2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/lib/nx-match.c
Eelco Chaudron 1936de256a nx-match: Fix potential integer underflow.
Previously, nxm_field_bytes() could return a negative value when given
an invalid header.  To address this, we now assert when processing an
invalid value.  Additionally, the function has been updated to return
an unsigned value.

Acked-by: Mike Pattrick <mkp@redhat.com>
Signed-off-by: Eelco Chaudron <echaudro@redhat.com>
2025-02-10 09:25:54 +01:00

2339 lines
77 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2010-2017, 2020 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "nx-match.h"
#include <netinet/icmp6.h>
#include "classifier.h"
#include "colors.h"
#include "openvswitch/hmap.h"
#include "openflow/nicira-ext.h"
#include "openvswitch/dynamic-string.h"
#include "openvswitch/meta-flow.h"
#include "openvswitch/ofp-actions.h"
#include "openvswitch/ofp-errors.h"
#include "openvswitch/ofp-match.h"
#include "openvswitch/ofp-port.h"
#include "openvswitch/ofpbuf.h"
#include "openvswitch/vlog.h"
#include "packets.h"
#include "openvswitch/shash.h"
#include "tun-metadata.h"
#include "unaligned.h"
#include "util.h"
#include "vl-mff-map.h"
VLOG_DEFINE_THIS_MODULE(nx_match);
/* OXM headers.
*
*
* Standard OXM/NXM
* ================
*
* The header is 32 bits long. It looks like this:
*
* |31 16 15 9| 8 7 0
* +----------------------------------+---------------+--+------------------+
* | oxm_class | oxm_field |hm| oxm_length |
* +----------------------------------+---------------+--+------------------+
*
* where hm stands for oxm_hasmask. It is followed by oxm_length bytes of
* payload. When oxm_hasmask is 0, the payload is the value of the field
* identified by the header; when oxm_hasmask is 1, the payload is a value for
* the field followed by a mask of equal length.
*
* Internally, we represent a standard OXM header as a 64-bit integer with the
* above information in the most-significant bits.
*
*
* Experimenter OXM
* ================
*
* The header is 64 bits long. It looks like the diagram above except that a
* 32-bit experimenter ID, which we call oxm_vendor and which identifies a
* vendor, is inserted just before the payload. Experimenter OXMs are
* identified by an all-1-bits oxm_class (OFPXMC12_EXPERIMENTER). The
* oxm_length value *includes* the experimenter ID, so that the real payload is
* only oxm_length - 4 bytes long.
*
* Internally, we represent an experimenter OXM header as a 64-bit integer with
* the standard header in the upper 32 bits and the experimenter ID in the
* lower 32 bits. (It would be more convenient to swap the positions of the
* two 32-bit words, but this would be more error-prone because experimenter
* OXMs are very rarely used, so accidentally passing one through a 32-bit type
* somewhere in the OVS code would be hard to find.)
*/
/*
* OXM Class IDs.
* The high order bit differentiate reserved classes from member classes.
* Classes 0x0000 to 0x7FFF are member classes, allocated by ONF.
* Classes 0x8000 to 0xFFFE are reserved classes, reserved for standardisation.
*/
enum ofp12_oxm_class {
OFPXMC12_NXM_0 = 0x0000, /* Backward compatibility with NXM */
OFPXMC12_NXM_1 = 0x0001, /* Backward compatibility with NXM */
OFPXMC12_OPENFLOW_BASIC = 0x8000, /* Basic class for OpenFlow */
OFPXMC15_PACKET_REGS = 0x8001, /* Packet registers (pipeline fields). */
OFPXMC12_EXPERIMENTER = 0xffff, /* Experimenter class */
};
/* Functions for extracting raw field values from OXM/NXM headers. */
static uint32_t nxm_vendor(uint64_t header) { return header; }
static int nxm_class(uint64_t header) { return header >> 48; }
static int nxm_field(uint64_t header) { return (header >> 41) & 0x7f; }
static bool nxm_hasmask(uint64_t header) { return (header >> 40) & 1; }
static int nxm_length(uint64_t header) { return (header >> 32) & 0xff; }
static uint64_t nxm_no_len(uint64_t header) { return header & 0xffffff80ffffffffULL; }
static bool
is_experimenter_oxm(uint64_t header)
{
return nxm_class(header) == OFPXMC12_EXPERIMENTER;
}
/* The OXM header "length" field is somewhat tricky:
*
* - For a standard OXM header, the length is the number of bytes of the
* payload, and the payload consists of just the value (and mask, if
* present).
*
* - For an experimenter OXM header, the length is the number of bytes in
* the payload plus 4 (the length of the experimenter ID). That is, the
* experimenter ID is included in oxm_length.
*
* This function returns the length of the experimenter ID field in 'header'.
* That is, for an experimenter OXM (when an experimenter ID is present), it
* returns 4, and for a standard OXM (when no experimenter ID is present), it
* returns 0. */
static int
nxm_experimenter_len(uint64_t header)
{
return is_experimenter_oxm(header) ? 4 : 0;
}
/* Returns the number of bytes that follow the header for an NXM/OXM entry
* with the given 'header'. */
static unsigned int
nxm_payload_len(uint64_t header)
{
ovs_assert(nxm_length(header) >= nxm_experimenter_len(header));
return nxm_length(header) - nxm_experimenter_len(header);
}
/* Returns the number of bytes in the header for an NXM/OXM entry with the
* given 'header'. */
static int
nxm_header_len(uint64_t header)
{
return 4 + nxm_experimenter_len(header);
}
#define NXM_HEADER(VENDOR, CLASS, FIELD, HASMASK, LENGTH) \
(((uint64_t) (CLASS) << 48) | \
((uint64_t) (FIELD) << 41) | \
((uint64_t) (HASMASK) << 40) | \
((uint64_t) (LENGTH) << 32) | \
(VENDOR))
#define NXM_HEADER_FMT "%#"PRIx32":%d:%d:%d:%d"
#define NXM_HEADER_ARGS(HEADER) \
nxm_vendor(HEADER), nxm_class(HEADER), nxm_field(HEADER), \
nxm_hasmask(HEADER), nxm_length(HEADER)
/* Functions for turning the "hasmask" bit on or off. (This also requires
* adjusting the length.) */
static uint64_t
nxm_make_exact_header(uint64_t header)
{
unsigned int new_len = nxm_payload_len(header)
/ 2 + nxm_experimenter_len(header);
return NXM_HEADER(nxm_vendor(header), nxm_class(header),
nxm_field(header), 0, new_len);
}
static uint64_t
nxm_make_wild_header(uint64_t header)
{
unsigned int new_len = nxm_payload_len(header) * 2
+ nxm_experimenter_len(header);
return NXM_HEADER(nxm_vendor(header), nxm_class(header),
nxm_field(header), 1, new_len);
}
/* Flow cookie.
*
* This may be used to gain the OpenFlow 1.1-like ability to restrict
* certain NXM-based Flow Mod and Flow Stats Request messages to flows
* with specific cookies. See the "nx_flow_mod" and "nx_flow_stats_request"
* structure definitions for more details. This match is otherwise not
* allowed. */
#define NXM_NX_COOKIE NXM_HEADER (0, 0x0001, 30, 0, 8)
#define NXM_NX_COOKIE_W nxm_make_wild_header(NXM_NX_COOKIE)
struct nxm_field {
uint64_t header;
enum ofp_version version;
const char *name; /* e.g. "NXM_OF_IN_PORT". */
enum mf_field_id id;
};
static const struct nxm_field *nxm_field_by_header(uint64_t header, bool is_action, enum ofperr *h_error);
static const struct nxm_field *nxm_field_by_name(const char *name, size_t len);
static const struct nxm_field *nxm_field_by_mf_id(enum mf_field_id,
enum ofp_version);
static void nx_put_header__(struct ofpbuf *, uint64_t header, bool masked);
static void nx_put_header_len(struct ofpbuf *, enum mf_field_id field,
enum ofp_version version, bool masked,
size_t n_bytes);
/* Rate limit for nx_match parse errors. These always indicate a bug in the
* peer and so there's not much point in showing a lot of them. */
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
static const struct nxm_field *
mf_parse_subfield_name(const char *name, int name_len, bool *wild);
/* Returns the preferred OXM header to use for field 'id' in OpenFlow version
* 'version'. Specify 0 for 'version' if an NXM legacy header should be
* preferred over any standardized OXM header. Returns 0 if field 'id' cannot
* be expressed in NXM or OXM. */
static uint64_t
mf_oxm_header(enum mf_field_id id, enum ofp_version version)
{
const struct nxm_field *f = nxm_field_by_mf_id(id, version);
return f ? f->header : 0;
}
/* Returns the 32-bit OXM or NXM header to use for field 'id', preferring an
* NXM legacy header over any standardized OXM header. Returns 0 if field 'id'
* cannot be expressed with a 32-bit NXM or OXM header.
*
* Whenever possible, use nx_pull_header() instead of this function, because
* this function cannot support 64-bit experimenter OXM headers. */
uint32_t
mf_nxm_header(enum mf_field_id id)
{
uint64_t oxm = mf_oxm_header(id, 0);
return is_experimenter_oxm(oxm) ? 0 : oxm >> 32;
}
/* Returns the 32-bit OXM or NXM header to use for field 'mff'. If 'mff' is
* a mapped variable length mf_field, update the header with the configured
* length of 'mff'. Returns 0 if 'mff' cannot be expressed with a 32-bit NXM
* or OXM header.*/
uint32_t
nxm_header_from_mff(const struct mf_field *mff)
{
uint64_t oxm = mf_oxm_header(mff->id, 0);
if (mff->mapped) {
oxm = nxm_no_len(oxm) | ((uint64_t) mff->n_bytes << 32);
}
return is_experimenter_oxm(oxm) ? 0 : oxm >> 32;
}
static const struct mf_field *
mf_from_oxm_header(uint64_t header, const struct vl_mff_map *vl_mff_map,
bool is_action, enum ofperr *h_error)
{
const struct nxm_field *f = nxm_field_by_header(header, is_action, h_error);
if (f) {
const struct mf_field *mff = mf_from_id(f->id);
const struct mf_field *vl_mff = mf_get_vl_mff(mff, vl_mff_map);
return vl_mff ? vl_mff : mff;
} else {
return NULL;
}
}
/* Returns the "struct mf_field" that corresponds to NXM or OXM header
* 'header', or NULL if 'header' doesn't correspond to any known field. */
const struct mf_field *
mf_from_nxm_header(uint32_t header, const struct vl_mff_map *vl_mff_map)
{
return mf_from_oxm_header((uint64_t) header << 32, vl_mff_map, false, NULL);
}
/* Returns the width of the data for a field with the given 'header', in
* bytes. */
static int
nxm_field_bytes(uint64_t header)
{
unsigned int length = nxm_payload_len(header);
return nxm_hasmask(header) ? length / 2 : length;
}
/* nx_pull_match() and helpers. */
/* Given NXM/OXM value 'value' and mask 'mask' associated with 'header', checks
* for any 1-bit in the value where there is a 0-bit in the mask. Returns 0 if
* none, otherwise an error code. */
static bool
is_mask_consistent(uint64_t header, const uint8_t *value, const uint8_t *mask)
{
unsigned int width = nxm_field_bytes(header);
unsigned int i;
for (i = 0; i < width; i++) {
if (value[i] & ~mask[i]) {
if (!VLOG_DROP_WARN(&rl)) {
VLOG_WARN_RL(&rl, "Rejecting NXM/OXM entry "NXM_HEADER_FMT " "
"with 1-bits in value for bits wildcarded by the "
"mask.", NXM_HEADER_ARGS(header));
}
return false;
}
}
return true;
}
static bool
is_cookie_pseudoheader(uint64_t header)
{
return header == NXM_NX_COOKIE || header == NXM_NX_COOKIE_W;
}
static enum ofperr
nx_pull_header__(struct ofpbuf *b, bool allow_cookie,
const struct vl_mff_map *vl_mff_map, uint64_t *header,
const struct mf_field **field, bool is_action)
{
if (b->size < 4) {
goto bad_len;
}
*header = ((uint64_t) ntohl(get_unaligned_be32(b->data))) << 32;
if (is_experimenter_oxm(*header)) {
if (b->size < 8) {
goto bad_len;
}
*header = ntohll(get_unaligned_be64(b->data));
}
if (nxm_length(*header) < nxm_experimenter_len(*header)) {
VLOG_WARN_RL(&rl, "OXM header "NXM_HEADER_FMT" has invalid length %d "
"(minimum is %d)",
NXM_HEADER_ARGS(*header), nxm_length(*header),
nxm_header_len(*header));
goto error;
}
ofpbuf_pull(b, nxm_header_len(*header));
if (field) {
enum ofperr h_error = 0;
*field = mf_from_oxm_header(*header, vl_mff_map, is_action, &h_error);
if (!*field && !(allow_cookie && is_cookie_pseudoheader(*header))) {
VLOG_DBG_RL(&rl, "OXM header "NXM_HEADER_FMT" is unknown",
NXM_HEADER_ARGS(*header));
if (is_action) {
if (h_error) {
*field = NULL;
return h_error;
}
return OFPERR_OFPBAC_BAD_SET_TYPE;
} else {
return OFPERR_OFPBMC_BAD_FIELD;
}
} else if (mf_vl_mff_invalid(*field, vl_mff_map)) {
return OFPERR_NXFMFC_INVALID_TLV_FIELD;
}
}
return 0;
bad_len:
VLOG_DBG_RL(&rl, "encountered partial (%"PRIu32"-byte) OXM entry",
b->size);
error:
*header = 0;
if (field) {
*field = NULL;
}
return OFPERR_OFPBMC_BAD_LEN;
}
static void
copy_entry_value(const struct mf_field *field, union mf_value *value,
const uint8_t *payload, int width)
{
int copy_len;
void *copy_dst;
copy_dst = value;
copy_len = MIN(width, field ? field->n_bytes : sizeof *value);
if (field && field->variable_len) {
memset(value, 0, field->n_bytes);
copy_dst = &value->u8 + field->n_bytes - copy_len;
}
memcpy(copy_dst, payload, copy_len);
}
static enum ofperr
nx_pull_entry__(struct ofpbuf *b, bool allow_cookie,
const struct vl_mff_map *vl_mff_map, uint64_t *header,
const struct mf_field **field_,
union mf_value *value, union mf_value *mask, bool is_action)
{
const struct mf_field *field;
enum ofperr header_error;
unsigned int payload_len;
const uint8_t *payload;
int width;
header_error = nx_pull_header__(b, allow_cookie, vl_mff_map, header,
&field, is_action);
if (header_error && header_error != OFPERR_OFPBMC_BAD_FIELD) {
return header_error;
}
payload_len = nxm_payload_len(*header);
payload = ofpbuf_try_pull(b, payload_len);
if (!payload) {
VLOG_DBG_RL(&rl, "OXM header "NXM_HEADER_FMT" calls for %u-byte "
"payload but only %"PRIu32" bytes follow OXM header",
NXM_HEADER_ARGS(*header), payload_len, b->size);
return OFPERR_OFPBMC_BAD_LEN;
}
width = nxm_field_bytes(*header);
if (nxm_hasmask(*header)
&& !is_mask_consistent(*header, payload, payload + width)) {
return OFPERR_OFPBMC_BAD_WILDCARDS;
}
copy_entry_value(field, value, payload, width);
if (mask) {
if (nxm_hasmask(*header)) {
copy_entry_value(field, mask, payload + width, width);
} else {
memset(mask, 0xff, sizeof *mask);
}
} else if (nxm_hasmask(*header)) {
VLOG_DBG_RL(&rl, "OXM header "NXM_HEADER_FMT" includes mask but "
"masked OXMs are not allowed here",
NXM_HEADER_ARGS(*header));
return OFPERR_OFPBMC_BAD_MASK;
}
if (field_) {
*field_ = field;
return header_error;
}
return 0;
}
/* Attempts to pull an NXM or OXM header, value, and mask (if present) from the
* beginning of 'b'. If successful, stores a pointer to the "struct mf_field"
* corresponding to the pulled header in '*field', the value into '*value',
* and the mask into '*mask', and returns 0. On error, returns an OpenFlow
* error; in this case, some bytes might have been pulled off 'b' anyhow, and
* the output parameters might have been modified.
*
* If a NULL 'mask' is supplied, masked OXM or NXM entries are treated as
* errors (with OFPERR_OFPBMC_BAD_MASK).
*
* The "bool is_action" is supplied to differentiate between match and action
* headers. This is done in order to return appropriate error type and code for
* bad match or bad action conditions. If set to True, indicates that the
* OXM or NXM entries belong to an action header.
*/
enum ofperr
nx_pull_entry(struct ofpbuf *b, const struct vl_mff_map *vl_mff_map,
const struct mf_field **field, union mf_value *value,
union mf_value *mask, bool is_action)
{
uint64_t header;
return nx_pull_entry__(b, false, vl_mff_map, &header, field, value, mask, is_action);
}
/* Attempts to pull an NXM or OXM header from the beginning of 'b'. If
* successful, stores a pointer to the "struct mf_field" corresponding to the
* pulled header in '*field', stores the header's hasmask bit in '*masked'
* (true if hasmask=1, false if hasmask=0), and returns 0. On error, returns
* an OpenFlow error; in this case, some bytes might have been pulled off 'b'
* anyhow, and the output parameters might have been modified.
*
* If NULL 'masked' is supplied, masked OXM or NXM headers are treated as
* errors (with OFPERR_OFPBMC_BAD_MASK).
*/
enum ofperr
nx_pull_header(struct ofpbuf *b, const struct vl_mff_map *vl_mff_map,
const struct mf_field **field, bool *masked)
{
enum ofperr error;
uint64_t header;
error = nx_pull_header__(b, false, vl_mff_map, &header, field, false);
if (masked) {
*masked = !error && nxm_hasmask(header);
} else if (!error && nxm_hasmask(header)) {
error = OFPERR_OFPBMC_BAD_MASK;
}
return error;
}
static enum ofperr
nx_pull_match_entry(struct ofpbuf *b, bool allow_cookie,
const struct vl_mff_map *vl_mff_map,
const struct mf_field **field,
union mf_value *value, union mf_value *mask)
{
enum ofperr error;
uint64_t header;
error = nx_pull_entry__(b, allow_cookie, vl_mff_map, &header, field, value,
mask, false);
if (error) {
return error;
}
if (field && *field) {
if (!mf_is_mask_valid(*field, mask)) {
VLOG_DBG_RL(&rl, "bad mask for field %s", (*field)->name);
return OFPERR_OFPBMC_BAD_MASK;
}
if (!mf_is_value_valid(*field, value)) {
VLOG_DBG_RL(&rl, "bad value for field %s", (*field)->name);
return OFPERR_OFPBMC_BAD_VALUE;
}
}
return 0;
}
/* Prerequisites will only be checked when 'strict' is 'true'. This allows
* decoding conntrack original direction 5-tuple IP addresses without the
* ethertype being present, when decoding metadata only. */
static enum ofperr
nx_pull_raw(const uint8_t *p, unsigned int match_len, bool strict,
bool pipeline_fields_only, struct match *match, ovs_be64 *cookie,
ovs_be64 *cookie_mask, const struct tun_table *tun_table,
const struct vl_mff_map *vl_mff_map)
{
ovs_assert((cookie != NULL) == (cookie_mask != NULL));
match_init_catchall(match);
match->flow.tunnel.metadata.tab = tun_table;
if (cookie) {
*cookie = *cookie_mask = htonll(0);
}
struct ofpbuf b = ofpbuf_const_initializer(p, match_len);
while (b.size) {
const uint8_t *pos = b.data;
const struct mf_field *field;
union mf_value value;
union mf_value mask;
enum ofperr error;
error = nx_pull_match_entry(&b, cookie != NULL, vl_mff_map, &field,
&value, &mask);
if (error) {
if (error == OFPERR_OFPBMC_BAD_FIELD && !strict) {
continue;
}
} else if (!field) {
if (!cookie) {
error = OFPERR_OFPBMC_BAD_FIELD;
} else if (*cookie_mask) {
error = OFPERR_OFPBMC_DUP_FIELD;
} else {
*cookie = value.be64;
*cookie_mask = mask.be64;
}
} else if (strict && !mf_are_match_prereqs_ok(field, match)) {
error = OFPERR_OFPBMC_BAD_PREREQ;
} else if (!mf_is_all_wild(field, &match->wc)) {
error = OFPERR_OFPBMC_DUP_FIELD;
} else if (pipeline_fields_only && !mf_is_pipeline_field(field)) {
error = OFPERR_OFPBRC_PIPELINE_FIELDS_ONLY;
} else {
char *err_str;
mf_set(field, &value, &mask, match, &err_str);
if (err_str) {
VLOG_DBG_RL(&rl, "error parsing OXM at offset %"PRIdPTR" "
"within match (%s)", pos - p, err_str);
free(err_str);
return OFPERR_OFPBMC_BAD_VALUE;
}
match_add_ethernet_prereq(match, field);
}
if (error) {
VLOG_DBG_RL(&rl, "error parsing OXM at offset %"PRIdPTR" "
"within match (%s)", pos -
p, ofperr_to_string(error));
return error;
}
}
match->flow.tunnel.metadata.tab = NULL;
return 0;
}
static enum ofperr
nx_pull_match__(struct ofpbuf *b, unsigned int match_len, bool strict,
bool pipeline_fields_only, struct match *match,
ovs_be64 *cookie, ovs_be64 *cookie_mask,
const struct tun_table *tun_table,
const struct vl_mff_map *vl_mff_map)
{
uint8_t *p = NULL;
if (match_len) {
p = ofpbuf_try_pull(b, ROUND_UP(match_len, 8));
if (!p) {
VLOG_DBG_RL(&rl, "nx_match length %u, rounded up to a "
"multiple of 8, is longer than space in message (max "
"length %"PRIu32")", match_len, b->size);
return OFPERR_OFPBMC_BAD_LEN;
}
}
return nx_pull_raw(p, match_len, strict, pipeline_fields_only, match,
cookie, cookie_mask, tun_table, vl_mff_map);
}
/* Parses the nx_match formatted match description in 'b' with length
* 'match_len'. Stores the results in 'match'. If 'cookie' and 'cookie_mask'
* are valid pointers, then stores the cookie and mask in them if 'b' contains
* a "NXM_NX_COOKIE*" match. Otherwise, stores 0 in both.
* If 'pipeline_fields_only' is true, this function returns
* OFPERR_OFPBRC_PIPELINE_FIELDS_ONLY if there is any non pipeline fields
* in 'b'.
*
* 'vl_mff_map" is an optional parameter that is used to validate the length
* of variable length mf_fields in 'match'. If it is not provided, the
* default mf_fields with maximum length will be used.
*
* Fails with an error upon encountering an unknown NXM header.
*
* Returns 0 if successful, otherwise an OpenFlow error code. */
enum ofperr
nx_pull_match(struct ofpbuf *b, unsigned int match_len, struct match *match,
ovs_be64 *cookie, ovs_be64 *cookie_mask,
bool pipeline_fields_only, const struct tun_table *tun_table,
const struct vl_mff_map *vl_mff_map)
{
return nx_pull_match__(b, match_len, true, pipeline_fields_only, match,
cookie, cookie_mask, tun_table, vl_mff_map);
}
/* Behaves the same as nx_pull_match(), but skips over unknown NXM headers,
* instead of failing with an error, and does not check for field
* prerequisites. */
enum ofperr
nx_pull_match_loose(struct ofpbuf *b, unsigned int match_len,
struct match *match, ovs_be64 *cookie,
ovs_be64 *cookie_mask, bool pipeline_fields_only,
const struct tun_table *tun_table)
{
return nx_pull_match__(b, match_len, false, pipeline_fields_only, match,
cookie, cookie_mask, tun_table, NULL);
}
static enum ofperr
oxm_pull_match__(struct ofpbuf *b, bool strict, bool pipeline_fields_only,
const struct tun_table *tun_table,
const struct vl_mff_map *vl_mff_map, struct match *match)
{
struct ofp11_match_header *omh = b->data;
uint8_t *p;
uint16_t match_len;
if (b->size < sizeof *omh) {
return OFPERR_OFPBMC_BAD_LEN;
}
match_len = ntohs(omh->length);
if (match_len < sizeof *omh) {
return OFPERR_OFPBMC_BAD_LEN;
}
if (omh->type != htons(OFPMT_OXM)) {
return OFPERR_OFPBMC_BAD_TYPE;
}
p = ofpbuf_try_pull(b, ROUND_UP(match_len, 8));
if (!p) {
VLOG_DBG_RL(&rl, "oxm length %u, rounded up to a "
"multiple of 8, is longer than space in message (max "
"length %"PRIu32")", match_len, b->size);
return OFPERR_OFPBMC_BAD_LEN;
}
return nx_pull_raw(p + sizeof *omh, match_len - sizeof *omh,
strict, pipeline_fields_only, match, NULL, NULL,
tun_table, vl_mff_map);
}
/* Parses the oxm formatted match description preceded by a struct
* ofp11_match_header in 'b'. Stores the result in 'match'.
* If 'pipeline_fields_only' is true, this function returns
* OFPERR_OFPBRC_PIPELINE_FIELDS_ONLY if there is any non pipeline fields
* in 'b'.
*
* 'vl_mff_map' is an optional parameter that is used to validate the length
* of variable length mf_fields in 'match'. If it is not provided, the
* default mf_fields with maximum length will be used.
*
* Fails with an error when encountering unknown OXM headers.
*
* Returns 0 if successful, otherwise an OpenFlow error code. */
enum ofperr
oxm_pull_match(struct ofpbuf *b, bool pipeline_fields_only,
const struct tun_table *tun_table,
const struct vl_mff_map *vl_mff_map, struct match *match)
{
return oxm_pull_match__(b, true, pipeline_fields_only, tun_table,
vl_mff_map, match);
}
/* Behaves the same as oxm_pull_match() with two exceptions. Skips over
* unknown OXM headers instead of failing with an error when they are
* encountered, and does not check for field prerequisites. */
enum ofperr
oxm_pull_match_loose(struct ofpbuf *b, bool pipeline_fields_only,
const struct tun_table *tun_table, struct match *match)
{
return oxm_pull_match__(b, false, pipeline_fields_only, tun_table, NULL,
match);
}
/* Parses the OXM match description in the 'oxm_len' bytes in 'oxm'. Stores
* the result in 'match'.
*
* Returns 0 if successful, otherwise an OpenFlow error code.
*
* If 'loose' is true, encountering unknown OXM headers or missing field
* prerequisites are not considered as error conditions.
*/
enum ofperr
oxm_decode_match(const void *oxm, size_t oxm_len, bool loose,
const struct tun_table *tun_table,
const struct vl_mff_map *vl_mff_map, struct match *match)
{
return nx_pull_raw(oxm, oxm_len, !loose, false, match, NULL, NULL,
tun_table, vl_mff_map);
}
/* Verify an array of OXM TLVs treating value of each TLV as a mask,
* disallowing masks in each TLV and ignoring pre-requisites. */
enum ofperr
oxm_pull_field_array(const void *fields_data, size_t fields_len,
struct field_array *fa)
{
struct ofpbuf b = ofpbuf_const_initializer(fields_data, fields_len);
while (b.size) {
const uint8_t *pos = b.data;
const struct mf_field *field;
union mf_value value;
enum ofperr error;
uint64_t header;
error = nx_pull_entry__(&b, false, NULL, &header, &field, &value,
NULL, false);
if (error) {
VLOG_DBG_RL(&rl, "error pulling field array field");
} else if (!field) {
VLOG_DBG_RL(&rl, "unknown field array field");
error = OFPERR_OFPBMC_BAD_FIELD;
} else if (bitmap_is_set(fa->used.bm, field->id)) {
VLOG_DBG_RL(&rl, "duplicate field array field '%s'", field->name);
error = OFPERR_OFPBMC_DUP_FIELD;
} else if (!mf_is_mask_valid(field, &value)) {
VLOG_DBG_RL(&rl, "bad mask in field array field '%s'", field->name);
error = OFPERR_OFPBMC_BAD_MASK;
} else {
field_array_set(field->id, &value, fa);
}
if (error) {
const uint8_t *start = fields_data;
VLOG_DBG_RL(&rl, "error parsing OXM at offset %"PRIdPTR" "
"within field array (%s)", pos - start,
ofperr_to_string(error));
free(fa->values);
fa->values = NULL;
return error;
}
}
return 0;
}
/* nx_put_match() and helpers.
*
* 'put' functions whose names end in 'w' add a wildcarded field.
* 'put' functions whose names end in 'm' add a field that might be wildcarded.
* Other 'put' functions add exact-match fields.
*/
struct nxm_put_ctx {
struct ofpbuf *output;
bool implied_ethernet;
};
void
nxm_put_entry_raw(struct ofpbuf *b,
enum mf_field_id field, enum ofp_version version,
const void *value, const void *mask, size_t n_bytes)
{
nx_put_header_len(b, field, version, !!mask, n_bytes);
ofpbuf_put(b, value, n_bytes);
if (mask) {
ofpbuf_put(b, mask, n_bytes);
}
}
static void
nxm_put__(struct nxm_put_ctx *ctx,
enum mf_field_id field, enum ofp_version version,
const void *value, const void *mask, size_t n_bytes)
{
nxm_put_entry_raw(ctx->output, field, version, value, mask, n_bytes);
if (!ctx->implied_ethernet && mf_from_id(field)->prereqs != MFP_NONE) {
ctx->implied_ethernet = true;
}
}
static void
nxm_put(struct nxm_put_ctx *ctx,
enum mf_field_id field, enum ofp_version version,
const void *value, const void *mask, size_t n_bytes)
{
if (!is_all_zeros(mask, n_bytes)) {
bool masked = !is_all_ones(mask, n_bytes);
nxm_put__(ctx, field, version, value, masked ? mask : NULL, n_bytes);
}
}
static void
nxm_put_8m(struct nxm_put_ctx *ctx,
enum mf_field_id field, enum ofp_version version,
uint8_t value, uint8_t mask)
{
nxm_put(ctx, field, version, &value, &mask, sizeof value);
}
static void
nxm_put_8(struct nxm_put_ctx *ctx,
enum mf_field_id field, enum ofp_version version, uint8_t value)
{
nxm_put__(ctx, field, version, &value, NULL, sizeof value);
}
static void
nxm_put_16m(struct nxm_put_ctx *ctx,
enum mf_field_id field, enum ofp_version version,
ovs_be16 value, ovs_be16 mask)
{
nxm_put(ctx, field, version, &value, &mask, sizeof value);
}
static void
nxm_put_16(struct nxm_put_ctx *ctx,
enum mf_field_id field, enum ofp_version version, ovs_be16 value)
{
nxm_put__(ctx, field, version, &value, NULL, sizeof value);
}
static void
nxm_put_32m(struct nxm_put_ctx *ctx,
enum mf_field_id field, enum ofp_version version,
ovs_be32 value, ovs_be32 mask)
{
nxm_put(ctx, field, version, &value, &mask, sizeof value);
}
static void
nxm_put_32(struct nxm_put_ctx *ctx,
enum mf_field_id field, enum ofp_version version, ovs_be32 value)
{
nxm_put__(ctx, field, version, &value, NULL, sizeof value);
}
static void
nxm_put_64m(struct nxm_put_ctx *ctx,
enum mf_field_id field, enum ofp_version version,
ovs_be64 value, ovs_be64 mask)
{
nxm_put(ctx, field, version, &value, &mask, sizeof value);
}
static void
nxm_put_128m(struct nxm_put_ctx *ctx,
enum mf_field_id field, enum ofp_version version,
const ovs_be128 value, const ovs_be128 mask)
{
nxm_put(ctx, field, version, &value, &mask, sizeof(value));
}
static void
nxm_put_eth_masked(struct nxm_put_ctx *ctx,
enum mf_field_id field, enum ofp_version version,
const struct eth_addr value, const struct eth_addr mask)
{
nxm_put(ctx, field, version, value.ea, mask.ea, ETH_ADDR_LEN);
}
static void
nxm_put_ipv6(struct nxm_put_ctx *ctx,
enum mf_field_id field, enum ofp_version version,
const struct in6_addr *value, const struct in6_addr *mask)
{
nxm_put(ctx, field, version, value->s6_addr, mask->s6_addr,
sizeof value->s6_addr);
}
static void
nxm_put_frag(struct nxm_put_ctx *ctx, const struct match *match,
enum ofp_version version)
{
uint8_t nw_frag = match->flow.nw_frag & FLOW_NW_FRAG_MASK;
uint8_t nw_frag_mask = match->wc.masks.nw_frag & FLOW_NW_FRAG_MASK;
nxm_put_8m(ctx, MFF_IP_FRAG, version, nw_frag,
nw_frag_mask == FLOW_NW_FRAG_MASK ? UINT8_MAX : nw_frag_mask);
}
/* Appends to 'b' a set of OXM or NXM matches for the IPv4 or IPv6 fields in
* 'match'. */
static void
nxm_put_ip(struct nxm_put_ctx *ctx,
const struct match *match, enum ofp_version oxm)
{
const struct flow *flow = &match->flow;
ovs_be16 dl_type = get_dl_type(flow);
if (dl_type == htons(ETH_TYPE_IP)) {
nxm_put_32m(ctx, MFF_IPV4_SRC, oxm,
flow->nw_src, match->wc.masks.nw_src);
nxm_put_32m(ctx, MFF_IPV4_DST, oxm,
flow->nw_dst, match->wc.masks.nw_dst);
} else {
nxm_put_ipv6(ctx, MFF_IPV6_SRC, oxm,
&flow->ipv6_src, &match->wc.masks.ipv6_src);
nxm_put_ipv6(ctx, MFF_IPV6_DST, oxm,
&flow->ipv6_dst, &match->wc.masks.ipv6_dst);
}
nxm_put_frag(ctx, match, oxm);
if (match->wc.masks.nw_tos & IP_DSCP_MASK) {
if (oxm) {
nxm_put_8(ctx, MFF_IP_DSCP_SHIFTED, oxm,
flow->nw_tos >> 2);
} else {
nxm_put_8(ctx, MFF_IP_DSCP, oxm,
flow->nw_tos & IP_DSCP_MASK);
}
}
if (match->wc.masks.nw_tos & IP_ECN_MASK) {
nxm_put_8(ctx, MFF_IP_ECN, oxm,
flow->nw_tos & IP_ECN_MASK);
}
if (match->wc.masks.nw_ttl) {
nxm_put_8(ctx, MFF_IP_TTL, oxm, flow->nw_ttl);
}
nxm_put_32m(ctx, MFF_IPV6_LABEL, oxm,
flow->ipv6_label, match->wc.masks.ipv6_label);
if (match->wc.masks.nw_proto) {
nxm_put_8(ctx, MFF_IP_PROTO, oxm, flow->nw_proto);
if (flow->nw_proto == IPPROTO_TCP) {
nxm_put_16m(ctx, MFF_TCP_SRC, oxm,
flow->tp_src, match->wc.masks.tp_src);
nxm_put_16m(ctx, MFF_TCP_DST, oxm,
flow->tp_dst, match->wc.masks.tp_dst);
nxm_put_16m(ctx, MFF_TCP_FLAGS, oxm,
flow->tcp_flags, match->wc.masks.tcp_flags);
} else if (flow->nw_proto == IPPROTO_UDP) {
nxm_put_16m(ctx, MFF_UDP_SRC, oxm,
flow->tp_src, match->wc.masks.tp_src);
nxm_put_16m(ctx, MFF_UDP_DST, oxm,
flow->tp_dst, match->wc.masks.tp_dst);
} else if (flow->nw_proto == IPPROTO_SCTP) {
nxm_put_16m(ctx, MFF_SCTP_SRC, oxm, flow->tp_src,
match->wc.masks.tp_src);
nxm_put_16m(ctx, MFF_SCTP_DST, oxm, flow->tp_dst,
match->wc.masks.tp_dst);
} else if (is_icmpv4(flow, NULL)) {
if (match->wc.masks.tp_src) {
nxm_put_8(ctx, MFF_ICMPV4_TYPE, oxm,
ntohs(flow->tp_src));
}
if (match->wc.masks.tp_dst) {
nxm_put_8(ctx, MFF_ICMPV4_CODE, oxm,
ntohs(flow->tp_dst));
}
} else if (is_icmpv6(flow, NULL)) {
if (match->wc.masks.tp_src) {
nxm_put_8(ctx, MFF_ICMPV6_TYPE, oxm,
ntohs(flow->tp_src));
}
if (match->wc.masks.tp_dst) {
nxm_put_8(ctx, MFF_ICMPV6_CODE, oxm,
ntohs(flow->tp_dst));
}
if (is_nd(flow, NULL)) {
if (match->wc.masks.igmp_group_ip4) {
nxm_put_32(ctx, MFF_ND_RESERVED, oxm,
flow->igmp_group_ip4);
}
nxm_put_ipv6(ctx, MFF_ND_TARGET, oxm,
&flow->nd_target, &match->wc.masks.nd_target);
if (match->wc.masks.tcp_flags) {
nxm_put_8(ctx, MFF_ND_OPTIONS_TYPE, oxm,
ntohs(flow->tcp_flags));
}
if (flow->tp_src == htons(ND_NEIGHBOR_SOLICIT)) {
nxm_put_eth_masked(ctx, MFF_ND_SLL, oxm,
flow->arp_sha, match->wc.masks.arp_sha);
}
if (flow->tp_src == htons(ND_NEIGHBOR_ADVERT)) {
nxm_put_eth_masked(ctx, MFF_ND_TLL, oxm,
flow->arp_tha, match->wc.masks.arp_tha);
}
}
}
}
}
/* Appends to 'b' the nx_match format that expresses 'match'. For Flow Mod and
* Flow Stats Requests messages, a 'cookie' and 'cookie_mask' may be supplied.
* Otherwise, 'cookie_mask' should be zero.
*
* Specify 'oxm' as 0 to express the match in NXM format; otherwise, specify
* 'oxm' as the OpenFlow version number for the OXM format to use.
*
* This function can cause 'b''s data to be reallocated.
*
* Returns the number of bytes appended to 'b', excluding padding.
*
* If 'match' is a catch-all rule that matches every packet, then this function
* appends nothing to 'b' and returns 0. */
static int
nx_put_raw(struct ofpbuf *b, enum ofp_version oxm, const struct match *match,
ovs_be64 cookie, ovs_be64 cookie_mask)
{
const struct flow *flow = &match->flow;
const size_t start_len = b->size;
ovs_be16 dl_type = get_dl_type(flow);
ovs_be32 spi_mask;
int match_len;
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 42);
struct nxm_put_ctx ctx = { .output = b, .implied_ethernet = false };
/* OpenFlow Packet Type. Must be first. */
if (match->wc.masks.packet_type && !match_has_default_packet_type(match)) {
nxm_put_32m(&ctx, MFF_PACKET_TYPE, oxm, flow->packet_type,
match->wc.masks.packet_type);
}
/* Metadata. */
if (match->wc.masks.dp_hash) {
nxm_put_32m(&ctx, MFF_DP_HASH, oxm,
htonl(flow->dp_hash), htonl(match->wc.masks.dp_hash));
}
if (match->wc.masks.recirc_id) {
nxm_put_32(&ctx, MFF_RECIRC_ID, oxm, htonl(flow->recirc_id));
}
if (match->wc.masks.conj_id) {
nxm_put_32(&ctx, MFF_CONJ_ID, oxm, htonl(flow->conj_id));
}
if (match->wc.masks.in_port.ofp_port) {
ofp_port_t in_port = flow->in_port.ofp_port;
if (oxm) {
nxm_put_32(&ctx, MFF_IN_PORT_OXM, oxm,
ofputil_port_to_ofp11(in_port));
} else {
nxm_put_16(&ctx, MFF_IN_PORT, oxm,
htons(ofp_to_u16(in_port)));
}
}
if (match->wc.masks.actset_output) {
nxm_put_32(&ctx, MFF_ACTSET_OUTPUT, oxm,
ofputil_port_to_ofp11(flow->actset_output));
}
/* Ethernet. */
nxm_put_eth_masked(&ctx, MFF_ETH_SRC, oxm,
flow->dl_src, match->wc.masks.dl_src);
nxm_put_eth_masked(&ctx, MFF_ETH_DST, oxm,
flow->dl_dst, match->wc.masks.dl_dst);
nxm_put_16m(&ctx, MFF_ETH_TYPE, oxm,
ofputil_dl_type_to_openflow(flow->dl_type),
match->wc.masks.dl_type);
/* 802.1Q. */
if (oxm) {
ovs_be16 VID_CFI_MASK = htons(VLAN_VID_MASK | VLAN_CFI);
ovs_be16 vid = flow->vlans[0].tci & VID_CFI_MASK;
ovs_be16 mask = match->wc.masks.vlans[0].tci & VID_CFI_MASK;
if (mask == htons(VLAN_VID_MASK | VLAN_CFI)) {
nxm_put_16(&ctx, MFF_VLAN_VID, oxm, vid);
} else if (mask) {
nxm_put_16m(&ctx, MFF_VLAN_VID, oxm, vid, mask);
}
if (vid && vlan_tci_to_pcp(match->wc.masks.vlans[0].tci)) {
nxm_put_8(&ctx, MFF_VLAN_PCP, oxm,
vlan_tci_to_pcp(flow->vlans[0].tci));
}
} else {
nxm_put_16m(&ctx, MFF_VLAN_TCI, oxm, flow->vlans[0].tci,
match->wc.masks.vlans[0].tci);
}
/* MPLS. */
if (eth_type_mpls(dl_type)) {
if (match->wc.masks.mpls_lse[0] & htonl(MPLS_TC_MASK)) {
nxm_put_8(&ctx, MFF_MPLS_TC, oxm,
mpls_lse_to_tc(flow->mpls_lse[0]));
}
if (match->wc.masks.mpls_lse[0] & htonl(MPLS_BOS_MASK)) {
nxm_put_8(&ctx, MFF_MPLS_BOS, oxm,
mpls_lse_to_bos(flow->mpls_lse[0]));
}
if (match->wc.masks.mpls_lse[0] & htonl(MPLS_TTL_MASK)) {
nxm_put_8(&ctx, MFF_MPLS_TTL, oxm,
mpls_lse_to_ttl(flow->mpls_lse[0]));
}
if (match->wc.masks.mpls_lse[0] & htonl(MPLS_LABEL_MASK)) {
nxm_put_32(&ctx, MFF_MPLS_LABEL, oxm,
htonl(mpls_lse_to_label(flow->mpls_lse[0])));
}
}
/* L3. */
if (is_ip_any(flow)) {
nxm_put_ip(&ctx, match, oxm);
} else if (dl_type == htons(ETH_TYPE_ARP) ||
dl_type == htons(ETH_TYPE_RARP)) {
/* ARP. */
if (match->wc.masks.nw_proto) {
nxm_put_16(&ctx, MFF_ARP_OP, oxm,
htons(flow->nw_proto));
}
nxm_put_32m(&ctx, MFF_ARP_SPA, oxm,
flow->nw_src, match->wc.masks.nw_src);
nxm_put_32m(&ctx, MFF_ARP_TPA, oxm,
flow->nw_dst, match->wc.masks.nw_dst);
nxm_put_eth_masked(&ctx, MFF_ARP_SHA, oxm,
flow->arp_sha, match->wc.masks.arp_sha);
nxm_put_eth_masked(&ctx, MFF_ARP_THA, oxm,
flow->arp_tha, match->wc.masks.arp_tha);
}
/* Tunnel ID. */
nxm_put_64m(&ctx, MFF_TUN_ID, oxm,
flow->tunnel.tun_id, match->wc.masks.tunnel.tun_id);
/* Other tunnel metadata. */
nxm_put_16m(&ctx, MFF_TUN_FLAGS, oxm,
htons(flow->tunnel.flags), htons(match->wc.masks.tunnel.flags));
nxm_put_32m(&ctx, MFF_TUN_SRC, oxm,
flow->tunnel.ip_src, match->wc.masks.tunnel.ip_src);
nxm_put_32m(&ctx, MFF_TUN_DST, oxm,
flow->tunnel.ip_dst, match->wc.masks.tunnel.ip_dst);
nxm_put_ipv6(&ctx, MFF_TUN_IPV6_SRC, oxm,
&flow->tunnel.ipv6_src, &match->wc.masks.tunnel.ipv6_src);
nxm_put_ipv6(&ctx, MFF_TUN_IPV6_DST, oxm,
&flow->tunnel.ipv6_dst, &match->wc.masks.tunnel.ipv6_dst);
nxm_put_16m(&ctx, MFF_TUN_GBP_ID, oxm,
flow->tunnel.gbp_id, match->wc.masks.tunnel.gbp_id);
nxm_put_8m(&ctx, MFF_TUN_GBP_FLAGS, oxm,
flow->tunnel.gbp_flags, match->wc.masks.tunnel.gbp_flags);
tun_metadata_to_nx_match(b, oxm, match);
/* ERSPAN */
nxm_put_32m(&ctx, MFF_TUN_ERSPAN_IDX, oxm,
htonl(flow->tunnel.erspan_idx),
htonl(match->wc.masks.tunnel.erspan_idx));
nxm_put_8m(&ctx, MFF_TUN_ERSPAN_VER, oxm,
flow->tunnel.erspan_ver, match->wc.masks.tunnel.erspan_ver);
nxm_put_8m(&ctx, MFF_TUN_ERSPAN_DIR, oxm,
flow->tunnel.erspan_dir, match->wc.masks.tunnel.erspan_dir);
nxm_put_8m(&ctx, MFF_TUN_ERSPAN_HWID, oxm,
flow->tunnel.erspan_hwid, match->wc.masks.tunnel.erspan_hwid);
/* GTP-U */
nxm_put_8m(&ctx, MFF_TUN_GTPU_FLAGS, oxm, flow->tunnel.gtpu_flags,
match->wc.masks.tunnel.gtpu_flags);
nxm_put_8m(&ctx, MFF_TUN_GTPU_MSGTYPE, oxm, flow->tunnel.gtpu_msgtype,
match->wc.masks.tunnel.gtpu_msgtype);
/* Network Service Header */
nxm_put_8m(&ctx, MFF_NSH_FLAGS, oxm, flow->nsh.flags,
match->wc.masks.nsh.flags);
nxm_put_8m(&ctx, MFF_NSH_TTL, oxm, flow->nsh.ttl,
match->wc.masks.nsh.ttl);
nxm_put_8m(&ctx, MFF_NSH_MDTYPE, oxm, flow->nsh.mdtype,
match->wc.masks.nsh.mdtype);
nxm_put_8m(&ctx, MFF_NSH_NP, oxm, flow->nsh.np,
match->wc.masks.nsh.np);
spi_mask = nsh_path_hdr_to_spi(match->wc.masks.nsh.path_hdr);
if (spi_mask == htonl(NSH_SPI_MASK >> NSH_SPI_SHIFT)) {
spi_mask = OVS_BE32_MAX;
}
nxm_put_32m(&ctx, MFF_NSH_SPI, oxm,
nsh_path_hdr_to_spi(flow->nsh.path_hdr),
spi_mask);
nxm_put_8m(&ctx, MFF_NSH_SI, oxm,
nsh_path_hdr_to_si(flow->nsh.path_hdr),
nsh_path_hdr_to_si(match->wc.masks.nsh.path_hdr));
for (int i = 0; i < 4; i++) {
nxm_put_32m(&ctx, MFF_NSH_C1 + i, oxm, flow->nsh.context[i],
match->wc.masks.nsh.context[i]);
}
/* Registers. */
if (oxm < OFP15_VERSION) {
for (int i = 0; i < FLOW_N_REGS; i++) {
nxm_put_32m(&ctx, MFF_REG0 + i, oxm,
htonl(flow->regs[i]), htonl(match->wc.masks.regs[i]));
}
} else {
for (int i = 0; i < FLOW_N_XREGS; i++) {
nxm_put_64m(&ctx, MFF_XREG0 + i, oxm,
htonll(flow_get_xreg(flow, i)),
htonll(flow_get_xreg(&match->wc.masks, i)));
}
}
/* Packet mark. */
nxm_put_32m(&ctx, MFF_PKT_MARK, oxm, htonl(flow->pkt_mark),
htonl(match->wc.masks.pkt_mark));
/* Connection tracking. */
nxm_put_32m(&ctx, MFF_CT_STATE, oxm, htonl(flow->ct_state),
htonl(match->wc.masks.ct_state));
nxm_put_16m(&ctx, MFF_CT_ZONE, oxm, htons(flow->ct_zone),
htons(match->wc.masks.ct_zone));
nxm_put_32m(&ctx, MFF_CT_MARK, oxm, htonl(flow->ct_mark),
htonl(match->wc.masks.ct_mark));
nxm_put_128m(&ctx, MFF_CT_LABEL, oxm, hton128(flow->ct_label),
hton128(match->wc.masks.ct_label));
nxm_put_32m(&ctx, MFF_CT_NW_SRC, oxm,
flow->ct_nw_src, match->wc.masks.ct_nw_src);
nxm_put_ipv6(&ctx, MFF_CT_IPV6_SRC, oxm,
&flow->ct_ipv6_src, &match->wc.masks.ct_ipv6_src);
nxm_put_32m(&ctx, MFF_CT_NW_DST, oxm,
flow->ct_nw_dst, match->wc.masks.ct_nw_dst);
nxm_put_ipv6(&ctx, MFF_CT_IPV6_DST, oxm,
&flow->ct_ipv6_dst, &match->wc.masks.ct_ipv6_dst);
if (flow->ct_nw_proto) {
nxm_put_8m(&ctx, MFF_CT_NW_PROTO, oxm, flow->ct_nw_proto,
match->wc.masks.ct_nw_proto);
nxm_put_16m(&ctx, MFF_CT_TP_SRC, oxm,
flow->ct_tp_src, match->wc.masks.ct_tp_src);
nxm_put_16m(&ctx, MFF_CT_TP_DST, oxm,
flow->ct_tp_dst, match->wc.masks.ct_tp_dst);
}
/* OpenFlow 1.1+ Metadata. */
nxm_put_64m(&ctx, MFF_METADATA, oxm,
flow->metadata, match->wc.masks.metadata);
/* Cookie. */
if (cookie_mask) {
bool masked = cookie_mask != OVS_BE64_MAX;
cookie &= cookie_mask;
nx_put_header__(b, NXM_NX_COOKIE, masked);
ofpbuf_put(b, &cookie, sizeof cookie);
if (masked) {
ofpbuf_put(b, &cookie_mask, sizeof cookie_mask);
}
}
if (match_has_default_packet_type(match) && !ctx.implied_ethernet) {
uint64_t pt_stub[16 / 8];
struct ofpbuf pt;
ofpbuf_use_stack(&pt, pt_stub, sizeof pt_stub);
nxm_put_entry_raw(&pt, MFF_PACKET_TYPE, oxm, &flow->packet_type,
NULL, sizeof flow->packet_type);
ofpbuf_insert(b, start_len, pt.data, pt.size);
}
match_len = b->size - start_len;
return match_len;
}
/* Appends to 'b' the nx_match format that expresses 'match', plus enough zero
* bytes to pad the nx_match out to a multiple of 8. For Flow Mod and Flow
* Stats Requests messages, a 'cookie' and 'cookie_mask' may be supplied.
* Otherwise, 'cookie_mask' should be zero.
*
* This function can cause 'b''s data to be reallocated.
*
* Returns the number of bytes appended to 'b', excluding padding. The return
* value can be zero if it appended nothing at all to 'b' (which happens if
* 'cr' is a catch-all rule that matches every packet). */
int
nx_put_match(struct ofpbuf *b, const struct match *match,
ovs_be64 cookie, ovs_be64 cookie_mask)
{
int match_len = nx_put_raw(b, 0, match, cookie, cookie_mask);
ofpbuf_put_zeros(b, PAD_SIZE(match_len, 8));
return match_len;
}
/* Appends to 'b' an struct ofp11_match_header followed by the OXM format that
* expresses 'match', plus enough zero bytes to pad the data appended out to a
* multiple of 8.
*
* OXM differs slightly among versions of OpenFlow. Specify the OpenFlow
* version in use as 'version'.
*
* This function can cause 'b''s data to be reallocated.
*
* Returns the number of bytes appended to 'b', excluding the padding. Never
* returns zero. */
int
oxm_put_match(struct ofpbuf *b, const struct match *match,
enum ofp_version version)
{
int match_len;
struct ofp11_match_header *omh;
size_t start_len = b->size;
ovs_be64 cookie = htonll(0), cookie_mask = htonll(0);
ofpbuf_put_uninit(b, sizeof *omh);
match_len = (nx_put_raw(b, version, match, cookie, cookie_mask)
+ sizeof *omh);
ofpbuf_put_zeros(b, PAD_SIZE(match_len, 8));
omh = ofpbuf_at(b, start_len, sizeof *omh);
omh->type = htons(OFPMT_OXM);
omh->length = htons(match_len);
return match_len;
}
/* Appends to 'b' the OXM formats that expresses 'match', without header or
* padding.
*
* OXM differs slightly among versions of OpenFlow. Specify the OpenFlow
* version in use as 'version'.
*
* This function can cause 'b''s data to be reallocated. */
void
oxm_put_raw(struct ofpbuf *b, const struct match *match,
enum ofp_version version)
{
nx_put_raw(b, version, match, 0, 0);
}
/* Appends to 'b' the nx_match format that expresses the tlv corresponding
* to 'id'. If mask is not all-ones then it is also formated as the value
* of the tlv. */
static void
nx_format_mask_tlv(struct ds *ds, enum mf_field_id id,
const union mf_value *mask)
{
const struct mf_field *mf = mf_from_id(id);
ds_put_format(ds, "%s", mf->name);
if (!is_all_ones(mask, mf->n_bytes)) {
ds_put_char(ds, '=');
mf_format(mf, mask, NULL, NULL, ds);
}
ds_put_char(ds, ',');
}
/* Appends a string representation of 'fa_' to 'ds'.
* The TLVS value of 'fa_' is treated as a mask and
* only the name of fields is formated if it is all ones. */
void
oxm_format_field_array(struct ds *ds, const struct field_array *fa)
{
size_t start_len = ds->length;
size_t i, offset = 0;
BITMAP_FOR_EACH_1 (i, MFF_N_IDS, fa->used.bm) {
const struct mf_field *mf = mf_from_id(i);
union mf_value value;
memcpy(&value, fa->values + offset, mf->n_bytes);
nx_format_mask_tlv(ds, i, &value);
offset += mf->n_bytes;
}
if (ds->length > start_len) {
ds_chomp(ds, ',');
}
}
/* Appends to 'b' a series of OXM TLVs corresponding to the series
* of enum mf_field_id and value tuples in 'fa_'.
*
* OXM differs slightly among versions of OpenFlow. Specify the OpenFlow
* version in use as 'version'.
*
* This function can cause 'b''s data to be reallocated.
*
* Returns the number of bytes appended to 'b'. May return zero. */
int
oxm_put_field_array(struct ofpbuf *b, const struct field_array *fa,
enum ofp_version version)
{
size_t start_len = b->size;
/* XXX Some care might need to be taken of different TLVs that handle the
* same flow fields. In particular:
* - VLAN_TCI, VLAN_VID and MFF_VLAN_PCP
* - IP_DSCP_MASK and DSCP_SHIFTED
* - REGS and XREGS
*/
size_t i, offset = 0;
BITMAP_FOR_EACH_1 (i, MFF_N_IDS, fa->used.bm) {
const struct mf_field *mf = mf_from_id(i);
union mf_value value;
memcpy(&value, fa->values + offset, mf->n_bytes);
int len = mf_field_len(mf, &value, NULL, NULL);
nxm_put_entry_raw(b, i, version,
&value + mf->n_bytes - len, NULL, len);
offset += mf->n_bytes;
}
return b->size - start_len;
}
static void
nx_put_header__(struct ofpbuf *b, uint64_t header, bool masked)
{
uint64_t masked_header = masked ? nxm_make_wild_header(header) : header;
ovs_be64 network_header = htonll(masked_header);
ofpbuf_put(b, &network_header, nxm_header_len(header));
}
void
nx_put_header(struct ofpbuf *b, enum mf_field_id field,
enum ofp_version version, bool masked)
{
nx_put_header__(b, mf_oxm_header(field, version), masked);
}
void nx_put_mff_header(struct ofpbuf *b, const struct mf_field *mff,
enum ofp_version version, bool masked)
{
if (mff->mapped) {
nx_put_header_len(b, mff->id, version, masked, mff->n_bytes);
} else {
nx_put_header(b, mff->id, version, masked);
}
}
static void
nx_put_header_len(struct ofpbuf *b, enum mf_field_id field,
enum ofp_version version, bool masked, size_t n_bytes)
{
uint64_t header = mf_oxm_header(field, version);
header = NXM_HEADER(nxm_vendor(header), nxm_class(header),
nxm_field(header), false,
nxm_experimenter_len(header) + n_bytes);
nx_put_header__(b, header, masked);
}
void
nx_put_entry(struct ofpbuf *b, const struct mf_field *mff,
enum ofp_version version, const union mf_value *value,
const union mf_value *mask)
{
bool masked;
int len, offset;
len = mf_field_len(mff, value, mask, &masked);
offset = mff->n_bytes - len;
nxm_put_entry_raw(b, mff->id, version,
&value->u8 + offset, masked ? &mask->u8 + offset : NULL,
len);
}
/* nx_match_to_string() and helpers. */
static void format_nxm_field_name(struct ds *, uint64_t header);
char *
nx_match_to_string(const uint8_t *p, unsigned int match_len)
{
if (!match_len) {
return xstrdup("<any>");
}
struct ofpbuf b = ofpbuf_const_initializer(p, match_len);
struct ds s = DS_EMPTY_INITIALIZER;
while (b.size) {
union mf_value value;
union mf_value mask;
enum ofperr error;
uint64_t header;
int value_len;
error = nx_pull_entry__(&b, true, NULL, &header, NULL, &value, &mask, false);
if (error) {
break;
}
value_len = MIN(sizeof value, nxm_field_bytes(header));
if (s.length) {
ds_put_cstr(&s, ", ");
}
format_nxm_field_name(&s, header);
ds_put_char(&s, '(');
for (int i = 0; i < value_len; i++) {
ds_put_format(&s, "%02x", ((const uint8_t *) &value)[i]);
}
if (nxm_hasmask(header)) {
ds_put_char(&s, '/');
for (int i = 0; i < value_len; i++) {
ds_put_format(&s, "%02x", ((const uint8_t *) &mask)[i]);
}
}
ds_put_char(&s, ')');
}
if (b.size) {
if (s.length) {
ds_put_cstr(&s, ", ");
}
ds_put_format(&s, "<%u invalid bytes>", b.size);
}
return ds_steal_cstr(&s);
}
char *
oxm_match_to_string(const struct ofpbuf *p, unsigned int match_len)
{
const struct ofp11_match_header *omh = p->data;
uint16_t match_len_;
struct ds s;
ds_init(&s);
if (match_len < sizeof *omh) {
ds_put_format(&s, "<match too short: %u>", match_len);
goto err;
}
if (omh->type != htons(OFPMT_OXM)) {
ds_put_format(&s, "<bad match type field: %u>", ntohs(omh->type));
goto err;
}
match_len_ = ntohs(omh->length);
if (match_len_ < sizeof *omh) {
ds_put_format(&s, "<match length field too short: %u>", match_len_);
goto err;
}
if (match_len_ != match_len) {
ds_put_format(&s, "<match length field incorrect: %u != %u>",
match_len_, match_len);
goto err;
}
return nx_match_to_string(ofpbuf_at(p, sizeof *omh, 0),
match_len - sizeof *omh);
err:
return ds_steal_cstr(&s);
}
void
nx_format_field_name(enum mf_field_id id, enum ofp_version version,
struct ds *s)
{
format_nxm_field_name(s, mf_oxm_header(id, version));
}
static void
format_nxm_field_name(struct ds *s, uint64_t header)
{
const struct nxm_field *f = nxm_field_by_header(header, false, NULL);
if (f) {
ds_put_cstr(s, f->name);
if (nxm_hasmask(header)) {
ds_put_cstr(s, "_W");
}
} else if (header == NXM_NX_COOKIE) {
ds_put_cstr(s, "NXM_NX_COOKIE");
} else if (header == NXM_NX_COOKIE_W) {
ds_put_cstr(s, "NXM_NX_COOKIE_W");
} else {
ds_put_format(s, "%d:%d", nxm_class(header), nxm_field(header));
}
}
static bool
streq_len(const char *a, size_t a_len, const char *b)
{
return strlen(b) == a_len && !memcmp(a, b, a_len);
}
static uint64_t
parse_nxm_field_name(const char *name, int name_len)
{
const struct nxm_field *f;
bool wild;
f = mf_parse_subfield_name(name, name_len, &wild);
if (f) {
if (!wild) {
return f->header;
} else if (mf_from_id(f->id)->maskable != MFM_NONE) {
return nxm_make_wild_header(f->header);
}
}
if (streq_len(name, name_len, "NXM_NX_COOKIE")) {
return NXM_NX_COOKIE;
} else if (streq_len(name, name_len, "NXM_NX_COOKIE_W")) {
return NXM_NX_COOKIE_W;
}
/* Check whether it's a field header value as hex.
* (This isn't ordinarily useful except for testing error behavior.) */
if (name_len == 8) {
uint64_t header;
bool ok;
header = hexits_value(name, name_len, &ok) << 32;
if (ok) {
return header;
}
} else if (name_len == 16) {
uint64_t header;
bool ok;
header = hexits_value(name, name_len, &ok);
if (ok && is_experimenter_oxm(header)) {
return header;
}
}
return 0;
}
/* nx_match_from_string(). */
static int
nx_match_from_string_raw(const char *s, struct ofpbuf *b)
{
const char *full_s = s;
const size_t start_len = b->size;
if (!strcmp(s, "<any>")) {
/* Ensure that 'b->data' isn't actually null. */
ofpbuf_prealloc_tailroom(b, 1);
return 0;
}
for (s += strspn(s, ", "); *s; s += strspn(s, ", ")) {
const char *name;
uint64_t header;
ovs_be64 nw_header;
int name_len;
size_t n;
name = s;
name_len = strcspn(s, "(");
if (s[name_len] != '(') {
ovs_fatal(0, "%s: missing ( at end of nx_match", full_s);
}
header = parse_nxm_field_name(name, name_len);
if (!header) {
ovs_fatal(0, "%s: unknown field `%.*s'", full_s, name_len, s);
}
s += name_len + 1;
b->header = ofpbuf_put_uninit(b, nxm_header_len(header));
s = ofpbuf_put_hex(b, s, &n);
if (n != nxm_field_bytes(header)) {
const struct mf_field *field = mf_from_oxm_header(header, NULL, false, NULL);
if (field && field->variable_len) {
if (n <= field->n_bytes) {
int len = (nxm_hasmask(header) ? n * 2 : n) +
nxm_experimenter_len(header);
header = NXM_HEADER(nxm_vendor(header), nxm_class(header),
nxm_field(header),
nxm_hasmask(header) ? 1 : 0, len);
} else {
ovs_fatal(0, "expected to read at most %d bytes but got "
"%"PRIuSIZE, field->n_bytes, n);
}
} else {
ovs_fatal(0, "expected to read %d bytes but got %"PRIuSIZE,
nxm_field_bytes(header), n);
}
}
nw_header = htonll(header);
memcpy(b->header, &nw_header, nxm_header_len(header));
if (nxm_hasmask(header)) {
s += strspn(s, " ");
if (*s != '/') {
ovs_fatal(0, "%s: missing / in masked field %.*s",
full_s, name_len, name);
}
s = ofpbuf_put_hex(b, s + 1, &n);
if (n != nxm_field_bytes(header)) {
ovs_fatal(0, "%.2s: hex digits expected", s);
}
}
s += strspn(s, " ");
if (*s != ')') {
ovs_fatal(0, "%s: missing ) following field %.*s",
full_s, name_len, name);
}
s++;
}
return b->size - start_len;
}
int
nx_match_from_string(const char *s, struct ofpbuf *b)
{
int match_len = nx_match_from_string_raw(s, b);
ofpbuf_put_zeros(b, PAD_SIZE(match_len, 8));
return match_len;
}
int
oxm_match_from_string(const char *s, struct ofpbuf *b)
{
int match_len;
struct ofp11_match_header *omh;
size_t start_len = b->size;
ofpbuf_put_uninit(b, sizeof *omh);
match_len = nx_match_from_string_raw(s, b) + sizeof *omh;
ofpbuf_put_zeros(b, PAD_SIZE(match_len, 8));
omh = ofpbuf_at(b, start_len, sizeof *omh);
omh->type = htons(OFPMT_OXM);
omh->length = htons(match_len);
return match_len;
}
/* Parses 's' as a "move" action, in the form described in ovs-actions(7), into
* '*move'.
*
* Returns NULL if successful, otherwise a malloc()'d string describing the
* error. The caller is responsible for freeing the returned string. */
char * OVS_WARN_UNUSED_RESULT
nxm_parse_reg_move(struct ofpact_reg_move *move, const char *s)
{
const char *full_s = s;
char *error;
error = mf_parse_subfield__(&move->src, &s);
if (error) {
return error;
}
if (strncmp(s, "->", 2)) {
return xasprintf("%s: missing `->' following source", full_s);
}
s += 2;
error = mf_parse_subfield(&move->dst, s);
if (error) {
return error;
}
if (move->src.n_bits != move->dst.n_bits) {
return xasprintf("%s: source field is %d bits wide but destination is "
"%d bits wide", full_s,
move->src.n_bits, move->dst.n_bits);
}
return NULL;
}
/* nxm_format_reg_move(). */
void
nxm_format_reg_move(const struct ofpact_reg_move *move, struct ds *s)
{
ds_put_format(s, "%smove:%s", colors.special, colors.end);
mf_format_subfield(&move->src, s);
ds_put_format(s, "%s->%s", colors.special, colors.end);
mf_format_subfield(&move->dst, s);
}
enum ofperr
nxm_reg_move_check(const struct ofpact_reg_move *move,
const struct match *match)
{
enum ofperr error;
error = mf_check_src(&move->src, match);
if (error) {
return error;
}
return mf_check_dst(&move->dst, match);
}
/* nxm_execute_reg_move(). */
void
nxm_reg_load(const struct mf_subfield *dst, uint64_t src_data,
struct flow *flow, struct flow_wildcards *wc)
{
union mf_subvalue src_subvalue;
union mf_subvalue mask_value;
ovs_be64 src_data_be = htonll(src_data);
memset(&mask_value, 0xff, sizeof mask_value);
mf_write_subfield_flow(dst, &mask_value, &wc->masks);
bitwise_copy(&src_data_be, sizeof src_data_be, 0,
&src_subvalue, sizeof src_subvalue, 0,
sizeof src_data_be * 8);
mf_write_subfield_flow(dst, &src_subvalue, flow);
}
/* nxm_parse_stack_action, works for both push() and pop(). */
/* Parses 's' as a "push" or "pop" action, in the form described in
* ovs-actions(7), into '*stack_action'.
*
* Returns NULL if successful, otherwise a malloc()'d string describing the
* error. The caller is responsible for freeing the returned string. */
char * OVS_WARN_UNUSED_RESULT
nxm_parse_stack_action(struct ofpact_stack *stack_action, const char *s)
{
char *error;
error = mf_parse_subfield__(&stack_action->subfield, &s);
if (error) {
return error;
}
if (*s != '\0') {
return xasprintf("%s: trailing garbage following push or pop", s);
}
return NULL;
}
void
nxm_format_stack_push(const struct ofpact_stack *push, struct ds *s)
{
ds_put_format(s, "%spush:%s", colors.param, colors.end);
mf_format_subfield(&push->subfield, s);
}
void
nxm_format_stack_pop(const struct ofpact_stack *pop, struct ds *s)
{
ds_put_format(s, "%spop:%s", colors.param, colors.end);
mf_format_subfield(&pop->subfield, s);
}
enum ofperr
nxm_stack_push_check(const struct ofpact_stack *push,
const struct match *match)
{
return mf_check_src(&push->subfield, match);
}
enum ofperr
nxm_stack_pop_check(const struct ofpact_stack *pop,
const struct match *match)
{
return mf_check_dst(&pop->subfield, match);
}
/* nxm_execute_stack_push(), nxm_execute_stack_pop().
*
* A stack is an ofpbuf with 'data' pointing to the bottom of the stack and
* 'size' indexing the top of the stack. Each value of some byte length is
* stored to the stack immediately followed by the length of the value as an
* unsigned byte. This way a POP operation can first read the length byte, and
* then the appropriate number of bytes from the stack. This also means that
* it is only possible to traverse the stack from top to bottom. It is
* possible, however, to push values also to the bottom of the stack, which is
* useful when a stack has been serialized to a wire format in reverse order
* (topmost value first).
*/
/* Push value 'v' of length 'bytes' to the top of 'stack'. */
void
nx_stack_push(struct ofpbuf *stack, const void *v, uint8_t bytes)
{
ofpbuf_put(stack, v, bytes);
ofpbuf_put(stack, &bytes, sizeof bytes);
}
/* Push value 'v' of length 'bytes' to the bottom of 'stack'. */
void
nx_stack_push_bottom(struct ofpbuf *stack, const void *v, uint8_t bytes)
{
ofpbuf_push(stack, &bytes, sizeof bytes);
ofpbuf_push(stack, v, bytes);
}
/* Pop the topmost value from 'stack', returning a pointer to the value in the
* stack and the length of the value in '*bytes'. In case of underflow a NULL
* is returned and length is returned as zero via '*bytes'. */
void *
nx_stack_pop(struct ofpbuf *stack, uint8_t *bytes)
{
if (!stack->size) {
*bytes = 0;
return NULL;
}
stack->size -= sizeof *bytes;
memcpy(bytes, ofpbuf_tail(stack), sizeof *bytes);
ovs_assert(stack->size >= *bytes);
stack->size -= *bytes;
return ofpbuf_tail(stack);
}
void
nxm_execute_stack_push(const struct ofpact_stack *push,
const struct flow *flow, struct flow_wildcards *wc,
struct ofpbuf *stack)
{
union mf_subvalue dst_value;
mf_write_subfield_flow(&push->subfield,
(union mf_subvalue *)&exact_match_mask,
&wc->masks);
mf_read_subfield(&push->subfield, flow, &dst_value);
uint8_t bytes = DIV_ROUND_UP(push->subfield.n_bits, 8);
nx_stack_push(stack, &dst_value.u8[sizeof dst_value - bytes], bytes);
}
bool
nxm_execute_stack_pop(const struct ofpact_stack *pop,
struct flow *flow, struct flow_wildcards *wc,
struct ofpbuf *stack)
{
uint8_t src_bytes;
const void *src = nx_stack_pop(stack, &src_bytes);
if (src) {
union mf_subvalue src_value;
uint8_t dst_bytes = DIV_ROUND_UP(pop->subfield.n_bits, 8);
if (src_bytes < dst_bytes) {
memset(&src_value.u8[sizeof src_value - dst_bytes], 0,
dst_bytes - src_bytes);
}
memcpy(&src_value.u8[sizeof src_value - src_bytes], src, src_bytes);
mf_write_subfield_flow(&pop->subfield,
(union mf_subvalue *)&exact_match_mask,
&wc->masks);
mf_write_subfield_flow(&pop->subfield, &src_value, flow);
return true;
} else {
/* Attempted to pop from an empty stack. */
return false;
}
}
/* Parses a field from '*s' into '*field'. If successful, stores the
* reference to the field in '*field', and returns NULL. On failure,
* returns a malloc()'ed error message.
*/
char * OVS_WARN_UNUSED_RESULT
mf_parse_field(const struct mf_field **field, const char *s)
{
const struct nxm_field *f;
int s_len = strlen(s);
f = nxm_field_by_name(s, s_len);
(*field) = f ? mf_from_id(f->id) : mf_from_name_len(s, s_len);
if (!*field) {
return xasprintf("unknown field `%s'", s);
}
return NULL;
}
/* Formats 'sf' into 's' in a format normally acceptable to
* mf_parse_subfield(). (It won't be acceptable if sf->field is NULL or if
* sf->field has no NXM name.) */
void
mf_format_subfield(const struct mf_subfield *sf, struct ds *s)
{
if (!sf->field) {
ds_put_cstr(s, "<unknown>");
} else {
const struct nxm_field *f = nxm_field_by_mf_id(sf->field->id, 0);
ds_put_cstr(s, f ? f->name : sf->field->name);
}
if (sf->field && sf->ofs == 0 && sf->n_bits == sf->field->n_bits) {
ds_put_cstr(s, "[]");
} else if (sf->n_bits == 1) {
ds_put_format(s, "[%d]", sf->ofs);
} else {
ds_put_format(s, "[%d..%d]", sf->ofs, sf->ofs + sf->n_bits - 1);
}
}
static const struct nxm_field *
mf_parse_subfield_name(const char *name, int name_len, bool *wild)
{
*wild = name_len > 2 && !memcmp(&name[name_len - 2], "_W", 2);
if (*wild) {
name_len -= 2;
}
return nxm_field_by_name(name, name_len);
}
/* Parses a subfield from the beginning of '*sp' into 'sf'. If successful,
* returns NULL and advances '*sp' to the first byte following the parsed
* string. On failure, returns a malloc()'d error message, does not modify
* '*sp', and does not properly initialize 'sf'.
*
* The syntax parsed from '*sp' takes the form "header[start..end]" where
* 'header' is the name of an NXM field and 'start' and 'end' are (inclusive)
* bit indexes. "..end" may be omitted to indicate a single bit. "start..end"
* may both be omitted (the [] are still required) to indicate an entire
* field. */
char * OVS_WARN_UNUSED_RESULT
mf_parse_subfield__(struct mf_subfield *sf, const char **sp)
{
const struct mf_field *field = NULL;
const struct nxm_field *f;
const char *name;
int start, end;
const char *s;
int name_len;
bool wild;
s = *sp;
name = s;
name_len = strcspn(s, "[-");
f = mf_parse_subfield_name(name, name_len, &wild);
field = f ? mf_from_id(f->id) : mf_from_name_len(name, name_len);
if (!field) {
return xasprintf("%s: unknown field `%.*s'", *sp, name_len, s);
}
s += name_len;
/* Assume full field. */
start = 0;
end = field->n_bits - 1;
if (*s == '[') {
if (!strncmp(s, "[]", 2)) {
/* Nothing to do. */
} else if (ovs_scan(s, "[%d..%d]", &start, &end)) {
/* Nothing to do. */
} else if (ovs_scan(s, "[%d]", &start)) {
end = start;
} else {
return xasprintf("%s: syntax error expecting [] or [<bit>] or "
"[<start>..<end>]", *sp);
}
s = strchr(s, ']') + 1;
}
if (start > end) {
return xasprintf("%s: starting bit %d is after ending bit %d",
*sp, start, end);
} else if (start >= field->n_bits) {
return xasprintf("%s: starting bit %d is not valid because field is "
"only %d bits wide", *sp, start, field->n_bits);
} else if (end >= field->n_bits){
return xasprintf("%s: ending bit %d is not valid because field is "
"only %d bits wide", *sp, end, field->n_bits);
}
sf->field = field;
sf->ofs = start;
sf->n_bits = end - start + 1;
*sp = s;
return NULL;
}
/* Parses a subfield from the entirety of 's' into 'sf'. Returns NULL if
* successful, otherwise a malloc()'d string describing the error. The caller
* is responsible for freeing the returned string.
*
* The syntax parsed from 's' takes the form "header[start..end]" where
* 'header' is the name of an NXM field and 'start' and 'end' are (inclusive)
* bit indexes. "..end" may be omitted to indicate a single bit. "start..end"
* may both be omitted (the [] are still required) to indicate an entire
* field. */
char * OVS_WARN_UNUSED_RESULT
mf_parse_subfield(struct mf_subfield *sf, const char *s)
{
char *error = mf_parse_subfield__(sf, &s);
if (!error && s[0]) {
error = xstrdup("unexpected input following field syntax");
}
return error;
}
/* Returns an bitmap in which each bit corresponds to the like-numbered field
* in the OFPXMC12_OPENFLOW_BASIC OXM class, in which the bit values are taken
* from the 'fields' bitmap. Only fields defined in OpenFlow 'version' are
* considered.
*
* This is useful for encoding OpenFlow 1.2 table stats messages. */
ovs_be64
oxm_bitmap_from_mf_bitmap(const struct mf_bitmap *fields,
enum ofp_version version)
{
uint64_t oxm_bitmap = 0;
enum mf_field_id id;
BITMAP_FOR_EACH_1 (id, MFF_N_IDS, fields->bm) {
uint64_t oxm = mf_oxm_header(id, version);
uint32_t class = nxm_class(oxm);
int field = nxm_field(oxm);
if (class == OFPXMC12_OPENFLOW_BASIC && field < 64) {
oxm_bitmap |= UINT64_C(1) << field;
}
}
return htonll(oxm_bitmap);
}
/* Opposite conversion from oxm_bitmap_from_mf_bitmap().
*
* This is useful for decoding OpenFlow 1.2 table stats messages. */
struct mf_bitmap
oxm_bitmap_to_mf_bitmap(ovs_be64 oxm_bitmap, enum ofp_version version)
{
struct mf_bitmap fields = MF_BITMAP_INITIALIZER;
for (enum mf_field_id id = 0; id < MFF_N_IDS; id++) {
uint64_t oxm = mf_oxm_header(id, version);
if (oxm && version >= nxm_field_by_header(oxm, false, NULL)->version) {
uint32_t class = nxm_class(oxm);
int field = nxm_field(oxm);
if (class == OFPXMC12_OPENFLOW_BASIC
&& field < 64
&& oxm_bitmap & htonll(UINT64_C(1) << field)) {
bitmap_set1(fields.bm, id);
}
}
}
return fields;
}
/* Returns a bitmap of fields that can be encoded in OXM and that can be
* modified with a "set_field" action. */
struct mf_bitmap
oxm_writable_fields(void)
{
struct mf_bitmap b = MF_BITMAP_INITIALIZER;
int i;
for (i = 0; i < MFF_N_IDS; i++) {
if (mf_oxm_header(i, 0) && mf_from_id(i)->writable) {
bitmap_set1(b.bm, i);
}
}
return b;
}
/* Returns a bitmap of fields that can be encoded in OXM and that can be
* matched in a flow table. */
struct mf_bitmap
oxm_matchable_fields(void)
{
struct mf_bitmap b = MF_BITMAP_INITIALIZER;
int i;
for (i = 0; i < MFF_N_IDS; i++) {
if (mf_oxm_header(i, 0)) {
bitmap_set1(b.bm, i);
}
}
return b;
}
/* Returns a bitmap of fields that can be encoded in OXM and that can be
* matched in a flow table with an arbitrary bitmask. */
struct mf_bitmap
oxm_maskable_fields(void)
{
struct mf_bitmap b = MF_BITMAP_INITIALIZER;
int i;
for (i = 0; i < MFF_N_IDS; i++) {
if (mf_oxm_header(i, 0) && mf_from_id(i)->maskable == MFM_FULLY) {
bitmap_set1(b.bm, i);
}
}
return b;
}
struct nxm_field_index {
struct hmap_node header_node; /* In nxm_header_map. */
struct hmap_node name_node; /* In nxm_name_map. */
struct ovs_list mf_node; /* In mf_mf_map[nf.id]. */
const struct nxm_field nf;
};
#include "nx-match.inc"
static struct hmap nxm_header_map;
static struct hmap nxm_name_map;
static struct ovs_list nxm_mf_map[MFF_N_IDS];
static void
nxm_init(void)
{
static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
if (ovsthread_once_start(&once)) {
hmap_init(&nxm_header_map);
hmap_init(&nxm_name_map);
for (int i = 0; i < MFF_N_IDS; i++) {
ovs_list_init(&nxm_mf_map[i]);
}
for (struct nxm_field_index *nfi = all_nxm_fields;
nfi < &all_nxm_fields[ARRAY_SIZE(all_nxm_fields)]; nfi++) {
hmap_insert(&nxm_header_map, &nfi->header_node,
hash_uint64(nxm_no_len(nfi->nf.header)));
hmap_insert(&nxm_name_map, &nfi->name_node,
hash_string(nfi->nf.name, 0));
ovs_list_push_back(&nxm_mf_map[nfi->nf.id], &nfi->mf_node);
}
ovsthread_once_done(&once);
}
}
static const struct nxm_field *
nxm_field_by_header(uint64_t header, bool is_action, enum ofperr *h_error)
{
const struct nxm_field_index *nfi;
uint64_t header_no_len;
nxm_init();
if (nxm_hasmask(header)) {
header = nxm_make_exact_header(header);
}
header_no_len = nxm_no_len(header);
HMAP_FOR_EACH_IN_BUCKET (nfi, header_node, hash_uint64(header_no_len),
&nxm_header_map) {
if (is_action && nxm_length(header) > 0) {
if (nxm_length(header) != nxm_length(nfi->nf.header) && h_error ) {
*h_error = OFPERR_OFPBAC_BAD_SET_LEN;
}
}
if (header_no_len == nxm_no_len(nfi->nf.header)) {
if (nxm_length(header) == nxm_length(nfi->nf.header) ||
mf_from_id(nfi->nf.id)->variable_len) {
return &nfi->nf;
} else {
return NULL;
}
}
}
return NULL;
}
static const struct nxm_field *
nxm_field_by_name(const char *name, size_t len)
{
const struct nxm_field_index *nfi;
nxm_init();
HMAP_FOR_EACH_WITH_HASH (nfi, name_node, hash_bytes(name, len, 0),
&nxm_name_map) {
if (strlen(nfi->nf.name) == len && !memcmp(nfi->nf.name, name, len)) {
return &nfi->nf;
}
}
return NULL;
}
static const struct nxm_field *
nxm_field_by_mf_id(enum mf_field_id id, enum ofp_version version)
{
const struct nxm_field_index *nfi;
const struct nxm_field *f;
nxm_init();
f = NULL;
LIST_FOR_EACH (nfi, mf_node, &nxm_mf_map[id]) {
if (!f || version >= nfi->nf.version) {
f = &nfi->nf;
}
}
return f;
}