2
0
mirror of https://github.com/openvswitch/ovs synced 2025-08-29 05:18:13 +00:00
ovs/lib/flow.h
Jarno Rajahalme fa2fdbf8d0 classifier: Pre-compute stage masks.
This makes stage mask computation happen only when a subtable is
inserted and allows simplification of the main lookup function.

Classifier benchmark shows that this speeds up the classification
(with wildcards) about 5%.

Signed-off-by: Jarno Rajahalme <jrajahalme@nicira.com>
Acked-by: Ben Pfaff <blp@nicira.com>
2015-08-26 14:41:02 -07:00

862 lines
32 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FLOW_H
#define FLOW_H 1
#include <sys/types.h>
#include <netinet/in.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "byte-order.h"
#include "openflow/nicira-ext.h"
#include "openflow/openflow.h"
#include "packets.h"
#include "hash.h"
#include "util.h"
struct dpif_flow_stats;
struct ds;
struct flow_wildcards;
struct minimask;
struct dp_packet;
struct pkt_metadata;
struct match;
/* This sequence number should be incremented whenever anything involving flows
* or the wildcarding of flows changes. This will cause build assertion
* failures in places which likely need to be updated. */
#define FLOW_WC_SEQ 33
/* Number of Open vSwitch extension 32-bit registers. */
#define FLOW_N_REGS 8
BUILD_ASSERT_DECL(FLOW_N_REGS <= NXM_NX_MAX_REGS);
BUILD_ASSERT_DECL(FLOW_N_REGS % 2 == 0); /* Even. */
/* Number of OpenFlow 1.5+ 64-bit registers.
*
* Each of these overlays a pair of Open vSwitch 32-bit registers, so there
* are half as many of them.*/
#define FLOW_N_XREGS (FLOW_N_REGS / 2)
/* Used for struct flow's dl_type member for frames that have no Ethernet
* type, that is, pure 802.2 frames. */
#define FLOW_DL_TYPE_NONE 0x5ff
/* Fragment bits, used for IPv4 and IPv6, always zero for non-IP flows. */
#define FLOW_NW_FRAG_ANY (1 << 0) /* Set for any IP frag. */
#define FLOW_NW_FRAG_LATER (1 << 1) /* Set for IP frag with nonzero offset. */
#define FLOW_NW_FRAG_MASK (FLOW_NW_FRAG_ANY | FLOW_NW_FRAG_LATER)
BUILD_ASSERT_DECL(FLOW_NW_FRAG_ANY == NX_IP_FRAG_ANY);
BUILD_ASSERT_DECL(FLOW_NW_FRAG_LATER == NX_IP_FRAG_LATER);
/* Some flags are exposed through OpenFlow while others are used only
* internally. */
/* Public flags */
#define FLOW_TNL_F_OAM (1 << 0)
#define FLOW_TNL_PUB_F_MASK ((1 << 1) - 1)
BUILD_ASSERT_DECL(FLOW_TNL_F_OAM == NX_TUN_FLAG_OAM);
/* Private flags */
#define FLOW_TNL_F_DONT_FRAGMENT (1 << 1)
#define FLOW_TNL_F_CSUM (1 << 2)
#define FLOW_TNL_F_KEY (1 << 3)
#define FLOW_TNL_F_MASK ((1 << 4) - 1)
/* Purely internal to OVS userspace. These flags should never be exposed to
* the outside world and so aren't included in the flags mask. */
/* Tunnel information is in userspace datapath format. */
#define FLOW_TNL_F_UDPIF (1 << 4)
const char *flow_tun_flag_to_string(uint32_t flags);
/* Maximum number of supported MPLS labels. */
#define FLOW_MAX_MPLS_LABELS 3
/*
* A flow in the network.
*
* Must be initialized to all zeros to make any compiler-induced padding
* zeroed. Helps also in keeping unused fields (such as mutually exclusive
* IPv4 and IPv6 addresses) zeroed out.
*
* The meaning of 'in_port' is context-dependent. In most cases, it is a
* 16-bit OpenFlow 1.0 port number. In the software datapath interface (dpif)
* layer and its implementations (e.g. dpif-netlink, dpif-netdev), it is
* instead a 32-bit datapath port number.
*
* The fields are organized in four segments to facilitate staged lookup, where
* lower layer fields are first used to determine if the later fields need to
* be looked at. This enables better wildcarding for datapath flows.
*
* NOTE: Order of the fields is significant, any change in the order must be
* reflected in miniflow_extract()!
*/
struct flow {
/* Metadata */
struct flow_tnl tunnel; /* Encapsulating tunnel parameters. */
ovs_be64 metadata; /* OpenFlow Metadata. */
uint32_t regs[FLOW_N_REGS]; /* Registers. */
uint32_t skb_priority; /* Packet priority for QoS. */
uint32_t pkt_mark; /* Packet mark. */
uint32_t dp_hash; /* Datapath computed hash value. The exact
* computation is opaque to the user space. */
union flow_in_port in_port; /* Input port.*/
uint32_t recirc_id; /* Must be exact match. */
uint32_t conj_id; /* Conjunction ID. */
ofp_port_t actset_output; /* Output port in action set. */
uint8_t pad1[6]; /* Pad to 64 bits. */
/* L2, Order the same as in the Ethernet header! (64-bit aligned) */
uint8_t dl_dst[ETH_ADDR_LEN]; /* Ethernet destination address. */
uint8_t dl_src[ETH_ADDR_LEN]; /* Ethernet source address. */
ovs_be16 dl_type; /* Ethernet frame type. */
ovs_be16 vlan_tci; /* If 802.1Q, TCI | VLAN_CFI; otherwise 0. */
ovs_be32 mpls_lse[ROUND_UP(FLOW_MAX_MPLS_LABELS, 2)]; /* MPLS label stack
(with padding). */
/* L3 (64-bit aligned) */
ovs_be32 nw_src; /* IPv4 source address. */
ovs_be32 nw_dst; /* IPv4 destination address. */
struct in6_addr ipv6_src; /* IPv6 source address. */
struct in6_addr ipv6_dst; /* IPv6 destination address. */
ovs_be32 ipv6_label; /* IPv6 flow label. */
uint8_t nw_frag; /* FLOW_FRAG_* flags. */
uint8_t nw_tos; /* IP ToS (including DSCP and ECN). */
uint8_t nw_ttl; /* IP TTL/Hop Limit. */
uint8_t nw_proto; /* IP protocol or low 8 bits of ARP opcode. */
struct in6_addr nd_target; /* IPv6 neighbor discovery (ND) target. */
uint8_t arp_sha[ETH_ADDR_LEN]; /* ARP/ND source hardware address. */
uint8_t arp_tha[ETH_ADDR_LEN]; /* ARP/ND target hardware address. */
ovs_be16 tcp_flags; /* TCP flags. With L3 to avoid matching L4. */
ovs_be16 pad2; /* Pad to 64 bits. */
/* L4 (64-bit aligned) */
ovs_be16 tp_src; /* TCP/UDP/SCTP source port. */
ovs_be16 tp_dst; /* TCP/UDP/SCTP destination port. */
ovs_be32 igmp_group_ip4; /* IGMP group IPv4 address.
* Keep last for BUILD_ASSERT_DECL below. */
};
BUILD_ASSERT_DECL(sizeof(struct flow) % sizeof(uint64_t) == 0);
BUILD_ASSERT_DECL(sizeof(struct flow_tnl) % sizeof(uint64_t) == 0);
/* Number of uint64_t units in flow tunnel metadata. */
#define FLOW_TNL_U64S (sizeof(struct flow_tnl) / sizeof(uint64_t))
#define FLOW_U64S (sizeof(struct flow) / sizeof(uint64_t))
/* Some flow fields are mutually exclusive or only appear within the flow
* pipeline. IPv6 headers are bigger than IPv4 and MPLS, and IPv6 ND packets
* are bigger than TCP,UDP and IGMP packets. */
#define FLOW_MAX_PACKET_U64S (FLOW_U64S \
/* Unused in datapath */ - FLOW_U64_SIZE(regs) \
- FLOW_U64_SIZE(metadata) \
/* L2.5/3 */ - FLOW_U64_SIZE(nw_src) /* incl. nw_dst */ \
- FLOW_U64_SIZE(mpls_lse) \
/* L4 */ - FLOW_U64_SIZE(tp_src) \
)
/* Remember to update FLOW_WC_SEQ when changing 'struct flow'. */
BUILD_ASSERT_DECL(offsetof(struct flow, igmp_group_ip4) + sizeof(uint32_t)
== sizeof(struct flow_tnl) + 192
&& FLOW_WC_SEQ == 33);
/* Incremental points at which flow classification may be performed in
* segments.
* This is located here since this is dependent on the structure of the
* struct flow defined above:
* Each offset must be on a distinct, successive U64 boundary strictly
* within the struct flow. */
enum {
FLOW_SEGMENT_1_ENDS_AT = offsetof(struct flow, dl_dst),
FLOW_SEGMENT_2_ENDS_AT = offsetof(struct flow, nw_src),
FLOW_SEGMENT_3_ENDS_AT = offsetof(struct flow, tp_src),
};
BUILD_ASSERT_DECL(FLOW_SEGMENT_1_ENDS_AT % sizeof(uint64_t) == 0);
BUILD_ASSERT_DECL(FLOW_SEGMENT_2_ENDS_AT % sizeof(uint64_t) == 0);
BUILD_ASSERT_DECL(FLOW_SEGMENT_3_ENDS_AT % sizeof(uint64_t) == 0);
BUILD_ASSERT_DECL( 0 < FLOW_SEGMENT_1_ENDS_AT);
BUILD_ASSERT_DECL(FLOW_SEGMENT_1_ENDS_AT < FLOW_SEGMENT_2_ENDS_AT);
BUILD_ASSERT_DECL(FLOW_SEGMENT_2_ENDS_AT < FLOW_SEGMENT_3_ENDS_AT);
BUILD_ASSERT_DECL(FLOW_SEGMENT_3_ENDS_AT < sizeof(struct flow));
extern const uint8_t flow_segment_u64s[];
void flow_extract(struct dp_packet *, struct flow *);
void flow_zero_wildcards(struct flow *, const struct flow_wildcards *);
void flow_unwildcard_tp_ports(const struct flow *, struct flow_wildcards *);
void flow_get_metadata(const struct flow *, struct match *flow_metadata);
char *flow_to_string(const struct flow *);
void format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t),
uint32_t flags, char del);
void format_flags_masked(struct ds *ds, const char *name,
const char *(*bit_to_string)(uint32_t),
uint32_t flags, uint32_t mask, uint32_t max_mask);
int parse_flags(const char *s, const char *(*bit_to_string)(uint32_t),
char end, const char *field_name, char **res_string,
uint32_t *res_flags, uint32_t allowed, uint32_t *res_mask);
void flow_format(struct ds *, const struct flow *);
void flow_print(FILE *, const struct flow *);
static inline int flow_compare_3way(const struct flow *, const struct flow *);
static inline bool flow_equal(const struct flow *, const struct flow *);
static inline size_t flow_hash(const struct flow *, uint32_t basis);
void flow_set_dl_vlan(struct flow *, ovs_be16 vid);
void flow_set_vlan_vid(struct flow *, ovs_be16 vid);
void flow_set_vlan_pcp(struct flow *, uint8_t pcp);
int flow_count_mpls_labels(const struct flow *, struct flow_wildcards *);
int flow_count_common_mpls_labels(const struct flow *a, int an,
const struct flow *b, int bn,
struct flow_wildcards *wc);
void flow_push_mpls(struct flow *, int n, ovs_be16 mpls_eth_type,
struct flow_wildcards *);
bool flow_pop_mpls(struct flow *, int n, ovs_be16 eth_type,
struct flow_wildcards *);
void flow_set_mpls_label(struct flow *, int idx, ovs_be32 label);
void flow_set_mpls_ttl(struct flow *, int idx, uint8_t ttl);
void flow_set_mpls_tc(struct flow *, int idx, uint8_t tc);
void flow_set_mpls_bos(struct flow *, int idx, uint8_t stack);
void flow_set_mpls_lse(struct flow *, int idx, ovs_be32 lse);
void flow_compose(struct dp_packet *, const struct flow *);
static inline uint64_t
flow_get_xreg(const struct flow *flow, int idx)
{
return ((uint64_t) flow->regs[idx * 2] << 32) | flow->regs[idx * 2 + 1];
}
static inline void
flow_set_xreg(struct flow *flow, int idx, uint64_t value)
{
flow->regs[idx * 2] = value >> 32;
flow->regs[idx * 2 + 1] = value;
}
static inline int
flow_compare_3way(const struct flow *a, const struct flow *b)
{
return memcmp(a, b, sizeof *a);
}
static inline bool
flow_equal(const struct flow *a, const struct flow *b)
{
return !flow_compare_3way(a, b);
}
static inline size_t
flow_hash(const struct flow *flow, uint32_t basis)
{
return hash_words64((const uint64_t *)flow,
sizeof *flow / sizeof(uint64_t), basis);
}
static inline uint16_t
ofp_to_u16(ofp_port_t ofp_port)
{
return (OVS_FORCE uint16_t) ofp_port;
}
static inline uint32_t
odp_to_u32(odp_port_t odp_port)
{
return (OVS_FORCE uint32_t) odp_port;
}
static inline uint32_t
ofp11_to_u32(ofp11_port_t ofp11_port)
{
return (OVS_FORCE uint32_t) ofp11_port;
}
static inline ofp_port_t
u16_to_ofp(uint16_t port)
{
return OFP_PORT_C(port);
}
static inline odp_port_t
u32_to_odp(uint32_t port)
{
return ODP_PORT_C(port);
}
static inline ofp11_port_t
u32_to_ofp11(uint32_t port)
{
return OFP11_PORT_C(port);
}
static inline uint32_t
hash_ofp_port(ofp_port_t ofp_port)
{
return hash_int(ofp_to_u16(ofp_port), 0);
}
static inline uint32_t
hash_odp_port(odp_port_t odp_port)
{
return hash_int(odp_to_u32(odp_port), 0);
}
/* Wildcards for a flow.
*
* A 1-bit in each bit in 'masks' indicates that the corresponding bit of
* the flow is significant (must match). A 0-bit indicates that the
* corresponding bit of the flow is wildcarded (need not match). */
struct flow_wildcards {
struct flow masks;
};
#define WC_MASK_FIELD(WC, FIELD) \
memset(&(WC)->masks.FIELD, 0xff, sizeof (WC)->masks.FIELD)
#define WC_UNMASK_FIELD(WC, FIELD) \
memset(&(WC)->masks.FIELD, 0, sizeof (WC)->masks.FIELD)
void flow_wildcards_init_catchall(struct flow_wildcards *);
void flow_wildcards_init_for_packet(struct flow_wildcards *,
const struct flow *);
void flow_wildcards_clear_non_packet_fields(struct flow_wildcards *);
bool flow_wildcards_is_catchall(const struct flow_wildcards *);
void flow_wildcards_set_reg_mask(struct flow_wildcards *,
int idx, uint32_t mask);
void flow_wildcards_set_xreg_mask(struct flow_wildcards *,
int idx, uint64_t mask);
void flow_wildcards_and(struct flow_wildcards *dst,
const struct flow_wildcards *src1,
const struct flow_wildcards *src2);
void flow_wildcards_or(struct flow_wildcards *dst,
const struct flow_wildcards *src1,
const struct flow_wildcards *src2);
bool flow_wildcards_has_extra(const struct flow_wildcards *,
const struct flow_wildcards *);
uint32_t flow_wildcards_hash(const struct flow_wildcards *, uint32_t basis);
bool flow_wildcards_equal(const struct flow_wildcards *,
const struct flow_wildcards *);
uint32_t flow_hash_5tuple(const struct flow *flow, uint32_t basis);
uint32_t flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis);
uint32_t flow_hash_symmetric_l3l4(const struct flow *flow, uint32_t basis,
bool inc_udp_ports );
/* Initialize a flow with random fields that matter for nx_hash_fields. */
void flow_random_hash_fields(struct flow *);
void flow_mask_hash_fields(const struct flow *, struct flow_wildcards *,
enum nx_hash_fields);
uint32_t flow_hash_fields(const struct flow *, enum nx_hash_fields,
uint16_t basis);
const char *flow_hash_fields_to_str(enum nx_hash_fields);
bool flow_hash_fields_valid(enum nx_hash_fields);
uint32_t flow_hash_in_wildcards(const struct flow *,
const struct flow_wildcards *,
uint32_t basis);
bool flow_equal_except(const struct flow *a, const struct flow *b,
const struct flow_wildcards *);
/* Compressed flow. */
/* Check that all tunnel fields fit into a single map. */
BUILD_ASSERT_DECL(FLOW_TNL_U64S <= 64);
/* Check that all non-tunnel fields fit into a single map. */
BUILD_ASSERT_DECL(FLOW_U64S - FLOW_TNL_U64S <= 64);
/* A sparse representation of a "struct flow".
*
* A "struct flow" is fairly large and tends to be mostly zeros. Sparse
* representation has two advantages. First, it saves memory and, more
* importantly, minimizes the number of accessed cache lines. Second, it saves
* time when the goal is to iterate over only the nonzero parts of the struct.
*
* The map members hold one bit for each uint64_t in a "struct flow". Each
* 0-bit indicates that the corresponding uint64_t is zero, each 1-bit that it
* *may* be nonzero (see below how this applies to minimasks).
*
* The values indicated by 'tnl_map' and 'pkt_map' always follow the miniflow
* in memory. The user of the miniflow is responsible for always having enough
* storage after the struct miniflow corresponding to the number of 1-bits in
* maps.
*
* Elements in values array are allowed to be zero. This is useful for "struct
* minimatch", for which ensuring that the miniflow and minimask members have
* same maps allows optimization. This allowance applies only to a miniflow
* that is not a mask. That is, a minimask may NOT have zero elements in its
* values.
*
* A miniflow is always dynamically allocated so that the maps are followed by
* at least as many elements as there are 1-bits in maps. */
struct miniflow {
uint64_t tnl_map;
uint64_t pkt_map;
/* Followed by:
* uint64_t values[n];
* where 'n' is miniflow_n_values(miniflow). */
};
BUILD_ASSERT_DECL(sizeof(struct miniflow) == 2 * sizeof(uint64_t));
#define MINIFLOW_VALUES_SIZE(COUNT) ((COUNT) * sizeof(uint64_t))
static inline uint64_t *miniflow_values(struct miniflow *mf)
{
return (uint64_t *)(mf + 1);
}
static inline const uint64_t *miniflow_get_values(const struct miniflow *mf)
{
return (const uint64_t *)(mf + 1);
}
struct pkt_metadata;
/* The 'dst' must follow with buffer space for FLOW_U64S 64-bit units.
* 'dst->map' is ignored on input and set on output to indicate which fields
* were extracted. */
void miniflow_extract(struct dp_packet *packet, struct miniflow *dst);
void miniflow_map_init(struct miniflow *, const struct flow *);
void flow_wc_map(const struct flow *, struct miniflow *);
size_t miniflow_alloc(struct miniflow *dsts[], size_t n,
const struct miniflow *src);
void miniflow_init(struct miniflow *, const struct flow *);
void miniflow_clone(struct miniflow *, const struct miniflow *,
size_t n_values);
struct miniflow * miniflow_create(const struct flow *);
void miniflow_expand(const struct miniflow *, struct flow *);
static inline uint64_t flow_u64_value(const struct flow *flow, size_t index)
{
return ((uint64_t *)flow)[index];
}
static inline uint64_t *flow_u64_lvalue(struct flow *flow, size_t index)
{
return &((uint64_t *)flow)[index];
}
static inline size_t
miniflow_n_values(const struct miniflow *flow)
{
return count_1bits(flow->tnl_map) + count_1bits(flow->pkt_map);
}
struct flow_for_each_in_maps_aux {
const uint64_t *values;
struct miniflow maps;
};
static inline uint64_t
flow_values_get_next_in_map(const uint64_t *values, uint64_t *map)
{
uint64_t value = values[raw_ctz(*map)];
*map = zero_rightmost_1bit(*map);
return value;
}
static inline bool
flow_values_get_next_in_maps(struct flow_for_each_in_maps_aux *aux,
uint64_t *value)
{
if (aux->maps.tnl_map) {
*value = flow_values_get_next_in_map(aux->values, &aux->maps.tnl_map);
return true;
}
if (aux->maps.pkt_map) {
*value = flow_values_get_next_in_map(aux->values + FLOW_TNL_U64S,
&aux->maps.pkt_map);
return true;
}
return false;
}
/* Iterate through all flow tunnel u64 values specified by 'MAPS'. */
#define FLOW_FOR_EACH_IN_MAPS(VALUE, FLOW, MAPS) \
for (struct flow_for_each_in_maps_aux aux__ \
= { (const uint64_t *)(FLOW), (MAPS) }; \
flow_values_get_next_in_maps(&aux__, &(VALUE));)
/* Iterate through all struct flow u64 indices specified by 'MAP'. */
#define MAP_FOR_EACH_INDEX(U64IDX, MAP) \
for (uint64_t map__ = (MAP); \
map__ && ((U64IDX) = raw_ctz(map__), true); \
map__ = zero_rightmost_1bit(map__))
/* Iterate through all struct flow u64 indices specified by 'MAPS'. */
#define MAPS_FOR_EACH_INDEX(U64IDX, MAPS) \
for (struct miniflow maps__ = (MAPS); \
maps__.tnl_map \
? ((U64IDX) = raw_ctz(maps__.tnl_map), \
maps__.tnl_map = zero_rightmost_1bit(maps__.tnl_map), \
true) \
: (maps__.pkt_map && \
((U64IDX) = FLOW_TNL_U64S + raw_ctz(maps__.pkt_map), \
maps__.pkt_map = zero_rightmost_1bit(maps__.pkt_map), \
true));)
#define FLOW_U64_SIZE(FIELD) \
DIV_ROUND_UP(sizeof(((struct flow *)0)->FIELD), sizeof(uint64_t))
#define MINIFLOW_TNL_MAP__(FIELD, LEN) \
(((UINT64_C(1) << DIV_ROUND_UP(LEN, sizeof(uint64_t))) - 1) \
<< (offsetof(struct flow, FIELD) / sizeof(uint64_t)))
#define MINIFLOW_TNL_MAP(FIELD) \
MINIFLOW_TNL_MAP__(FIELD, sizeof(((struct flow *)0)->FIELD))
#define MINIFLOW_PKT_MAP(FIELD) \
(((UINT64_C(1) << FLOW_U64_SIZE(FIELD)) - 1) \
<< ((offsetof(struct flow, FIELD) / sizeof(uint64_t)) - FLOW_TNL_U64S))
struct mf_for_each_in_map_aux {
const uint64_t *values;
uint64_t fmap;
uint64_t map;
};
static inline bool
mf_get_next_in_map(struct mf_for_each_in_map_aux *aux,
uint64_t *value)
{
if (aux->map) {
uint64_t rm1bit = rightmost_1bit(aux->map);
aux->map -= rm1bit;
if (aux->fmap & rm1bit) {
uint64_t trash = aux->fmap & (rm1bit - 1);
aux->fmap -= trash;
/* count_1bits() is fast for systems where speed matters (e.g.,
* DPDK), so we don't try avoid using it.
* Advance 'aux->values' to point to the value for 'rm1bit'. */
aux->values += count_1bits(trash);
*value = *aux->values;
} else {
*value = 0;
}
return true;
}
return false;
}
/* Iterate through miniflow TNL u64 values specified by 'MAPS'. */
#define MINIFLOW_FOR_EACH_IN_TNL_MAP(VALUE, FLOW, MAPS) \
for (struct mf_for_each_in_map_aux aux__ = \
{ miniflow_get_values(FLOW), (FLOW)->tnl_map, (MAPS).tnl_map }; \
mf_get_next_in_map(&aux__, &(VALUE));)
/* Iterate through miniflow PKT u64 values specified by 'MAPS'. */
#define MINIFLOW_FOR_EACH_IN_PKT_MAP(VALUE, FLOW, MAPS) \
for (struct mf_for_each_in_map_aux aux__ = \
{ miniflow_get_values(FLOW) + count_1bits((FLOW)->tnl_map), \
(FLOW)->pkt_map, (MAPS).pkt_map }; \
mf_get_next_in_map(&aux__, &(VALUE));)
/* This can be used when it is known that 'u64_idx' is set in 'map'. */
static inline const uint64_t *
miniflow_values_get__(const uint64_t *values, uint64_t map, size_t u64_idx)
{
return values + count_1bits(map & ((UINT64_C(1) << u64_idx) - 1));
}
/* This can be used when it is known that 'u64_idx' is set in
* the map of 'mf'. */
static inline const uint64_t *
miniflow_get__(const struct miniflow *mf, size_t u64_idx)
{
return OVS_LIKELY(u64_idx >= FLOW_TNL_U64S)
? miniflow_values_get__(miniflow_get_values(mf)
+ count_1bits(mf->tnl_map),
mf->pkt_map, u64_idx - FLOW_TNL_U64S)
: miniflow_values_get__(miniflow_get_values(mf), mf->tnl_map, u64_idx);
}
#define MINIFLOW_IN_MAP(MF, U64_IDX) \
(OVS_LIKELY(U64_IDX >= FLOW_TNL_U64S) \
? (MF)->pkt_map & (UINT64_C(1) << ((U64_IDX) - FLOW_TNL_U64S)) \
: (MF)->tnl_map & (UINT64_C(1) << (U64_IDX)))
/* Get the value of 'FIELD' of an up to 8 byte wide integer type 'TYPE' of
* a miniflow. */
#define MINIFLOW_GET_TYPE(MF, TYPE, OFS) \
(MINIFLOW_IN_MAP(MF, (OFS) / sizeof(uint64_t)) \
? ((OVS_FORCE const TYPE *)miniflow_get__(MF, (OFS) / sizeof(uint64_t))) \
[(OFS) % sizeof(uint64_t) / sizeof(TYPE)] \
: 0)
#define MINIFLOW_GET_U8(FLOW, FIELD) \
MINIFLOW_GET_TYPE(FLOW, uint8_t, offsetof(struct flow, FIELD))
#define MINIFLOW_GET_U16(FLOW, FIELD) \
MINIFLOW_GET_TYPE(FLOW, uint16_t, offsetof(struct flow, FIELD))
#define MINIFLOW_GET_BE16(FLOW, FIELD) \
MINIFLOW_GET_TYPE(FLOW, ovs_be16, offsetof(struct flow, FIELD))
#define MINIFLOW_GET_U32(FLOW, FIELD) \
MINIFLOW_GET_TYPE(FLOW, uint32_t, offsetof(struct flow, FIELD))
#define MINIFLOW_GET_BE32(FLOW, FIELD) \
MINIFLOW_GET_TYPE(FLOW, ovs_be32, offsetof(struct flow, FIELD))
#define MINIFLOW_GET_U64(FLOW, FIELD) \
MINIFLOW_GET_TYPE(FLOW, uint64_t, offsetof(struct flow, FIELD))
#define MINIFLOW_GET_BE64(FLOW, FIELD) \
MINIFLOW_GET_TYPE(FLOW, ovs_be64, offsetof(struct flow, FIELD))
static inline uint64_t miniflow_get(const struct miniflow *,
unsigned int u64_ofs);
static inline uint32_t miniflow_get_u32(const struct miniflow *,
unsigned int u32_ofs);
static inline ovs_be32 miniflow_get_be32(const struct miniflow *,
unsigned int be32_ofs);
static inline uint16_t miniflow_get_vid(const struct miniflow *);
static inline uint16_t miniflow_get_tcp_flags(const struct miniflow *);
static inline ovs_be64 miniflow_get_metadata(const struct miniflow *);
static inline bool miniflow_equal_maps(const struct miniflow *a,
const struct miniflow *b);
bool miniflow_equal(const struct miniflow *a, const struct miniflow *b);
bool miniflow_equal_in_minimask(const struct miniflow *a,
const struct miniflow *b,
const struct minimask *);
bool miniflow_equal_flow_in_minimask(const struct miniflow *a,
const struct flow *b,
const struct minimask *);
uint32_t miniflow_hash_5tuple(const struct miniflow *flow, uint32_t basis);
/* Compressed flow wildcards. */
/* A sparse representation of a "struct flow_wildcards".
*
* See the large comment on struct miniflow for details.
*
* Note: While miniflow can have zero data for a 1-bit in the map,
* a minimask may not! We rely on this in the implementation. */
struct minimask {
struct miniflow masks;
};
void minimask_init(struct minimask *, const struct flow_wildcards *);
struct minimask * minimask_create(const struct flow_wildcards *);
void minimask_combine(struct minimask *dst,
const struct minimask *a, const struct minimask *b,
uint64_t storage[FLOW_U64S]);
void minimask_expand(const struct minimask *, struct flow_wildcards *);
static inline uint32_t minimask_get_u32(const struct minimask *,
unsigned int u32_ofs);
static inline ovs_be32 minimask_get_be32(const struct minimask *,
unsigned int be32_ofs);
static inline uint16_t minimask_get_vid_mask(const struct minimask *);
static inline ovs_be64 minimask_get_metadata_mask(const struct minimask *);
bool minimask_equal(const struct minimask *a, const struct minimask *b);
bool minimask_has_extra(const struct minimask *, const struct minimask *);
/* Returns true if 'mask' matches every packet, false if 'mask' fixes any bits
* or fields. */
static inline bool
minimask_is_catchall(const struct minimask *mask)
{
/* For every 1-bit in mask's map, the corresponding value is non-zero,
* so the only way the mask can not fix any bits or fields is for the
* map the be zero. */
return mask->masks.tnl_map == 0 && mask->masks.pkt_map == 0;
}
/* Returns the uint64_t that would be at byte offset '8 * u64_ofs' if 'flow'
* were expanded into a "struct flow". */
static inline uint64_t miniflow_get(const struct miniflow *flow,
unsigned int u64_ofs)
{
return MINIFLOW_IN_MAP(flow, u64_ofs)
? *miniflow_get__(flow, u64_ofs) : 0;
}
static inline uint32_t miniflow_get_u32(const struct miniflow *flow,
unsigned int u32_ofs)
{
uint64_t value = miniflow_get(flow, u32_ofs / 2);
#if WORDS_BIGENDIAN
return (u32_ofs & 1) ? value : value >> 32;
#else
return (u32_ofs & 1) ? value >> 32 : value;
#endif
}
static inline ovs_be32 miniflow_get_be32(const struct miniflow *flow,
unsigned int be32_ofs)
{
return (OVS_FORCE ovs_be32)miniflow_get_u32(flow, be32_ofs);
}
/* Returns the VID within the vlan_tci member of the "struct flow" represented
* by 'flow'. */
static inline uint16_t
miniflow_get_vid(const struct miniflow *flow)
{
ovs_be16 tci = MINIFLOW_GET_BE16(flow, vlan_tci);
return vlan_tci_to_vid(tci);
}
/* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'mask'
* were expanded into a "struct flow_wildcards". */
static inline uint32_t
minimask_get_u32(const struct minimask *mask, unsigned int u32_ofs)
{
return miniflow_get_u32(&mask->masks, u32_ofs);
}
static inline ovs_be32
minimask_get_be32(const struct minimask *mask, unsigned int be32_ofs)
{
return (OVS_FORCE ovs_be32)minimask_get_u32(mask, be32_ofs);
}
/* Returns the VID mask within the vlan_tci member of the "struct
* flow_wildcards" represented by 'mask'. */
static inline uint16_t
minimask_get_vid_mask(const struct minimask *mask)
{
return miniflow_get_vid(&mask->masks);
}
/* Returns the value of the "tcp_flags" field in 'flow'. */
static inline uint16_t
miniflow_get_tcp_flags(const struct miniflow *flow)
{
return ntohs(MINIFLOW_GET_BE16(flow, tcp_flags));
}
/* Returns the value of the OpenFlow 1.1+ "metadata" field in 'flow'. */
static inline ovs_be64
miniflow_get_metadata(const struct miniflow *flow)
{
return MINIFLOW_GET_BE64(flow, metadata);
}
static inline bool
miniflow_equal_maps(const struct miniflow *a, const struct miniflow *b)
{
return a->tnl_map == b->tnl_map && a->pkt_map == b->pkt_map;
}
/* Returns the mask for the OpenFlow 1.1+ "metadata" field in 'mask'.
*
* The return value is all-1-bits if 'mask' matches on the whole value of the
* metadata field, all-0-bits if 'mask' entirely wildcards the metadata field,
* or some other value if the metadata field is partially matched, partially
* wildcarded. */
static inline ovs_be64
minimask_get_metadata_mask(const struct minimask *mask)
{
return MINIFLOW_GET_BE64(&mask->masks, metadata);
}
/* Perform a bitwise OR of miniflow 'src' flow data with the equivalent
* fields in 'dst', storing the result in 'dst'. */
static inline void
flow_union_with_miniflow(struct flow *dst, const struct miniflow *src)
{
uint64_t *dst_u64 = (uint64_t *) dst;
const uint64_t *p = miniflow_get_values(src);
size_t idx;
MAP_FOR_EACH_INDEX(idx, src->tnl_map) {
dst_u64[idx] |= *p++;
}
dst_u64 += FLOW_TNL_U64S;
MAP_FOR_EACH_INDEX(idx, src->pkt_map) {
dst_u64[idx] |= *p++;
}
}
static inline void
pkt_metadata_from_flow(struct pkt_metadata *md, const struct flow *flow)
{
md->recirc_id = flow->recirc_id;
md->dp_hash = flow->dp_hash;
md->tunnel = flow->tunnel;
md->skb_priority = flow->skb_priority;
md->pkt_mark = flow->pkt_mark;
md->in_port = flow->in_port;
}
static inline bool is_ip_any(const struct flow *flow)
{
return dl_type_is_ip_any(flow->dl_type);
}
static inline bool is_icmpv4(const struct flow *flow)
{
return (flow->dl_type == htons(ETH_TYPE_IP)
&& flow->nw_proto == IPPROTO_ICMP);
}
static inline bool is_icmpv6(const struct flow *flow)
{
return (flow->dl_type == htons(ETH_TYPE_IPV6)
&& flow->nw_proto == IPPROTO_ICMPV6);
}
static inline bool is_igmp(const struct flow *flow)
{
return (flow->dl_type == htons(ETH_TYPE_IP)
&& flow->nw_proto == IPPROTO_IGMP);
}
static inline bool is_mld(const struct flow *flow)
{
return is_icmpv6(flow)
&& (flow->tp_src == htons(MLD_QUERY)
|| flow->tp_src == htons(MLD_REPORT)
|| flow->tp_src == htons(MLD_DONE)
|| flow->tp_src == htons(MLD2_REPORT));
}
static inline bool is_mld_query(const struct flow *flow)
{
return is_icmpv6(flow) && flow->tp_src == htons(MLD_QUERY);
}
static inline bool is_mld_report(const struct flow *flow)
{
return is_mld(flow) && !is_mld_query(flow);
}
static inline bool is_stp(const struct flow *flow)
{
return (eth_addr_equals(flow->dl_dst, eth_addr_stp)
&& flow->dl_type == htons(FLOW_DL_TYPE_NONE));
}
#endif /* flow.h */