2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/lib/ct-dpif.c
Ales Musil a095794bcc openflow: Allow CT flush to match on mark and labels.
Extend the current NX_CT_FLUSH with four additional fields,
that allow to match on CT entry "mark" or "labels". This
is encoded as separate TLV values which is backward compatible.
Versions that do not support them will fail the command.

Extend also the ovs-dpctl and ovs-ofctl command line tools with
option to specify those two matching parameters for the "ct-flush"
command.

Reported-at: https://issues.redhat.com/browse/FDP-55
Signed-off-by: Ales Musil <amusil@redhat.com>
Signed-off-by: Ilya Maximets <i.maximets@ovn.org>
2023-12-15 00:35:41 +01:00

1100 lines
32 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2015, 2018 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "dpif-provider.h"
#include <errno.h>
#include "ct-dpif.h"
#include "openvswitch/ofp-ct.h"
#include "openvswitch/ofp-parse.h"
#include "openvswitch/vlog.h"
#include "sset.h"
VLOG_DEFINE_THIS_MODULE(ct_dpif);
/* Declarations for conntrack entry formatting. */
struct flags {
uint32_t flag;
const char *name;
};
/* Protection for CT zone limit per datapath. */
static struct sset ct_limit_protection =
SSET_INITIALIZER(&ct_limit_protection);
static void ct_dpif_format_counters(struct ds *,
const struct ct_dpif_counters *);
static void ct_dpif_format_timestamp(struct ds *,
const struct ct_dpif_timestamp *);
static void ct_dpif_format_protoinfo(struct ds *, const char *title,
const struct ct_dpif_protoinfo *,
bool verbose);
static void ct_dpif_format_helper(struct ds *, const char *title,
const struct ct_dpif_helper *);
/* Dumping */
/* Start dumping the entries from the connection tracker used by 'dpif'.
*
* 'dump' must be the address of a pointer to a struct ct_dpif_dump_state,
* which should be passed (unaltered) to ct_dpif_dump_{next,done}().
*
* If 'zone' is not NULL, it should point to an integer identifing a
* conntrack zone to which the dump will be limited. If it is NULL,
* conntrack entries from all zones will be dumped.
*
* If there has been a problem the function returns a non-zero value
* that represents the error. Otherwise it returns zero. */
int
ct_dpif_dump_start(struct dpif *dpif, struct ct_dpif_dump_state **dump,
const uint16_t *zone, int *ptot_bkts)
{
int err;
err = (dpif->dpif_class->ct_dump_start
? dpif->dpif_class->ct_dump_start(dpif, dump, zone, ptot_bkts)
: EOPNOTSUPP);
if (!err) {
(*dump)->dpif = dpif;
}
return err;
}
/* Dump one connection from a tracker, and put it in 'entry'.
*
* 'dump' should have been initialized by ct_dpif_dump_start().
*
* The function returns 0, if an entry has been dumped succesfully.
* Otherwise it returns a non-zero value which can be:
* - EOF: meaning that there are no more entries to dump.
* - an error value.
* In both cases, the user should call ct_dpif_dump_done(). */
int
ct_dpif_dump_next(struct ct_dpif_dump_state *dump, struct ct_dpif_entry *entry)
{
struct dpif *dpif = dump->dpif;
return (dpif->dpif_class->ct_dump_next
? dpif->dpif_class->ct_dump_next(dpif, dump, entry)
: EOPNOTSUPP);
}
/* Free resources used by 'dump' */
int
ct_dpif_dump_done(struct ct_dpif_dump_state *dump)
{
struct dpif *dpif = dump->dpif;
return (dpif->dpif_class->ct_dump_done
? dpif->dpif_class->ct_dump_done(dpif, dump)
: EOPNOTSUPP);
}
/* Start dumping the expectations from the connection tracker.
*
* 'dump' must be the address of a pointer to a struct ct_dpif_dump_state,
* which should be passed (unaltered) to ct_exp_dpif_dump_{next,done}().
*
* If 'zone' is not NULL, it should point to an integer identifing a
* conntrack zone to which the dump will be limited. If it is NULL,
* conntrack entries from all zones will be dumped.
*
* If there has been a problem the function returns a non-zero value
* that represents the error. Otherwise it returns zero. */
int
ct_exp_dpif_dump_start(struct dpif *dpif, struct ct_dpif_dump_state **dump,
const uint16_t *zone)
{
int err;
err = (dpif->dpif_class->ct_exp_dump_start
? dpif->dpif_class->ct_exp_dump_start(dpif, dump, zone)
: EOPNOTSUPP);
if (!err) {
(*dump)->dpif = dpif;
}
return err;
}
/* Dump one expectation and put it in 'entry'.
*
* 'dump' should have been initialized by ct_exp_dpif_dump_start().
*
* The function returns 0, if an entry has been dumped succesfully.
* Otherwise it returns a non-zero value which can be:
* - EOF: meaning that there are no more entries to dump.
* - an error value.
* In both cases, the user should call ct_exp_dpif_dump_done(). */
int
ct_exp_dpif_dump_next(struct ct_dpif_dump_state *dump,
struct ct_dpif_exp *entry)
{
struct dpif *dpif = dump->dpif;
return (dpif->dpif_class->ct_exp_dump_next
? dpif->dpif_class->ct_exp_dump_next(dpif, dump, entry)
: EOPNOTSUPP);
}
/* Free resources used by 'dump', if any. */
int
ct_exp_dpif_dump_done(struct ct_dpif_dump_state *dump)
{
struct dpif *dpif = dump->dpif;
return (dpif->dpif_class->ct_exp_dump_done
? dpif->dpif_class->ct_exp_dump_done(dpif, dump)
: EOPNOTSUPP);
}
/* Flushing. */
static void
ct_dpif_tuple_from_ofp_ct_tuple(const struct ofp_ct_tuple *ofp_tuple,
struct ct_dpif_tuple *tuple,
uint16_t l3_type, uint8_t ip_proto)
{
if (l3_type == AF_INET) {
tuple->src.ip = in6_addr_get_mapped_ipv4(&ofp_tuple->src);
tuple->dst.ip = in6_addr_get_mapped_ipv4(&ofp_tuple->dst);
} else {
tuple->src.in6 = ofp_tuple->src;
tuple->dst.in6 = ofp_tuple->dst;
}
tuple->l3_type = l3_type;
tuple->ip_proto = ip_proto;
tuple->src_port = ofp_tuple->src_port;
if (ip_proto == IPPROTO_ICMP || ip_proto == IPPROTO_ICMPV6) {
tuple->icmp_code = ofp_tuple->icmp_code;
tuple->icmp_type = ofp_tuple->icmp_type;
} else {
tuple->dst_port = ofp_tuple->dst_port;
}
}
static inline bool
ct_dpif_inet_addr_cmp_partial(const union ct_dpif_inet_addr *addr,
const struct in6_addr *partial, uint16_t l3_type)
{
if (ipv6_is_zero(partial)) {
return true;
}
if (l3_type == AF_INET && in6_addr_get_mapped_ipv4(partial) != addr->ip) {
return false;
}
if (l3_type == AF_INET6 && !ipv6_addr_equals(partial, &addr->in6)) {
return false;
}
return true;
}
static inline bool
ct_dpif_tuple_ip_cmp_partial(const struct ct_dpif_tuple *tuple,
const struct ofp_ct_tuple *partial,
uint16_t l3_type, uint8_t ip_proto)
{
if (!ct_dpif_inet_addr_cmp_partial(&tuple->src, &partial->src, l3_type)) {
return false;
}
if (!ct_dpif_inet_addr_cmp_partial(&tuple->dst, &partial->dst, l3_type)) {
return false;
}
if (ip_proto == IPPROTO_ICMP || ip_proto == IPPROTO_ICMPV6) {
if (partial->icmp_id != tuple->icmp_id) {
return false;
}
if (partial->icmp_type != tuple->icmp_type) {
return false;
}
if (partial->icmp_code != tuple->icmp_code) {
return false;
}
} else {
if (partial->src_port && partial->src_port != tuple->src_port) {
return false;
}
if (partial->dst_port && partial->dst_port != tuple->dst_port) {
return false;
}
}
return true;
}
/* Returns 'true' if all non-zero members of 'match' equal to corresponding
* members of 'entry'. */
static bool
ct_dpif_entry_cmp(const struct ct_dpif_entry *entry,
const struct ofp_ct_match *match)
{
if (match->l3_type && match->l3_type != entry->tuple_orig.l3_type) {
return false;
}
if (match->ip_proto && match->ip_proto != entry->tuple_orig.ip_proto) {
return false;
}
if (!ct_dpif_tuple_ip_cmp_partial(&entry->tuple_orig, &match->tuple_orig,
match->l3_type, match->ip_proto)) {
return false;
}
if (!ct_dpif_tuple_ip_cmp_partial(&entry->tuple_reply, &match->tuple_reply,
match->l3_type, match->ip_proto)) {
return false;
}
if ((match->mark & match->mark_mask) != (entry->mark & match->mark_mask)) {
return false;
}
if (!ovs_u128_equals(ovs_u128_and(match->labels, match->labels_mask),
ovs_u128_and(entry->labels, match->labels_mask))) {
return false;
}
return true;
}
static int
ct_dpif_flush_tuple(struct dpif *dpif, const uint16_t *zone,
const struct ofp_ct_match *match)
{
struct ct_dpif_dump_state *dump;
struct ct_dpif_entry cte;
int error;
int tot_bkts;
if (!dpif->dpif_class->ct_flush) {
return EOPNOTSUPP;
}
if (VLOG_IS_DBG_ENABLED()) {
struct ds ds = DS_EMPTY_INITIALIZER;
ofp_ct_match_format(&ds, match);
VLOG_DBG("%s: ct_flush: zone=%d %s", dpif_name(dpif), zone ? *zone : 0,
ds_cstr(&ds));
ds_destroy(&ds);
}
/* If we have full five tuple in original and empty reply tuple just
* do the flush over original tuple directly. */
if (ofp_ct_match_is_five_tuple(match)) {
struct ct_dpif_tuple tuple;
ct_dpif_tuple_from_ofp_ct_tuple(&match->tuple_orig, &tuple,
match->l3_type, match->ip_proto);
return dpif->dpif_class->ct_flush(dpif, zone, &tuple);
}
error = ct_dpif_dump_start(dpif, &dump, zone, &tot_bkts);
if (error) {
return error;
}
while (!(error = ct_dpif_dump_next(dump, &cte))) {
if (zone && *zone != cte.zone) {
continue;
}
if (ct_dpif_entry_cmp(&cte, match)) {
error = dpif->dpif_class->ct_flush(dpif, &cte.zone,
&cte.tuple_orig);
if (error) {
break;
}
}
}
if (error == EOF) {
error = 0;
}
ct_dpif_dump_done(dump);
return error;
}
/* Flush the entries in the connection tracker used by 'dpif'. The
* arguments have the following behavior:
*
* - If both 'zone' is NULL and 'match' is NULL or zero, flush all the
* conntrack entries.
* - If 'zone' is not NULL, and 'match' is NULL, flush all the conntrack
* entries in '*zone'.
* - If 'match' is not NULL or zero, flush the conntrack entry specified
* by 'match' in '*zone'. If 'zone' is NULL, use the default zone
* (zone 0). */
int
ct_dpif_flush(struct dpif *dpif, const uint16_t *zone,
const struct ofp_ct_match *match)
{
if (match && !ofp_ct_match_is_zero(match)) {
return ct_dpif_flush_tuple(dpif, zone, match);
} else if (zone) {
VLOG_DBG("%s: ct_flush: zone %"PRIu16, dpif_name(dpif), *zone);
} else {
VLOG_DBG("%s: ct_flush: <all>", dpif_name(dpif));
}
return (dpif->dpif_class->ct_flush
? dpif->dpif_class->ct_flush(dpif, zone, NULL)
: EOPNOTSUPP);
}
int
ct_dpif_set_maxconns(struct dpif *dpif, uint32_t maxconns)
{
return (dpif->dpif_class->ct_set_maxconns
? dpif->dpif_class->ct_set_maxconns(dpif, maxconns)
: EOPNOTSUPP);
}
int
ct_dpif_get_maxconns(struct dpif *dpif, uint32_t *maxconns)
{
return (dpif->dpif_class->ct_get_maxconns
? dpif->dpif_class->ct_get_maxconns(dpif, maxconns)
: EOPNOTSUPP);
}
int
ct_dpif_get_nconns(struct dpif *dpif, uint32_t *nconns)
{
return (dpif->dpif_class->ct_get_nconns
? dpif->dpif_class->ct_get_nconns(dpif, nconns)
: EOPNOTSUPP);
}
int
ct_dpif_set_tcp_seq_chk(struct dpif *dpif, bool enabled)
{
return (dpif->dpif_class->ct_set_tcp_seq_chk
? dpif->dpif_class->ct_set_tcp_seq_chk(dpif, enabled)
: EOPNOTSUPP);
}
int
ct_dpif_get_tcp_seq_chk(struct dpif *dpif, bool *enabled)
{
return (dpif->dpif_class->ct_get_tcp_seq_chk
? dpif->dpif_class->ct_get_tcp_seq_chk(dpif, enabled)
: EOPNOTSUPP);
}
int
ct_dpif_set_limits(struct dpif *dpif, const struct ovs_list *zone_limits)
{
return (dpif->dpif_class->ct_set_limits
? dpif->dpif_class->ct_set_limits(dpif, zone_limits)
: EOPNOTSUPP);
}
int
ct_dpif_get_limits(struct dpif *dpif, const struct ovs_list *zone_limits_in,
struct ovs_list *zone_limits_out)
{
return (dpif->dpif_class->ct_get_limits
? dpif->dpif_class->ct_get_limits(dpif, zone_limits_in,
zone_limits_out)
: EOPNOTSUPP);
}
int
ct_dpif_del_limits(struct dpif *dpif, const struct ovs_list *zone_limits)
{
return (dpif->dpif_class->ct_del_limits
? dpif->dpif_class->ct_del_limits(dpif, zone_limits)
: EOPNOTSUPP);
}
int
ct_dpif_sweep(struct dpif *dpif, uint32_t *ms)
{
if (*ms) {
return (dpif->dpif_class->ct_set_sweep_interval
? dpif->dpif_class->ct_set_sweep_interval(dpif, *ms)
: EOPNOTSUPP);
} else {
return (dpif->dpif_class->ct_get_sweep_interval
? dpif->dpif_class->ct_get_sweep_interval(dpif, ms)
: EOPNOTSUPP);
}
}
int
ct_dpif_ipf_set_enabled(struct dpif *dpif, bool v6, bool enable)
{
return (dpif->dpif_class->ipf_set_enabled
? dpif->dpif_class->ipf_set_enabled(dpif, v6, enable)
: EOPNOTSUPP);
}
int
ct_dpif_ipf_set_min_frag(struct dpif *dpif, bool v6, uint32_t min_frag)
{
return (dpif->dpif_class->ipf_set_min_frag
? dpif->dpif_class->ipf_set_min_frag(dpif, v6, min_frag)
: EOPNOTSUPP);
}
int
ct_dpif_ipf_set_max_nfrags(struct dpif *dpif, uint32_t max_frags)
{
return (dpif->dpif_class->ipf_set_max_nfrags
? dpif->dpif_class->ipf_set_max_nfrags(dpif, max_frags)
: EOPNOTSUPP);
}
int ct_dpif_ipf_get_status(struct dpif *dpif,
struct dpif_ipf_status *dpif_ipf_status)
{
return (dpif->dpif_class->ipf_get_status
? dpif->dpif_class->ipf_get_status(dpif, dpif_ipf_status)
: EOPNOTSUPP);
}
int
ct_dpif_ipf_dump_start(struct dpif *dpif, struct ipf_dump_ctx **dump_ctx)
{
return (dpif->dpif_class->ipf_dump_start
? dpif->dpif_class->ipf_dump_start(dpif, dump_ctx)
: EOPNOTSUPP);
}
int
ct_dpif_ipf_dump_next(struct dpif *dpif, void *dump_ctx, char **dump)
{
return (dpif->dpif_class->ipf_dump_next
? dpif->dpif_class->ipf_dump_next(dpif, dump_ctx, dump)
: EOPNOTSUPP);
}
int
ct_dpif_ipf_dump_done(struct dpif *dpif, void *dump_ctx)
{
return (dpif->dpif_class->ipf_dump_done
? dpif->dpif_class->ipf_dump_done(dpif, dump_ctx)
: EOPNOTSUPP);
}
void
ct_dpif_entry_uninit(struct ct_dpif_entry *entry)
{
if (entry) {
if (entry->helper.name) {
free(entry->helper.name);
}
}
}
static const char *
ct_dpif_status_flags(uint32_t flags)
{
switch (flags) {
#define CT_DPIF_STATUS_FLAG(FLAG) \
case CT_DPIF_STATUS_##FLAG: \
return #FLAG;
CT_DPIF_STATUS_FLAGS
#undef CT_DPIF_TCP_FLAG
default:
return NULL;
}
}
void
ct_dpif_format_exp_entry(const struct ct_dpif_exp *entry, struct ds *ds)
{
ct_dpif_format_ipproto(ds, entry->tuple_orig.ip_proto);
ds_put_cstr(ds, ",orig=(");
ct_dpif_format_tuple(ds, &entry->tuple_orig);
ds_put_cstr(ds, ")");
if (entry->zone) {
ds_put_format(ds, ",zone=%"PRIu16, entry->zone);
}
if (entry->mark) {
ds_put_format(ds, ",mark=%"PRIu32, entry->mark);
}
if (!ovs_u128_is_zero(entry->labels)) {
ovs_be128 value;
ds_put_cstr(ds, ",labels=");
value = hton128(entry->labels);
ds_put_hex(ds, &value, sizeof value);
}
ds_put_cstr(ds, ",parent=(");
ct_dpif_format_tuple(ds, &entry->tuple_parent);
ds_put_cstr(ds, ")");
}
void
ct_dpif_format_entry(const struct ct_dpif_entry *entry, struct ds *ds,
bool verbose, bool print_stats)
{
ct_dpif_format_ipproto(ds, entry->tuple_orig.ip_proto);
ds_put_cstr(ds, ",orig=(");
ct_dpif_format_tuple(ds, &entry->tuple_orig);
if (print_stats) {
ct_dpif_format_counters(ds, &entry->counters_orig);
}
ds_put_cstr(ds, ")");
ds_put_cstr(ds, ",reply=(");
ct_dpif_format_tuple(ds, &entry->tuple_reply);
if (print_stats) {
ct_dpif_format_counters(ds, &entry->counters_reply);
}
ds_put_cstr(ds, ")");
if (print_stats) {
ct_dpif_format_timestamp(ds, &entry->timestamp);
}
if (verbose) {
ds_put_format(ds, ",id=%"PRIu32, entry->id);
}
if (entry->zone) {
ds_put_format(ds, ",zone=%"PRIu16, entry->zone);
}
if (verbose) {
format_flags_masked(ds, ",status", ct_dpif_status_flags,
entry->status, CT_DPIF_STATUS_MASK,
CT_DPIF_STATUS_MASK);
}
if (print_stats) {
ds_put_format(ds, ",timeout=%"PRIu32, entry->timeout);
}
if (entry->mark) {
ds_put_format(ds, ",mark=%"PRIu32, entry->mark);
}
if (!ovs_u128_is_zero(entry->labels)) {
ovs_be128 value;
ds_put_cstr(ds, ",labels=");
value = hton128(entry->labels);
ds_put_hex(ds, &value, sizeof value);
}
ct_dpif_format_protoinfo(ds, ",protoinfo=", &entry->protoinfo, verbose);
ct_dpif_format_helper(ds, ",helper=", &entry->helper);
if (verbose && entry->tuple_parent.l3_type != 0) {
ds_put_cstr(ds, ",parent=(");
ct_dpif_format_tuple(ds, &entry->tuple_parent);
ds_put_cstr(ds, ")");
}
}
void
ct_dpif_format_ipproto(struct ds *ds, uint16_t ipproto)
{
const char *name;
name = (ipproto == IPPROTO_ICMP) ? "icmp"
: (ipproto == IPPROTO_ICMPV6) ? "icmpv6"
: (ipproto == IPPROTO_TCP) ? "tcp"
: (ipproto == IPPROTO_UDP) ? "udp"
: (ipproto == IPPROTO_SCTP) ? "sctp"
: (ipproto == IPPROTO_UDPLITE) ? "udplite"
: (ipproto == IPPROTO_DCCP) ? "dccp"
: (ipproto == IPPROTO_IGMP) ? "igmp"
: NULL;
if (name) {
ds_put_cstr(ds, name);
} else {
ds_put_format(ds, "%u", ipproto);
}
}
static void
ct_dpif_format_counters(struct ds *ds, const struct ct_dpif_counters *counters)
{
if (counters->packets || counters->bytes) {
ds_put_format(ds, ",packets=%"PRIu64",bytes=%"PRIu64,
counters->packets, counters->bytes);
}
}
static void
ct_dpif_format_timestamp(struct ds *ds,
const struct ct_dpif_timestamp *timestamp)
{
if (timestamp->start || timestamp->stop) {
ds_put_strftime_msec(ds, ",start=%Y-%m-%dT%H:%M:%S.###",
timestamp->start / UINT64_C(1000000), false);
if (timestamp->stop) {
ds_put_strftime_msec(ds, ",stop=%Y-%m-%dT%H:%M:%S.###",
timestamp->stop / UINT64_C(1000000), false);
}
}
}
static void
ct_dpif_format_tuple_icmp(struct ds *ds, const struct ct_dpif_tuple *tuple)
{
ds_put_format(ds, ",id=%u,type=%u,code=%u", ntohs(tuple->icmp_id),
tuple->icmp_type, tuple->icmp_code);
}
static void
ct_dpif_format_tuple_tp(struct ds *ds, const struct ct_dpif_tuple *tuple)
{
ds_put_format(ds, ",sport=%u,dport=%u",
ntohs(tuple->src_port), ntohs(tuple->dst_port));
}
void
ct_dpif_format_tuple(struct ds *ds, const struct ct_dpif_tuple *tuple)
{
if (tuple->l3_type == AF_INET) {
ds_put_format(ds, "src="IP_FMT",dst="IP_FMT,
IP_ARGS(tuple->src.ip), IP_ARGS(tuple->dst.ip));
} else if (tuple->l3_type == AF_INET6) {
ds_put_cstr(ds, "src=");
ipv6_format_addr(&tuple->src.in6, ds);
ds_put_cstr(ds, ",dst=");
ipv6_format_addr(&tuple->dst.in6, ds);
} else {
ds_put_format(ds, "Unsupported address family: %u. HEX:\n",
tuple->l3_type);
ds_put_hex_dump(ds, tuple, sizeof *tuple, 0, false);
return;
}
if (tuple->ip_proto == IPPROTO_ICMP
|| tuple->ip_proto == IPPROTO_ICMPV6) {
ct_dpif_format_tuple_icmp(ds, tuple);
} else {
ct_dpif_format_tuple_tp(ds, tuple);
}
}
const char *ct_dpif_tcp_state_string[] = {
#define CT_DPIF_TCP_STATE(STATE) [CT_DPIF_TCPS_##STATE] = #STATE,
CT_DPIF_TCP_STATES
#undef CT_DPIF_TCP_STATE
};
const char *ct_dpif_sctp_state_string[] = {
#define CT_DPIF_SCTP_STATE(STATE) [CT_DPIF_SCTP_STATE_##STATE] = #STATE,
CT_DPIF_SCTP_STATES
#undef CT_DPIF_SCTP_STATE
};
static void
ct_dpif_format_enum__(struct ds *ds, const char *title, unsigned int state,
const char *names[], unsigned int max)
{
if (title) {
ds_put_cstr(ds, title);
}
if (state < max) {
ds_put_cstr(ds, names[state]);
} else {
ds_put_format(ds, "[%u]", state);
}
}
#define ct_dpif_format_enum(DS, TITLE, STATE, NAMES) \
ct_dpif_format_enum__((DS), (TITLE), (STATE), (NAMES), ARRAY_SIZE(NAMES))
static uint8_t
coalesce_tcp_state(uint8_t state)
{
/* The Linux kernel connection tracker and the userspace view the
* tcp states differently in some situations. If we're formatting
* the entry without being verbose, it is worth to adjust the
* differences, to ease writing testcases. */
switch (state) {
case CT_DPIF_TCPS_FIN_WAIT_2:
return CT_DPIF_TCPS_TIME_WAIT;
case CT_DPIF_TCPS_SYN_RECV:
return CT_DPIF_TCPS_ESTABLISHED;
default:
return state;
}
}
static void
ct_dpif_format_protoinfo_tcp(struct ds *ds,
const struct ct_dpif_protoinfo *protoinfo)
{
uint8_t tcp_state;
/* We keep two separate tcp states, but we print just one. The Linux
* kernel connection tracker internally keeps only one state, so
* 'state_orig' and 'state_reply', will be the same. */
tcp_state = MAX(protoinfo->tcp.state_orig, protoinfo->tcp.state_reply);
tcp_state = coalesce_tcp_state(tcp_state);
ct_dpif_format_enum(ds, "state=", tcp_state, ct_dpif_tcp_state_string);
}
static const char *
ct_dpif_tcp_flags(uint32_t flags)
{
switch (flags) {
#define CT_DPIF_TCP_FLAG(FLAG) \
case CT_DPIF_TCPF_##FLAG: \
return #FLAG;
CT_DPIF_TCP_FLAGS
#undef CT_DPIF_TCP_FLAG
default:
return NULL;
}
}
static void
ct_dpif_format_protoinfo_tcp_verbose(struct ds *ds,
const struct ct_dpif_protoinfo *protoinfo)
{
ct_dpif_format_enum(ds, "state_orig=", protoinfo->tcp.state_orig,
ct_dpif_tcp_state_string);
ct_dpif_format_enum(ds, ",state_reply=", protoinfo->tcp.state_reply,
ct_dpif_tcp_state_string);
if (protoinfo->tcp.wscale_orig || protoinfo->tcp.wscale_reply) {
ds_put_format(ds, ",wscale_orig=%u,wscale_reply=%u",
protoinfo->tcp.wscale_orig,
protoinfo->tcp.wscale_reply);
}
format_flags_masked(ds, ",flags_orig", ct_dpif_tcp_flags,
protoinfo->tcp.flags_orig, CT_DPIF_TCPF_MASK,
CT_DPIF_TCPF_MASK);
format_flags_masked(ds, ",flags_reply", ct_dpif_tcp_flags,
protoinfo->tcp.flags_reply, CT_DPIF_TCPF_MASK,
CT_DPIF_TCPF_MASK);
}
static void
ct_dpif_format_protoinfo_sctp(struct ds *ds,
const struct ct_dpif_protoinfo *protoinfo)
{
ct_dpif_format_enum(ds, "state=", protoinfo->sctp.state,
ct_dpif_sctp_state_string);
ds_put_format(ds, ",vtag_orig=%" PRIu32 ",vtag_reply=%" PRIu32,
protoinfo->sctp.vtag_orig, protoinfo->sctp.vtag_reply);
}
static void
ct_dpif_format_protoinfo(struct ds *ds, const char *title,
const struct ct_dpif_protoinfo *protoinfo,
bool verbose)
{
if (protoinfo->proto != 0) {
if (title) {
ds_put_format(ds, "%s(", title);
}
switch (protoinfo->proto) {
case IPPROTO_TCP:
if (verbose) {
ct_dpif_format_protoinfo_tcp_verbose(ds, protoinfo);
} else {
ct_dpif_format_protoinfo_tcp(ds, protoinfo);
}
break;
case IPPROTO_SCTP:
ct_dpif_format_protoinfo_sctp(ds, protoinfo);
break;
}
if (title) {
ds_put_cstr(ds, ")");
}
}
}
static void
ct_dpif_format_helper(struct ds *ds, const char *title,
const struct ct_dpif_helper *helper)
{
if (helper->name) {
if (title) {
ds_put_cstr(ds, title);
}
ds_put_cstr(ds, helper->name);
}
}
uint8_t
ct_dpif_coalesce_tcp_state(uint8_t state)
{
return coalesce_tcp_state(state);
}
void
ct_dpif_format_tcp_stat(struct ds * ds, int tcp_state, int conn_per_state)
{
ct_dpif_format_enum(ds, "\t [", tcp_state, ct_dpif_tcp_state_string);
ds_put_cstr(ds, "]");
ds_put_format(ds, "=%u", conn_per_state);
}
void
ct_dpif_push_zone_limit(struct ovs_list *zone_limits, int32_t zone,
uint32_t limit, uint32_t count)
{
struct ct_dpif_zone_limit *zone_limit = xmalloc(sizeof *zone_limit);
zone_limit->zone = zone;
zone_limit->limit = limit;
zone_limit->count = count;
ovs_list_push_back(zone_limits, &zone_limit->node);
}
void
ct_dpif_free_zone_limits(struct ovs_list *zone_limits)
{
while (!ovs_list_is_empty(zone_limits)) {
struct ovs_list *entry = ovs_list_pop_front(zone_limits);
struct ct_dpif_zone_limit *cdzl;
cdzl = CONTAINER_OF(entry, struct ct_dpif_zone_limit, node);
free(cdzl);
}
}
/* Parses a specification of a conntrack zone limit from 's' into '*pzone'
* and '*plimit'. Returns true on success. Otherwise, returns false and
* and puts the error message in 'ds'. */
bool
ct_dpif_parse_zone_limit_tuple(const char *s, uint16_t *pzone,
uint32_t *plimit, struct ds *ds)
{
char *pos, *key, *value, *copy, *err;
bool parsed_limit = false, parsed_zone = false;
pos = copy = xstrdup(s);
while (ofputil_parse_key_value(&pos, &key, &value)) {
if (!*value) {
ds_put_format(ds, "field %s missing value", key);
goto error;
}
if (!strcmp(key, "zone")) {
err = str_to_u16(value, key, pzone);
if (err) {
free(err);
goto error_with_msg;
}
parsed_zone = true;
} else if (!strcmp(key, "limit")) {
err = str_to_u32(value, plimit);
if (err) {
free(err);
goto error_with_msg;
}
parsed_limit = true;
} else {
ds_put_format(ds, "invalid zone limit field: %s", key);
goto error;
}
}
if (!parsed_zone || !parsed_limit) {
ds_put_format(ds, "failed to parse zone limit");
goto error;
}
free(copy);
return true;
error_with_msg:
ds_put_format(ds, "failed to parse field %s", key);
error:
free(copy);
return false;
}
void
ct_dpif_format_zone_limits(const struct ovs_list *zone_limits, struct ds *ds)
{
struct ct_dpif_zone_limit *zone_limit;
LIST_FOR_EACH (zone_limit, node, zone_limits) {
if (zone_limit->zone == OVS_ZONE_LIMIT_DEFAULT_ZONE) {
ds_put_format(ds, "default limit=%"PRIu32, zone_limit->limit);
}
}
LIST_FOR_EACH (zone_limit, node, zone_limits) {
if (zone_limit->zone == OVS_ZONE_LIMIT_DEFAULT_ZONE) {
continue;
}
ds_put_format(ds, "\nzone=%"PRIu16, (uint16_t) zone_limit->zone);
ds_put_format(ds, ",limit=%"PRIu32, zone_limit->limit);
ds_put_format(ds, ",count=%"PRIu32, zone_limit->count);
}
}
static const char *const ct_dpif_tp_attr_string[] = {
#define CT_DPIF_TP_TCP_ATTR(ATTR) \
[CT_DPIF_TP_ATTR_TCP_##ATTR] = "TCP_"#ATTR,
CT_DPIF_TP_TCP_ATTRS
#undef CT_DPIF_TP_TCP_ATTR
#define CT_DPIF_TP_UDP_ATTR(ATTR) \
[CT_DPIF_TP_ATTR_UDP_##ATTR] = "UDP_"#ATTR,
CT_DPIF_TP_UDP_ATTRS
#undef CT_DPIF_TP_UDP_ATTR
#define CT_DPIF_TP_ICMP_ATTR(ATTR) \
[CT_DPIF_TP_ATTR_ICMP_##ATTR] = "ICMP_"#ATTR,
CT_DPIF_TP_ICMP_ATTRS
#undef CT_DPIF_TP_ICMP_ATTR
};
static bool
ct_dpif_set_timeout_policy_attr(struct ct_dpif_timeout_policy *tp,
uint32_t attr, uint32_t value)
{
if (tp->present & (1 << attr) && tp->attrs[attr] == value) {
return false;
}
tp->attrs[attr] = value;
tp->present |= 1 << attr;
return true;
}
/* Sets a timeout value identified by '*name' to 'value'.
* Returns true if the attribute is changed */
bool
ct_dpif_set_timeout_policy_attr_by_name(struct ct_dpif_timeout_policy *tp,
const char *name, uint32_t value)
{
for (uint32_t i = 0; i < CT_DPIF_TP_ATTR_MAX; ++i) {
if (!strcasecmp(name, ct_dpif_tp_attr_string[i])) {
return ct_dpif_set_timeout_policy_attr(tp, i, value);
}
}
return false;
}
bool
ct_dpif_timeout_policy_support_ipproto(uint8_t ipproto)
{
if (ipproto == IPPROTO_TCP || ipproto == IPPROTO_UDP ||
ipproto == IPPROTO_ICMP || ipproto == IPPROTO_ICMPV6) {
return true;
}
return false;
}
int
ct_dpif_set_timeout_policy(struct dpif *dpif,
const struct ct_dpif_timeout_policy *tp)
{
return (dpif->dpif_class->ct_set_timeout_policy
? dpif->dpif_class->ct_set_timeout_policy(dpif, tp)
: EOPNOTSUPP);
}
int
ct_dpif_del_timeout_policy(struct dpif *dpif, uint32_t tp_id)
{
return (dpif->dpif_class->ct_del_timeout_policy
? dpif->dpif_class->ct_del_timeout_policy(dpif, tp_id)
: EOPNOTSUPP);
}
int
ct_dpif_get_timeout_policy(struct dpif *dpif, uint32_t tp_id,
struct ct_dpif_timeout_policy *tp)
{
return (dpif->dpif_class->ct_get_timeout_policy
? dpif->dpif_class->ct_get_timeout_policy(
dpif, tp_id, tp) : EOPNOTSUPP);
}
int
ct_dpif_timeout_policy_dump_start(struct dpif *dpif, void **statep)
{
return (dpif->dpif_class->ct_timeout_policy_dump_start
? dpif->dpif_class->ct_timeout_policy_dump_start(dpif, statep)
: EOPNOTSUPP);
}
int
ct_dpif_timeout_policy_dump_next(struct dpif *dpif, void *state,
struct ct_dpif_timeout_policy *tp)
{
return (dpif->dpif_class->ct_timeout_policy_dump_next
? dpif->dpif_class->ct_timeout_policy_dump_next(dpif, state, tp)
: EOPNOTSUPP);
}
int
ct_dpif_timeout_policy_dump_done(struct dpif *dpif, void *state)
{
return (dpif->dpif_class->ct_timeout_policy_dump_done
? dpif->dpif_class->ct_timeout_policy_dump_done(dpif, state)
: EOPNOTSUPP);
}
int
ct_dpif_get_timeout_policy_name(struct dpif *dpif, uint32_t tp_id,
uint16_t dl_type, uint8_t nw_proto,
char **tp_name, bool *is_generic)
{
return (dpif->dpif_class->ct_get_timeout_policy_name
? dpif->dpif_class->ct_get_timeout_policy_name(
dpif, tp_id, dl_type, nw_proto, tp_name, is_generic)
: EOPNOTSUPP);
}
int
ct_dpif_get_features(struct dpif *dpif, enum ct_features *features)
{
return (dpif->dpif_class->ct_get_features
? dpif->dpif_class->ct_get_features(dpif, features)
: EOPNOTSUPP);
}
void
ct_dpif_set_zone_limit_protection(struct dpif *dpif, bool protected)
{
if (sset_contains(&ct_limit_protection, dpif->full_name) == protected) {
return;
}
if (protected) {
sset_add(&ct_limit_protection, dpif->full_name);
} else {
sset_find_and_delete(&ct_limit_protection, dpif->full_name);
}
}
bool
ct_dpif_is_zone_limit_protected(struct dpif *dpif)
{
return sset_contains(&ct_limit_protection, dpif->full_name);
}