mirror of
https://github.com/openvswitch/ovs
synced 2025-08-22 09:58:01 +00:00
Instead of explicitly adding the pad bytes to force the structure an exact multiple of cacheline size, let the PADDED_MEMBERS macro do the job. Signed-off-by: Bhanuprakash Bodireddy <bhanuprakash.bodireddy@intel.com> Signed-off-by: Ben Pfaff <blp@ovn.org>
581 lines
17 KiB
C
581 lines
17 KiB
C
/*
|
|
* Copyright (c) 2014, 2016 Nicira, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at:
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include "ccmap.h"
|
|
#include "coverage.h"
|
|
#include "bitmap.h"
|
|
#include "hash.h"
|
|
#include "ovs-rcu.h"
|
|
#include "random.h"
|
|
#include "util.h"
|
|
|
|
COVERAGE_DEFINE(ccmap_expand);
|
|
COVERAGE_DEFINE(ccmap_shrink);
|
|
|
|
/* A count-only version of the cmap. */
|
|
|
|
/* Allow protected access to the value without atomic semantics. This makes
|
|
* the exclusive writer somewhat faster. */
|
|
typedef union {
|
|
unsigned long long protected_value;
|
|
ATOMIC(unsigned long long) atomic_value;
|
|
} ccmap_node_t;
|
|
BUILD_ASSERT_DECL(sizeof(ccmap_node_t) == sizeof(uint64_t));
|
|
|
|
static uint64_t
|
|
ccmap_node_get(const ccmap_node_t *node)
|
|
{
|
|
uint64_t value;
|
|
|
|
atomic_read_relaxed(&CONST_CAST(ccmap_node_t *, node)->atomic_value,
|
|
&value);
|
|
|
|
return value;
|
|
}
|
|
|
|
/* It is safe to allow compiler optimize reads by the exclusive writer. */
|
|
static uint64_t
|
|
ccmap_node_get_protected(const ccmap_node_t *node)
|
|
{
|
|
return node->protected_value;
|
|
}
|
|
|
|
static void
|
|
ccmap_node_set_protected(ccmap_node_t *node, uint64_t value)
|
|
{
|
|
atomic_store_relaxed(&node->atomic_value, value);
|
|
}
|
|
|
|
static uint64_t
|
|
ccmap_node(uint32_t count, uint32_t hash)
|
|
{
|
|
return (uint64_t)count << 32 | hash;
|
|
}
|
|
|
|
static uint32_t
|
|
ccmap_node_hash(uint64_t node)
|
|
{
|
|
return node;
|
|
}
|
|
|
|
static uint32_t
|
|
ccmap_node_count(uint64_t node)
|
|
{
|
|
return node >> 32;
|
|
}
|
|
|
|
/* Number of nodes per bucket. */
|
|
#define CCMAP_K (CACHE_LINE_SIZE / sizeof(ccmap_node_t))
|
|
|
|
/* A cuckoo hash bucket. Designed to be cache-aligned and exactly one cache
|
|
* line long. */
|
|
struct ccmap_bucket {
|
|
/* Each node incudes both the hash (low 32-bits) and the count (high
|
|
* 32-bits), allowing readers always getting a consistent pair. */
|
|
ccmap_node_t nodes[CCMAP_K];
|
|
};
|
|
BUILD_ASSERT_DECL(sizeof(struct ccmap_bucket) == CACHE_LINE_SIZE);
|
|
|
|
/* Default maximum load factor (as a fraction of UINT32_MAX + 1) before
|
|
* enlarging a ccmap. Reasonable values lie between about 75% and 93%. Smaller
|
|
* values waste memory; larger values increase the average insertion time. */
|
|
#define CCMAP_MAX_LOAD ((uint32_t) (UINT32_MAX * .85))
|
|
|
|
/* Default minimum load factor (as a fraction of UINT32_MAX + 1) before
|
|
* shrinking a ccmap. Currently, the value is chosen to be 20%, this
|
|
* means ccmap will have a 40% load factor after shrink. */
|
|
#define CCMAP_MIN_LOAD ((uint32_t) (UINT32_MAX * .20))
|
|
|
|
/* The implementation of a concurrent hash map. */
|
|
struct ccmap_impl {
|
|
PADDED_MEMBERS(CACHE_LINE_SIZE,
|
|
unsigned int n_unique; /* Number of in-use nodes. */
|
|
unsigned int n; /* Number of hashes inserted. */
|
|
unsigned int max_n; /* Max nodes before enlarging. */
|
|
unsigned int min_n; /* Min nodes before shrinking. */
|
|
uint32_t mask; /* Number of 'buckets', minus one. */
|
|
uint32_t basis; /* Basis for rehashing client's
|
|
hash values. */
|
|
);
|
|
struct ccmap_bucket buckets[];
|
|
};
|
|
BUILD_ASSERT_DECL(sizeof(struct ccmap_impl) == CACHE_LINE_SIZE);
|
|
|
|
static struct ccmap_impl *ccmap_rehash(struct ccmap *, uint32_t mask);
|
|
|
|
/* Given a rehashed value 'hash', returns the other hash for that rehashed
|
|
* value. This is symmetric: other_hash(other_hash(x)) == x. (See also "Hash
|
|
* Functions" at the top of cmap.c.) */
|
|
static uint32_t
|
|
other_hash(uint32_t hash)
|
|
{
|
|
return (hash << 16) | (hash >> 16);
|
|
}
|
|
|
|
/* Returns the rehashed value for 'hash' within 'impl'. (See also "Hash
|
|
* Functions" at the top of this file.) */
|
|
static uint32_t
|
|
rehash(const struct ccmap_impl *impl, uint32_t hash)
|
|
{
|
|
return hash_finish(impl->basis, hash);
|
|
}
|
|
|
|
static struct ccmap_impl *
|
|
ccmap_get_impl(const struct ccmap *ccmap)
|
|
{
|
|
return ovsrcu_get(struct ccmap_impl *, &ccmap->impl);
|
|
}
|
|
|
|
static uint32_t
|
|
calc_max_n(uint32_t mask)
|
|
{
|
|
return ((uint64_t) (mask + 1) * CCMAP_K * CCMAP_MAX_LOAD) >> 32;
|
|
}
|
|
|
|
static uint32_t
|
|
calc_min_n(uint32_t mask)
|
|
{
|
|
return ((uint64_t) (mask + 1) * CCMAP_K * CCMAP_MIN_LOAD) >> 32;
|
|
}
|
|
|
|
static struct ccmap_impl *
|
|
ccmap_impl_create(uint32_t mask)
|
|
{
|
|
struct ccmap_impl *impl;
|
|
|
|
ovs_assert(is_pow2(mask + 1));
|
|
|
|
impl = xzalloc_cacheline(sizeof *impl
|
|
+ (mask + 1) * sizeof *impl->buckets);
|
|
impl->n_unique = 0;
|
|
impl->n = 0;
|
|
impl->max_n = calc_max_n(mask);
|
|
impl->min_n = calc_min_n(mask);
|
|
impl->mask = mask;
|
|
impl->basis = random_uint32();
|
|
|
|
return impl;
|
|
}
|
|
|
|
/* Initializes 'ccmap' as an empty concurrent hash map. */
|
|
void
|
|
ccmap_init(struct ccmap *ccmap)
|
|
{
|
|
ovsrcu_set(&ccmap->impl, ccmap_impl_create(0));
|
|
}
|
|
|
|
/* Destroys 'ccmap'.
|
|
*
|
|
* The client is responsible for destroying any data previously held in
|
|
* 'ccmap'. */
|
|
void
|
|
ccmap_destroy(struct ccmap *ccmap)
|
|
{
|
|
if (ccmap) {
|
|
ovsrcu_postpone(free_cacheline, ccmap_get_impl(ccmap));
|
|
}
|
|
}
|
|
|
|
/* Returns the number of hashes inserted in 'ccmap', including duplicates. */
|
|
size_t
|
|
ccmap_count(const struct ccmap *ccmap)
|
|
{
|
|
return ccmap_get_impl(ccmap)->n;
|
|
}
|
|
|
|
/* Returns true if 'ccmap' is empty, false otherwise. */
|
|
bool
|
|
ccmap_is_empty(const struct ccmap *ccmap)
|
|
{
|
|
return ccmap_count(ccmap) == 0;
|
|
}
|
|
|
|
/* returns 0 if not found. Map does not contain zero counts. */
|
|
static uint32_t
|
|
ccmap_find_in_bucket(const struct ccmap_bucket *bucket, uint32_t hash)
|
|
{
|
|
for (int i = 0; i < CCMAP_K; i++) {
|
|
uint64_t node = ccmap_node_get(&bucket->nodes[i]);
|
|
|
|
if (ccmap_node_hash(node) == hash) {
|
|
return ccmap_node_count(node);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Searches 'ccmap' for a node with the specified 'hash'. If one is
|
|
* found, returns the count associated with it, otherwise zero.
|
|
*/
|
|
uint32_t
|
|
ccmap_find(const struct ccmap *ccmap, uint32_t hash)
|
|
{
|
|
const struct ccmap_impl *impl = ccmap_get_impl(ccmap);
|
|
uint32_t h = rehash(impl, hash);
|
|
uint32_t count;
|
|
|
|
count = ccmap_find_in_bucket(&impl->buckets[h & impl->mask], hash);
|
|
if (!count) {
|
|
h = other_hash(h);
|
|
count = ccmap_find_in_bucket(&impl->buckets[h & impl->mask], hash);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static int
|
|
ccmap_find_slot_protected(struct ccmap_bucket *b, uint32_t hash,
|
|
uint32_t *count)
|
|
{
|
|
for (int i = 0; i < CCMAP_K; i++) {
|
|
uint64_t node = ccmap_node_get_protected(&b->nodes[i]);
|
|
|
|
*count = ccmap_node_count(node);
|
|
if (ccmap_node_hash(node) == hash && *count) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
ccmap_find_empty_slot_protected(struct ccmap_bucket *b)
|
|
{
|
|
for (int i = 0; i < CCMAP_K; i++) {
|
|
uint64_t node = ccmap_node_get_protected(&b->nodes[i]);
|
|
|
|
if (!ccmap_node_count(node)) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static void
|
|
ccmap_set_bucket(struct ccmap_bucket *b, int i, uint32_t count, uint32_t hash)
|
|
{
|
|
ccmap_node_set_protected(&b->nodes[i], ccmap_node(count, hash));
|
|
}
|
|
|
|
/* Searches 'b' for a node with the given 'hash'. If it finds one, increments
|
|
* the associated count by 'inc' and returns the new value. Otherwise returns
|
|
* 0. */
|
|
static uint32_t
|
|
ccmap_inc_bucket_existing(struct ccmap_bucket *b, uint32_t hash, uint32_t inc)
|
|
{
|
|
uint32_t count;
|
|
|
|
int i = ccmap_find_slot_protected(b, hash, &count);
|
|
if (i < 0) {
|
|
return 0;
|
|
}
|
|
count += inc;
|
|
ccmap_set_bucket(b, i, count, hash);
|
|
return count;
|
|
}
|
|
|
|
/* Searches 'b' for an empty slot. If successful, stores 'inc' and 'hash' in
|
|
* the slot and returns 'inc'. Otherwise, returns 0. */
|
|
static uint32_t
|
|
ccmap_inc_bucket_new(struct ccmap_bucket *b, uint32_t hash, uint32_t inc)
|
|
{
|
|
int i = ccmap_find_empty_slot_protected(b);
|
|
if (i < 0) {
|
|
return 0;
|
|
}
|
|
ccmap_set_bucket(b, i, inc, hash);
|
|
return inc;
|
|
}
|
|
|
|
/* Returns the other bucket that b->nodes[slot] could occupy in 'impl'. (This
|
|
* might be the same as 'b'.) */
|
|
static struct ccmap_bucket *
|
|
other_bucket_protected(struct ccmap_impl *impl, struct ccmap_bucket *b, int slot)
|
|
{
|
|
uint64_t node = ccmap_node_get_protected(&b->nodes[slot]);
|
|
|
|
uint32_t h1 = rehash(impl, ccmap_node_hash(node));
|
|
uint32_t h2 = other_hash(h1);
|
|
uint32_t b_idx = b - impl->buckets;
|
|
uint32_t other_h = (h1 & impl->mask) == b_idx ? h2 : h1;
|
|
|
|
return &impl->buckets[other_h & impl->mask];
|
|
}
|
|
|
|
/* Count 'inc' for 'hash' is to be inserted into 'impl', but both candidate
|
|
* buckets 'b1' and 'b2' are full. This function attempts to rearrange buckets
|
|
* within 'impl' to make room for 'hash'.
|
|
*
|
|
* Returns 'inc' if the new count for the 'hash' was inserted, otherwise
|
|
* returns 0.
|
|
*
|
|
* The implementation is a general-purpose breadth-first search. At first
|
|
* glance, this is more complex than a random walk through 'impl' (suggested by
|
|
* some references), but random walks have a tendency to loop back through a
|
|
* single bucket. We have to move nodes backward along the path that we find,
|
|
* so that no node actually disappears from the hash table, which means a
|
|
* random walk would have to be careful to deal with loops. By contrast, a
|
|
* successful breadth-first search always finds a *shortest* path through the
|
|
* hash table, and a shortest path will never contain loops, so it avoids that
|
|
* problem entirely.
|
|
*/
|
|
static uint32_t
|
|
ccmap_inc_bfs(struct ccmap_impl *impl, uint32_t hash,
|
|
struct ccmap_bucket *b1, struct ccmap_bucket *b2, uint32_t inc)
|
|
{
|
|
enum { MAX_DEPTH = 4 };
|
|
|
|
/* A path from 'start' to 'end' via the 'n' steps in 'slots[]'.
|
|
*
|
|
* One can follow the path via:
|
|
*
|
|
* struct ccmap_bucket *b;
|
|
* int i;
|
|
*
|
|
* b = path->start;
|
|
* for (i = 0; i < path->n; i++) {
|
|
* b = other_bucket_protected(impl, b, path->slots[i]);
|
|
* }
|
|
* ovs_assert(b == path->end);
|
|
*/
|
|
struct ccmap_path {
|
|
struct ccmap_bucket *start; /* First bucket along the path. */
|
|
struct ccmap_bucket *end; /* Last bucket on the path. */
|
|
uint8_t slots[MAX_DEPTH]; /* Slots used for each hop. */
|
|
int n; /* Number of slots[]. */
|
|
};
|
|
|
|
/* We need to limit the amount of work we do trying to find a path. It
|
|
* might actually be impossible to rearrange the ccmap, and after some time
|
|
* it is likely to be easier to rehash the entire ccmap.
|
|
*
|
|
* This value of MAX_QUEUE is an arbitrary limit suggested by one of the
|
|
* references. Empirically, it seems to work OK. */
|
|
enum { MAX_QUEUE = 500 };
|
|
struct ccmap_path queue[MAX_QUEUE];
|
|
int head = 0;
|
|
int tail = 0;
|
|
|
|
/* Add 'b1' and 'b2' as starting points for the search. */
|
|
queue[head].start = b1;
|
|
queue[head].end = b1;
|
|
queue[head].n = 0;
|
|
head++;
|
|
if (b1 != b2) {
|
|
queue[head].start = b2;
|
|
queue[head].end = b2;
|
|
queue[head].n = 0;
|
|
head++;
|
|
}
|
|
|
|
while (tail < head) {
|
|
const struct ccmap_path *path = &queue[tail++];
|
|
struct ccmap_bucket *this = path->end;
|
|
int i;
|
|
|
|
for (i = 0; i < CCMAP_K; i++) {
|
|
struct ccmap_bucket *next = other_bucket_protected(impl, this, i);
|
|
int j;
|
|
|
|
if (this == next) {
|
|
continue;
|
|
}
|
|
|
|
j = ccmap_find_empty_slot_protected(next);
|
|
if (j >= 0) {
|
|
/* We've found a path along which we can rearrange the hash
|
|
* table: Start at path->start, follow all the slots in
|
|
* path->slots[], then follow slot 'i', then the bucket you
|
|
* arrive at has slot 'j' empty. */
|
|
struct ccmap_bucket *buckets[MAX_DEPTH + 2];
|
|
int slots[MAX_DEPTH + 2];
|
|
int k;
|
|
|
|
/* Figure out the full sequence of slots. */
|
|
for (k = 0; k < path->n; k++) {
|
|
slots[k] = path->slots[k];
|
|
}
|
|
slots[path->n] = i;
|
|
slots[path->n + 1] = j;
|
|
|
|
/* Figure out the full sequence of buckets. */
|
|
buckets[0] = path->start;
|
|
for (k = 0; k <= path->n; k++) {
|
|
buckets[k + 1] = other_bucket_protected(impl, buckets[k], slots[k]);
|
|
}
|
|
|
|
/* Now the path is fully expressed. One can start from
|
|
* buckets[0], go via slots[0] to buckets[1], via slots[1] to
|
|
* buckets[2], and so on.
|
|
*
|
|
* Move all the nodes across the path "backward". After each
|
|
* step some node appears in two buckets. Thus, every node is
|
|
* always visible to a concurrent search. */
|
|
for (k = path->n + 1; k > 0; k--) {
|
|
uint64_t node = ccmap_node_get_protected
|
|
(&buckets[k - 1]->nodes[slots[k - 1]]);
|
|
ccmap_node_set_protected(&buckets[k]->nodes[slots[k]],
|
|
node);
|
|
}
|
|
|
|
/* Finally, insert the count. */
|
|
ccmap_set_bucket(buckets[0], slots[0], inc, hash);
|
|
|
|
return inc;
|
|
}
|
|
|
|
if (path->n < MAX_DEPTH && head < MAX_QUEUE) {
|
|
struct ccmap_path *new_path = &queue[head++];
|
|
|
|
*new_path = *path;
|
|
new_path->end = next;
|
|
new_path->slots[new_path->n++] = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Increments the count associated with 'hash', in 'impl', by 'inc'. */
|
|
static uint32_t
|
|
ccmap_try_inc(struct ccmap_impl *impl, uint32_t hash, uint32_t inc)
|
|
{
|
|
uint32_t h1 = rehash(impl, hash);
|
|
uint32_t h2 = other_hash(h1);
|
|
struct ccmap_bucket *b1 = &impl->buckets[h1 & impl->mask];
|
|
struct ccmap_bucket *b2 = &impl->buckets[h2 & impl->mask];
|
|
uint32_t count;
|
|
|
|
return OVS_UNLIKELY(count = ccmap_inc_bucket_existing(b1, hash, inc))
|
|
? count : OVS_UNLIKELY(count = ccmap_inc_bucket_existing(b2, hash, inc))
|
|
? count : OVS_LIKELY(count = ccmap_inc_bucket_new(b1, hash, inc))
|
|
? count : OVS_LIKELY(count = ccmap_inc_bucket_new(b2, hash, inc))
|
|
? count : ccmap_inc_bfs(impl, hash, b1, b2, inc);
|
|
}
|
|
|
|
/* Increments the count of 'hash' values in the 'ccmap'. The caller must
|
|
* ensure that 'ccmap' cannot change concurrently (from another thread).
|
|
*
|
|
* Returns the current count of the given hash value after the incremention. */
|
|
uint32_t
|
|
ccmap_inc(struct ccmap *ccmap, uint32_t hash)
|
|
{
|
|
struct ccmap_impl *impl = ccmap_get_impl(ccmap);
|
|
uint32_t count;
|
|
|
|
if (OVS_UNLIKELY(impl->n_unique >= impl->max_n)) {
|
|
COVERAGE_INC(ccmap_expand);
|
|
impl = ccmap_rehash(ccmap, (impl->mask << 1) | 1);
|
|
}
|
|
|
|
while (OVS_UNLIKELY(!(count = ccmap_try_inc(impl, hash, 1)))) {
|
|
impl = ccmap_rehash(ccmap, impl->mask);
|
|
}
|
|
++impl->n;
|
|
if (count == 1) {
|
|
++impl->n_unique;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/* Decrement the count associated with 'hash' in the bucket identified by
|
|
* 'h'. Return the OLD count if successful, or 0. */
|
|
static uint32_t
|
|
ccmap_dec__(struct ccmap_impl *impl, uint32_t hash, uint32_t h)
|
|
{
|
|
struct ccmap_bucket *b = &impl->buckets[h & impl->mask];
|
|
uint32_t count;
|
|
|
|
int slot = ccmap_find_slot_protected(b, hash, &count);
|
|
if (slot < 0) {
|
|
return 0;
|
|
}
|
|
|
|
ccmap_set_bucket(b, slot, count - 1, hash);
|
|
return count;
|
|
}
|
|
|
|
/* Decrements the count associated with 'hash'. The caller must
|
|
* ensure that 'ccmap' cannot change concurrently (from another thread).
|
|
*
|
|
* Returns the current count related to 'hash' in the ccmap after the
|
|
* decrement. */
|
|
uint32_t
|
|
ccmap_dec(struct ccmap *ccmap, uint32_t hash)
|
|
{
|
|
struct ccmap_impl *impl = ccmap_get_impl(ccmap);
|
|
uint32_t h1 = rehash(impl, hash);
|
|
uint32_t h2 = other_hash(h1);
|
|
|
|
uint32_t old_count = ccmap_dec__(impl, hash, h1);
|
|
if (!old_count) {
|
|
old_count = ccmap_dec__(impl, hash, h2);
|
|
}
|
|
ovs_assert(old_count);
|
|
|
|
old_count--;
|
|
|
|
if (old_count == 0) {
|
|
impl->n_unique--;
|
|
if (OVS_UNLIKELY(impl->n_unique < impl->min_n)) {
|
|
COVERAGE_INC(ccmap_shrink);
|
|
impl = ccmap_rehash(ccmap, impl->mask >> 1);
|
|
}
|
|
}
|
|
impl->n--;
|
|
return old_count;
|
|
}
|
|
|
|
static bool
|
|
ccmap_try_rehash(const struct ccmap_impl *old, struct ccmap_impl *new)
|
|
{
|
|
const struct ccmap_bucket *b;
|
|
|
|
for (b = old->buckets; b <= &old->buckets[old->mask]; b++) {
|
|
for (int i = 0; i < CCMAP_K; i++) {
|
|
uint64_t node = ccmap_node_get_protected(&b->nodes[i]);
|
|
uint32_t count = ccmap_node_count(node);
|
|
|
|
if (count && !ccmap_try_inc(new, ccmap_node_hash(node), count)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static struct ccmap_impl *
|
|
ccmap_rehash(struct ccmap *ccmap, uint32_t mask)
|
|
{
|
|
struct ccmap_impl *old = ccmap_get_impl(ccmap);
|
|
struct ccmap_impl *new = ccmap_impl_create(mask);
|
|
|
|
ovs_assert(old->n_unique < new->max_n);
|
|
|
|
while (!ccmap_try_rehash(old, new)) {
|
|
memset(new->buckets, 0, (mask + 1) * sizeof *new->buckets);
|
|
new->basis = random_uint32();
|
|
}
|
|
|
|
new->n = old->n;
|
|
new->n_unique = old->n_unique;
|
|
ovsrcu_set(&ccmap->impl, new);
|
|
ovsrcu_postpone(free_cacheline, old);
|
|
|
|
return new;
|
|
}
|