2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-22 09:58:01 +00:00
ovs/lib/packets.c
Ben Pfaff f0ac9da996 packets: Fix typo in reserved multicast Ethernet addresses.
The reserved multicast Ethernet addresses begin with 01:80:c2, not
01:08:c2.

Reported-by: Padmanabhan Krishnan <kprad1@yahoo.com>
Signed-off-by: Ben Pfaff <blp@nicira.com>
Acked-by: Ethan Jackson <ethan@nicira.com>
2013-06-05 09:44:32 -07:00

935 lines
28 KiB
C

/*
* Copyright (c) 2009, 2010, 2011, 2012, 2013 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "packets.h"
#include <arpa/inet.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip6.h>
#include <stdlib.h>
#include "byte-order.h"
#include "csum.h"
#include "flow.h"
#include "hmap.h"
#include "dynamic-string.h"
#include "ofpbuf.h"
const struct in6_addr in6addr_exact = IN6ADDR_EXACT_INIT;
/* Parses 's' as a 16-digit hexadecimal number representing a datapath ID. On
* success stores the dpid into '*dpidp' and returns true, on failure stores 0
* into '*dpidp' and returns false.
*
* Rejects an all-zeros dpid as invalid. */
bool
dpid_from_string(const char *s, uint64_t *dpidp)
{
*dpidp = (strlen(s) == 16 && strspn(s, "0123456789abcdefABCDEF") == 16
? strtoull(s, NULL, 16)
: 0);
return *dpidp != 0;
}
/* Returns true if 'ea' is a reserved address, that a bridge must never
* forward, false otherwise.
*
* If you change this function's behavior, please update corresponding
* documentation in vswitch.xml at the same time. */
bool
eth_addr_is_reserved(const uint8_t ea[ETH_ADDR_LEN])
{
struct eth_addr_node {
struct hmap_node hmap_node;
uint64_t ea64;
};
static struct eth_addr_node nodes[] = {
/* STP, IEEE pause frames, and other reserved protocols. */
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000000ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000001ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000002ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000003ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000004ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000005ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000006ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000007ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000008ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000009ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c200000aULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c200000bULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c200000cULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c200000dULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c200000eULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c200000fULL },
/* Extreme protocols. */
{ HMAP_NODE_NULL_INITIALIZER, 0x00e02b000000ULL }, /* EDP. */
{ HMAP_NODE_NULL_INITIALIZER, 0x00e02b000004ULL }, /* EAPS. */
{ HMAP_NODE_NULL_INITIALIZER, 0x00e02b000006ULL }, /* EAPS. */
/* Cisco protocols. */
{ HMAP_NODE_NULL_INITIALIZER, 0x01000c000000ULL }, /* ISL. */
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccccULL }, /* PAgP, UDLD, CDP,
* DTP, VTP. */
{ HMAP_NODE_NULL_INITIALIZER, 0x01000ccccccdULL }, /* PVST+. */
{ HMAP_NODE_NULL_INITIALIZER, 0x01000ccdcdcdULL }, /* STP Uplink Fast,
* FlexLink. */
/* Cisco CFM. */
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc0ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc1ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc2ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc3ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc4ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc5ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc6ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc7ULL },
};
static struct hmap addrs = HMAP_INITIALIZER(&addrs);
struct eth_addr_node *node;
uint64_t ea64;
if (hmap_is_empty(&addrs)) {
for (node = nodes; node < &nodes[ARRAY_SIZE(nodes)]; node++) {
hmap_insert(&addrs, &node->hmap_node,
hash_2words(node->ea64, node->ea64 >> 32));
}
}
ea64 = eth_addr_to_uint64(ea);
HMAP_FOR_EACH_IN_BUCKET (node, hmap_node, hash_2words(ea64, ea64 >> 32),
&addrs) {
if (node->ea64 == ea64) {
return true;
}
}
return false;
}
bool
eth_addr_from_string(const char *s, uint8_t ea[ETH_ADDR_LEN])
{
if (sscanf(s, ETH_ADDR_SCAN_FMT, ETH_ADDR_SCAN_ARGS(ea))
== ETH_ADDR_SCAN_COUNT) {
return true;
} else {
memset(ea, 0, ETH_ADDR_LEN);
return false;
}
}
/* Fills 'b' with a Reverse ARP packet with Ethernet source address 'eth_src'.
* This function is used by Open vSwitch to compose packets in cases where
* context is important but content doesn't (or shouldn't) matter.
*
* The returned packet has enough headroom to insert an 802.1Q VLAN header if
* desired. */
void
compose_rarp(struct ofpbuf *b, const uint8_t eth_src[ETH_ADDR_LEN])
{
struct eth_header *eth;
struct arp_eth_header *arp;
ofpbuf_clear(b);
ofpbuf_prealloc_tailroom(b, ETH_HEADER_LEN + VLAN_HEADER_LEN
+ ARP_ETH_HEADER_LEN);
ofpbuf_reserve(b, VLAN_HEADER_LEN);
eth = ofpbuf_put_uninit(b, sizeof *eth);
memcpy(eth->eth_dst, eth_addr_broadcast, ETH_ADDR_LEN);
memcpy(eth->eth_src, eth_src, ETH_ADDR_LEN);
eth->eth_type = htons(ETH_TYPE_RARP);
arp = ofpbuf_put_uninit(b, sizeof *arp);
arp->ar_hrd = htons(ARP_HRD_ETHERNET);
arp->ar_pro = htons(ARP_PRO_IP);
arp->ar_hln = sizeof arp->ar_sha;
arp->ar_pln = sizeof arp->ar_spa;
arp->ar_op = htons(ARP_OP_RARP);
memcpy(arp->ar_sha, eth_src, ETH_ADDR_LEN);
arp->ar_spa = htonl(0);
memcpy(arp->ar_tha, eth_src, ETH_ADDR_LEN);
arp->ar_tpa = htonl(0);
}
/* Insert VLAN header according to given TCI. Packet passed must be Ethernet
* packet. Ignores the CFI bit of 'tci' using 0 instead.
*
* Also sets 'packet->l2' to point to the new Ethernet header. */
void
eth_push_vlan(struct ofpbuf *packet, ovs_be16 tci)
{
struct eth_header *eh = packet->data;
struct vlan_eth_header *veh;
/* Insert new 802.1Q header. */
struct vlan_eth_header tmp;
memcpy(tmp.veth_dst, eh->eth_dst, ETH_ADDR_LEN);
memcpy(tmp.veth_src, eh->eth_src, ETH_ADDR_LEN);
tmp.veth_type = htons(ETH_TYPE_VLAN);
tmp.veth_tci = tci & htons(~VLAN_CFI);
tmp.veth_next_type = eh->eth_type;
veh = ofpbuf_push_uninit(packet, VLAN_HEADER_LEN);
memcpy(veh, &tmp, sizeof tmp);
packet->l2 = packet->data;
}
/* Removes outermost VLAN header (if any is present) from 'packet'.
*
* 'packet->l2_5' should initially point to 'packet''s outer-most MPLS header
* or may be NULL if there are no MPLS headers. */
void
eth_pop_vlan(struct ofpbuf *packet)
{
struct vlan_eth_header *veh = packet->l2;
if (packet->size >= sizeof *veh
&& veh->veth_type == htons(ETH_TYPE_VLAN)) {
struct eth_header tmp;
memcpy(tmp.eth_dst, veh->veth_dst, ETH_ADDR_LEN);
memcpy(tmp.eth_src, veh->veth_src, ETH_ADDR_LEN);
tmp.eth_type = veh->veth_next_type;
ofpbuf_pull(packet, VLAN_HEADER_LEN);
packet->l2 = (char*)packet->l2 + VLAN_HEADER_LEN;
memcpy(packet->data, &tmp, sizeof tmp);
}
}
/* Return depth of mpls stack.
*
* 'packet->l2_5' should initially point to 'packet''s outer-most MPLS header
* or may be NULL if there are no MPLS headers. */
uint16_t
eth_mpls_depth(const struct ofpbuf *packet)
{
struct mpls_hdr *mh = packet->l2_5;
uint16_t depth;
if (!mh) {
return 0;
}
depth = 0;
while (packet->size >= ((char *)mh - (char *)packet->data) + sizeof *mh) {
depth++;
if (mh->mpls_lse & htonl(MPLS_BOS_MASK)) {
break;
}
mh++;
}
return depth;
}
/* Set ethertype of the packet. */
void
set_ethertype(struct ofpbuf *packet, ovs_be16 eth_type)
{
struct eth_header *eh = packet->data;
if (eh->eth_type == htons(ETH_TYPE_VLAN)) {
ovs_be16 *p;
p = (ovs_be16 *)((char *)(packet->l2_5 ? packet->l2_5 : packet->l3) - 2);
*p = eth_type;
} else {
eh->eth_type = eth_type;
}
}
static bool is_mpls(struct ofpbuf *packet)
{
return packet->l2_5 != NULL;
}
/* Set time to live (TTL) of an MPLS label stack entry (LSE). */
void
set_mpls_lse_ttl(ovs_be32 *lse, uint8_t ttl)
{
*lse &= ~htonl(MPLS_TTL_MASK);
*lse |= htonl((ttl << MPLS_TTL_SHIFT) & MPLS_TTL_MASK);
}
/* Set traffic class (TC) of an MPLS label stack entry (LSE). */
void
set_mpls_lse_tc(ovs_be32 *lse, uint8_t tc)
{
*lse &= ~htonl(MPLS_TC_MASK);
*lse |= htonl((tc << MPLS_TC_SHIFT) & MPLS_TC_MASK);
}
/* Set label of an MPLS label stack entry (LSE). */
void
set_mpls_lse_label(ovs_be32 *lse, ovs_be32 label)
{
*lse &= ~htonl(MPLS_LABEL_MASK);
*lse |= htonl((ntohl(label) << MPLS_LABEL_SHIFT) & MPLS_LABEL_MASK);
}
/* Set bottom of stack (BoS) bit of an MPLS label stack entry (LSE). */
void
set_mpls_lse_bos(ovs_be32 *lse, uint8_t bos)
{
*lse &= ~htonl(MPLS_BOS_MASK);
*lse |= htonl((bos << MPLS_BOS_SHIFT) & MPLS_BOS_MASK);
}
/* Compose an MPLS label stack entry (LSE) from its components:
* label, traffic class (TC), time to live (TTL) and
* bottom of stack (BoS) bit. */
ovs_be32
set_mpls_lse_values(uint8_t ttl, uint8_t tc, uint8_t bos, ovs_be32 label)
{
ovs_be32 lse = htonl(0);
set_mpls_lse_ttl(&lse, ttl);
set_mpls_lse_tc(&lse, tc);
set_mpls_lse_bos(&lse, bos);
set_mpls_lse_label(&lse, label);
return lse;
}
/* Push an new MPLS stack entry onto the MPLS stack and adjust 'packet->l2' and
* 'packet->l2_5' accordingly. The new entry will be the outermost entry on
* the stack.
*
* Previous to calling this function, 'packet->l2_5' must be set; if the MPLS
* label to be pushed will be the first label in 'packet', then it should be
* the same as 'packet->l3'. */
static void
push_mpls_lse(struct ofpbuf *packet, struct mpls_hdr *mh)
{
char * header;
size_t len;
header = ofpbuf_push_uninit(packet, MPLS_HLEN);
len = (char *)packet->l2_5 - (char *)packet->l2;
memmove(header, packet->l2, len);
memcpy(header + len, mh, sizeof *mh);
packet->l2 = (char*)packet->l2 - MPLS_HLEN;
packet->l2_5 = (char*)packet->l2_5 - MPLS_HLEN;
}
/* Set MPLS label stack entry to outermost MPLS header.*/
void
set_mpls_lse(struct ofpbuf *packet, ovs_be32 mpls_lse)
{
struct mpls_hdr *mh = packet->l2_5;
/* Packet type should be MPLS to set label stack entry. */
if (is_mpls(packet)) {
/* Update mpls label stack entry. */
mh->mpls_lse = mpls_lse;
}
}
/* Push MPLS label stack entry 'lse' onto 'packet' as the the outermost MPLS
* header. If 'packet' does not already have any MPLS labels, then its
* Ethertype is changed to 'ethtype' (which must be an MPLS Ethertype). */
void
push_mpls(struct ofpbuf *packet, ovs_be16 ethtype, ovs_be32 lse)
{
struct mpls_hdr mh;
if (!eth_type_mpls(ethtype)) {
return;
}
if (!is_mpls(packet)) {
/* Set ethtype and MPLS label stack entry. */
set_ethertype(packet, ethtype);
packet->l2_5 = packet->l3;
}
/* Push new MPLS shim header onto packet. */
mh.mpls_lse = lse;
push_mpls_lse(packet, &mh);
}
/* If 'packet' is an MPLS packet, removes its outermost MPLS label stack entry.
* If the label that was removed was the only MPLS label, changes 'packet''s
* Ethertype to 'ethtype' (which ordinarily should not be an MPLS
* Ethertype). */
void
pop_mpls(struct ofpbuf *packet, ovs_be16 ethtype)
{
struct mpls_hdr *mh = NULL;
if (is_mpls(packet)) {
size_t len;
mh = packet->l2_5;
len = (char*)packet->l2_5 - (char*)packet->l2;
/* If bottom of the stack set ethertype. */
if (mh->mpls_lse & htonl(MPLS_BOS_MASK)) {
set_ethertype(packet, ethtype);
packet->l2_5 = NULL;
} else {
packet->l2_5 = (char*)packet->l2_5 + MPLS_HLEN;
}
/* Shift the l2 header forward. */
memmove((char*)packet->data + MPLS_HLEN, packet->data, len);
packet->size -= MPLS_HLEN;
packet->data = (char*)packet->data + MPLS_HLEN;
packet->l2 = (char*)packet->l2 + MPLS_HLEN;
}
}
/* Converts hex digits in 'hex' to an Ethernet packet in '*packetp'. The
* caller must free '*packetp'. On success, returns NULL. On failure, returns
* an error message and stores NULL in '*packetp'. */
const char *
eth_from_hex(const char *hex, struct ofpbuf **packetp)
{
struct ofpbuf *packet;
packet = *packetp = ofpbuf_new(strlen(hex) / 2);
if (ofpbuf_put_hex(packet, hex, NULL)[0] != '\0') {
ofpbuf_delete(packet);
*packetp = NULL;
return "Trailing garbage in packet data";
}
if (packet->size < ETH_HEADER_LEN) {
ofpbuf_delete(packet);
*packetp = NULL;
return "Packet data too short for Ethernet";
}
return NULL;
}
void
eth_format_masked(const uint8_t eth[ETH_ADDR_LEN],
const uint8_t mask[ETH_ADDR_LEN], struct ds *s)
{
ds_put_format(s, ETH_ADDR_FMT, ETH_ADDR_ARGS(eth));
if (mask && !eth_mask_is_exact(mask)) {
ds_put_format(s, "/"ETH_ADDR_FMT, ETH_ADDR_ARGS(mask));
}
}
void
eth_addr_bitand(const uint8_t src[ETH_ADDR_LEN],
const uint8_t mask[ETH_ADDR_LEN],
uint8_t dst[ETH_ADDR_LEN])
{
int i;
for (i = 0; i < ETH_ADDR_LEN; i++) {
dst[i] = src[i] & mask[i];
}
}
/* Given the IP netmask 'netmask', returns the number of bits of the IP address
* that it specifies, that is, the number of 1-bits in 'netmask'.
*
* If 'netmask' is not a CIDR netmask (see ip_is_cidr()), the return value will
* still be in the valid range but isn't otherwise meaningful. */
int
ip_count_cidr_bits(ovs_be32 netmask)
{
return 32 - ctz(ntohl(netmask));
}
void
ip_format_masked(ovs_be32 ip, ovs_be32 mask, struct ds *s)
{
ds_put_format(s, IP_FMT, IP_ARGS(ip));
if (mask != htonl(UINT32_MAX)) {
if (ip_is_cidr(mask)) {
ds_put_format(s, "/%d", ip_count_cidr_bits(mask));
} else {
ds_put_format(s, "/"IP_FMT, IP_ARGS(mask));
}
}
}
/* Stores the string representation of the IPv6 address 'addr' into the
* character array 'addr_str', which must be at least INET6_ADDRSTRLEN
* bytes long. */
void
format_ipv6_addr(char *addr_str, const struct in6_addr *addr)
{
inet_ntop(AF_INET6, addr, addr_str, INET6_ADDRSTRLEN);
}
void
print_ipv6_addr(struct ds *string, const struct in6_addr *addr)
{
char *dst;
ds_reserve(string, string->length + INET6_ADDRSTRLEN);
dst = string->string + string->length;
format_ipv6_addr(dst, addr);
string->length += strlen(dst);
}
void
print_ipv6_masked(struct ds *s, const struct in6_addr *addr,
const struct in6_addr *mask)
{
print_ipv6_addr(s, addr);
if (mask && !ipv6_mask_is_exact(mask)) {
if (ipv6_is_cidr(mask)) {
int cidr_bits = ipv6_count_cidr_bits(mask);
ds_put_format(s, "/%d", cidr_bits);
} else {
ds_put_char(s, '/');
print_ipv6_addr(s, mask);
}
}
}
struct in6_addr ipv6_addr_bitand(const struct in6_addr *a,
const struct in6_addr *b)
{
int i;
struct in6_addr dst;
#ifdef s6_addr32
for (i=0; i<4; i++) {
dst.s6_addr32[i] = a->s6_addr32[i] & b->s6_addr32[i];
}
#else
for (i=0; i<16; i++) {
dst.s6_addr[i] = a->s6_addr[i] & b->s6_addr[i];
}
#endif
return dst;
}
/* Returns an in6_addr consisting of 'mask' high-order 1-bits and 128-N
* low-order 0-bits. */
struct in6_addr
ipv6_create_mask(int mask)
{
struct in6_addr netmask;
uint8_t *netmaskp = &netmask.s6_addr[0];
memset(&netmask, 0, sizeof netmask);
while (mask > 8) {
*netmaskp = 0xff;
netmaskp++;
mask -= 8;
}
if (mask) {
*netmaskp = 0xff << (8 - mask);
}
return netmask;
}
/* Given the IPv6 netmask 'netmask', returns the number of bits of the IPv6
* address that it specifies, that is, the number of 1-bits in 'netmask'.
* 'netmask' must be a CIDR netmask (see ipv6_is_cidr()).
*
* If 'netmask' is not a CIDR netmask (see ipv6_is_cidr()), the return value
* will still be in the valid range but isn't otherwise meaningful. */
int
ipv6_count_cidr_bits(const struct in6_addr *netmask)
{
int i;
int count = 0;
const uint8_t *netmaskp = &netmask->s6_addr[0];
for (i=0; i<16; i++) {
if (netmaskp[i] == 0xff) {
count += 8;
} else {
uint8_t nm;
for(nm = netmaskp[i]; nm; nm <<= 1) {
count++;
}
break;
}
}
return count;
}
/* Returns true if 'netmask' is a CIDR netmask, that is, if it consists of N
* high-order 1-bits and 128-N low-order 0-bits. */
bool
ipv6_is_cidr(const struct in6_addr *netmask)
{
const uint8_t *netmaskp = &netmask->s6_addr[0];
int i;
for (i=0; i<16; i++) {
if (netmaskp[i] != 0xff) {
uint8_t x = ~netmaskp[i];
if (x & (x + 1)) {
return false;
}
while (++i < 16) {
if (netmaskp[i]) {
return false;
}
}
}
}
return true;
}
/* Populates 'b' with an Ethernet II packet headed with the given 'eth_dst',
* 'eth_src' and 'eth_type' parameters. A payload of 'size' bytes is allocated
* in 'b' and returned. This payload may be populated with appropriate
* information by the caller. Sets 'b''s 'l2' and 'l3' pointers to the
* Ethernet header and payload respectively.
*
* The returned packet has enough headroom to insert an 802.1Q VLAN header if
* desired. */
void *
eth_compose(struct ofpbuf *b, const uint8_t eth_dst[ETH_ADDR_LEN],
const uint8_t eth_src[ETH_ADDR_LEN], uint16_t eth_type,
size_t size)
{
void *data;
struct eth_header *eth;
ofpbuf_clear(b);
ofpbuf_prealloc_tailroom(b, ETH_HEADER_LEN + VLAN_HEADER_LEN + size);
ofpbuf_reserve(b, VLAN_HEADER_LEN);
eth = ofpbuf_put_uninit(b, ETH_HEADER_LEN);
data = ofpbuf_put_uninit(b, size);
memcpy(eth->eth_dst, eth_dst, ETH_ADDR_LEN);
memcpy(eth->eth_src, eth_src, ETH_ADDR_LEN);
eth->eth_type = htons(eth_type);
b->l2 = eth;
b->l3 = data;
return data;
}
static void
packet_set_ipv4_addr(struct ofpbuf *packet, ovs_be32 *addr, ovs_be32 new_addr)
{
struct ip_header *nh = packet->l3;
if (nh->ip_proto == IPPROTO_TCP && packet->l7) {
struct tcp_header *th = packet->l4;
th->tcp_csum = recalc_csum32(th->tcp_csum, *addr, new_addr);
} else if (nh->ip_proto == IPPROTO_UDP && packet->l7) {
struct udp_header *uh = packet->l4;
if (uh->udp_csum) {
uh->udp_csum = recalc_csum32(uh->udp_csum, *addr, new_addr);
if (!uh->udp_csum) {
uh->udp_csum = htons(0xffff);
}
}
}
nh->ip_csum = recalc_csum32(nh->ip_csum, *addr, new_addr);
*addr = new_addr;
}
/* Returns true, if packet contains at least one routing header where
* segements_left > 0.
*
* This function assumes that L3 and L4 markers are set in the packet. */
static bool
packet_rh_present(struct ofpbuf *packet)
{
const struct ip6_hdr *nh;
int nexthdr;
size_t len;
size_t remaining;
uint8_t *data = packet->l3;
remaining = (uint8_t *)packet->l4 - (uint8_t *)packet->l3;
if (remaining < sizeof *nh) {
return false;
}
nh = (struct ip6_hdr *)data;
data += sizeof *nh;
remaining -= sizeof *nh;
nexthdr = nh->ip6_nxt;
while (1) {
if ((nexthdr != IPPROTO_HOPOPTS)
&& (nexthdr != IPPROTO_ROUTING)
&& (nexthdr != IPPROTO_DSTOPTS)
&& (nexthdr != IPPROTO_AH)
&& (nexthdr != IPPROTO_FRAGMENT)) {
/* It's either a terminal header (e.g., TCP, UDP) or one we
* don't understand. In either case, we're done with the
* packet, so use it to fill in 'nw_proto'. */
break;
}
/* We only verify that at least 8 bytes of the next header are
* available, but many of these headers are longer. Ensure that
* accesses within the extension header are within those first 8
* bytes. All extension headers are required to be at least 8
* bytes. */
if (remaining < 8) {
return false;
}
if (nexthdr == IPPROTO_AH) {
/* A standard AH definition isn't available, but the fields
* we care about are in the same location as the generic
* option header--only the header length is calculated
* differently. */
const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
nexthdr = ext_hdr->ip6e_nxt;
len = (ext_hdr->ip6e_len + 2) * 4;
} else if (nexthdr == IPPROTO_FRAGMENT) {
const struct ip6_frag *frag_hdr = (struct ip6_frag *)data;
nexthdr = frag_hdr->ip6f_nxt;
len = sizeof *frag_hdr;
} else if (nexthdr == IPPROTO_ROUTING) {
const struct ip6_rthdr *rh = (struct ip6_rthdr *)data;
if (rh->ip6r_segleft > 0) {
return true;
}
nexthdr = rh->ip6r_nxt;
len = (rh->ip6r_len + 1) * 8;
} else {
const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
nexthdr = ext_hdr->ip6e_nxt;
len = (ext_hdr->ip6e_len + 1) * 8;
}
if (remaining < len) {
return false;
}
remaining -= len;
data += len;
}
return false;
}
static void
packet_update_csum128(struct ofpbuf *packet, uint8_t proto,
ovs_be32 addr[4], const ovs_be32 new_addr[4])
{
if (proto == IPPROTO_TCP && packet->l7) {
struct tcp_header *th = packet->l4;
th->tcp_csum = recalc_csum128(th->tcp_csum, addr, new_addr);
} else if (proto == IPPROTO_UDP && packet->l7) {
struct udp_header *uh = packet->l4;
if (uh->udp_csum) {
uh->udp_csum = recalc_csum128(uh->udp_csum, addr, new_addr);
if (!uh->udp_csum) {
uh->udp_csum = htons(0xffff);
}
}
}
}
static void
packet_set_ipv6_addr(struct ofpbuf *packet, uint8_t proto,
struct in6_addr *addr, const ovs_be32 new_addr[4],
bool recalculate_csum)
{
if (recalculate_csum) {
packet_update_csum128(packet, proto, (ovs_be32 *)addr, new_addr);
}
memcpy(addr, new_addr, sizeof(*addr));
}
static void
packet_set_ipv6_flow_label(ovs_be32 *flow_label, ovs_be32 flow_key)
{
*flow_label = (*flow_label & htonl(~IPV6_LABEL_MASK)) | flow_key;
}
static void
packet_set_ipv6_tc(ovs_be32 *flow_label, uint8_t tc)
{
*flow_label = (*flow_label & htonl(0xF00FFFFF)) | htonl(tc << 20);
}
/* Modifies the IPv4 header fields of 'packet' to be consistent with 'src',
* 'dst', 'tos', and 'ttl'. Updates 'packet''s L4 checksums as appropriate.
* 'packet' must contain a valid IPv4 packet with correctly populated l[347]
* markers. */
void
packet_set_ipv4(struct ofpbuf *packet, ovs_be32 src, ovs_be32 dst,
uint8_t tos, uint8_t ttl)
{
struct ip_header *nh = packet->l3;
if (nh->ip_src != src) {
packet_set_ipv4_addr(packet, &nh->ip_src, src);
}
if (nh->ip_dst != dst) {
packet_set_ipv4_addr(packet, &nh->ip_dst, dst);
}
if (nh->ip_tos != tos) {
uint8_t *field = &nh->ip_tos;
nh->ip_csum = recalc_csum16(nh->ip_csum, htons((uint16_t) *field),
htons((uint16_t) tos));
*field = tos;
}
if (nh->ip_ttl != ttl) {
uint8_t *field = &nh->ip_ttl;
nh->ip_csum = recalc_csum16(nh->ip_csum, htons(*field << 8),
htons(ttl << 8));
*field = ttl;
}
}
/* Modifies the IPv6 header fields of 'packet' to be consistent with 'src',
* 'dst', 'traffic class', and 'next hop'. Updates 'packet''s L4 checksums as
* appropriate. 'packet' must contain a valid IPv6 packet with correctly
* populated l[347] markers. */
void
packet_set_ipv6(struct ofpbuf *packet, uint8_t proto, const ovs_be32 src[4],
const ovs_be32 dst[4], uint8_t key_tc, ovs_be32 key_fl,
uint8_t key_hl)
{
struct ip6_hdr *nh = packet->l3;
if (memcmp(&nh->ip6_src, src, sizeof(ovs_be32[4]))) {
packet_set_ipv6_addr(packet, proto, &nh->ip6_src, src, true);
}
if (memcmp(&nh->ip6_dst, dst, sizeof(ovs_be32[4]))) {
packet_set_ipv6_addr(packet, proto, &nh->ip6_dst, dst,
!packet_rh_present(packet));
}
packet_set_ipv6_tc(&nh->ip6_flow, key_tc);
packet_set_ipv6_flow_label(&nh->ip6_flow, key_fl);
nh->ip6_hlim = key_hl;
}
static void
packet_set_port(ovs_be16 *port, ovs_be16 new_port, ovs_be16 *csum)
{
if (*port != new_port) {
*csum = recalc_csum16(*csum, *port, new_port);
*port = new_port;
}
}
/* Sets the TCP source and destination port ('src' and 'dst' respectively) of
* the TCP header contained in 'packet'. 'packet' must be a valid TCP packet
* with its l4 marker properly populated. */
void
packet_set_tcp_port(struct ofpbuf *packet, ovs_be16 src, ovs_be16 dst)
{
struct tcp_header *th = packet->l4;
packet_set_port(&th->tcp_src, src, &th->tcp_csum);
packet_set_port(&th->tcp_dst, dst, &th->tcp_csum);
}
/* Sets the UDP source and destination port ('src' and 'dst' respectively) of
* the UDP header contained in 'packet'. 'packet' must be a valid UDP packet
* with its l4 marker properly populated. */
void
packet_set_udp_port(struct ofpbuf *packet, ovs_be16 src, ovs_be16 dst)
{
struct udp_header *uh = packet->l4;
if (uh->udp_csum) {
packet_set_port(&uh->udp_src, src, &uh->udp_csum);
packet_set_port(&uh->udp_dst, dst, &uh->udp_csum);
if (!uh->udp_csum) {
uh->udp_csum = htons(0xffff);
}
} else {
uh->udp_src = src;
uh->udp_dst = dst;
}
}
/* If 'packet' is a TCP packet, returns the TCP flags. Otherwise, returns 0.
*
* 'flow' must be the flow corresponding to 'packet' and 'packet''s header
* pointers must be properly initialized (e.g. with flow_extract()). */
uint8_t
packet_get_tcp_flags(const struct ofpbuf *packet, const struct flow *flow)
{
if (dl_type_is_ip_any(flow->dl_type) &&
flow->nw_proto == IPPROTO_TCP && packet->l7) {
const struct tcp_header *tcp = packet->l4;
return TCP_FLAGS(tcp->tcp_ctl);
} else {
return 0;
}
}
/* Appends a string representation of the TCP flags value 'tcp_flags'
* (e.g. obtained via packet_get_tcp_flags() or TCP_FLAGS) to 's', in the
* format used by tcpdump. */
void
packet_format_tcp_flags(struct ds *s, uint8_t tcp_flags)
{
if (!tcp_flags) {
ds_put_cstr(s, "none");
return;
}
if (tcp_flags & TCP_SYN) {
ds_put_char(s, 'S');
}
if (tcp_flags & TCP_FIN) {
ds_put_char(s, 'F');
}
if (tcp_flags & TCP_PSH) {
ds_put_char(s, 'P');
}
if (tcp_flags & TCP_RST) {
ds_put_char(s, 'R');
}
if (tcp_flags & TCP_URG) {
ds_put_char(s, 'U');
}
if (tcp_flags & TCP_ACK) {
ds_put_char(s, '.');
}
if (tcp_flags & 0x40) {
ds_put_cstr(s, "[40]");
}
if (tcp_flags & 0x80) {
ds_put_cstr(s, "[80]");
}
}