (!MINIFLOW_IN_MAP(&a->masks, idx)
|
||
|| ((*miniflow_get__(&a->masks, idx) & b_u64) != b_u64)) {
|
||
return true; /* 'a' wildcards some bits 'b' doesn't. */
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|